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ABSTRACT

The - universality classes applicable to the chiral
phase transition are studied. The e-expansion
predicts that the chiral transition should always be
of first order for three or more flavors. If
fluctuations with topological charge evaporate at
temperatures well below the chiral transition point, a
new phase of hadronic matter couid occur, one in which

there would be massive violations of isospin.

1. INTRODUCTION

In this note I review some work done by Frank Wilczek and myself
[1]. My treatment will be brief, as I will emphasize only those
matters which we did not have the opportunity to discuss originally.
In particular, I point out two relevant problems which should be
answerable directly with current Monte Carlo techniques, without having

to solve the full problem of QCD with dynamical fermions.

*Based upon a talk givem at the comference on “Quark Confinemmnt and
Liberation,” Lawrence Serkeley Laboratory, May 22-28, 198S.

!E Oonerated bv Universities Research Association Inc. under contract with the United States Denartment of Eneray



2. THE ORDER OF THE CHIRAL PHASE TRANSITION

Take Nf flavors of quarks in the fundamental representation of a
SU(NC) color gauge group. For now, I assume that the bare masses of
the quarks all vanish.

Classically, the global flavor symmetry of the quarks is

G,y = Up(1)xSU| (No)xSUp(Ny)

Gc] includes (non-abelian) rotations of left- and right-handed quarks,
and the abelian UA(l) for axial fermion number. The abelian U(1) for
total fermion number can be ignored; it is always conserved in QCD-l1ike
theories, so this U(l) decouples from GC1 transformations. For
instance, any effective theory which described the chiral transition is
constructed from mesonic fields, which have zero fermion number.

The conservation of the UA(l) symnetry is violated quantum
mechanically by the axial anomaly. If the quarks fields are denoted as
q1(1=1...Nf), the UA(l) current is J; ~ 51757pqi’ and
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The anomaly vanishes in the quenched approximation, Nf=0, or in the
limit of infinite colors [2] (remember that as Ncem, gch is held fixed
and ~0(1)). In these cases, the flavor symmetry is just Gc]' Otherwise,
the continuous axial symmetry is replaced by a discrete one, and the

true flavor symmetry is

Gey = Zp(Np)xSU| (Ng)xSUQ(Ng)



I now make several assumptions: that the flavor symmetry, be it
GC] or Gf1, breaks spontaneously at zero temperature to SU(Nf); that
this symmetry is restored at a finite temperature Tch; and finally,
that the symmetry breaking can be parametrized by a field ¢ 1in the
vector representation of Gf] (or Gc1)’ ¢1j ~ <51(1*75’°3>' Of these
assumptions, the last is the most notable. It is certainly possible to
imagine theories in which the important chiral order parameter lies not
in the vector, but a higher representation of Gf] (Gc1)’ Such theories
do not include QCD, however, for otherwise PCAC would not work as well
as it does.

Given these assumptions, to understand the chiral transition is
"merely"” a matter of knowing the universality classes of systems in the
vector representation of Gﬂ (Gc1)’ In the wusual way, non-zero
temperatures freeze out one direction, so the classes of significance,
for systems at finite temperature in 3+1 dimensions, are those in three
dimensions.

Unfortunately, in general there are no systems in condensed matter
physics with Gf] symmetry, so these universality classes are unknown.
To investigate, we must resort to a drastic but familiar approximation
— an expansion in 4-¢ dimensions.

A vector ¢ transforms as
9 9 e1°‘UL¢UR (2)

under Gc1' In Eq. (2), « 1is the UA(I) phase; UL,R are SUL,R(Nf)

rotations. A Lagrangian invariant under Eq. (2) is



Loy = #tr(a 6" (a,0) + anPtr(se) + g (tr(sT0))? + gtr(e’e)?. (3)

There are two relevant couplings in LC], g, and g,. If g, 1is set to
zero, the symmetry is enlarged to 0(2Nf).

To incorporate the effects of the axial anomaly, we add a term L%]
to Lc]’

= ¢,y (deto + dete”) . (4)

Ly
We see from Eq. (4) that it is only invariant under the transformation
of Eq. (2) if a = an/Nf(n=1...Nf), which is a ZA(Nf) symmetry.

The coupling of L%1, Cinst? is proportional to the density of

fluctuations with topological charge,

Cinst ™ <[terv?“”]2> : (5)

One type of such fluctuations are instantons; e.g., a single instanton
generates a 2Nf—p01nt interaction between quarks that has precisely the
symmetry of Eq. (4), at least over distances far from the instanton
[3]. In a misuse of language, I shall refer to any fluctuation which
carried topological charge as an instanton.

Following the usual Landau type of analysis, to study the chiral
trénsition we would allow the mass term of Eqg. (3) to vary with
temperature (m2<0 at T=0, m230 as T»Tch), but neglect the variation of
any couplings with temperature. While this is probably valid for g,

and g,, it is certainly not true for c This extraordinary

inst’
phenomenon 1is only possible because the UA(l) symmetry breaking, which



c represents, is entirely of quantum mechanical origin.

inst
At high temperatures, the dominant contribution to <(trF?)2> is

from (true) instantons [4]; as T-o, this quantity, and so Cinst?

vanish. Thus we can speak of the effective restoration of the UA(l)
symmetry. This restoration is only approximate, since for any finite
T, there are always some instantons around, <(trFF)2> = 0.

Somewhat arbitrarily, I define a temperature T_inst as that for

which <(trF?)2> is ~1% of its value at zero temperature. If Tinst 2

T T is of Timited interest, but if T, < T

inst (e.g., T

ch? ch inst

~ 4T ), then the relevant symmetry which is restored at T_,_ is not
ch ch

inst

G but, to a very good approximation, Gc]‘ Thus in our analysis of

f1?
the chiral transition, we must distinguish between these two
possibilities.

In 4-¢ dimensions, the universality classes are found to be: [5]

Table 1

ki il fe1
(Tinst 2 Ten! (Typst < Tch)
0 - "2¢d"-0(0)
1 - "2cd"-0(2)
2 "2cd"-0(4) FI 1st
3 1st FI 1st
<4 FI 1st FI 1st

Wherever in this table I have written "2cd", it means that the
transition may be second order; if so, the critical exponents are those

of a O(ZNf) vector. This caveat is necessary because the dynamics can



always be such so as to choose a first order transition. On the other
hand, if 1st 1is written, then the transition is unavoidably first
order.

To explain the table, let me begin with the case of GC]. In 4-¢
dimensions, for Nf ¢ v2, the infrared stable fixed point hés gr ~ 0(e),
gy = 0, so for Nf=0 and 1, the critical exponents are those of O(ZNf).
For Nf 2 V2, there is no infrared stable fixed point, resulting in a
"fluctuation induced" (FI) first order transition.

A FI first order transition is the direct extension of the
Coleman-Weinberg phenomenon from four [6] to below four dimensions
[7-10]. What happens is the following. One can always get a first
order transition if the quartic couplings are negative, assuming higher
point couplings stabilize the system (hence the caveat above). If the
bare quartic couplings are po;itive, mean field theory predicts a
second order transition. For a FI transition, however, as |m?]
decreases, even if the quartic couplings start in a region in which
they are positive, they will evolve, by the action of the
renormalization group, into regions where they are negative — so the
transition remains first order [9,10].

This evolution of the quartic couplings occurs because there is no
(infrared) stable fixed point towards which the couplings can flow as
m2-0. For instance, in the Gc] theory, the fixed point with g¥ ~ 0(e),
g* =0 is always (infrared) stable in the g, direction, but it is only
so in the g, direction if Nf < V2.

T

The case of Gf] symmetry, T follows directly.

inst 2 ch?



a. Nf=0: The axial anomaly vanishes, so the symmetry is never Gf],

but Gc]'

b. NF=1: Instantons alone will generate a (quark) mass: L%] is linear

in ¢ for Nf=1, so <¢> ~ ¢y Hence there is really no chiral

nst’
transition to speak of — as the temperature increases, <¢>, and

so the instanton induced mass term, turn off smoothly.

c. Nf=2: Gﬂ = Z(2)xSU{2)xSU(2) = 0(4); for a second order

transition, the critical exponents are those of 0(4).

d. Nf=3:‘The operator L%] ~ det ¢ is cubic in ¢1J for Nf=3, Ys) L%]

itself drives the transition first order.

e. Nf24: In the technical sense of the renormalization group, the
operator L%] is either marginal (Nf=4) or irrelevant (Nf>4). In
either case, the critical behavior is determined by what happens
for Gc] symmetry, which is a FI first order transition.

One lesson is clear from Table 1: for the physically interesting
case of two or three flavors, the nature of the chiral transition is
very sensitive to the presence of the operator L%]. In numerical
simulations with Nf=2 or 3, in order to get the chiral transition
right, it is essential to get the temperature evolution of the ¢’
right.

The greatest drawback to these results is that they are based on
an e-expansion, while we need e=1!. As a practical matter, there are
many systems in which the prediction of a (FI) first order transition

in 4-¢ dimensions is seen experimentally in three dimensions [8]. Even



so, for systems with GC] symmetry, the crossover from second to FI
first order behavior occurs at N? = 2 + O(e) — but s N? still <2
when e=1?

It would be invaluable to have numerical simulations of spin
systems with Gc] symmetry; for Nf22, in three dimensions. This raises
an obvious question — since there is nothing universal about a first
order transition, how does one know that it is FI per se?

To answer this, let me first review the (tricritical) phase

diagram of a system which can undergo a second order transition in

three dimensions, Fig. (la). In this
figure, the axes 8, and B, are two ﬁ% a
relevant (bare) couplings. In a linear
model, such as Lc1’ one of these would be ! t
m¢, and the other, g, or g,; as i [31
renormalizable couplings in three b
dimensions, positive six-point terms are
Fig. (1a)

added to Lc]' In a non-linear model, 8,
and 8, could be nearest and next to nearest neighbor couplings.

In the space of 8, and B,, there is a 1line of second order
transitions ("at", the solid 1line), and a line of first order
transition ("bt", the dotted line), which meet at the tricritical point
"g"., The exponents along "at" are those of the whatever spin system we
are considering, while the latent heat vanishes as "t" s approached
along "bt". Precisely at the tricritical point, the transition is of
second order, but the exponents are mean field like, up to Tlogarithmic

corrections.



Whatever microscopic dynamics we start with, we can view this
diagram through an effective linear model. In this effective model,
the quartic couplings are positive along "at", and negative (for at
Jeast some) on “"bt"; the (mass)? is zero on "at", and positive on "bt".
Exactly at the tricritical point, the mass and all quartic couplings
vanish, with logarithmic corrections generated by the six-point
couplings [11].

The tricritical phase diagram of a system with a FI transition
will be characteristically different. The crucial point is that the
transition must remain of second order at the tricritical point, "t".

Why? At "t", the quartic couplings vanish, so the only
fluctuations we need to worry about are due to the six-point terms.
Let these couplings be n;, n,...; for simplicity, I assume that all of
the n, are positive. For example, in our model with Gc1 symmetry,
there will be three such couplings — for [tr(g+g)]3, tr(g+g) tr(g+g)2,
and tr(g+g)3. To leading order in small coupling, the g-function for

the coupling n., Ei’ is

- 8“1

= —— = Jk 3
B.i 3]”]1 MT. njnk + 0(“ ) . (6)

The matrix Mgk generates mixings between the 33 its elements depend on
the symmetry group, and the representation the scalar field 1lies in.
Whatever the Mgk are, however, it is easy to show that each and every
element is positive.

Now, quartic couplings drive a transition FI first-order if and

only if there is no infrared stable fixed point. But for the nys there



Jjk
J
positive, arguments from four dimensions [12] can be used to establish

is always the trivial fixed point, n:=0. Since each element of M is
that the n; must flow into the origin in the infrared 1imit. The n;
will vanish logarithmically in this 1imit, in a manner determined by
the values of the Mgk.

The tricritical phase diagram of a FI syétem must then 1look 1like
Fig. {1b). There are two first-order lines, "at" and "bt", which meet

at the tricritical point "t". Since the

B, /a transition is of second order at "t", the
/ latent heat must vanish as "t s

,’*t approached from either direction. Of

/ Py course, from the phase diagram alone, one

b will not be able to tell whether the first
order transitions along "at" or "bt" are

Fig. ¢b) mean field 1like or FI. Nevertheless, it:

should certainly be possible to differentiate between Fig. (la)r or
Fig. (1b).

The purpose of this long discussion is to emphasize that it is not
sufficient to establish a FI transition by varying only one (relevant)
coupling. For instance, if one varied 8,, keeping 8,=0, one could not
tell if the phase diagram was like Fig. (la) or (1b).

In this light, I note the numerical simulations of systems with
Gf] symmetry by Kogut, Snow, and Stone [13]. While they did find a
first-order transition for Nf23, since they varied only a single
coupling, it is not clear that the transition they found was FI.

A final caution is that the tricritical point need not 1ie in the

-10-



8,-B, plane; it might be necessary to search in the space of higher
couplings B;.B,,... . On the other hand, while it would be fnteresting
to find a FI tricritical phase diagram like Fig. (1b), if all one ever
found 1in the theory were first order transitions, with no second order
lines (surfaces, etc.), that alone would be fairly convincihg evidence
for a FI transition.

I conclude this section with two technical asides.

The first concerns a lattice theory with staggered fermions. For
Ns types of staggered fermions, the full Gﬂ symnetry, with Nf=4Ns’ is
recovered only in the continuum 1imit. At finite lattice spacing, the
exact chiral symmetry is not Gf], but Gs’ where GS =
U(l)xSU(Ns)xSU(NS) [14] (as before, the U(l) symmetry for total fermion
number does not enter 1nto‘Gs). Thus, a chiral transition observed in
numerical simulations might be one characteristic of Gs, and not Gf],
symmetry. This 1is particularly true for NS=1: then Gs = U(1) = 0(2),
and the transition could be second order, while from Gf] symmetry, a FI
first order transition would be expected.

Secondly, I note the unusual nature of the ‘'chiral" phase
transition in three, instead of four, space-time dimensions. A single,
massless, two-component spinor does not have a chiral symmetry in three
dimensions, but by properly pairing up an even number, we can obtain a
flavor symmetry G [15]; for our purposes, all we need to know about G
is that it is a continuous symmetry. Suppose then that these massless
fermions are coupled to a gauge group, and that at zero temperature, G
is spontaneously broken.

How is the flavor symmetry restored at a finite temperature T#07?

-11-



Let us 1imagine constructing an effective theory to describe the
infrared properties of our model. For momenta <<T-!, the effective
theory will be two-dimensional, while if G is broken at T#0, it must
include Goldstone bosons; but one cannot have interacting massless
particles in two-dimensions [16]! The only way out is to conclude that
while G 1is broken at T=0, it is restored at any temperature T#0. A
similar phenomenon is known to happen in the Gross-Neveu model [17].

3. VERSUS T,

Tch inst

As we saw in the last section, the nature of the chiral phase
transition- can change dramatically, depending on the relation of TCh

and T this is especially true for two or three flavors. Aside

inst®
from prejudice, it is not clear what the relation between TCh and Tinst
is in real QCD.

To discuss the effects which are possible, we concentrate on the
(nearly) Goldstone bosons of chiral symmetry. For the neutral bosons,

7, n, and n', we parametrize their mass matrix as [1]

3
2 _ V-
M5 o = (mymg] 5
T f
n
[m -m ] 3
w, =——%L L, etc., (7)
TN v3 f
"
W2 _ 2[mu+md+ms] v3 . K
n'n' 3 f2 inst °
nl

Except for the term Ki the form of M2 s standard from current

nst’

~12-



algebra. Kinst is 1inserted to vrepresent the contribution of the

anomaly term to the n' mass, K (tr va?“v)2>.

inst
In the matrix, the 7, n, and n' start out as SU(3) eigenstates.
Because M? contains off diagonal elements, they can, and will, mix with
each to form the mass eigenstates we observe. At zero temperature, the
familiar result of this is a small mixing of the n and n'. If at finite
much more dramatic mixing can occur,

temperature T <« TC

inst h*®
Sec. 3.2.

For the bare quark masses, I take [18]:
m, =~ 6 MeV, my ~ 11 MeVv, me ~ 215 MeVv . (8)

In Eq. (7), I have assumed that fn = f7l = §3 MeV, but leave fn' free of
fﬂ. This is because SU(3) symmetry implies that fn = fﬂ, but not that
fn‘ = fﬂ. The value of the chiral condensate is <q@> ~ v3.

The eigenstates of M2 agree with the observed masses of the =%, n,

and n' if
v ~ 212 MeV .

K 293 Mev)t/e2 (9)

inst ~ ¢
f, ~1.95f .
n m

The values of v and K, are typical of what one might expect (K

inst
js written the way it is because of Eq. (10)). It does appear odd,

inst

though, that fn. turns out to be almost twice fﬁ.

K. Johnson has pointed out to me that this result is probably

-13-



misleading. Suppose that we keep everything else the same, but vary

m_:
s
Table 2
m (MeV) £/
200 16
215 1.95
225 1.56
250 1.27
300 1.15

1

As m changes over this range, v and K1 are almost constant. With

/4
nst
this fit, f“./f1l is very sensitive to the ratio of m, or m, to m, . For

s]ightly higher values of m fn'/fw is nearly the same as

S’
f/f, ~ ./f, 1s observed to be, ~1.25 [18].

One can go further, by trying to fit K, to the known instanton

inst
density [3,4]. While a very dubious thing to do, it should serve to

illustrate what could happen in QCD. I begin with a relation for K,

inst
derived by Witten, in the 1imit of a large number of colors:
4N
- _ 1 uwn 2
Kinst = 2 < (tr £ ) > . (10)
n

The instanton contribution to <(tr Fuv?“v)2> is only calculable for
instantons of small scale size p. Inserting a cutoff on scale size 1in
by hand (I used pou < 0.685), the resulting instanton density has a nice
bell-shaped distribution as a function of p - see, e.q., Fig. (4) of

Ref. [4]. For NC = N, = 3, from Eq. (6.15) of Ref. [4] I find, after

f



integrating over p, that

=9.85 495, | (11)

where p is the Pauli-Villars renormalization mass scale. The factors
of mys Mys and m enter from the (almost) zero modes of the fermions.

Using the reasonable value of p ~ 200 MeV, Eq. (11) gives a value
of Kinst that is smaller than that of Eq. (9) by about four orders of
magnitude.

Equation (11) gives such a bad estimate because it has been
calculated from the single instanton density, assuming instantons and
anti-instantons are uncorrelated. For zero bare quark mass, Eq. (11)
gives Kinst = 0, which is absurd -- there are surely still fluctuations
with topological charge in the QCD vacuum.

To get a better estimate of K , consider the diagram by which

inst
instantons contribute to the n' mass, Fig. (2). For three flavors, the

- instanton induced quark
<qqg>

X interaction has six legs [3]:

four tie onto n' 's, leaving
two legs left over. Since
these last two legs carry net
chirality, they cannot attach
Fig. (2)

to each other. They can tie
into the vacuum by an insertion of the operator aq, which results in a
single factor for the chiral condensate, <qg>, in Kinst
This can also be‘seen from the form of L'f], Eq. (4). For three

-15-



flavors, L'y ~ det ¢ is cubic 1in the elements of ¢, ¢ If two of

ij’
these ¢%js attach to n' 's, one is left over; as <¢> ~ <qq>, we find

that Kinst ~ Cinst<QQ>‘

To represent this factor of <gq> in K in Eq. (11) I replace

inst’
each bare mass by a sum of a bare and a "constituent" mass, Mes leaving

everything else unchanged:

- (m,tm ) (mg+me ) (mg+me )
inst ’ £2

n

B (12)

Since <gq> ~ (mass)?, this is at least dimensionally correct.

Taking p = 200 Mev, K agrees with Eq. (9) 1if I set

inst
m. ~ 100 Mev.

The above applies to zero temperature. At finite temperature, v,
f", fn" and Kinst will all depend on T in a complicated way. To show
what might happen, I will employ the fits of Eqs. (7) and (12) 1in two

drastic approximations.

3.1 Tinst 2 Tch
To model this, I assume that all dimensional parameters vary in a

simple way with the constituent mass, m.:

v ~ 2.12 mC .

fﬂ ~ 0.93 m.

f,~1.95f
n n

[ take Kinst to depend on m, as in Eq. (12). This is something 1ike

mean field theory for the chiral phase transition: as T- Tch’ me

=16~



should decrease. For a 1000 ———— ——
first-order transition, as 900
expected for three flavors from 800
Sec. 2, m_will Jjump to zero
C 700
for some m' # 0, but this m_ is
¢ ¢ _ 600
surely <100 MeV. 3
o, 500
As a function of m.s the «
. . = 400
eigenstates of M? are given in
Fig. (3). Even as m_ 20, 300
nothing very interesting 200
happens: the mass eigenstates 100
are always nearly those of Coo
9 8 7 6 5 4 3 2 1 0
SU(3), with m2, ~ m2t. Me/Me
Fig. (3)
3.2 Tinst << TCh
In this case, for temperatures well below Tch’ I take v, m.s fﬁ,

and fn' to be constant, and equal to their value at zero temperature;

only K is varied, K.nst = Kinst(T)'

inst j

If Kinst(

eigenstates of M? are those of flavor, and not SU(3):

T) ~0, for T <K Tch’ something surprising occurs -- the

n' ~ SS , mn. ~ 600 MeV ,

n ~dd , moo~ 140 MeV , (13)
0 -

T~ Uld mag =~ 80 MeV .

-17-



While not obvious from the form of M2, Eq. (7), this can be easily
understood. In a linear model like LC], the quark bare masses can be
represented by a term linear in ¢, ~ tr(m¢). m is a diagonal matrix,
with elements Mmys My and m . Without the anomaly term L%], the
would-be Goldstone bosons along the diagonal of ¢ — the no, n, and n'
— vrespond to this external fié]d m by lining up directly along it}
hence they are essentially flavor eigenstates.

The would-be Goldstone bosons from the off-diagonal elements of
¢ -- the charged pions, and the kaons -- are already flavor
eigenstates, so they are insensitive to changes in the anomaly. This
means that while me ~ 80 MeV, m i js still ~138 MeV -- which is a
phase of hadronic matter with massive violations of isospin!

Current algebra consistently estimates that mu/md is far from one
[18]. Normally, it is very difficult to detect the violations of
jsospin which should follow [19], since both m, and mq are much smaller

than any other QCD mass scale. If T,

inst is <<TCh in QCD, it might

afford a unique opportunity to observg large effects from mu/md # 1.
How could these isospin violations be detected in, e.g., heavy ion
collisions? Since x°'s are 1lighter than 75's in this phase, there
should be more =°'s than expected from isospin invariance,
Nﬂo/(N"++Nﬂ_) > 1/2. However, this is only true for pions generated in
the hot regions, which may be swamped by those generated in colder
ones. A more direct probe would be from the dilepton spectra. At
T = 0, isospin invariance prohibits ¢ » n'n%, so ¢ 2 KK; kinematically,
¢ 1is right above the KK threshold, so its width is extremely narrow,

~5 MeV. For T, <TXKT

inst ch ¢ ° n'n® would be allowed, and the width

~-18-~



of the ¢ would jump to a value like that of the o, ~100 MeV. This
assumes that thermal broadening of the ¢ peak is not significant.
If the eigenstates of M2 are plotted as a (linear) function of

K as in the figure of Ref. [1], things

inst’®
appear rather discouraging. The only sigﬁificant change 1in M o

T T T T T T
. occurs when Kinst(

} sma11-—K1nst(T)<0.01 Kinst(o);

T) is very

it is this criterion [ use to
. define Tinst'

This is rather misiead-
ing, however, for the

dependence of K on

(TOTAL) INSTANTON DENSITY

inst
temperature is certainly

highly nonlinear. For

example, with NC = Nf = 3, the

total instanton density

T//_L —
depends on temperature as in
Fig. (4) Fig. (4) [4]. At T # 0, one

can use the same cutoff on the instanton scale size as at T = 0. (This
is similar to Fig. (5) of Ref. [4]. That figure was for NC =2,
Nf = 0, and falls off less rapidly with T than the present Fig. (4).)

<qq> ¢, <qq> <tr(Fqu”“)2>. Since

inst
4
<tr(Fuv?“V) > ~ the total instanton density, I can estimate Kinst(T) by

From before, Kinst
multiplying £q. (12) by the ratio of the total instanton density, at a
temperature T, to that at T = 0; the variation of m.s etc., with T is

ignored.

-19-



With these approximations, the eigenstates of M? can be found just
by folding Fig. (4) with that of Ref. [1]. This gives Fig. (5). In

this diagram, the possibility of 1000 —1+——F— 71— —————————

significant isospin violation 900

appears plausible. 800

To test these ideas, it 700

would be well worth studying the E o0 i
U) -
temperature dependence of g >0

~pv ) 400
{tr (Fqu )2> by numerical

simulations [20]. If one knew 20

200

that Tinst were much less than o |
the deconfining transition

temperature — for even the pure ° 2 408 ST;fLJf e e e
SU(2) lattice gauge theory — it Fig. (5)

would greatly encourage the suspicion that T.nst «T

3 h in QCD.

C
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