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Overview

Guth’s inflationary Universe scenario has revolutionized our thinking
about the very early Universe. The inflationary scenario offers the possi-
bility of explaining a handful of very fundamental cosmological facts—the
homogeneity, isotropy, and flatness of the Universe, the origin of density
inhomogeneities and the origin of the baryon asymmetry, in terms of mi-
crophysical events which occurred early (¢ < 10-34sec) in the history of the
Universe. While Guth’s original mode] was fundamentally flawed, the variant
based on the slow-rollover transition proposed by Linde, and Albrecht and
Steinbardt (dubbed ‘new inflation’) appears viable. Although old inflation
and the earliest models of new inflation were based upon first order phase
transitions associated with spontanecus-symmetry breaking (SSB) of Grand
Unified Theories (GUTs), it now appears that the inflationary transition is
a much more generic phenomenon and that the inflationary transition that
explains the aforementioned pussles might be associated with one of 3 va-
riety of early Universe phenomena—including a first or second order SSB
phase transition, the evolution of some scalar field to its vacuum state, or
the compactification of additional dimensions. For this reason I have entitled
these lectures The Inflationary Paradigm. While there are several models
which successfully implement the inflationary paradigm, none is particularly
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compelling and all seem somewhat ad hoc. The common distasteful feature
of all the successful models is the necessity of a small dimensionless number
in the model—usually in the form of a dimensionless coupling of order 1015,
And of course, all inflationary scenarios rely upon the assumption that vac-
uum energy (or equivalently a coamoclogical term) was once dynamically very
significant, whereas today there exists every evidence that it is not {although
we have no understanding why it is not). I have divided my lectures into
the following sections: Successes of the standard cosmology; Shortcomings of
the standard cosmology; New inflation—the slow-rollover transition; Scalar
field dynamics; Origin of density inhomogeneities; Specific models, I. Interest-
ing failures; Lessons learned—a prescription for successful inftation; Specific
Models, II. Two models that work; The Ioflationary paradigm; and Loose
ends.

The Standard Cosmology and its Successes
The hot, big bang cosmology-~the so-called standard cosmology, neatly accounts
for the { Hubble) expansion of the Universe, the 2.7 K microwave background radiation
(see Figs. 1,2), and through primordial nucleosyathesis, the cosmic abucdances of
the light elements D and *He (and in all likelibood, >He and 7Ls as well; see Fig.
3). The most distant galaxies and QSO’'s observed to date have redshifts in exceas
 of 3—the current record holders are: for galaxies 5 = 3.2 (rel. 1) and QS0's z = 3.8
(ref. 2). The light we observe from an object with redshift z = 3 left that object
ouly 1-2 Byr after the bang. Observations of even the most distant galaxies and
QSO’s are cobsistent with she standard cosmology, thereby testing it back to times
as early as 1 Byr (see, e.g., ref. 3). The surface of last scattering for the microwave
background is the Universe at an age of a few x10® yrs and temperature of about
3000 K. Measurements made on wavelengibs from 0.05 cm to 80 cm indicate that it
is consistent with being radiation from a blackbody of temperature 2.75 K + 0.05 K
(see Fig. 1 and ref. 4). Measurements of the isotropy indicate that the temperature is
uniform to a part ic 1000 on angular scales ranging from 1’ to 180°—to a part in 10%
after the dipole component is removed (see Fig. 2 and ref. 5). The observations of the
microwave background test the standard cosmology back to times as early as 100,000
yrs. According to the standard cosmology, when the Universe was 0.01 sec-300 sec
old, corresponding to temperatures of 10 MeV-0.1 MeV, conditions were right for
the synthesis of light elements. The predicted abundances of D, *He, *He, and "Li
are consistent with their observed abundances provided that the baryon-to-photon
ratio is
n=ny/n,~(4—-7)x 10710 (1
The concordance of theory and observation for D and *He is particularly compelling
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Plg. 1-Summary of microwave background temperature measurements from A =~
0.05¢080cm (see refs. 4). Measurements indicate that the background radiation is
well-described as a 2.75 + 0.05K blackbody. PW denotes the discovery measurement
of Pensias and Wilson. '
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Pig. 3-Summary of microwave background anisotropy measurements on angular
scales from 10” to 180° (see ref. 5). With the exception of the dipole measurements,
the rest are 5% confidence upper limits to the anisotropy.
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Fig. 3-Big bang nucleosynthesis predictions for the primordial abundances of D, 3He,
‘He, and "Li. Y, = mass fraction of ‘He, shown for N, = 2, 3, 4 light neu-
trino species. Present observational data suggest: 0.23 < ¥, < 0.25, (D/H), >
1x 10°%, [(D +° He)/H), < 1074, and (*Li/H), = (1.1 £ 0.4) x 107'°. Concor-
dance requires n = (4 — 7) x 10~'2, For further discussion see ref. 6.
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evidence in support of the standard cosmology as there are no known contemporary
utfophyaical sites which can simultanecusly account for the primordial abundances
of both these isotopes (see ref. 6 for further discussion of primordial nucleosynthesis).
In sum, all the available evidence indicates that the standard cosmology provides an
accurate accounting of the evolution of the Universe from 0.01 sec after the bang
until today, some 15 or so Byr late——quite a remarkable achievement!

1 will now briefly review the standard cosmology (more complete discussions of
the standard cosmology are kiven in ref, 3). Throughout I will use high energy
physice units, where A = k = ¢ = 1. The following conversion factors may be useful.

1GeV ! = 0.197 x 107 3cm
1GeV ! = 0.658 x 10™ gec
1GeV = 1.160 x 10K
1GeV* = 2.32 x 10'"gem™?
1Mp = 1.99 x 109 = 1.2 x 10 baryons ¢
Ipc = 3.26light ~ year ~ 3.09 x 10"*cm
1Mpe = 3.09 x 10**em
Gy =6.673 x 10 % cmg'sec™? = m?
(mps = 1.22 x 10'°GeV)

On large scales (3> 100Mpc) the Unpiverse is isotropic and homogeneous, as
evidenced by the uniformity of the 2.7 K background radiation, the x-ray back-
ground, and source counts of galaxies, and so the standard cosmology is based on
the maximally-symmetric Robertson—Walker line element

ds? = —dt® + R3(0)[dr? /(1 — k) + r2d8? + rPsin0ds?| (2)

where ds? is the square of the proper separation between two space-time events, k is
the curvature signature (and can, by a suitable rescaling of R, be set equal to-1, 0, or
+1), and R(t) is the cosmic scale factor. The expareion of the Universe is embodied
in R(t})—as R(t) increases all proper (i.c., physical—as measured by meter sticks)
distances scale with R(t). The coordinates r, #,and ¢ are comoving coordinates;
test particles initially at rest will have constant comoving coordinates. The distance
between two objects comoving with the expansion, e.g., two galaxies, simply scales
up with R(t). The momeatum of any freely-propagating particle decreases as 1/ R(¢),
implying that the wavelength of a photon A o R(?), i.e., is redshifted by the expansion
of the Universe o



The coordinate distance at which curvaturg effects become noticeable is |k|~'/3,
which corresponds to the physical (or proper) distance

Reurs == R(1)||*/ (3)

~—which one might call the curvature radius of the Universe. Note that R, also
just scales with the cosmic scale factor B(t).

The evolution of the cosmic scale factor and of the stress energy in the Universe
are governed by the Friedmann equations:

H?=(R/R)’ = 6xGp/3 — k/R? (4)

d(pR%) = —pd( R®) ()

where p is the total energy density and p is the isotropic pressure. [The assumption
of isotropy and homogeneity require that the stress-energy tensor take on the perfect
fuid form: T# = diagonal(—p, 5, p, p)] Becanse p « R~ (n = 3 for matter,
n = 4 for radiation) it foliows from Eqn.(4) that model Universes with £ < 0 expand
forever, while those with k > 0 must necessarily recollapse.

The expansion rate H (also known as the Hubble parameter) sets the character-
istic timescale for the growth of R(f): H~! is the e-folding time for R. The present

value of K is
; B = 100h km sec™'Mpc;

where the obeervational data strongly suggest that 0.4 < A <1 (ref. 7).
The sign of the spatial curvature k—and the ultimate fate of the Universe can

be determined from messurements of g and H:
k/BR? = p/(3H?/8xG) — 1
=fi-1

(6)

where 3 = p/puris A0A peris = 1.88A7 X 10~%gcm~3 = 1.05 x 10*A%cVem™>. The
curvature redius, R, . is related to {3 by

(Reare/H™')? = 1/(0 - 1)} (7

A reliable and definitive determination of 2 has thus far eluded cosmologists.
Based upon the luminous matter in the Universe (which is relatively easy to keep
track of) we can set a lower bound to f

] 2 nguu =~ 0.01
4



Based on dynamical techniquea—which all basically involve Kepler's third law in
oune guise or anaother, the observational data seem to indicate that the material that
clusters with visible galaxies on scales < 10-30 Mpc accounts for

llgar ~01-03

Although [} can, in principle, be determined by measurements of the deceleraticn

parameter go .
9 = —(R/R)/H?, )
=01 + 3p/p})/2,
the difficulty of reliably determining go probably only restricis {1 to be less than a
few’. |For a more thorough discussion of the amount of matter in the Universe ace
ref. 8.

The best upper limit to {3 comes from the age of the Universe. The age of the

Universe is related to the Hubble time H~! by

ty = f(O}H™! (9
where f({l) is 2 monotonically decreasing function of fI; f(0) = 1 and f(1) = 2/3
for a matter-dominated Universe and 1/2 for a radiation-dominated Universe. The
dating of the oldest stars and the elements strongly suggest that the Universe is at
least 10 Byr old—the best estimate being around 15 Byr old®. From Eqn(9) and
. 2 £,010Byr it follows that ¢3,03f2 > QA% The funclion 3f? is monotonically
increasing and bounded above by x?/4, implying that independent of A, {13 <
2.5/t,. Requiring A > 0.4 and ¢4 > 1, it follows that [TA7 < 1.1 (see Fig. 4).

The energy density of the Universe quite naturally splits up into that con-
tributed by relativistic particles—today the microwave photons and cosmic neutrino
backgrounds, and that contributed by non-relativistic particles—baryons and what-
ever elsel The energy density contributed by non-relativistic particles decreases as
R(2)3—just due to the increase in the proper volume of the Universe, while that
of relativistic particles varies as R(t)~*—the additional factor of R being due to Lhe
fact that the momenta {and hence energies) of relativistic particles are redshifted by
the expanslon. [Both of these results follow directly from Eqn($).]

The energy density contributed by relativistic particles at temperature T is

S
where ¢.(T) counts the effective number of degreea of freedom (weighted by their
temperature) of all the relativistic particle species (those with m <« T):
g.(T) = Y 9a(T/T) +7/8 3 gr(TYT)", (11)

Boee Fermi
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here T; is the temperature of the species .
Today the energy density contributed by relativistic particles {photons and three

neutrino species) is very small (g, = 3.36)
0, s h? > 4% 107%(T/2.7K)*

However, because px o R—*, while pyr o« R™3, at early times the energy density
contributed by relativistic particles dominated that of non-relativistic particles. To
be specific, the Universe waa radiation-dominated for

t < tpg = 4% 10"%ec(QAN?)"(T/2.7K)°,
R < Rgg =~ 4 x 107% Reosay (OA?) (T /2.7K)",
T > Tgo = 5.8¢VAA(2.7K/T)>.

Therefore, at very early times Eqn(4} simplifies to '

H = (R/R) = (4x°3./45)' T fm,,

12
= 1.66¢/17% /m,, (12)

[Note since the curvature term varies as R(t)~2? it too is negligible compared
to the energy demsity in relativistic particles] For reference, g.(fewMeV) =
10.75 (v, e*, 3vD); ¢.(fewl00GeV) = 110 (4, W Z, 8 gluons, 3 families of quarks
and leptons, and 1 Higge doublet).

So long as thermal equilibrium is maintained, the second Friedmann equation,
Eqr(5), implies that the entropy per comoving volume, § « sR®, remains constant.
Here s is the entropy density which is dominated by the contribution from relativistic
particles, and is

s={p+p)/T = (2r?/45)g.T>. (13)

The entropy density is just proportional to the number density of relativistic particles.
today the entropy density is just 7.04 times the number density of photons. The
constancy of § means that # ¢ R=3, or that the ratio of any number density to o is
just proportional to the number of that species per comoving volume, The baryon
oumber-to-entropy ratio is

npfo = (117)713

and since today the number density of baryons is much greater than that of an-
tibaryona, this ratio is also the net baryon number per comoving volume—which is
consarved so long as the rate of baryon-number non-conserving reactions is smalt.
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The constancy of § implies that
T x g.(T)Y2R(t). (14)

Whenever g. is constant, this means that T oc R{t)~'. Together with Eqn(12) this
gives
R(t) = R{to){t/ts)'?,

t= 1207 =~ 0397 Py /TP,

o~ 2.4 x 107 %sec g7 V3(T/GeV) 3.

Finally, let me mention one more important feature of the standard cosmology,
the existence of particle horisons. In the standard cosmology the distance a pho-
ton could have traveled since the bang is finite, meaning that at a given epoch the
Universe is comprised of many causally-distinct domains. Photons travel on paths
characterised by ds? = 0; for simplicity and without loss of generality consider a
trajectory with dp = d8 = 0. The coordinate distance traversed by a photon since
‘the bang’ is

: fo ‘ dt'/R(1")

which corresponds to the physical distance (measured at time ¢)

dg(t) = R(t) j; at'/ R(t'). (16)

If R(¢) x ¢* and n < 1, then the horizon distance dy(?) is finite and up to a factor

of order unity = ¢ ~ H~1,

Note that even if dy (¢} diverges (e.g., if R(t) x {™ with n > 1), the Hubble radius
H—! still sets the scale of the ‘Physics Horison’. This is because all physical lengths
scale up with R(t), which e-folds in a time H~!, thereby implying that a coherent
microphysical process can caly operate over a time interval of order H =1, Thus, at a
given epoch causally-coherent microphysical processes caa ouly operate on distances
< the Hubble radius, H-!.

During the radiation-dominated era n = 1/2 and dy(t) = 2¢; the entropy and
baryon number within the borison at a given time are easily computed:

Suor = (4x/3)ts,
2 0.059; 3 (mu/T)?,
Np_uor = (ns/s)Snor,
o 10~ '3 (mp/T)?,
o 1073Mo(T/MeV)>.
7



We cap compare these numbers to the entropy and baryon number contained within

the present horison volume:
Sy =~ 10%,

Npy =~ 10",

Evidently, in the standard cosmology the comoving volume which corresponds to the
part of the Universe which is preseatly observable contained many, many horizon
volumes a$ carly times. This is an important poiot to which we shall return shortly.

Shortcomings of the Standard Cosmology

The standard cosmology is very successful—it provides us with a reliable frame-
work for deacribing the history of the Universe as early as 1072 sec after the bang
{when the temperature was about 10 MeV) and perhaps as early as 10™%? gec after
the bang (see Fig. 5§). [There is nothing in our present understanding of physics that
would indicate that it is incorrect to extrapolate the standard cosmology back to times
as early as 10~ % sec—quarks and leptons are point-like particles and their known
interactions should remain ‘weak’ up to energies as high as 10'® GeV—justifying Lke
dilute gas approximation made in writing p, « TY. However, at limes earlier than
10~* sec, corresponding to temperatures greater than 10'® GeV, quantum correc-
tions o general relativity—a classical theory, should become very significant| Ia
sum, the standard cosmology is a great achievement.

However, it is not without its shortcomings. There are a bandful of very impor-
tant and fundamental cosmological facts which, while it can accommodate, it in no
way elucidates. I will briefly review these puzzling facts.

(i-ii) Large-scale Isotropy and Homogeneity

The observable Universe (d >~ H~' = 10%*cm ~ 3000 Mpc) is to a high degree
of precision isotropic and homogeneous on the largest scales, say > 100Mpc. [Of
course, our knowledge of the Universe outside our past light cone is very limited;
see ref. 10.| The best evidence for the isotropy and homogeneity is provided by
the uniformity of the cosmic background temperature (see Fig. 2): (67/T) < 1073
(107* if the dipole anisotropy is interpreted as being due to our motion relative Lo
the cosmic rest frame). Large-scale density inhomogeneities or anisotropic expaasion
would result in temperature fluctuations of comparable magnitude (see refs. 11, 12).
The smoothness of the observed Universe is puszling if one wishes to understand
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it as being due to causal, microphysical processes which operated during the early
history of the Universe. Our Hubbie volume today coniains an eniropy of aboui
10°%. At decoupling {t = 6 x 10'?(Q1h?)~"/3sec, T = 1/3¢V), the last epoch when
matter and radiation were known to be interacting vigorously, the entropy within the
borison was only about 8 x 10%%; that is, the comoving volume which contains the
presently-observable Universe, then was comprised of about 2 x 10% causally-distinct
regions. How is it that they came to be homogeneous? Put another way, the particle
horison at decoupling only subtends an angle of about 1/2° on the sky today—how
is it that the cosmic background temperature is so uniform on angular scales much
greater than this?

Thke standard cosmology can accommodate these facts—after all the FRW cos-

mology is exactly isotropic and homogeneous, but at the expense of very special
initial data, Caolline and “awltmcla have shown that the set of initial data which

evolve to a Universe which globally is as smooth as ours has measure zero.

ame []

(iii) Small-scale Inhomogeneity

As any real astronomer will gladly testify, the Universe is very lumpy—stars,
galaxies, clusters of galaxies, superclusters, etc. Today, the density contrast on the
scale of galaxies is: §p/p =~ 10%. The fact that the microwave background radiation
is very uniform even on very small angular scales (< 1°} indicates that the Univarse
was smooth even on the acale of galaxies at decoupling. [The relationship between
the angle on the sky and mass contained within the corresponding length scale at
decoupling is: # ~ F(M/10'3M,)'/*0~*/341/2 | On small angular scales: §T/T =
€(8p/p)dec, where the numerical constant ¢ ~ 10~! — 10~? [see ref. 12 for further

Aataila] Whaners cama the tructure whirh t‘a ja &n ronanicnana?
Gelalie,) YWashcoe Lame o struciurne walca today is so Conapicuons!

Once matter decouples from tke radiation and is free of the pressure support
provided by the radiation, any density inhomogeneities present will grow via the
Jeans (or gravitational instability)—in the linear regime, 6p/p o< R(t). [If the mass
density of the Universe is dominated by a collisionless particle species, e.g., a light,
relic neutrino species or relic axions, density perturbations in these particles can begin
to grow as soon aa the Universe becomes matter-dominated.] In order to account
for the present structure, density perturbations of amplitude few x10-% or so at
decoupling are necessary on the scale of galaxies. The standard cosmology sheds no
light as to the origin or nature (spectrum and type—adiabatic or isothermal) of the
primordial density perturbations so crucial for understanding the structure observed

in the Universe today. lF‘or a review of the formation of atructure in the Upiverss

according to the gravitational instability picture, see ref. 14,
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(iv) Flatness (or Oldness} of the Universe
The obsarvational data suggest that

0.01 <13 < few.

03 is related to both the expansion rate of the Universe and the curvature radius of
the Universe:

1=8xGp/3H? = W2, /H?, (17)

0= 1] = (H"Y/Reurs)?, (18)

The fact that (3 is not too different from unity today implies that the present expan-
sion rate is close to the critical expansion rate and that the curvature radius of the
Universe is comparable to or larger than the Hubble radins. As the Universe expands
i1 does not remain constant, but evolves away from 1

a = 1/(1- (1)), (19)

z(t) = (k/R?)/(8xGp/3), (20)
R{t)> radiation — dominated
{ R(t) matter — dominated
That 0 is still of order unity means that at early times it was equal to 1 to a very
high degree of precision:
[0(10 ¥ sec) - 1] = 0(107%°),
|{1sec) — 1) = O(10719).

This in turn implies that at carly times the expansion rate was equal to the critical
rate to a high degree of precision and that the curvature of the Universe was much,
" much greater than the Hubble radius. Why was this so? If it were not, i.e., suppose
that |(k/R3)/(8xGp/3)| ~ O(1) at ¢t =~ 107 %33¢c, then the Universe would have
collapsed after a few Planck times (k > 0) or would have quickiy become curvature-
dominated, (k < 0), in which case R(¢) o t and (T = 3K) = 300 yrs!

The so-called flatness problem has sometimes been obscured by the fact that it
is conventional to rescale R(t) so that k = —1, 0, or +1, making it seem as though
there are but three FRW models. However, that clearly is not the case; there are
an infinity of models, specified by the curvature radius R.,,, = R(2){k]~'/3, at some
given epoch, say the planck epoch. Our model corresponds to one with a curvature
radius that exceeds its initial Hubble radius by 30 orders-of-magnitude. Again, this

10



fact can be accommodated by FRW models, but the extreme flatness of our Univerae
is in no way explained by the standard cosmology.

(v) Baryon Number of the Universe
Thera is ample evidence {aee ref. 15) for the dearth of aptimatier in the observable

Universe. That fact togetber with the baryon-to-photon ratio {7 = 4 — 7 x 10719)
means that cur Unjverse is endowed with a net baryon number, quantified by the

baryon number-to-entropy ratio
ng/s = (6—10) x 10~}

which in the absence of baryon number non-conserving interactions or sigaificant
entropy production is proportional to the constant pet baryon number per comoving
volume which the Universe has always possessed. Until five or so years ago this very
fundamental number was without explanation. Of course it is now known that in the
presence of interactions that violate B, C, and CP a net baryon asymnmetry will evolve
dynamically. Of course, such interactions are predicted by Grand Unified Theories
{or GUTs) and ‘baryogenesis’ is one of the great triumphs of the marriage of grand
unification and coamology. {See ref. 16 for a review of grand unification.] If the
baryogenesis idea is correct, then the baryon asymmetry of the Uuiverse is subject
to calculation just as the primordial Helium abundance is. Although the idea is very
attractive and certainly appears to be qualitatively correct, a precise calculation of
the baryon number-to-entropy ratio cannot be performed until The Grand Unified
Theory is known. [Baryogeneais is reviewed in ref. 17]
(vi) The Monopole Problem

If the great success of the marriage of GUTs and cosmology is baryogenesis, then
the great disappointment is ‘the monopole problem’. ‘t Hooft-Polyakov monopoles!®
are a geoeric prediction of GUTs. In the standard cosmology (aad for the simplest
GUTSs) monopoles are grossly overproduced during the GUT symmetry-breaking
transition, so much so that the Universe would reach its present temperature of
3K at the very tender age of 30,000 yrs! [For a detailed discussion of the monapole
probiem, see refs. 19, 20.] Although the monopole problem initially eeemed to be
a severe blow to the luner Space/Outer Space connection, as it has turned out it
provided us with a valuable piece of information about physics at energies of order
10'* GeV and the Universe at times as early as 10~ % sec—the standard cosmology
and the simplest GUTs are definitely incompatible! In fact, it was the search for
a solution to the monopole problem which io the end led Guth to come upon the
inflationary Universe scenario®!133,
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(vii) The Smalliness of the Cosmological Constant
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With $he possible exception of supersymmetry /supergra
superstring thecries, the absclute scale of the scalar potential V(4$) is not specified
(here § represents the scalar fields in the theory, be they fundamental or compaosite).
A constant term in the scalar potential is equivalence to a cosmological term {the
scalar potential contributes a term Vg,, to the stress energy of the Universe®?).
At low temperatures (say temperatures below any scale of spontaneous symmetry-
breaking) the constant term in the potential receives contributions from all the stages
of SSB—chiral syminetry breaking, electroweak SSB, GUT SSB, etc. The observed
expansion rate of the Universe (H = 100A km sec—! Mpc—!') limits the total energy

density of the Universe to be
pror < O(1074°GeV").

Making the seemingly very reasonable assumption that all stress energy self-gravitates
{which is dictated by the equivalence principle) it follows that the vacuum energy of
our SU(3) x U(1) vacuum must be less than 10~ *GeV*. Compare this to the scale of
the various contributions to the scalar potential: O(M?*) for physics associated with
a symmetry breaking scale of M
10722 M=m,
107'%% M =10"4Gev

10750 M = 300GeV

1074 M =1GeV

Vioday/M* € pror /M4 <

At present there is no explanation for the vanishingly small value of the energy
density of our very unsymmetrical vacuum. It is easy to speculate that a fundamental
understanding of the smallness of the cosmological constant will likely involve an
intimate link between gravity and quantum field theory.

Today we can be certain the vacuum epergy is small and plays a minor role in
the dypamics of the expangion of the Universe (compared to the potential role that it
could play). If we accept this as an empirical determination of the absolute scale of
the scalar potential V(4), then it follows that the energy density associated with an
expectation value of ¢ near gero is enormous—of order M* (see Fig. 6) and therefore
could have played an important role in the dynamics of the very early Universe.
Accepting this empinical determination of the gero of vacuum energy—which is a
very great leap of faith, is the starting point for inflation. In fact, the rest of the

journey is downhill.
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Fig. ©-Ip gauge theories the vacuum energy is a function of one or' more scalar
fields (here denoted as ¢); however, the absolute energy scale is not set. Vacuum
energy bebaves like a cosmological term; the present expansion rate of the Universe
constrains the value of the vacuum energy today to be < 10-%GeV 4.

Vol vy i) voi$)
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Pig. 7-The fisite temperature effective polential as a function of T (schematic).
The Universe is usually assumed to start out in the high temperature, symmetric
minimum {¢ = 0) of the potential and must eventually evolve to the low temperature,
asymmetric minimum (¢§ = ¢). The evolution of ¢ from ¢ = 0 to ¢ = o can prove to
be very interesting—as in the case of an inflationary transition.
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New Infiation—The Slow-rollover Transition

The basic idea of the inflationary Universe scenario is that there was an epoch
when the vacuum energy density dominated the energy density of the Universe. Dur-
ing this epoch p = V = constant, and thus R(t) grows exponentially (x ezp(H?)),
allowing & small, causally-coherent region (initial sise < H™!) to grow to a size which
encompasses the region which eventually becomes our presently-observable Universe.
In Guth’s original scenario®?, this ep;ch occurred while the Universe was trapped
in the falss (¢ = 0) vacuum during a strongly, first-order phase transition. Unfortu-
pataly, in models which inflated enough {i.e., underwent sufficient exponential expan-
sion) the Universe never made a ‘graceful return’ to the usual radiation-dominated
FRW cosmology?!. Rather than discussing the original model and its shortcomings
in detail, I wili instead focus on the variant, dubbed ‘new inflation’, proposed inde-
pendently by Linde?® and Albrecht and Steinbardt?®. In this scenario, the vacuum-
dominated, inflationary epoch occurs while the region of the Universe in question is
slowly, but inevitably, evolving toward the true, SSB vacuum. Rather than conaid-
ering specific models in this section, I will try to discuss new inflation in the most
general context. For the moment | will however assume that the epoch of inflation
is associated with a first-order, SSB phase transition, and that the Universe is in
thermal equilibrium before the transition. As we shall see later new inflation is more
general than these assumptions. But for definiteness (and for historical reasons), let
me begin by making these assumptions.

Copsider a SSB phase transition characterised by an energy scale M. For
T > T. = 0{M) the symmetric (¢ = 0) vacuum is favored, i.e.,, ¢ = 0 is the global
minimurm of the finite temperature effective potential Vr(¢) (=free energy deasity).
As T approaches T, a second minimum develops at ¢ = o, and at T = T, the two
minima are degenerate. At temperatures below T. the SSB (¢ = o) minimum is
the global minimum of Vr(¢) (see Fig. 7). However, the Universe does not instantly
make the transition from ¢ = 0 to ¢ = o; the details and time required are a question
of dynamies. [The scalar field ¢ is the order parameter for the SSB transition under
discusslon; in the spirit of generality ¢ might be a gauge singlet field or might have
noptrivial transformation properties under the gauge group, possibly evea respon-
sible for the SSB of the GUT.] Once the temperature of the Universe drops below
T. =~ O(M), the potential energy associated with ¢ being far from the minimum of
its potential, V = V(0) =~ M*, dominates the energy density in radiation (p, < T),
and causes the Universe to expand exponentially. During this exponential expansion
phase (known as a deSitter phase) the temperature of the Universe decreases expo-
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nentially causing the Universe to supercool, The exponential expansion continues so
loug as ¢ is far from its SSB value. Now let’s focus on the evolution of .

| Assuming a barrier exists between the false and true vacua, thermal fluctuations
and/or quantum tuoneling must take ¢ across the barrier. The dynamics of ihis
process determine when and how the process occurs (bubble formation, spincdal
decompoaition, etc.) and the value of ¢ afler the barrier is penetrated. If the action
for bubble nucleation remains large, S ¥ I, then the barrier will be overcome by
the nucleation of Coleman-deLuccia bubbles?”; on the other hand if the action for
bubble nucleation becomes of order unity, then the Universe will undergo spinodal
decomposition, and irregularly-shaped fluctuation regions will form (see Fig. 8; for
a more detailed discussion of the barrier penetration process see refs. 27, 28). For
definiteness suppose that the barrier is overcome when the temperature is Ty and
that after the barrier is penetrated the value of ¢ is ¢o. From this point the journey
to the true vacuum is downhill (literally). For the moment let us assume that the

evolution of ¢ is adequately described by semi-classical equations of motion:
$+3H+Thp+V' =0, (21)

where ¢ has been normalised so that its kinetic term in the Lagrangian is 1/29,43% 4,
and prime indicates a derivative with respect to ¢. The subscript T on V has been
dropped; for T <« T, the temperature dependence of Vr can be neglected and the zero
temperature potential (= V') can be used. The 3H¢ term acts like a frictional force,
and arises because the expanasion of the Universe ‘redshifts away’ the kinetic energy
of ¢$(x R~3). The I'é term accounts for particle creation due to the time-variation
of ¢[refs. 29, 30]. The quantity T is determined by the particles which couple to ¢
and the strength with which they couple (I'~! ~ lifetime of a ¢ particle). As usual,
the expansion rate X is determined by the energy density of the Universe:

H? = 8xGp/3, (22)

¢ = 1/28* + V(4) + pr, (23)

where p, representa the energy density in radiation produced by the time variation
of ¢. {For Turs <« T, the original thermal component makes a negligible contribution
to p.] The evolution of p, is given by

fr + 4Hp, = T$2, (24)

where the I"qs’i term accounts for particle creation by ¢.
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Fig. 8-1f the tunneling action is large (S 3 1), barrier penetration will proceed via
bubble nucleation, while in the case that it becomes small (S = O(1}), the Universe
will fragment into irregularly-shaped fuctuation regions. The very-large acale {scale
> bubble or fluctvation region) structure of the Universe is determined by whether
9 ~ O{1)—in which case the Universe is comprised of irregularly-shaped domains,
or § 3 O(1)—in which case the Universe is comprised of isolated bubbles.
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Io writing Eqns.(21-24} [ have implicitly assumed that ¢ is spatially bomoge-
peous. In some small region (inside a bubble or a fluctuation region) this will be a
good approximation. The sise of this smooth region will turn out to be unimportant;
take it to be of order the ‘physics horison’, H~!—certainly, it is not likely to be
larger. Now follow the evolution of ¢ within the small, smooth patch of size H1.

If V(¢) is sufficiently flat somewhere between ¢ = ¢y and 4 = o, then ¢ will
evolve very slowly in that region, and the motion of ¢ will be ‘friction-dominated’ so
that 3Hé ~ —V*! (in the slow growth phase particle creation is not important®!). If
Vis luﬁéiently fiat, then the time required for ¢ to transverse the flat region can be
long compared to the expansion timescale H™!, for definiteness say, 7, = 1005 ",
During this slow growth phase p ~ V{g) ~ V(¢ = 0}; both p, and 1/24? are < V (¢).
The expansion rate H is then just

H = (8xV(0)/3m%)'/?
= O(M /my), !

(25)

where V(0) is assumed to be of order M*, While H ~ copstant, R grows exponen-
tially: R o ezp(Ht); for 74 = 100H ", R expands by a factor of ¢!° during the slow
rolling period, and the physical size of the smooth region increases to e!®®H -1,

As the poténtial steepens, the evolution of ¢ quickens. Near ¢ = o, ¢ oxcil-
lates around the SSB minimum with frequency my = m: =~ V"(o) =~ O(M?*} »
H? =~ M*/m?,. As ¢ oscillates about ¢ = ¢ ita motion is damped both by particle
creation and the expansion of the Universe. If [t < H~!, then coherent field en-
ergy density (V + 1/243) is converted into radiation in less than an expansion time
(Atpy = T'7%), and the patch is reheated to a temperature T = O(M}—the vacuum
energy is efficiently converted into radiation (‘good rebeating'). Or the other hand,
if I~! 3> H™!, then ¢ continues to oscillate and the coherent field energy redshifts
away with the expansion: (V + 1/2¢%) & R™>—the coherent energy behaves like
non-relativistic matter. Eventually, when ¢ =2 I'~! the energy in radiation begins to
dominate that in coherent field oscillations, and the patch is reheated to a temper-
ature T = (I'/H)'/3M ~ (T'm,;}'/3 & M (‘poor reheating’). The evolution of ¢ is
summarised schematically in Fig. 9. In the next section I will discuss the scalar field
evolution in more detail.

For the following discussion let us assume ‘good reheating’ (I' >» H). After
reheating the patch has a physical sise !%°H~! (= 10'Tem for M =~ 10*4GeV), is at
a temperature of order M, ard in the approximation that ¢ was initially constant
throughout the patch, the patch is exactly smooth. From this point forward the
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region evolves like 3 radiation-dominated FRW model. How have the cosmological
conundrums been ‘explained’?

First, the Aomogeneity and isotropy; our observable Universe today (= 10%%cin)
had a physical sise of about 10cm (= 10%%cm x 3K/10'4GeV) when T was 104 GeV—
thus it lies well within one of the smooth regions produced by the inflationary epoch.
Put another way, inflation has resulted in a smooth patch which contains an entropy
of order (10'7cm)® x (10'4GeV)® =~ 10**¢, which is much, much greater than that
within the presently-observed Universe (= 10%%). Before inflation that same volume
contained ouly a very small amount of entropy, about {10~33cm)?(10'4GeV)? =~ 10'4.
The key to inflation then is the highly non-adiabatic event of reheating (see Fig. 10).
Of course, on the very largest scales (3 10%2cm) the Universe is far from being
bomogesneous, consisting of many disjoint bubbles or fluctuation regions (see Fig. 8).
The Universe’s very large scale cosmography is discussed in more detail in ref. 33.

Since we hava assumed that ¢ is spatially constant within the bubble or fuctu-
ation region, after reheating the patch in question is precisely uniform, and at this
stage the inhomogeneity puasle has not been solved, although inflation has provided
a sthooth manifold on which small fluctuationa can be impressed. Due to deSitter
space produced quantum fluctuations in ¢, ¢ is not exactly uniforim even in a small
patch. Later, I will discuss the density inhomogeneities that result from Lthe quantum
fluctuations in ¢.

The flainess pusse involves the smallness of the ratio of the curvature term to
the energy density term. This ratio is exponentially smaller after inflation: zuper =
€397, rore since the energy density before and after inflation is O{M*), while k/ R?
bas exponentially decreased (by a factor of ¢3°°). Since the ratio z is reset to an
exponentially small value, the inflaticnary scenario predicts that today {1 shouid be
1 £ 0{10~BIC#),

If the Universe is reheated to a temperature of order M, a baryon asymmetry can
evolve in the usual way, although the quantitative details may be slightly different'?. .
If the Universe is not efficiently reheated (Try <« M), it may be possible for ng /s
to be produced directly in the decay of the coherent field oscillations??-3? (which
behavs just like NR ¢ particies); this possibility will be discussed later. In any case,
it is absolutely necessary to have baryogenesis occur after reheating since any baryon
number {or any other quantum number) present before inflation is diluted by a factor
of (M/Tys)? exp(3Hry)—the factor by which the total eatropy increases. Note that
if C, CP are viclated spontanecusly, then ¢ (and np/s) could have a different sign in
different patches—leading to a Upiverse which on the very largest scales (3> ¢!%°H~?)
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STANDARD COSMOLOGY
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Pig. 10-Evolution of the scale factor R and temperature T of the Universe in the
standard cosmology and in the inflationary ¢osmology. The standard cosmology is
always adiabatic (RT 2= const), while the inflationary cosmology undergoes a highly,
non-adiabatic event (reheating) after which it is adiabatic.
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is baryon symmetric.

Since the patch that our observable Universe lies within was once (at the begin-
ning of inflation) causally-coherent, the Riggs field could have been aligned through-
out the patch (indeed, this is the lowest energy configuration), and thus there is likely
to be < 1 monopole within the eptire patch which was produced as a topological de-
fect. The glut of monopoles which occurs in the standard cosmology does not occur.
|{The production of other topological defects (such as domain walls, etc.) is avoided
for similar reasons.] Some monopoles will be produced after reheating in rare, very
energetic particle collisions®*. The number produced is both exponentially small
and exponentially uncertain. {In discuasing the resolution of the monopole problem I
am tacitly assuming that the SSB of the GUT is occurring during the SSB transition
in question, or that it has already occurred in an earlier SSB transition; if not then
one bas to worry about the monopoles produced in the subsequent GUT transition.)
Although monopole production is intrinsically small in inflationary models, the un-
certainties in the number of monopoles produced are exponential and of course, it
is also possible that monopoles might be produced as topological defects in a subse-
quent phase transition®# (although it may be difficult to arrange that they not be
overproduced).

Finally, the inflationary scenario sheds no light upon the cosmalogical constant
puzzde. Although it can potentially successfully resolve all of the other puzzles in my
list, inflation is, in some sense, a house of cards built upon the cosmological constant

puszle.

Scalar Field Dynamics

The evolution of the scalar field ¢ is key to understanding new inflation, In this
section I will focus on the semi-classical dynamics of ¢. Later, I will return to the
question of the validity of the semi-classical approach. Much of what I will discuss
bere is covered in more detail in rel. 35.

Consider a scalar field with lagrangian density given by

£= 30,40 -V(4) (26)

For now I will ignore the interactions that ¢ must necessarily have with other fields
in the theory. As it will turn out they must be weak for inflation to work, so that
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this assumption is a reasonable one. The stress-energy tensor for this field is then
Tpv = -ap”v¢ - 'cgpv (27)

Assuming that in the region of interest ¢ is spatially-constant, T, takes on the
perfect fluid form with energy density and pressure given by

p=3# +V(4), (28)

p=3# - V8, (29)

In the presence of spatial variations in ¢ both the pressure and energy density pick
an additional term, 4(V¢)2. [Note, once inflation begins any inhomogeneities in ¢
are redshifted away by the expansioo—all spatial modes with physical wavelengths
smaller than H~! decay as R~1.] That the spatial gradient term in ¢ be upimportant
is crucial to inflation; if it were to dominate the pressure and energy deusity, then
R(t) would grow as t*/? (since p would be o« p} and not exponentially.

The equations of motion for ¢ can be obtained either by varying the action or by
using T#" ,, = 0. Iu either case the resulting equation is:

é+3HH(+T$) +V'(¢) = 0. (30)

I have explicitly inciuded the ['4 term which arises due to particle creation. The
SH¢ friction term arises due to the expansion of the Universe; as the scalar field
gains momentum, that momentum is redshifted away by the expansion.

This equation, which is analogous to that for a ball rolling with friction down
a hill with a valley at the bottom, has two qualitatively different regimes, each of
which bas a simple, approximate, analytic solution. {The potential V'($) is shown

schematically in Fig. 11.)
{i} The slow-rolling regime, where the field rolls at terminal velocity and the ¢ term is

vegligible. This occurs in the interval where the potential is very flat, the conditions
for sufficient Aatness being®?:

V¥ < 93’- (31a)
V'ma/V| < (482)'2, (316)

Condition (31a} usually subsumes condition (31b), so that condition (31a) generally
suffices. During the slow-rolling regime the equation of motion for ¢ reduces to

¢~ -V'/3H. (32)
18



During the slow-rolling regime particle creation is exponentially suppressed®! because
the timescale for the evolution of ¢ (which sets the energy/momentum scale of the
particles created) is much greater than the Hubble time (which sets the physics
bhorison), Le., any particles radiated would bave to have wavelengths much larger
than the physics borison. Thbus, the I'¢ term can be neglected during the ‘slow roll’.

Suppose the interval where conditions (31a,b) are satisfied is [¢,, ¢.], then the
number of e-folds of expaneion which occur during the time ¢ is evolving from ¢ = &,

tog=0.{=N)is

‘l
N=-3] Hdp/V'(g). (33)
¢,

Taking H? /V'I to be roughly constant over this interval and approximating V' as =~
#V* (which is approximately true for polynominal potentials) it follows that

N s 3HY V" > 3.

If there is a region of the potential where the evolution is friction-dominated, then
N will necessarily be greater than 1 (by condition {31a)).
(ii)Coherent field oscillations, in this regime

V"l > o4

and ¢ evolves rapidly, on a timescale < the Hubble time H~', Once ¢ reaches the
botiom of its potential, it will oscillate witk an angular frequency equal to my =
V*¥(2)!/2. In this regime it proves useful Lo rewrite Eqn.[30) for the evolution of ¢
as

e = —3H$ —T¢*. (34)

where
pe = 1/24% + V(¢).

Once ¢ is oscillating about ¢ = ¢, 2 can be replaced by ils average over a cycle
< Ja Seycle= Pé,
and Eqn.(34) becomes
po = —3Hpy —Tpy (35)

which is just the equation for the evolution of the energy density of zero momentum,
massive particles with a decay width I

Referring.back to Eqn(29) we can see that the cycle average of the pressure
(i.e., space-space componeots of T},,) is sero—-as ope would expect for NR particles.
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Fig. 11-Schematic plot of the potential required for inflation. The shape of the
potential for ¢ 4 o determines how the barrier between ¢ = 0 and ¢ = o (if one
exista) is penetrated. The value of ¢ after barrier penetration is taken to be ég; the
flat region of the potential is the interval [¢,, ¢.].
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Pig. 12-The evolution of py, p,, and S during the epoch when the Universe is dom-
inated by coberent ¢-oscillations. The reheat temperature Try =~ g._'l {(Tmp) /3.
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The coherent ¢ oscillations are in every way equivalent to a very cold condensate
of ¢ particles. The decay of these oscillations due to quantum particle creation is

equivalent to the decay of ¢ particles.
The complete set of semi-classical equations for the reheating of the Universe is

b = —3Hpy —Tpy, (36a)
ﬂ.r = "‘Hpr + rp‘l (366)
H? = 8xG(pr + £4}/3, (36¢)

where p, = {x2/30)g.T* is the energy densily in the relativistic particles produced
by the decay of the coherent field oscillations. The evolution for the energy density

in the acalar is easy to obtain
pe = MY(R/R.) Pexp[~T(t — t.}], (37)

where I have set the initial energy equal to M4, the initial epoch being when the
acalar field begins to evolve rapidly (at R=R., ¢ = ¢, and t = t).!

From ¢t = £, until ¢ = [~!, the energy density of the Universe is dominated by the
coherent sloshings of the scalar field 4, set into motion by the iritial vacuum energy
associated with ¢ < ¢. During this phase

R(t) 313
that is, the Universe behaves as if it were dominated by NR particles—which it is!
Interestingly enough it follows from Eqn{(36) that during this time the energy

deusity in radiation is actually decreasing (pr o R~3/?—see Fig. 12). However, the
all important entropy per comoving volume is increasing

5 o R'™/*,

when t = ['~!, the coherent oscillations begin to decay exponentially, and the entmﬁy
per comoving volume levels off —indicating the end of the reheating epoch. The
temperature of the Universe at this time is,

Tpy = g 4(Cmy)'/? (38)

(here and throughout this discussion I have assumed that the energy density which
has gone into particles quickly thermalizes). If I'~! ia less than H~!, so that the
Universe reheats in less than an expansion time, then all of the vacuum is converted
into radiation and the’ Universe is rebeated to a temperature

Tag ~¢7"*M (i I > H)
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the so-called case of good rebeating.

To summarize the evolution of the scalar field ¢: early on ¢ evolves very slowly,
on a timaescale » the Hubble time H~?; then as the potential steepens (and V*
becomes > 9H3) ¢ begins to evolve rapidly, on a timescale < the Hubble time
H-'. As ¢ oscillates about the minimum of its potential the energy density in these
oscillations dominates the energy density of the Universe and behavea like NR matter
(pe = R~3); eventually when ¢ = I“"',.thcse oscillationa decay, reheatiag the Universe
to a temperature of Ty =~ g, l,‘(I":'n,,;)"’ (it > H, so that the Universe does not
e-fold in the time it takes the oscillations to decay, then Try =~ g._” *M). Saying
that the Universe reheats when ¢ = I'~! is a bit paradoxical as the temperature bas
actually been decreasing since shortly after the ¢ oscillations began. However, the fact
that the temperature of the Universe was actually once greater than Tgy for £ < '~}
is of no practical use since the entropy per comoving volume increases untilt = I'!'—
by a factor of (M?3/I'm,)%/%, and any interesting objects that might be produced
(e.g., baryogenesis, monopole production) will be diluted away by the subsequent
entropy production. By any reasonable measure, Tgy is the reheat temperature of
the Universe. The evolution of p;, pr, and § are summarizged in Fig. 12.

Armed with our detailed knowledge of the evolution of ¢ we are in a pasition to
calculate the precise number of e-folds of inflation neceasary to soive the horizon and
flatness problems and to discuss direct baryon number production. First consider
the requiliteI number of e-folds, N, required for sufficient inflation. To soive the
homogeneity problem we need to insure that a smooth patch containing an entropy
of at least 10%® results from inflation. Suppose the initial bubble or fluctuation region
has a sise H~' ~ my/M?——certainly it can be no larger than this. During inBation
it grows by a factor of exp(N). Next, while the Universe is dominated by coherent

field oscillations it grows by a factor of
(Bra/R) = (M*[Thy)' P,

where Tay is the reheat temperature. Cubing the sise of the patch at reheating {to
obtain its volume) and multiplying its volume by the entropy density (s ss TR, ), we

obtain )
Spoleh = eaNm;/(MaTRH )'

Insisting that Spqeca be greater than 10%%, it follows that

N 256+ Sin(M/10GeV) + Sin(Tan /104GeV). (39)



Varying M from 10'%°GeV to 10*°GeV and Try from 1GeV to 10'°GeV the lower

bound on N only varies from 36 to 68.
The flatness problem involves the smallness of Lthe matio

z = (k/R?)/(8xGp/3)
required at early times. Taking the pre-inflationary value of z to be z, and remem-

R™? p = cons't
zZ(t) x { R poc B3
R puax R

bering that

it follows that the value of z today is
Ztoday = Tie N (M/Tay)*(Tru /10¢V)?(10eV /3K).
Insisting that z,,44y be at most of order unity implies that
N 256 +in(z.) + gln(M/lD“GcV) + ;in(TRH/lD“GcV)

—upto the term In(z,}, precisely the same bound as we obtained to solve the homo-
geneity problem. Solving the isotropy problem depends upon the initial anisotropy
present; during inflation isotropy decreases exponentially (see refs. 36).

Finally, let's calcuiate the baryon asymmetry that can be directly produced by
the decay of the ¢ particles themselves. Suppose that the decay of each ¢ particle
results in the production of et baryon number e. This net baryon number might be
produced directly by the decay of a ¢ particle (into quarks and leptons) or indirectly
through an intermediate state (¢ — X X; X, X — quarks and leptons; e.g., X might
be 2 superheavy, color triplet Higgs®”). The baryon asymmetry produced per volume

is then
ng =~ engy.

On the other hand we have
(9.%7/30) T3y =~ nym,.
Taken together it follows that30:32.38
ngfs =~ (3/4)Toy /my. (40)

This then is the baryon number per entropy produced by the decay of the ¢ particles
directly. If the reheat temperature is not very high, baryon number non-conserviag
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interactions will not reduce the asymmetry significantly. Note that the baryon asym-
metry produced only depends upon the ratio of the reheat temperature to the ¢
particle mass. This is important, as it means that a very low reheat temperature can
be tolerated, so long 3s the ratio of it to the ¢ particle mass is not too small.

Origin of Density Inhomogeneities

To this point I have assumed that ¢ is precisely uniform within a given bubble or
Ructuition region. As a result, each bubble or fuctuation region resembles a perfectly
isotropic and homogeneous Universe after reheating. However, because of deSitter
space produced quantum fluctuations, ¢ cannot be exactly uniform, even within a
small region of space. It is a well-known result that a massless and nop-interacting
scalar field in deSitter space bas a spectrum of fluctuations given by (see, e.g., ref.
39)

(A¢)F = (2x) k3|66 = H?/16x°, (41)

]l

where

6¢

Hi

(2x)°2 f P hSpge = {42)

and £ and £ are comoving quantities. This result is applicable to inflationary scenarios
as the scalar field responsible for inflation must be very weakly-coupled and nearly
massless. [That Universe is not precisely in a deSitter expansion during inflation, i.e.,
p+p = ¢ # 0, does not affect this result significantly; this point is addressed in
ref. 40.] These deSitter space produced quantum fluctuations result in a calculable
spectrum of adiabatic density perturbations. These density perturbations were first
calculated by the authors of refs. 41-44; they have also been calculated by the
authors of refs. 45 who bave addreased some of the technical issues in more detail.
All the calculations done to date lead to the same result. | will briely describe the
calculation in ref. 44; my emphasis here will be to motivate the result rather than
to rigorously derive the result. ] refer the reader interested in more details to the

aforementioned references.
It is usual to expand density inhomogeneities in a Fourier expansion

§plo = (2x)7° f Spe~ k=g, (43)
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The physical wavelength and wavenumber are related to k by

Ma = (20/K)R(¢) = AR(t),

kon = k/R{t).
The quantity most people refer to aa §p/p on a given scale is more precisely the RMS
mass fluctuation on that scale

(8p/0)F = <(BM/M)? >, =~ A} = (2x)73Kk%|6)%, (44)

which is just related to the Fourier component & on that scale. Henceforth 1 will use
& and (6p/p)x interchangeably.

The cosmic scale factor is often normalized so that Ri,4.y = 1; this means that
given Fourier components are characterized by the physical size that they have to-
day (neglecting the fact that once a given scale goes non-linear objects of that size
form bound objects that no longer participate in the universal expansion and remain
roughly constant in size). The mass {(in NR matter) contained within a sphere of
radius /2 is

M(2) = 1.5 x 10" Mg (A /Mpc)* Qa3

Altbough physics depends on physical quantities (koa, Apa, etc.), the comoving labels
k, M, and A are the most useful way to label a given component as the affect of the
expansion has been scaled out.

I should state at the onset that the quantity §p/p is not gauge invariant (under
general coordinate transformations). This fact makes life very difficult when dis-
cussing Fourier components with wavelengths larger thar the horizon (i.e., 2, >
H-'). The gauge non-invariance of §p/p is not a problem when A, < H™!, aa the
analysis is essentially Newtonian. The usual approach is to pick a convenient gauge
(e-g., the synchronous gauge where g,, = —1, g,; = 0) and work very carefully (see -
refs. 46, 47). The more elegant approach is to focus on gauge-invariant quantities; see
ref. 48. 1 will gloss over the subtleties of gauge invariapce in my discussion—which
is aimed at motivating the answer and not rigorously proving it.

The evolution of 2 given Fourier componert (in the linear regime—é&p/p < 1)
separates into qualitatively different regimes, depending upon whether or not the
perturbation is inside or outside the physics horizon. When a perturbation (more
precisely a given Fourier component) is inside the horizon, A5 < H~!, microphys-
ical processes can affect its evolution—such processes include: quantum mechanical
effects, pressure support, free-streaming of particles, ‘Newtonian gravity’, etc. In this
tegime the evolution of the perturbation is very dynamical. When a perturbation
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is outside the pbysics horison, Aps > H™!', microphysical processes do not affect itz
evolution; it a very real sense its evolution is kinematic—it evolves as a wrinkle in
the fabric of space-time.

In the standard coamology, a given Fourier component crosses the horizon only
once, stariing outside the horizon and crossing inside at a time (see Fig. 13)

T o= (M/Mg)*/see

(valid during the radiation-dominated epoch). For {his reason it is not possible to
create adiabatic perturbations by causal microphysical processes which operate at
early timea*™*%, In the standard cosmology, if adiabatic perturbations are present,
they must be present ab inifio. The amallness of the particle horizon at early times
relative to the comoving volume occupied by the observable Universe today strikes
again!

[It is possible for microphysical processea to create isothermal, more precisely
isocurvature, perturbations. Once such perturbations cross inside the horizon they

are characterized by a spectrum
(60/p) & (M/My)~'/?

or steeper. Here My is the horizon maas when the perturbations wete created. Thus
the earlier the processes operate, the smaller the perturbations on astrophysically-
interesting scales. By an appropriate choice of gauge it is possible to view these
isotbermal perturbations as adiabatic perturbations with a very steep spectrun,
§p/p x M~71%; however, as must be the case, they cross the horizon with the ampli-
tude mentioned above. For more details, see refs. 47, 48]

Because the distance to the physics horizon (=~ H~!) remains approximately con-
stant during inflation, the situation is very different in the inflationary Universe. All
interesting scales start inside the horizon, crose ouiside the horizon during inflation,
and re-enter the horison once again (at the usual epoch); see Fig. 13. This means that
causal microphysical procesaes can set up density perturbations on astrophysically-
interesting scales.

Consider the evolution of a given Fourier component k. Early during the in-
flationary epoch A,a < H~%, and quantum fluctuations in ¢ give rise to density
perturbations on this scale. As the scale passes outaide the horizon, say at t = ¢,,
microphysical processes become impotent, and 8p/p freezes out at a value,

(60/p)e =~ O(SHAS/MY),
O($H?IM?*),
25
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as the scale leaves the horizon. Note in the approximation that H and ¢ are constant
during the inflationary epoch the value of §p/p as the perturbation leaves the horizon
is independent of k. This scale independence of §p/p when perturbations cross outside
the horison is of course traceable to the time translation invariance of deSitter space—
the Universe looks the same as each scale crosses outside the horizon.

While outside the borizon the evolution of a perturbation is kinematical, inde-
pendent of scale, and gauge dependent'. There is a gauge independent quantity (= ¢)
which remains constant while the perturbation is outside the horizon, and which at

horison crossing is proportional to 6g/(p + p):

¢=bp/(p+p) (for Apn =~ H™'), (46a)
¢ = cons’t (for A > H™'), (468)
= [8p/(p + Plle=tw = [62/(p + P)li=t, (46c)

(ece refs. 44, 49, 50 for more details}). When the perturbation crosses back inside
the horizon at time t = ¢y, (p + p) = np(n = 4/3— radiation-dominated; n = 1,
matter-dominated) so that up to a numerical factor: [8p/{p + P)le=t, = (60/P)t=ts-
During inflation, however, p + p = 9;’ & p =~ M* so that: [6p/(p + p}li=e, =
(M4/6?)(8p/p)e=t,. Note, M*/¢? is typically a very large number. Eqns{45, 46)
then imply

(8p/p)e=tn = (6p/P)u = H? /4, (47)

Note that in the approximation that ¢ and H are are constant during inflation and
the amplitude of 5p/p at horizon crossing (= (6§p/p)x) is independent of scale. This
fact is traceable to the time-translation invariance of the nearly-deSitter inflationary
epoch and the scale-independent evolution of (§p/p) while the perturbation is outside
the horizon. The so-called scale-invariant or Zel’dovich spectrum of density pertur-
bations was first discussed, albeit in anotber context, by Harrison®' and Zel'dovick52.
Scale-invariant adiabatic density perturbations are a generic predictior of inflation.
!Because H and é are not precisely constant during inflation, the spectrum is not
quite scale-invariant. For most models of inflation the deviations are not expected
to be significant; for further discussion see refs. 53, 54.] Although the details of
structure formation are nct presently sufficiently well understood to say what the
initial spectrum of perturbations must have been, the Zel'dovich spectrum with an
amplitude of about 10-* - 10~ % is certainly a viable possibility.

Before moving on, let me be very precise about the amplitude of the inflation-
produced adiabatic density perturbations. Perturbations which re-enter the horizon
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while the Universe is still radiation-dominated (A € A,q = 13h~2Mpc), do 80 a8 a

_____ 3 e o bl o b a s e d b with amanlitnda
BOUNU Wa¥Y® 1O sUC puosound U UalYOUID Wikl adlpusuuc
(50/p)u = K15\ /(20 = H? [(x*/7§) (48a)

Perturbations in non-interacting, relic particles {such as massive neutrinos, axions,
etc.), which by the equivalence principle must have the same amplitude at horizon
crossing, do not oscillate, but instead grow slowly {c« In R). By the epoch of matter-
radiation equivalence they have an amplitude of 2-3 times that of the initial baryon-

photon sound wave, or
(8o/0)up = (2~ 3)(8p/p)u = (2 - 3)H*[(x*/*§) (485)

It is this amplitude which must be of order 10~° ~ 104 for successful galaxy forma-

Lion,
Perturbations which re-enter the horison when the Universe is qlready matter-

dominated (scales A > A.q = 13h~2 Mpc) do so with amplitude
(60/p)n = 2|6]/(2%)*/7 = (H? /10)/(x*/7 ) (49)

Once inside the horizon they continue to grow {as 17/3 gince the Universe is matter-
dominated). These scales are important for the very large-scale structure of the
Upiverse and determine the microwave anisotropy on large angular (3> 1°) scales:
§T/T 2= 1/2(8p/p)n .

When the structure formation problem is viewed as an initial data problem, it ia
the spectrum of density perturbationa at the epoch of matter domination which is the
relevant input spectrum. The shape of this spectrum has been carefully computed
by the authors of ref. 55. Roughly speaking, on scales less than )., it is almost flat,
varying as A™3/% o« M~'/4 for scales around the galaxy scale (=~ 1Mpc). On scales
much greater than A.q, (6p/p)  A~? o« M=3/2, {in the synchronous gauge where
adiabatic perturbations grow as {® (n = 2/3 matter dominated, n = 1 radiation
dominated). Since these scales have yet to re-enter the horizon they have not yet
achieved their horison-crossing amplitude].

In order to compute the amplitude of the inflation-produced adiabatic density
perturbations we need to evaluate H"/dv when the astrophysically-relevant scales
crossed outside the horizon. Recall, in the previous section we computed when the
comoving scale corresponding to the present Hubble radius croased outside the hori-
zon during inflation—N = 56 or so e-folds before the end of inflation, cf., Eqn.(39).
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" The present Hubble radius corresponds to a scale of about 3000Mpc; therefore the
scale AMpc must have crossed the horison in(3000/1) e-folds later:

Ny = Nyogr ~ 8+ In(A/Mpc) =~ 48 + In(A/Mpc)

(its first outaide the horizon, last back in—see Fig. 13). Typically H3/¢ depends
upon N, o some power’; since N, ooly varies logarithmically (AN/N = 0.14
in going from 0.1Mpc to 3000Mpc), the scale dependence of the spectrum is very
minimal.

As mentioned earlier, a generic prediction of the inflationary Universe is that
today (1 should be equal to one to a high degree of precision. Equivalently, that

means
(k/R?)/(8xGp/3)| < 1

since

@ =1/(1 - (k/R?)/(8xGp/3)).
Therefore one might conclude that ap accurate measurement of £ would have to yield
1 very precisely. However, because of the adiabatic density perturbations produced
during inflation that is not the case. Adiabatic density fluctuations correspond to

fluctuations in the local curvature
. 5p/p = &(k/R%)/Gp

This means that, should we be able $o very accurately probe the value of 1 (equiv-
alently the curvature of space) on the acale of our Hubble volume, say by using the
Hubble diagram, we would necessarily obtain a value for {3 which is dominated by
the curvature fluctuations on the scale of the present borizon,

ose = 1+ 6(k/R?)/(8xGp/3) =~ 1 £ O(10™4),

and so we would obtain a value different from 1 by about a part in 10* or so.

Finally, let me briefly mention that isothermal density perturbations can also
arise during inflation. [Isothermal density perturbations are characterized by 5p = 0,
but §(mi/ny) # 0 in some component(s)s. They correspond to spatial fluctuations
in the local pressure due to spatial fluctuations in the local equation of state.] Such
perturbations can arise from the deSitter produced fluctuations in other quantum
fields in the theory.

The simplest example occurs in the axion-dominated Universe®®-57-58. Suppose
that Peccei-Quinn symmetry breaking occurs before or during inflation. Until instan-
ton effects become important (T’ = few 100MeV') the axion field a = f,f is niassless
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and & is in general not aligned with the minimum of its potential: 8§ = 8, # 0 (I
bave taken the minimum of the axior potential to be § = 0; f, = the T = 0 vac-
uum expectation value of the scalar field which breaks the PQ symmetry). Once the
axion develops 3 mass {equivalently, its potential develops a minimum) ¢ begins to
oscillate; these coberent oscillations correspond to a condensate of very cold axions,
with oumber density « 83. [For further discussion of the coberent axion oscillations
see refs. 59-61.] During inflation deSitter space produced quantum fuctuations in
the axion field gave rise Lo spatial Buctuations in §,:

80 ~ baff, = H/f,

Once the axion field begins to oeciilate, these spatial Aluctuations in the axion field
correspond to fluctuations in the local axion to pholon ratio

b(na/nq)/(na/ny) = 268/8, ~ 2H/(f.8,)
More precisely
(6na/na)x = k3/%|8a(k)|/(2x)*/* = H/(2x*/3 f,8,), (50)

where [, is the expectation value of f; when the scale ) leaves the horizon (in some
models the expectation value of the field which breaks PQ symmetry evolves as the
Universe is inflating, so that f can be < f,). It is possible that these isothermal
axion fluctuations can be important for galaxy formation in an axion-dominated,
inflationary Univerve.

Bpecific Models—Part 1. Interesting Failures

‘Old Inflation’ By old inflation ] mean Guth's original model of inflation. In bis
original model the Universe inflated while trapped in the ¢ = 0 false vacuum state.
In order to inflate enough the vacuum bad to be very metastable; however, that being
the case, the bubble nucleation probability was low. So low that the bubbles that did
nucleate never percolated, resulting in a Universe which resembled swiss cheese more
than aoything else?®. The interior of an individual bubble was not suitable for our
present Universe either. Because he was not considering flat poteatials, essentially
all of the original false vacuum energy resides in bubble walls rather than in vacuum
energy inside the bubbles themseives. Although individual bubbles would grow to a
very large size given epough time, their interiors would contain very little entropy
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(compared to the 10** in our observed Universe). In sum, the Universe inflated
all right, but did not ‘gracefully exit’ from inflation back to a radiation-dominated
Universe—close, but no cigar!

Coleman-Weinberg SU(5) The first model of new inflation studied was the
Coleman-Weinberg SU(5) GUT?*-?¢, In this model the field which inflates is the
24-dimensional Higgs which also breaks SU{5] down to SU(3) x SU(2} x U(1). Let
¢ denote its magnitude in the SU(3} x SU(2} x U(1) direction. The one-loop, sero-
temperature Coleman-Weinberg potential is

V($) = 1/2Bo* + Bp*{in{¢?/07) — 1/2},
B =25a%,,/16 ~ 1073 (51)
o~ 2 x 10'%GeV

Due to the absence of a mass term, the poteptial is very flal near the origin (SSB

arises due to one-loop radiative corrections®?}; for ¢ < o:
V(4) = Bat/2 — Ap*/4

52
A = |4Bin($? /0?)} = 0.1 (52)

The finite temperature potential has a small temperature dependent barrier |height
O(T*)] near the crigin |¢ =~ O(T)}. The critical temperature for this transition is
O(10** — 10'*GeV). When the temperature of the Universe drops to O(10°GeV')
or so, the barrier becomes low enough that the finite temperature action for bubble
nucleation drops to order unity and the ¢ = 0 false vacuum becomes unstable®®. In
analogy witk solid state phenomena it is expected that at this the temperature of
the Upiverse will undergo ‘spinodal decompeosition®, i.e., will break up into irregu-
larly shaped regions within which ¢ is approximately constant {so-called fluctuation
regions). Approximating the potential by Eqn(52) it is easy to solve for the evolution
of ¢ in the slow-rolling regime [|[V”] < 9H? for $* < ¢7 ¢ o?(x0? /|m2,in(4?/07)))]

(H/¢) = 2 M), (53a)
4x Bot
H? =~ ?;'n*z"-. (538)

where N(¢) = f: Hdt is the number of e-folds of inflation the Universe undergoes
while ¢ evolves from ¢ to ¢.. Clearly, the number of e-folds of inflation depends
upon the initial value of $(= ¢o); in order to get sufficient inflation $p must be
O(H). Although one might expect ¢o to be of this order in a typical fluctuation
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region since H = 5 x 10°GeV =~ (temperature at which the ¢ = 0 false vacuum loses
its metastability), there is a more fundamental difficulty. In using the semi-classical
equations of motion to describe the evolution of ¢ one is implicitly assuming
¢ =~ dclassicar + Bédgu,
A¢QM < éclccn‘ed
The deSitter space produced quantum fluctuations in ¢ are of order H. More specif-
ically, it has been shown that®3%4

Ad ~ (H/2x)(HY)'/?

Therein lies the difficulty—in order to achieve enough inflation the initial value of ¢
must be of the order of the quantum fAuctualions in ¢. At the very least this calls
into question the semiclassical approximation.

The situation gets worse when we look at the amplitude of the adiabatic density

perturbations:

('éf),, = (H?/x*/*§) r (S4a)

3 18
= (s37) 35 (54t

(9),= ()" () >
Py ™ “\r 3i/3

For galactic-scale perturbations N =~ 50, implying that (fp/p)y =~ 30! Again, its
clear that the basic problem is traceable to the fact that during inflation ¢ < H.

The decay width of the ¢ particle is of order axgyr ¢ = 10'3GeV which is
much greater than H (implying good reheating), and so the Universe reheats to a
temperature of order 10'4GeV or so.

From Eqns{53a, 54c) it is clear that by reducing A boih problems could be

remedied—however A = 10~'% is necessary’. Of course, as long as the in--
flating Keld is a gauge non-singlet A is set by the gauge coupling strength and
A =~ O(107!) » 10~'3. From this interesting failure it is clear that one should
focus on weakly-coupled, gauge singlet fields for inflation.
Geometric Hierarchy Model The first model proposed to address the difliculty
mentioned above, was a supersymmetric GUT®3-%%, [n this model ¢ is a scalar
field whose potential at tree level is absolutely flat, but due to radiative corrections
develops curvature. In the model ¢ is also responsible for the SSB of the GUT. The
potential for ¢ is of the form

V(6) = u'fer + cain($/my) (55)
an

{54¢c)



where g = 10'3GeV is the scale of supersymmetry breaking, and ¢, and ¢; are
constants which depend upon details of the theory. This form for the potential is
only valid away from the SSB minimum (o & 0 = my) and for ¢ > u. The authors
presume that higher order effects will force the potential to develop a minimum for
¢ = my. Since V' ox ¢! the potential evolves flatter for large ¢—which already
sounds good.

The inflationary scenario for this potential proceeds as follows. The shape of the
potential is not determined near ¢ = 0; depending on the shape ¢ evolves to some
initial value, say ¢ = ¢o, either by bubble nucleation or spinodal decomposition.
Then -it begins to roll. During the slow-roli which begins when (V" =~ 9H? and

$s = (ca/ 2471 ) Py,
8x

H? =~ 3m?, oy pt (56a)

(1~ ¢7/m3)) = (ea/ 45, )N (9) (568)
(6o/p)u = (B*/5°/§), (57a)

= (8% /3P fea)u$/m. (57)

Note that during the slow rotl (¢ > 4,)

| S b ot 1my
' HH ¢ 8x '’

1
lolSC;Iﬂlcl > l,

14

thereby avoiding the difficulty encountered in the Coleman-Weinberg SU(5) model
where ¢ < H was required to inflate. For ¢, 2 O(1), ¢; 2 10~*—acceptable values
in the model, (5p/p)g = 10~® and N(9,) = 4xc, /¢3 = 10°. The number of e-folds of
inflation is very large—10°. This is quite typical of the very flat potentials required
to achieve (6p/p) = 10¢ - 1072,

Now for the bad news. In this model ¢ is very weakly coupled—it only couples
to ordinary particles through gravitational strength interactions. Its decay width is

[ = O(p*/my), (58)

which is much less than H (implying poor reheating) and leads to a reheat temper-

ature of
Tru = O[(I‘m,;)"’],

o O(p® /m)), (59)
o~ 10MeV.
32



vi($) § T>> T

Nl

Pig. 14-In SUSY/SUGR models < ¢ >r is not necessarily equal to sero. If
< @ >r> 0, there is the danger that < ¢ > smoothly evolves into the sero tempera-
ture minimum of the potential, thereby eliminating the poesibility of inflation (upper
figure). A sure way of preventing this is to design the potential so that < ¢ >r< 0
(lower figure).
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Such a reheat temperature safely returns the Universe to being radiation-dominated
before primordial nucleosynthesis, and produces a smooth patch containing an enor-
mous entropy-—for ¢z = 107%, ¢; = 1, Spaeen = {m:,/pzTgH]ea‘" ~ 10%*ezp(3 x 10°),
but does pot reheat the patch to a high enough temperature for baryogenesis. Poor
reheating is 3 problem which plagues almost all potentially viable models of inflation:
(5p/p} = 10~% — 1075 requires that the potential be very flat, which in turn requires
that ¢ must be weakly-coupled and therefore Try o [''/? is naturally very low.
CERN 8USY/SUGR Models"” Early on members of the CERN theory group
recognized that supersymmetry might be of use in protecting the very small couplings
necessary in inflationary potentials from being overwhelmed by radiative corrections.
They explored a variety of SUSY/SUGR models (and dubbed their brand of inflation
‘primordial inflation’). In the process, they encountered a difficulty which plagues
almost all supersymmetric models of inflation based upon minimal supergravity the-
ories. .

It is usually assumed that at high temperatures the expectation value of the
inflating field is at the minimum of its finite temperature effective potential (near
¢ = 0); then as the Universe cools it becomes trapped there, and then eventually
slowly evolves to the low temperature minimum (during which time inflation takes
place). In SUSY models < ¢ >r is not necessarily zero at high temperatures. In
fact in essentially all of their models < ¢ >r> 0 and the high temperature minimum
smoothly evolves into the low temperature minimum {as shown in Fig. 14 ). Asa
result in these models the Universe in fact would never have inflated!

There are two obvious remedies to this problem: (i) arrange the model so that
{¥}p < 0 (a8 shown in Fig. 14), then ¢ necessarily gets trapped near ¢ = 0; or (ii)
assume that ¢ is never in thermal equilibriuni before the phase transition so that ¢
is not constrained to be in the high temperature minimum of its finite temperature
potential before inflation. Variants of the CERN models based on these two remedies
have been constructed by Ovrut and Steinbardt®® and Holman, Ramond, and Ross™.
Non-minimal SUGR theories do not seem to be plagned by this difficulty (see Jensen

and Olive®®). :

Lessons Learned—‘A Prescription for Successful New Infiation®?
The unsuccessful models discussed above have proven to be very useful in that they
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have allowed us to ‘write 3 prescription’ for the kind of potential that well successfully
implement inflation. The following prescription incorporates these lessons, together
with other lessons which have been Jearned (sometimes painfully). As we will see
all but the last of the prescribed features, that the potential be part of a sensible
particle physics mode), are relatively easy to arrange.

{1) The potential should have an interval which is sufficiently flat so that ¢ evolves
slowly (relative to the expansion timescale H~')—that is, fiat enough so that a
slow-rollover transition ensues. As we have seen, that means an interval

[é‘. ‘Cl
where
V" <eH?,
[V'mge V] < (48%)' /2.

(2) The length of the interval where ¢ evolves slowly should be much greater than
H/2x, the scale of the quantum fluctuations, so that the aemi-cla.aeicalfqpproximation
makes sense. [Put another way the interval should be long enough eo that quantum
fluctuations do not quickly drive ¢ across the interval.] Quantitatively, this calls for

b ~ 6, > (HAL(H/2x)

where At is the time required for ¢ to evolve classicalyy from ¢ = ¢, to 6 = 4.
{(3) In order to solve the flatness and homogeneity problems the time required for ¢
to roll from ¢ = ¢, to ¢ = ¢, should be greater than about 60 Hubble times

¢, [ B
N= Hdt =~ f 3H%d3/(-V') s 3H?/V" > 60
¢ ‘.

The precise formula for the minimum value of N is giver in Eqn(39).
{4} The scalar field ¢ should be smooth on a sufficiently large patch (say size L) so
that the energy density and pressure associated with the (V$)? term is negligible:

1/2(V4)? = ($o/L)? € V(o) =~ M*.

(Otherwise the (V¢)? term will dominate p and p, so that R(f) o #*/3—that is,
inflation does not occur). Usually this condition is easy to satisfy, as all it requires
is that ‘

L> ¢o/M? = ($o/mp) B~
since ¢o is usvally € myy, (do/mpu)H "' € H'—that is ¢ only need be smooth
on a patch comparable to the physics horizon H='. |I will discuss a case where it is
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not easy to satisfy—Linde’s chaotic inflation.] Once inflation does begin any initial
inhomogeneities in ¢ are rapidly smoothed by the exponential expansion.

(6a) In order to insure a viable scenario of galaxy formation (and microwave
anisotropies of an acceptable maguitude) the amplitude of the adiabatic density per-
turbations must be of order 107° — 107, [In a Universe dominated by weakly-
interacting relic particles such aa neutrinos or axions, (5p/p)ap must be a few
x10~%] This in turn results in the constraint

!GW X lo—a = (5PIP)MD =4 (2 = 3)(69/.0)1[ &~ (2 - 3)(H2/r3“$)60lu',

= (H’/})G,,", == 10_‘

In general, this is by far the most difficult of the constraints (other than sensible
particle physics) to satisfy and leads to the pecessity of extremely flat potentials. |
should add, if one has another means of producing the density perturbations necessary
for galaxy formation {e.g., cosmic strings or isotbermal perturbatibns), then it is

sufficient to have
(H?/4)catazy < 107*

(5b) Isothermal perturbations produced during inflation, e.g., as discussed for the
case of an axion-dominated Universe, also lead to microwave anisotropies and possibly
structure formation. The smootkuess of the microwave background dictates that

(60/p)1s0 £ few x 107*
while if they are to be relevant for structure formation
(8p/p)1s0 = 107% — 1074

In the case of isothermal axion perturbations this is easy to arrange to have
(6/p)1s0 € 10~% upless the scale of PQ symmetry is larger than about 10'*GeV.
{6a) The reheat temperature must be sufficiently high so that the Universe
is radiation-dominated at the time of primordial nucleosynthesis (¢ ~ 10-2% —
107aec, T = 10McV — 0.1MeV). Oaly in the case of poor reheating is Try likely
to be anywhere as low as 10MeV, in which case Try = (I'mu)'/? and the condition
that Try be > 10MeV then implies

[ > 1072GeV = (6.6 x 1072 5¢c)™!

{6b) The more stringent condition on the reheat temperature is that it be sufficienfly
high for baryogenesis. If baryogenesis proceeds in the usual way!?, then Tpy must
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be greater than about 1/10 the mass of the particle whose out-of-equilibrium decays
are responsible for producing the baryon uym:metry. Assuming that this particle
couples to ordinary quarks and leptons, its mass must be greater than 10°GeV or so
to insure a sufficiently-longlived prolon, implying that the reheat temperature must
be greater than about 10°GeV (at the very least). On the other hand if the baryon
asymmetry can be produced by the decays of the ¢ particles themselves, then

53/3 = (0.75)(1‘3”/77!‘)6
and a very low rebeat temperature may be tolerable
Ty = 107% Im,

where as usual € is the net baryon number produced per ¢-decay.
(7) If ¢ is not a gauge singlet field, as in the case of the original Coleman-Weinberg
SU(5) model, one must be careful that ‘¢ rolls in the correct direction’. It was shown
that for the original Coleman-Weinberg SU(5) models ¢ might actually begin to roll
toward the SU{4) x U(1) minimum of the potential even though the global minimum
of the potential was the SU(3) x SU{2) x U(1) minimum®'. This is because near
¢ # 0 the SU(4) x U(1) direction is usually the direction of steepest descent. Such
an occurence would be catastrophbic as the transition from SU(4) x U{1) to SU(3) x
8U(2) x U{1) would in general be strongly first order {and wot of the aslow-rollover
variety), thereby leaving behind a swiss-cheese Universe. This is the so-called problem
of ‘competing phases’. As mentioned earlier, the extreme flatness required to obtain
sufficiently amall density perturbations probably precludes the possibility thal ¢ is a
gauge non-singlet, so the problem of competing phases does aot usually arise.
(8) In addition to the scalar density perturbations discussed earlier, tensor or gravi-
tational wave perturbations also arise (these correspond to perturbations in the sym-
metric part of g,,)"2. The amplitude of these perturbations is easy to estimate. The
energy density in a given gravitational wave mode (characterized by its wavelength
A) is

pow = m3h? /A3

where 4 is the dimensionless amplitude of the wave. As each gravitational wave mode
crosses outside the horison during inflation deSitter space produced fluctuations lead

to
(pow)azs-+ > HY, or h =~ Himy,.
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While outside the horizon the dimensionless amplitude A remains constant, and so
each mode enters the horiron with a dimensionless amplitude

h=Himy

Gravitational wave perturbations with wavelength of order the present horizon lead to
a quadrupole anisotropy in the microwave temperature of amplitude h. The upper
limit to the quadrupole anisotropy of the microwave background (6T/T < few x
10~4} ieads to the constraint

Him, < 1074,
M < 0{10'7GeV)
(recall H? = (8x/3m2 ) M*).
In turn this leads to a constraint on the reheat temperature (using g. ~ 10%)

Tru < 97V*M < few x 10'%GeV

(9} One has to be mindful of various particles which may be produced during the
reheating process. Of particular concern are stable, NR particles (including other
scalar fields which may be set into oscillation and thereafter bebave like NR matter).
Since pvr/pr o R(t) and today pywp/pr = 3 x 10* or 8o one has to be careful that

PN r/pr i very small at early times

3% 10* today
pnr/Pr € 1078 T =1GeV
10138 T = 101GV

Of particular concern in supersymmetric models are gravitinos which can de-
cay shortly after nucleosynthesis and photodissociate the light elements produced
(particularly D and "Li)™. [In fact, the constraint that gravitinos not be overpro-
duced during the reheating process leads to the very restrictive bound on minimal
SUSY/SUGR models of inflation: Tpy < 10°GeV or so.| In supersymmetric mod-
els where SUSY breaking is done ala Polonyi’™®, the Polonyi field can be set into
oscillation™ and these oscillations which bebave like NR matter can come to domi-
nate the energy density of the Universe too early (leading to a Universe which if far
too youthful when it cools to 3K) or even worse decay into dread gravitinos! In sum,
one has to be mindful of the weakly-interacting, longlived particles which may be
produced duriog reheating as they may eventually lead to energy crises.

(10) In SUSY/SUGR models where the scalar field responsibie for inflation is in
thermal equilibrium before the inflationary transition, one has to make sure that <
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Fig. 15-Constraint {11} in ‘The Prescription for Succeasful Inflation’.
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¥ >r does pot amoothly evolve into the sero temperature minimum of the potential.
A sure way of doing this is to arrange to have

{p)r <0

this is the so-calied thermal constraint®®.

(11) Last (in my probably incomplete list) but certainly not least, the scalar potential
necessary for successful inflation should be but a part of a ‘sensible, perhaps even
elegant, particle physics theory’ (see Fig. 15). It seems unlikely that cosmology will
be the tail that wags the dog!

These conditions are spelied out in more detail in ref. 53. In general they lead
to a potential which is ‘short and squat’ and has a dimensionless coupling of order
10~'% somewhere. In order that radiative corrections not spoil the Batness, it is all
but mandatory that ¢ be a gauge singlet field which couples very weakly to other

fields in the theory.
To give an idea of the kind of potential which we are secking consider

V=Vo—a¢? —b4° + a¢*

The constraints discussed above are satisfied for the following sets of parameters

1 A<4x107!°

b=~ 4x1072%2m,,

SET 14 a < H/40 ~ 10*2°m),

a2 3x107A3m,,

{ M Vo4 23 % 1072 4my 2 AY44

i V=2A(¢*-0*)® (=0, a=2r0?, Vo = Ac?)
o/fmy=1/2, 1,2 3,10

SET 2{
A=2x10"%,5x107%°, 107%%, 2x107*%, 3x 107"

M=~y

Specific Models, Part II. Two Simple Models That Work -

To date a handful of models that satisfy the prescription for successful inflation have
been constructed®®®?:70.7¢=7%  Here, [ will discuss two particularly simple models.
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The first is an SU(5}) GUT model proposed by Shafi and Vileakin™ and refined
by Pi™. [Note, there is nothing special about SU(5); it could just as well be E6
model.| I will discuss Pi's version of the model. lo her model the inflating field
éisa very weakly-coupled, complex gauge singlet field whose potential is of the
Coleman-Weinberg form®?

V(#) = Blg*In(¢*/0%) + %(a' - ¢/ (60)

where ¢ = |¢| and B arises due to I-loop radiative corrections from other fields in
the theory and is set to be O{107'%} in order to successfully implement inflation.
[Note, for simplicity I have not shown the coupling of ¢ 1o the other fields in the
theory.| Since the 1-loop corrections due to other fields in the theory are of order
A3gting (A is the typical quartic coupling, e.g., A¢3y?) the dimensicnless couplings
of ¢ to other fields in the theory must be of order 10~7 or so. In her model, ¢ is the
fieid responaible for Peccei-Quinn symmnetry breaking; the vacuum expectation value
of |$] breaks the PQ symmetry and the argument of ¢ is the axion degree of freedom.
The vacuum expectation value of [4;] also induces SU(5) SSB as it leads to a negative
mass-squared term for the 24-dimensional Higgs in the theory which breaks SU(5)
down to SU(3) x SU(2) x U(1). Io order to bave the correct SU(5)} breaking scale,
the vacuum expectation value of |$| must be of order 10'*GeV . In addition to the
usual adiabatic density perturbations her model also has isothermal fluctuations of a
similar maguitude®®. The model reheats to a high enough temperature (barely) for
baryogenesis. So far the model successfully implements inflation, albeit at the cost
of a very small number {B =2 10~!4), whose origin is not explained and whose value
is not stabilized (e-g., by supersymmetry).

The second model is a SUSY/SUGR model proposed by Holman, Ramond, and
Roes™ which is based on a very simple superpotential. They write the superpotential
for the fuil theory as

W=1+5+GC (61)
where the I, §, G pieces are the inflation, SUSY, and GUT sectors reapectively. For
the [ piece of the superpotential they choose the very simple form

I=(a%/M)(p - M)?, (62)
where M = m,/(8x)'/3, A is an intermediate scale, and ¢ is the field responsible
for inflation. This leads to the following scalar potential

Vi(¢) = ezp(|9]°/M°)||01/0¢ + ¢° I/M]® = 3|1 /M),

= A%ezp(¢7/M7)[$°/M® — 44" IM® + T4 /M ~ 48* IM® — $*[M? +1].
(63)
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Their potential has one free parameter: the mass scale A, which will be set shortly.

Expanding the exponential one obtains

Vi($) = A%(1 - 4¢° /M + 6.56%/M* - 84°/M°...), (64)

Vi = AY—124° /M + 264> IM* — 404* /M>...) (65)

1t is sufficient to keep just the first two terms in V;(#) to solve the equations of
motion

¢/M = [12(N($) + 1/3)]? (66a)

H?(é =~ (12V3)" 1 (A/MP($/M)™? = (12/V3)(A/M)* N?, (665)

By choosivg A/M =~ 9 x 107> density perturbations of an acceptable magnitude
result {and 2bout 2 x 10° e-folds of inflation!). A/M =~ 9 x 10™> corresponds to an
intermediate scale in the theory of about A ~ 2 x 1074GeV,

The ¢ field couples to other fields in the theory only by gravitational strength

interactions and
[~ m:,:,/)\v!2 ~ A®/M®, (67)
where m2 ~ 8eAY/M*.

The resulting reheat temperature is
Tan = ([mpu)'? = (A/M)*M ~ 10°GeV. (68)

The baryon asymmetry in this model is produced directly by ¢-decays®’ (¢ —
Hyfi; Hifa — ¢'s I's; Hy = color triplet, isoscalar Higgs)
np/s =~ [0.75¢)Try fmy
=~ 10" 'e(A/M)

A C, CP violation of about ¢ = 10~% is required to explain the cbserved baryon
asymmetry of the Universe (ng/s =~ 10~1%).

Their model satisfies all the conatraints for successful inflation except the thermal
constraint. They argue that the thermal conetraint is not relevant as the interactions
of the ¢ field are too weak to put it into thermal equilibrinm at early times and
rely on ¢ being near the origin {¢ = 0) in some region of the Universe. This model
is somewbat ad hoc in that it contains a special sector of the theory whose sole
purpose is inflation. Once agaio the model coutains a small dimensionless coupling
(the coefficient of the ¢*-term = 3 x 10~'%) or equivalently, a smali mass ratio.

(A/M)* =~ 1071
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Since the model is supersymmetric that small aumber is stabilized against radiative
corrections. Although the small ratio is not explained in their model, its value when
expressed as a ratio of mass scales suggest that it might be related to one of the other
small dimensionless numbers in particle physics (which also beg explanation)

{mcur/mp) = 107
(e fmpy) = 10717
ge = M. [300GeV =~ 107°

While peither of these models is particularly compelling and both have somewhat
contrived solely to successfully implement infiation, they are at the very least *prool
of existence’ models which demonstrate that it is possible to construct a simple model
which satisfies all the know corstraints. Fair enough!

Toward the Inflationary Paradigm

Guth’s original model of inflation was based upon a strongly, first order phase
transition associated with SSB of the GUT. The first models of new inflation were
based upon Coleman-Weinberg GUT potentials, which exhibit weakly-first order
phase transitions. It now appears that the key feature needed for inflation is a very
flat potential and that even potentials which lead to second order transitions (i.e.,
the ¢ = O state is never metastable) will work just as well®®. Most of the models for
infiation now do not involve SSB, at least directly, they just involve the evolution of
a scalar initially displaced from the minimum of its potential. [There is a downside
to this; in many models inflation is a sector of the theory all by itself] Inflation has
become much more than just a scenaric—it has become an early Universe paradigm!

On the horizon now are models which inflate, but are even more far removed
from the original idea of a strongly-first order, GUT SSB phase transition; I'll discuss
three of them here. Inflation—thal is the rapid growth of our three familiar spatial
dimensions, appears to be a very generic phenomenon associated with early Universe
microphysics.

Chaotic Inflation Linde®*! has proposed the idea that inflation might result from a
scalar field with a very stmple potential, say .

V($) =2¢, (69)
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(see Fig. 16), which due to “chaotic initial conditions’ (which thus far bave not been
well-defined) is displaced from the minimum of its potential—in this case ¢ = 0.
With the initial condition ¢ = ¢ this potential is very easy to analyse:

Q
N(¢o)= | Hdt=s(do/mp)’, (70a)
$a
(50/P)u = (H?/$) = (32/3x°) 2212 N(4)*/2. (708)

I 2rder to obtain density perturbations of the proper amplitude (§p/p ~ 107%) A
must t> very small

A=4x1oM
~—business as usual! In order $o obtain sufficient inflation, the initial value of ¢ must

be
N{¢o) = 1’(‘2"0/"’*,.:)2 > 60

= ¢o > 4.4my
Both of these two conditions are rather typical of potentials which sucécssfully imple-
ment infation. However, when one talks about truely chaotic initial conditions one
wonders if a large enough patch exists where ¢ is approximately constant. Remember
the key congtrainl is that the gradient energy density be negligible

' (V4)/2 < 2g*
Labeling the typical dimension of the patch L, the above requirement translates to
L3 2~ P (my fdo)my! = 2(¢o/mpu) B~ (1)

which requires that L be rather large compared to the Hubble radius at the time,
therefore seeming to require rather special initial conditions. §till the simplicity of
Linde’s idea is very appealing. |Note the potential V = 1/2m?¢? works just as well
(L. Jensen aud I. Moas, private communication); successful inflation bere requires
that: (m/mg) 2 10~*/4N ~ 4 x 1077

Induced Gravity Inflation Consider the Ginzburg-Landau theory of induced grav-
ity based upon the eflective Lagrangian®*?

= —d*R[2 - 0,4574[2 - V(4), (724)
V(#) = M¢* - ) /8 (728)

where ¢, A are dimensioniess couplings, R is the Ricciscalar, and v = ¢~1/3(8xG)~1/3

The equation of motion for ¢ is
$+3HS+d3P+ |V —4V/$)/(1 +66) =0 (73)
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supplemented by
B2[L +(24/9)/H| = (3¢”) ' [$* /2 + V()] (74)

Succensful inflationary scenarios can be conatructed for ¢ <€ v and for ¢ > vi¢o =
the initial value of ¢), so long as € < 10°% and A =~ O(107'7 — 107!9)33.84_ The
sruall dimensionless coupling constant required in the scalar potential is by now a
very familiar requirement.

The Compactification Transition Ever increasing numbers of physicists are pur-

tha tAdaa
SUing wac iGca

nification of the forces may require additional spatial dimen-
sions {or as the optimist would say, unification of the forces is evidence for extra
dimensicns!), e.g., Kaluza-Kleis theories, supergravity theocries, and most recently,
superstring theories. We know experimentally that these extra dimensions must be
very small (& 10™'7¢m) and indeed in most theories the extra dimensiops form a
compact manifold of typical size 10~3%cm or so. If our space-time is truly more
tban four dimensional, then we have yet another puzzle to add to cur list of puz-
sling cosmological facts-—the extreme smallness of the extra spatial dimensions, some
62 = log(10%%cm /10~ 34cm) or so orders of magnitude smaller than the three more
familiar spatial dimensions. The posasible use of inflation to explain this largeness
preblem has not escaped the attention of researchers in this field.

In these thecries there is a natural candidate for the ‘inflating field’ {which is also
automatically a gauge singlet}—the radius of the extra dimensions. If there are extra
dimensions there must be some dynamics which determine their size (= b,,), and in
principle one should be able to construct an effective potential associated with the
size of the extra dimengions

Vers =V (4), (75a)
é = In(b/b.,). (758)

{(see Fig. 17). |The substitution ¢ = In(b/b.;) results in the usual kinetic term for
#.| U the extra dimenasions are initially (¢ < 10~**sec) displaced from their low
temperature equilibrium value—due to finite temperature corrections to V', initial
conditions, or whatever (which seems very likely), then while they are evolving to
their equilibrium value (¢ = 0) the Universe will be endowed with a large potential
epergy (and may very well inflate), thereby explaining the relative largeness of our
three spatial dimensions as well as the usual cosmological puzzles. Inflationary med-
els involving the compactification transition have already been investigated and the

results are encouraging®®.
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Pig. 18-A potential for “‘chaotic inflation’. In Linde’s chaotic inflation, due to initial
conditions, ¢ is displaced from the minimum of its potential (¢ = 0) and inflation
occurs as it evolves to ¢ = 0.
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Fig. 17-In theories with additional spatial dimensions there must be an effective
potential associated with the size of the extra dimensions (shown here schematically).
One might expect that very early on (f < 10~ *3sec) the sise of the extra dimensions
is displaced from its equilibrium value {= b,4), due to finite temperature corrections,
initial conditions, or whatever. It is speculated that inflation might occur as the size
of the extra dimensions evolves to its equilibrium value, thereby solving both the
usual coemological puzzles and the putsle of why the extra dimensions are so small
compared to our three familiar spatial dimensions.
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Loose Ends

Inflation offers the poesibility of making the present state of the Universe (on
scales aa large as our Hubble radius) insensitive to the initial data for the Universe.
Since we stand little hope of ever knowing what the initial data were this is a very
attractive proposition. It has by no means yet achieved that lofty goal. There are a
number of loose ends (and perhaps even a loose thread which may unravel the entire
tapestry). 1 will briefly mention a few of them here.

First, this bold conjecture of cosmic baldness has yet to be proven. That is, we are
no where near being able to show that the most general set of initial data for Einstein’s
equations eventually leads to inflation. [In fact as I mentioned earlier, for simplicity,
it is usually assumed that the pre-inflationary Universe is a radiation-dominated
FRW model—an assumption which most certainly can be relaxed.] However some
progress has been made. It has been shown that homogeneous cosmologies (with the
exception of those that recollapse before they can inflate) inevitably inflate®® 87—
that is, neither shear, anisotropy, nor negative spatial curvature cdn prevent new
inflation from taking place®” (that was not the case with old inflation, which could
be prevented by the presence of large amounts of shear®®). The eflects of small ipitial
density inkomogeneities have also been studied®®®®. They do not prevent inflation
and such perturbations are merely expanded in size and re-enter the horizon with the
same amplitude they would have in the absence of inflation. I should also add that
Hartle and Hawking have boldly begun to study the possibility that the Universe,
geometry and all, may be describable by a wavefunction which they hope may be
able to eliminate the need for initial data at all®o!

Then there is the very important issue of the validity of the semi-classical equa-
tioos of motion used to calculate the evolution of ¢ and the resulting (and often
troublesome) density perturbations. A number of potential difficulties (along with
a number of red herrings) have been reviewed by the authors of ref. 91. The valid-
ity of the semi-ciassical approach has been addressed in a beautiful paper by Guth
and Pi'® on the quantumn mechanical aspects of inflation. And other authors have
addressed different aspects of this question®®. Thus far, the validity of the semi-
classical approach has been confirmed (although the very formidable QFT problem
in its full generality has not been solved). In this regard, the early seminal work of
Linde®® and Vilenkin and Ford® has proven to be prescient: they suggested that the
semi-classical approach is valid whenever

Pelassical P Ad = (H/z,)(Ht)‘/’
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Subsequent work has confirmed their pioneering work. Although one might have
worried that apatial inhomogeneities would have worked havoc on inflation, that turns
out not o be the case. The rapid expansion of the Universe coustantly redshifts away
spatial inhomogeneities in ¢ and it is because of this fact the quantum mechanical
inhomogeneities in ¢ grow so slowly (ox £*/2). All investigations done to date show
inflation to be very robust. In fact the work of Guth and Pi®*® seems to indicate that
second order phase transitioos can lead to inflation also—s0 long as the poteatial is
sufficiently flat.

At present inflation does have ap Achilles heel or two—the small dimensionless
coupling needed to successfully implement it, which explains the dearth of attractive
models, and our lack of understanding of the present smallness of the cosmological
term. However, the potential payoff of inflation more than justifies continued study

of this very promising scenario. [ mean paradigm!

I would;like to call the reader’s attention to other reviews of the inflationary
cosmology (refs. 93-99}, and to D. Lindley’s recent discussion of the history of the
inflationary Universe!'®®. I thank my many collaborators on the topic of infiation,
especially Paul Steinhardt and Josh Frieman, the numerous colleagues with whom
1 bave discussed and argued about inflation, especially Alan Guth, Rocky Kolb,
and Keith Olive, and the many studenis at these lectures and other lectures, ali of
whom have contributed to improving my understanding of inflation. | thank Barbara
Ahlberg for her expert typing and patience. I thank the DOE {at Chicago and
Fermilab), NASA (at Fermilab), and the Alfred P. Sloan Foundation for supporting

my work.
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