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ABSTRACT

We compute, at the one-loop Tevel, the effective notential for
pure gravity in a Kaluza-Klein backaround geometry which is the direct
product of four-dimensional Minkowski spacetime M* with the N-sphere
SN, N odd. The computation is performed in the physical Lorentz-
signature spacetime, avoiding the difficulties of “"Euclideanization".
ve find that the contribution of each gravitational degree of freedom
to the 0(R) part of the effective potential is significantly greater
than that of a scalar or spinor in the same background geometry. No
stable minima of the effective potential exist for 3 < N g 13.
feometries which may be interpreted as "unstable solutions" are found
for all N from 3 through 13. These results, obtained in Lorentz-
signature spacetimes, differ from those obtained by "Euclideanization";
our "Euclideanized" resuits agree with those obtained by Chodos

and Myers using a different reqularization scheme.



I. Introduction

In the Kaluza-Klein approach to the unification of gauge forces
with gravity [1], it is gravity (or its supersymmetric extension) which
is the elementary entity; not, however, "gravity" in the usual sense of
"the manifestation of the curvature of four-dimensional spacetime".
Rather, the basic field in a Kaluza-Klein theory is the metric tensor
of a spacetime with some number N of “"extra" dimensions above and beyond
the familiar four. For this (4+N)-dimensional metric tensor to give
rise to an effective theory of four-dimensional gravity coupled to four-
dimensional gauge fields, it is necessary that the background geometry
of the (4+N)-dimensional spacetime have, at least locally, the strucfure
of the direct product of a four-dimensiona?l spacefime with an N-dimensional
compact space, henceforth referred to as the "internal space". For the
effective four-dimensional Yang-Mills coupling constants to have their
observed values (i.e., of order unity) the characteristic length scale
L of the internal space must be comparable to and somewhat larger than
the Planck length [ 2]

Ly = gt 1s1sx 107 em . (1.1)
where G is Newton's constant. {In Kaluza-Klein theories, gauge coup-
lings are proportional to Lp/L [ 3].) We are therefore led to.search

for dynamically consistent "Kaluza-Klein spacetimes”, i.e., spacetimes
with metrics satisfying the Einstein equation, and which have the dasired

product structure and internal scale.



An interesting spacetime of this sort has been studied by
Candelas and Weinberg [ 4]. In their model, the background geometry
has the form M* ® SN, where M* is four-dimensional Minkowski spacetime

and SN

is the N-dimensional sphere. The fields in the model are, in
addition to the (4+N)-dimensional metric tensor Ivns b real scalar
fields and ne Dirac spinor fields. These matter fields have zero
vacuum expectation values. Therefore, at the classical level (i.e.,
ignoring all effects proportional to Planck's constant h), the matter

fields produce no stress-energy, and the classical Einstein equation

is simply

1
Gyy = 74 Juy > (1.2)

where GMN is the (4+N)-dimensional Einstein tensor constructed from
I * and & is the (4+N)-dimensional cosmological constant. One can

verify that, except for N=1 and £=0, M's SN

is not a solution to
(1.2) for any values of A and the radius r of sV,

It is known, however, that one-loop quantum effects can drastically
alter the nature of the Einstein equation, and its solution, in Kaluza-
Klein spacetimes. For example, the original Kaluza-Klein spacetime,

M* & S*, satisfies the classical Einstein equation (1.2) with A=0;
one-loop effects of massless boson or fermion fields, including the
gravitational field, destabilize this solution [5,6], causing the circle
S! to contract or expand in much the same way that two plane parallel
conducting plates are drawn together by virtue of the vacuum energy of

the quantized electromagnetic field. It was the suggestion of Weinberg

[3] that, in a Kaluza-Klein spacetime with a curved internal space



(and thus at least two extra dimensions) gquantum effects could be counter-
balanced by classical curvature effects, yielding a stable equilibrium
size of O(Lp) for the internal space without the introduction of arbi-
trary parameters.

In calculating the quantum corrections to (1.2) Candelas and
Weinberg ignore the contribution of the degrees of freedom of the
quantized gravitational field (gravitons), arguing that ny and ng can
always be chosen sufficiently large for graviton effects to be negli-
gible compared with quantum effects of scalars and spinors. The rele-

vant geometrodynamical equation for the Candelas-Weinberg model is thus
Gyy = 4 A Gyy - B7G T (1.3)
MN T 70 uN MN ¥

where TMN is the effective stress energy of the quantized scalar and
spinor fields, and G is the (4+N)-dimensional Newton constant. A is
fine-tuned to ensure the compatibility of (1.3) with the flat M' sub-
space; the radius r of the internal space is then fixed by (1.3).
Candelas and Weinberg find that the numerical coefficients which
determine the contribution of each scalar or spinor degree of freedom
to TMN turn out to be "unreasonably" small; e.g., Vv 10~° for N=7,
rather than ~ 1 as might be anticipated for dimensionless factors. This
is significant on several counts. In the first place, quite apart from
the requirement that gauge couplings be of the correct magnitude, the
size of the internal space must be Targer than Lp in order fof the Toop
expansion to make sense [7]. Due to the smallness of the afore-

mentioned coefficients, ~ 10° species of matter fields are needed to



obtain an internal space which is "large enough". Secondly, the anoma-
Tous smallness of the contribution of scalars and spinors to TMN leads
us to wonder whether gravitons can indeed be neglected; perhaps their
contribution to Ty, is "reasonable".

There is another reason why computation of the graviton contribu-
tion to TMN in the context of the Candelas-Yeinberg model is of interest:
namely, as a "warm-up" for the study of quantum effects in Kaluza-Xlein
theories which incorporate supergravity [8,25]. Such theories have,
potentially, the advantage of predicting the total number of dimensions
of spacetime, as well as the split between the internal dimensions and
the rest. However, in supergravity, the number of matter fields cannot
be made arbitrarily large, or, indeed,varied at all; it is fixed once
and for all by the requirement of supersymmetry,

In the present paper, then, we compute the O(R) effects of gravi-
tons {in the absence of any matter fields) in the background geometry
M* @ SN, using the effective-potential technique. The paper is organized
as follows: In section Il we diagonalize the quadratic part of the
classical action, and obtain a formal expression for the effective poten-
tial. 1In section III this formal expression is reqularized by the zeta-
function method, yielding explicit numerical values for the effective
potential as a function of the radius of SN and the cosmological con~
stant. We present our results in section IV. The application of the
path integral formalism to one-loop guantum gravity in Lorentzian-
signature spacetimes is discussed in anpendices A and B, with barticu]ar
attention paid to the problem of negative eiqenvalues. We comnare our

results with those of Chodos and Myers [17,33] in appendix A.



[I. Computation of the Effective Potential

Let us begin our analysis by specifying only that we are working
in a D-dimensional spacetime with coordinates zA, A=0,1,...,0-1. As
the classical action for the gravitational field on this manifold we
take the D-dimensional Einstein action*, with cosmological constant f

Slapg] = - 7goz /@2 /TAT [R+AT . (2.1)

g is the determinant of the D-dimensional metric tensor JYY and R is

the Ricci scalar formed from 9ag- G is the bare D-dimensional Newton

(0-2)

constant with dimensions of (length) The effective action T cor-

responding to (2.1) is, to first order in Planck's constant [9,10]

F[éABJ = StéAB] + Tq[aAB] , (2.2a)
where TQ is defined by
irglaap] iS00G apsNan]
e TR fon, e 2ABTAB (2.2b)

Sz[éAB,hAB] is obtained from S[gAB] by writing apg in (2.1) as the sum

of a background metric, aAB’ and a deviation from this background, hAB:

9ag = 9ag " Pag - (2.3)

S,[3ppshag] is the part of S[3ag+hyp] auadratic in hye:

2ABCD

- _1 D -
Soldpghagl =7/ 472 hpg S (Gdhep - (2.4)

¥
Our differential-geometric conventions are those of ref.[4], which are
identical to those of ref.[15] exceot with regard to the normalization
of the cosmological constant. Unless otherwise specified, Planck's con-
stant R = speed of 1ight ¢=1.



where §§BCD is the operator
8005 . 625l ] (2.5)
2 L] Ll
MNT 69ap89MN

IMN = It

Factoring out and discarding, in the usual manner, the infinite constant

due to gauge invariance [9,10,11], (2.2b) becomes

1Sgnt9ags¥asVal

irgl9as] iS, [3xpo2n] )
0-7AB- _ 2f-2AB* AB
e = [ Dhyg e [ oU,0v, e 26
where
So¢l8ag "] = Soldag-Mag) + Sq-¢ldagohal - (2.7)

Sg-f is the gauge-fixing term, also gquadratic in hAB’ 50 52f is also

of the form

- _ 1 (D, cABCD,:
SoeldngsMap] = 7 J 472 Mg Spp (GydNep - (2.8)

Sgh is the ghost action appropriate to Sg—f:

=z _ 1 D, 5 oAB, -
Sgh[gAB.VA,VA]_ = 5 [ d72 vAsgh(gAB)vB , (2.9)

The Feynman-DeWitt-Faddeev-Popov ghosts GA’VB are anticommuting
¢-number (Grassmann) valued vector fields.

The actual configuration the field §AB assumes is that configura-
tion which extremizes the effective action I'; i.e., that gap for which

§T{qanl
= -Ons’ =0 . . (2.10)

$9pg



The physical interpretation of aAB satisfying (2.10) is:
éAB = <O+!aABlO-> . (2-11)

That is, §AB is the matrix element of the quantum metric-tensor operator
between the groundstate (state of least energy) at time t_- -, |0 >,
and the groundstate at time t, »+w, [0,>.

Using (2.8) and (2.9} in {2.6)

<ABCD

ir[uy] -
e T ag S2f (Gunhep]

/ DOh exp [ % f 4%z h

AB
- folvy exp D f d% B SBGuvT L (212)

Formulas for the evaluation of path integrals of the form of those ap-
pearing in (2.12) are given in appendix A. To apply these formulas, we
must know the eigenvalue spectra of the operators §2§CD(§MN) and §QE(§MN);
indeed, since the equation of motion {2.10) for éAB requires that F[éAB]
be stationary under arbitrary variations of QAB’ we should, in principle,
determine the spectra of §QECD(§MN) and §SE(§MN) for arbitrary aMN'

In practice, we opt for the more mathematically-tractable procedure
of assuming in advance that the background metric which extremizes T
will belong to a subclass of all possible metrics. In the present
paper, we shall assume that éMN is the metric tensor of the one-parameter

sN

class of spacetimes of the form M" @ S"; the parameter which distinguishes

different members of this class is just the radius of SN.



The advantage of this "ansatz aporoach" is, of course, that it
makes possible the computation of the necessary eigenvalues. The dis-
advantages are twofold:

1} Since we only obtain T corresponding to backgrounds in a restricted
subclass, we can only evaluate the variation of I' within this subclass.
In the case at hand, I' will be a function of r, and will determine
the physical value of r via the equation which states that ' is sta-

tionary under a small variation of r about its physical value,

ol
. =0 . (2.13a)

"= Tohysical

The manifold M" & sV with r given by (2.13a) is a candidate
physical background. Further work is then needed to show that I' is
stationary under all other possible small variations of the background,
i.e., that (2.10) is satisfied.

Aside from changes in r, there are other variations in the back-
ground metric which will keep it within the subclass of metrics

N; namely, those which leave SN unchanged and take M" into itself

M & S
("special conformal transformations"), including, e.g., uniform dilations.
I must be stationary under these transformations as well. As shown

in {41, this requirement leads to the condition

r'(r) =0 . - (2.13b)
"= Pphysical



™

2) It may turn out that no metric in the subclass extremizes T, even

with respect to the single parameter r. This is precisely the case

for all the values of N we deal with in the present work., This result

is discussed in section IV.

We now obtain the eigenspectra required to compute (2.12). For
arbitrary aAB’ the explicit form of the quadratic term SZf defined in
(2.7) is [12,13,14]

) 1 D. /= [1 :AB s == -
S2¢l0agoMagd = - — = J 4214l {?T hL{-2 =R - M)9pylpn
167G
¥ 28 fon + 2R gy IV (2.14a)
amieN + ZRaug ; -
whera
oy = Py = & G PP (2.14b)
Mn = Pwy 7 9w M -

and where g, ﬁAMBN’ ﬁBN and R are, respectively, the determinant, Riemann
tensor, Ricci tensor and Ricci scalar constructed from aAB‘ {Tensor in-
dices are lowered and raised using §AB and its inverse matrix §AB). The

gauge-fixing term used in constructing So¢ (see eq.(2.7)) is
- _ 1 D, A= A B~M

The ghost action corresponding to this choice of gauge-fixing term is

§AB AB)V

- - _ 1 n " - -
Sgh[gAB’VA’VA] = - '3—21;5[ d’z /[g] VA(- o+ R B - (2.16)
To determine the eigenvalues of §2f, we reexpress (2.14) in

terms of fields linearly related to hAB’ so that the resulting

quadratic form is a sum of squares of



the new fields with no cross-terms; the coefficients of the squared

fields will then be the desired eigenvalues. We first specialize the
metric to the case of a product manifold M"® BN, where M" is n-dimensional
Minkowski spacetime, and BN is an N-dimensional Riemannian manifold,
n+N=0. MWe denote the coordinates of M" by x*, «=0,1,...,n-1,

N by y2, a=n, n+1,...N-1:

and the coordinates of B
Ay _ ;. a
{27 = {x7,¥y°} . (2.17}

The D-dimensional metric tensor takes the form

_ C NaB 0
dpglz) = { 0 4,0 (2.18)

where Nad is the n-dimensional Minkowski metric, and §ab(y) is the

metric of 8'. It is useful to define the projection operators

) Nyg O i n o0
S108 = [ 5 0 | o e . ) (2.19)
Yab
Using (2.18) and (2;19), we can write hpo as
Moo = bro * & Grpg by + & Goro @ (2.20)
AB " %ag T w91a8 P1 T W Y% %2 - .

%y and ¢, are the traces of hAB over the external (M”) and internal
(BN) indices, respectively, and bpg is the "doubly-traceless" part of

hAB:

by = hpg 31 (2.21a)



) _AB
b5 = hpg 97 (2.21b)

=AB _ =AB AB

d’AB g]_ = ¢AB 92 = (bAB @ =0 (221(2)

If the metric is of the form {2.18), the Riemann and Ricci tensors
are zero unless all of their indices Tie in the internal space. If
the internal metric is that of an N-sphere of radius r, the

components of R and ﬁab are [15]

ambn

i . o
Rambn = ™" (Bpndan = Jondap) (2.22a)

Rab = —r 2N - 1)y, (2.22b)

and the Ricci scalar is

R=-r? nN-1) . (2.23)
Using (2.15) and (2.17) - (2.23) in (2.14), and defining

g = det(g,y) (2.24)

we find that
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1 n_ N 1
Spe = - —— [ d"dy /5 (})
2f 16nd ?

6%PL-a+ (N(N-3)+4)r 2 R,

+ %020 (V=12 ¢ - AT,

+ ™o+ NN-1)r72 - 11644

+ o (Ao - NN 1)r7% + 206

+ o, o= (V-1 (N-2)r72 + o,

+ o(0= - (N-1)(N-2)r"2 + (s,

+y(zle - (N- 1) (N-2)r2 + lo ) (2.25)

The d'Alembertian which appears in (2.25) is the d'Alembertian

for the total spacetime M a sN:

a = VPVA = 7%y + Va"a , (2.26)

where Vava is the d'Alembertian on M" and vava is the d'Alembertian on

SN. To diagonalize this operator we expand each of the fields ¢ab’ P

¢a8’ 1 and P in terms of harmonics, as follows:

TR,
1kux

D taplon) = 1 F &% Crliky) S K (y) - (2.27)

th

where Hgg)(y) is the j*" symmetric traceless tensor harmonic on the

N-sphere, satisfying



a (3) = 1 (3)
VeV, Hp' = AT Hay (2.28)
and
N ;
[d'y /3§ nd)ab Hét) =S5 - (2.29)

th

A%j) is the eigenvalue corresponding to the j- symmetric traceless

tensor harmonic, and ij is the Kronecker delta.

oM
o n-1 i 1kux _
2) splx) = 1 1S Cyld kel Wv{,ﬂm (2.30)

th

Eév) is the v*" (constant) basis vector in M", and ng) is an

N-spherical vector harmonic.

nasé(v)e(U) - n(V)(U) (2.31)
o B
ag y(3) - 4 (3 (3)
viy el = vy , (2.32)
N (3ay k) |
[ &y vg v = N (2.33)
wﬂ_nz-lﬂ_l (5°) ‘ikuxU "
3) ¢, o (x2y) = fd" C (5,57 .k Jegh | = sH(y)
o8 1 §a s WO (om)n/2
(2.38)
The EL%;ll - 1 constant tensors 5&%) form a basis for symmetric trace-

less tensors on M, and S(j)(y) is the jth

a8 vz (37) (k7))
nontUeyy ‘egy 5j’k‘ (2.35)

vava S(j)(y) - Agj)s(j)(y) (2.36)

13

scalar N-spherical harmonic:



dey ‘/E S(j)S(‘k) I

Jk
- f&ﬁl )
4) o1{x,y) = 4"k ¢ k)
31(x,y) jzlf {3 (2;3”/23 (¥)
) =] n '|kLl (
¢2(x,y) = jZI fd'k CZ(J; ‘“E—;ﬁ72 S i) (y)

Using (2.26) - (2.39), (2.25) becomes

Spp = - — d"k
2 16rd @
{jgl Crli ok Cr(d ok Ik = afd) + (e - 3) + )2
T N : u (1) 2
+ jgl W Cyli vk LGy vk (200K - Ay + (M- 1) e
0 ﬂ_nzﬂ)_ =1 * .
R S L I R R SR U I
oQ -)-'?" . :: ) )
R RERLEERCERS) o
where
Cy(J,k
E(j,k)={ . “)J
LGk

and ﬁ(j,ku) is the 2x 2 matrix

M3y = BRIk + ) - w1241

M3k, gy = BBk, + 480D (e (- 2y

- Al

-2

+ ﬂ]

-2

SR

2 -
T - 1'\]_

(2.40)

(2.41)

(2.42a)

(2.42b)



M(j,ku)lz

M(j’kU)ZI

G-k, + 2 8) -2y ? 1 (2.42¢)

In a similar manner, the ghost action (2.16) can be written as

San * = 5o ) AL T A8 (50 -2 < - 1)
" vEO 353,95k, )05 (3 vk ), - A{0TE (2.83)
where
- ikuxu ( )
ny(%sy) = jzl [ d% oy(ik,) 3 oo ) (2.44)
3 o e
' .
Ny (xay) = JEI vgo frd og(3,v,k, ey %5;3375-3 IMy)  (2.45)

Performing the path inteqgration, we obtain (see eas.(2.12), (A.15),

and [A.21)7)

1T L) | B
e O MN = N I [kuk - 1\_5'\]) + (N(N‘3)+’4)Y‘-2-A] 3
kpd "
i [kuk - '\‘S'j) + (N - 1)2)"—2 - 7\]'%
kpdovF

1 k%, - A8 v e - R

SIPNES
T Ik 2017 IR, St -
U’J , U,
. k- a4 (2.46)
k, I%,v | b | '

N1th regard to the abso1ute values of the ghost eigenvalues in (2.46), see
footnote following eq.(A.39).



In {2.46), N is an infinite constant independent of r and ﬂ, and
ml(j,ku) and mz(j,ku) are the two eigenvalues of the matrix ﬁ(j,ku)
in (2.42). We note that we will not change the value of Fo[ﬁMN] if
we replace the product of eigenvalues by a product which has the same

value for all j and ku' In what follows, we shall make the re-

placement.
{3k Ima(3,k ) = (BT (M + e ) (kMK + £5) (2.47)
ACELTPAL AN L “nN /T T h) u h| |
where
- . (3) a2k
gy = agd enn- 12
S 2(N- 1AL -1 - Ry 1 L (2.48)

{In all the cases we shall consider, the factor in square brackets in

(2.48) is negative; we take the principal square root.)

As is customary in dealing with time-independent systems such as
the one we are concerned with in the present parer, we define the quan-
tum effective potential VQ and the gquantum effective potential density

~

VQ:

ro = - VQ = - VO * Jdnx . (2-49)

Note that GO is an ordinary function of r and A. Making use of appendix A
we see that computation of VQ requires the construction of the generalized

zeta-function Z(s) {see eqs.{A.36), (A.40), (A.50) and (A.51)), and the analytic

continuation of z{(s) to the region s = 0. To do this, we need to know in
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detail the values and degeneracies of A%j), ﬁsj), and Aéj). These have

been obtained in refs.[16,17]; we summarize here the relevant facts:

1.) Tensors
There are three types of symmetric traceless tensor spherical
harmonic eigenvalues A%J). They are (for N > 3):

a) Transverse-traceless eigenvalues

@%)=-Q‘Q+N}”'2 . 1=2.3,... (2.50)

r

with degeneracy

S NFDIN-2)( +N) (2 -1)(20 +N-1}{2 +N - 3)!
DR(N,Z) = AUERV IR . (2.51)
b) Longitudinal -transverse eigenvalues
AE%)-:-R(“N'IQ’LNJ'Z) . 2=2,3,... (2.52)
r
with degeneracy
(e +N-1 (22 +N-1){0 +N-3)!
D (N.1) = W= 2T+ 1)T ' (2.53)
c) Longitudinal-longitudinal eigenvalues
AE’E)=-““N'2”'2” . 1=2,3,...  (2.54)

r

with degeneracy

DE(N,O) = (22,+N-R]1.EISIQ-+1|';'- 2)! . (2.55)
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2.) Vectors
There are two types of vector spherical harmonic eigenvalues
(N > 3):
a) Transverse eigenvalues
A(1) g{e+N-1)-1

Vo7 rz , 1=1,2,... {2.56)

with degeneracy DQ(N,I) as defined in {2.53).
b) Longitudinal eigenvalues
A2) o 2(2tN-1) - (N-1)

LV " » 2=1,2,... (2.57)

with degeneracy DQ(N,O) as defined in (2.55).

3.) Scalars
The scalar spherical harmonic eigenvalues and their degeneracies

are well known [36 ]; the degeneracies are DQ(N,O), and the einenvalues

are
() - _2(2a+N-1) -
AS = —(-—r—z* ) 2=0,1,... (2.58)
Using (2.46) - (2.58) and appendix A, we find that
n 6 9
z(s) = 1‘21 gy(s) + zyg,(s) +2y4.(s) -2%7 z;(s) (2.59)
where
283

zq(s) = (;T:)“/Z ?{E} 2_2:2 D, (N,2) [e{2 + N - 1) +N(N-3)+2-2]5

(2.60)




28

[e.+]

r{g)

Z,(s) = (f )n/2 ) E D,(N,1)[e{n+N-1) +N(N-4)+ 2~} ~3

.28

t3ls) 2 (;;hYZEEE%gzzDﬁ”“0”£(2+N'1)+N(N'5)*4'*|-B

283
La(s) = zj£§ﬁ7§'F%—} (n) E L1 2 (e +N = 1) +N(N - 2) -x] 78
tels) = (4 n/z'—(“} {n) 21 D, (N,0)|2 (e + N =-1)+ (N-1)(N-
- 1
6(s) 2 m% rloy

E D, (N,0)[2 (2 +N - 1)+N(N-1) S

. 28

r{s) v )
= (;:)n/Z F(s% Q.E=2 DR.(N’]')'Q'(Q +N-1) “N| g

Chl
~d
—
i
—t
1

8(9 = m”n Fr%zzl (N,0)Je (2 +N=-1) -2(N-1] "8
= 17‘28 ( ) o N.O ( +N 1) =g
cg(s)--(mn/zF n 21 D, (N,0)f2 {2 +N-1)|

(e N-1)+ (N-1)(N-2) =2(1 -N)[1 -ﬂﬁ"«'ﬁ—_—ﬂ]*)'ﬁ

We have used the abbreviations

- n
625'—2-

and

A= Arz

(2.61)
(2.82)
(2.63)

U
(2 64)

(2.65)
(2.66)
(2.67)

(2.68)

(2.69)

(2.70)

(2.71)



In all of the sums (2.60) - (2.68), any term in which the auantity
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within the absolute value signs is zero should be deleted [30]. (That

is the reason that the 2=1 term in c7(s) and the 2=0 term in cq(s) do

not appear.)
The third term on the right-hand side of ea.(A.36) for GO may

be written as

ir (- | m 1 -n/2
Sy - -} T By Iataghy™? (2.
where
6
sy 2 3 ey L . (2.
i=1 !

72)

73)

The auantities cg')(s), i=1,...,6, are defined in exactly the same

manner as the ci(s) in eas.(2.60) - (2.65), except that the sums run

only over those values of ¢, if any, for which the quantity within the

absolute value signs is strictly negative. This will always be a

finite number of terms so s may be set equal to zero directly.
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[II. Analytic Continuation of the Zeta Functions

We now make another specialization in the class of background
spacetimes we are investigating: we restrict our considerations to
spacetimes MN® SN for which N is odd. We have already restricted the
vaiues of n to be those for which g-is both integral and even (see
appendix A). The total number of dimensions D=n+N is therefore odd.
In an odd number of dimensions there are no odd-Toop anomalies [18];
this means that the coefficient of the Tog i term in (A.36) must

vanish, i.e.,
z(0) =0 . (3.1)

For odd N > 5 the degeneracy factors DE(N,Z), D, (N,1) and

DQ(N,O) can be written as polynomials in a shifted index L:

Oy 009 = | AL LT a0, (3.2)

where
L=2+v (3.3)
vl (3.4)

and A are constants independent of L {see appendix C). For =3, the

J’=2Jaﬂd J =1 degeneracies in (3.2) have an additional term independent of

L (i.e., m=-1}. For the moment we shall consider only the case of odd N>5,
Using (3.3) and (3.4}, we reexpress each of the zeta functions

{2.60) - (2.69) as

*The motivation for this restriction is discussed in section IV.
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@0

_ i 1{s) 2y 2P
oyls) = (am"/2 Ts) 4 (n) LZLi a1 | (3.5)

2104(5) (4) Jt?} Doy (N0 = ¥3)7° , (3.6)

where di(n), Li’ Ji’ and Yiz are given in appendix C. Following the pro-

cedure of ref.[14] and appendix D of ref.[ 4], we expand the quantities

“_2 -Y.‘IZI—B and (LZ )"B

“Yio4 using the binomial theorem and perform the

resulting L-sums; for ReB8>>0 these sums converge.

We obtain, for i =1,...,9*

.26 d.(n) .
z;(s) '(—7'2'7(;)—{2 D%(L (N(v), J; )& - Y; Y: AT (8)

i

D"i-l

n/2 .
- T(B+r) 2r,-28-2r
LZlDE’(L)(N(\)),Ji)rZO r] Y.i L
v=-1 n/2
+ ) A [ §O —-—-1-—T(Brf r) Y§r5(28+2r-2m-2)

(3.7)

where q. and Q. are as defined in appendix C. z(x) and z(x,y} are the
i i

Riemann zeta function and modified Riemann zeta function, respectively.
Any sum in which the upper limit is less than the lower limit is defined
to be zero. Note that many of the terms in the second sum in (3.7}

-1
(i.e., i ) may be discarded, since, for odd N » 5,

*
For i=10,, |L2-‘Y12[ + (L% - Y;IO’ in (3.7) and (3.11).
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Dg(y(Nv)s2) =0, L =0,1,...,v-2, vil (3.8)
DR(L)(N(v)’l) =0 , L=0,1,...,v=2, v (3.9)
Dy (y(N(v),0) =0 , L =0,1,...,v-1 (3.10)

We now Laurent-expand each factor in {3.7) about s=0.
[F(s)]™" = s+0(s?) as s » 0, and the terms in the curly brackets are
either 0(1/5) or 0(1) as s+0. Thus, ci(s) is regular at s=0. Since
we are only interested in ci(o) and c;(o), we need only keep terms up
to O{s) in the Taylor expansion of ci(s) about s =0; this can be written

(p(x) = 10q“(X))

d;(n)
(—1W2—- {(1+2s Togr) W

9 Q;-1

' { o Dgqy(NE)LdpLe - ;"2 - Ly 0, (1) (M) 0L -2

1

1di(n) (5)

+ s

(42

q.

{5 0y 0H00,3)) Tty 147 =0} Ae 4B - Toal1t 431

i

Q§“1 o /2 (-Yé/Lz)r .
. —— + -
DELTRICORRE Ty P -2t

25 AR qymet pene5/2-ameer _r (1+g+m-r)! TE D R
L vm ¥y | ZryTmer
m=0 J_i 0 (—-r)fr

0 « z{3+n+2m-2r)
% {r-x-1)1
E E.I ‘Y%r “(2r-n-2m-2, QT)‘I} + 0(s?) {3.11)
r‘=£}+ 1 ' : B
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From (3.11) and appendix C, we discover that
Qi(O) £#0 , i=1,2,3,4,5,7,8 . (3.12)

This may seem distressing, in light of (3.1)...until we recall that
the theorem “no odd loop anomalies in odd dimensions” isa dynamical
statement, and has relevance only for the zeta function E(s) from which
the effective potential is actually constructed, not for the individual
zeta functions Ci(s) into which we have arbitrarily decomposed Z(s).
Indeed, when the :i's are added up to give Z{s) using (2.59), (3.1) is
satisfied for all values of r and A. This fact serves as a useful
check on the correctness of our computation.

Using egs.(2.72), (2.73), (3.5), and appendix C, the
third term in eq.{A.36) for VQ becomes

ir ~(=) i 1 1
- 0) = - —_
& iy 2 n/2
I;Zl din) LEL. Doy (V)34 L2 - vy : (3.13)

1 —_

(We remind the reader that sums in which the upper 1imit is less than

the Tower 1imit vanish.)

If N=3 {i.e., v=1) the transverse vector and symmetric

transverse-traceless tensor degeneracies are of the form



LMz g =2 (3.14)

[ T

3,d) =

m Im

Dy ()¢

A
-14
rather than (3.2). (For J=0, (3.2) still applies.) The only change
which this difference entails in the formula for the ci's is a change
in the lower 1imit of the sum on m in (3.7) from 0 to -1 (with
31,~1 = 0). The analytic continuation to a form valid near s =0 also

proceeds in a slightly different manner: for m= -1, the Laurent expan-

sion about s=0 of the first summand in square brackets in (3.7) is
(C=-y{1) = Euler's constant = 0.57721566490...)

n
o \Z
CE+0) 2 crgear) - J), [- g t5 -log (2m)1 + 0(s) . (3.15)
2’ .

Thus, ci(s), i=1,2,...,5,7, each have an additional contribution to
the part which is nonzero at s=0. As in the case of odd N > 5, these
nonzero parts vanish when summed to give the complete z(s).

The case of N=1 has been dealt with previously [17] and will

not be discussed here.

25
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IV, Results and Discussion

Since the 0(1) terms in (3.8) vanish when combined inta Z(s), the
relevant part of Ci(s) is simply the coefficient of the O(s) term.
Using (2.59),(3.1),(3.8-11),(3.13),(A.35), (A.39), and (A.43), we
can compute the value of the quantum effective potential density QD for

any values of r and AL ﬁo has the functional form

v.o= £, ih(A) ' (4.1a)

Q " N

where f(A) and h{i} are real-valued functions of X =Kr2,

fFO) _i v - R
_ﬁﬁl "2 jzl 25(0) - jéa e3¢0 (4.1)
ih{x} _ i T 1 1 : i 2 _2;n/2
M T2y, [121 d;(n) LZLng(L)(N(“)’JT)IL - 1"°]

fzlege (0) vefp M1 . (4Le)

Define the total one-loop effective potential V and the corresponding
density v by
r=-v==-V7d% . (4.2)

Using (2.1), (2.2a), (2.23), (2.49), (4.1a), (4.2) and the formula for the

volume of an N-sphere [19],

[ dVy /5 = gﬂﬁiT N (4.3)
F(—g“)
we obtain
Ve o TN 1) 2 e iy s T L RUET) g )
ar ﬂjz“)é r r

(From this point on, we consider anly the phenomenologically-interesting

case n=4,)
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Since V is complex, the conditions (2.13a,b) that determine

the physical value of r really amount to four conditions:

a -~
~— ReV =0 (4.5a)
ar ' rphys
= V|, =0 (4.5b)
phys
ReVI . =0 (4.5¢)
phys
Imﬁ, - =0 (4.5d)
phys

In the cases we have examined it is not possible to satisfy all

of these equations simu]taneousTy for any values of r and A.

In particular, (4.5b) and (4.54) are equivalent to

)
o

g%-h(x) = (4.6a)

h{x)

1)
o

(4.6b)

We have verified graphically that these equations fail to be
simultaneously satisfied for odd N from N = 3 through N = 13 (sce
figures 17 through 28). Thus, for these values of N, the matrix
element of the metric operator (see eq.{2.11)) is not a real metric
describing the spacetime e 2 gN, A fortiori, there does not exist a

groundstate |0> such that

[0> = {0,> = 0> (4.7)
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and such that the expectation value of the metric

§AB = <dpp” <0’§ABIO> (4.8)

describes M*e SN,

Suppose we choose to view the complex effective potential V as

*
describing an unstable state [20]. That is, we view cur snacetime as one

which, in the distant past, had <9pg> corresponding to M ¢ SN;
however, there is a probability per unit time per unit 3-volume of
<gpg> changing (there is no way to tell from the present analysis what

changes are 1ikely). This probability density is given by
o =-=2ImV ., (4.9)

The value of V depends on both r and A3 which r and A shall we use in
{4.9)? The only natufal (though not, perhaps, compelling) choice is

those values of r and A which extremize the real part of V, i.e. the

solutions to (4.5a) and (4.5c). With suitable fine-tuning of 1,

such "unstable solutions" exist with N =3, 5, 7, 9, 11, or 13.

Some of these are described in table 1 and figs. 1 through 15.

As an example, consider N=7. Fine-tune A to the

*It is not our aim here to argue that this viewpoint is correct or
incorrect, but merely to point out the consequences if it is taken.
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value

A =52.930 Ep , (4.19)
where 1

Ep = (é)”*”‘2 (4.11)

js the (n+tN)-dimensional Planck length. Then ReV and g% Reﬁ arae

both zero at

r = 1.1100 [p . (4.12)

This isalocal minimumof ReV. Since r>'Ep, we expect on dimensional
grounds that the loop expansion we have been employing is a meaningful
approximation to the exact effective potential {71, (This is not true for
all the "unstable solutions" in table 1.)

G,, the Newton constant of the effective n-dimensional gravitational

field, is related - at tree level - to the bare {n+N)-dimensional Newton

constant G by - N =
G, = 6/fdy/d(y) . (4.13)

Using (4.3), (4.11) and (4.13), n=4 and N = 7, we find that r is
significafiéy larger than the tree level n-dimensional Planck length
L, = (G,)"

r = 9.1137LIJ . (4.14)
However, it must be borne in mind that loop effects may cause the

observed physical value of the Newton constant to differ drastically

from its tree-lavel value [21,22,4].
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At the minimum of ReV given by (4.19) and (4.12),
ImV = - 3062.9 (L,)7" . (4.15)

If we identify the tree-level L_ in (4,14) with its observed value,

p
given in eq.(1.1), we obtain, using (4.9), a rate of decay of the

M* 5 S7 state

o =  6125.8 Ep'“
= 2.2005 x 10‘“Lp"“ (4.16)
= 9,672 x10'*7cm sec”!

Corresponding results for other unstable solutions are given in
Table 1 .* (No unstable solutions exist in regions where ImV> 0,

corresponding to a "negative decay probability".)

*Ne should point out that the instability induced in M* g SN by gravi-
tons is of a somewhat different nature than that which may occur when
only scalar and Dirac-spinor contributions to VQ are taken into account.
In the scalar-spinor case, a groundstate with M* g SN geometry does

exist. If the ratio of the number of scalar soecies to the number of

spincr species does not satisfy certain inequalities, arbitrarily small
perturbations of the background geometry will give rise to exponentially-
growing deviations from M* @’SN[4,38], However, a state which, at early
times, has a background metric corresponding to a perfectly unperturbed

M* @ SN will, with unit probability, be found in a state which also

looks Tike M* ® sM at late times. This is not true in the graviton

case.



However seriously one wishes to take such "unstable solutions",

the following conclusions may be drawn from our results:

1)

At the one-Toop level, a state with <gpg> corresponding

N

to M*® s, N = 3,5,..., 13, is not a stable groundstate

for pure gravity.

The anomalous smaliness of the contribution of scalar and
spinor degrees of freedom to the effective potential on
M* @ SN is not a feature shared by the contribution of
gravitational degrees of freedom on this background. In
table 2 we compare these contributions, in units of r™".
For scalars and spiners, this quantity is independent of r;
for gravitons, values are quoted both at r=0 (or, equiva-

Tently A =0 and r arbitrary), and at values of r, A

corresponding to "unstable solutions".

Both of these conclusions demonstrate that, in studying quantum

effects

effects

in Kaluza-Klein theories, one ignores quantum-gravitational

only at one's peril.
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What implications do our results have for the construction of
models with stable Kaluza-Klein background geometries and realistic
particle spectra? Since a model without fermionic matter is hardly
realistic, the instability of "pure-gravity compactification" is not
to be regarded as catastrophic. Indeed, the quantum part of the ef-
fective potential in eleven-dimensional supergravity has been shown
to vanish if the background metric is the classical solution with
anti-de Sitter spacetime as the non-compact sector [23]. The corre-
sponding analysis for supergravity in the Background M*® 57 is cur-
rently in progress [24].

In addition, the existence of interesting supergravitational theo-
ries in ten dimensions [25] motivates the extension of our analysis to

N with

the case of gravity (and, ultimately, supergravity) on M*2 §
N even. The motivation for restricting N to be odd is to introduce

as few arbitrary parameters as possible into the effective potential.
In the present case, the bare (n+N)-dimensional cosmological constant
A is an arbitrary parameter which is fine-tuned in hope of obtaining

fiat M“. 4Yith N even there will be an additignal term in the effective

action

n+N
Loaafd™z /TaT (4.18)

where the "induced cosmological constant" is an extra fine-tuneabhle

parameter

= 1 pz(0) . 4.19
Aipg = 16, 109u 2(0) (4.19)
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In a supergravitational theory, A is fixed rather than arbitrary;
thus, the number of arbitrary parameters in the one-loop effective
potential need not increase in going from N odd to N even.* Since
Aspq €nters the effective potential only through the term (4.18),
without affecting the "mass eigenvalues" Ai of the graviton modes,
it should be possible to fine-tune Aing to give vanishing ReV

at the minimum with comparative ease. Whether there exists a
gravitational or supergravitational model in which a1l the dynamical
equations (4,53 -d) are satisfied can, of course, only be determined
by detailed calculation [27].

Finally, it should be kept in mind that the instability of pure
gravity on spheres (or that of superaravity on soheres, should the
problem arise in that case as well) could be an indication that the
true groundstate has a different shape than sV, Internal manifolds
differing significantly from SN--"squashed" spheres, product mani-
folds, etc.--are worth examining, not only for this reason, but also
because their symmetry groups may correspond to those observed in
Nature [39]. However, it is also of great interest to study arbitrary
small deformations of SN, or of other symmetric manifolds [40]. If
the effective action r of the theory on the symmetric manifold is
real, knowledge of I in the presence of such deformations is needed
for a complete analysis of stability against these deformation;, as

well as for a determination of the masses, scattering cross sections,

*This point has been noticed independently by E. Myers [267.
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and decay rates of ultraheavy {> l/fp) particle states ("pyrgons").
Cosmology can place strong constraints on pyrgons [41] and thus help
to reduce the field of viable Kaluza-Klein theories.

Perhaps most 1mportaht1y, we should expect that stable
internal geometries in a Kaluza-Klein theory will possess ex-
tremely small deviations from perfect symmetry. Why so?
Particle masses in Kaluza-Klein theory are determined by the
spectra of operators on the internal manifold. {This is true
in the quantum theory as well as in the classical theory; in the
quantum theory, the relevant metric on the internal manifold is the
background-field metric rather than the classical metric, and the
relevant operators are second variational derivatives of the effective
action rather than the classical action.)} Zero mass particles cor-
respond to zero modes of these operators, and zero modes, in turn,
generally correspond to symmetries of the internal manifold. Chances
in the shape of the internal manifold will tend to change the masses
of all particles, including those of zero mass; in particular, de-
formations which destroy a given symmetry will tend to give mass to
zero-mass particles. Thus, in a Kaluza-Klein context, the "hierarchy
problem"--the problem of how a theory characterized by a large mass
scale (in this case, the Planck mass l/fp) naturally gives rise to
particles with masses smaller by many orders of magnitude {electrons,
quarks, etc.)--is expressed as: Why does the internal manifold deviate
by such a small, but yet nonzero amount from a perfectly-symmetric

form?
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If the Kaluza-Klein theory is to be of physical relevance,
it must be capable of generating, without artificial fine-tuning, an
extremely small dimensionless quantity, the "eccentricity" which
measures the small deviation from symmetry. 1In this regard, it is
encouraging to note that, as seen in table 2*, even the present
simple model is capable of generating a "hierarchy" of several orders
of magnitude between the contributions per degree of freedom of dif-

ferent species to the quantum part of the effective potential.

*The quantities £{1) and h(,} in the first and second columns of table 2

do depend on A, which is fine-tuned to give flat M“;f(o),h(n),0£0)and Cé%)
are all completely independent of any fine-tuned parameters, including A.
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APPENDIX A

Path Integrals with Negative Eigenvalues

In studying quantum gravity at the one-loop level by means of the
path-inteqral methed, a potential problem which arises in any number of
djmensions is that of negative eigenvalues in the operator‘%2 which
appears in the exponent of the integrand. The problem is particularly
acute if, as is commonly done, the path integral is defined ab initio
by "fuclideanization", in which physical Lorentz-signature spacetime
is replaced by Euclidean-signature space; one is then faced with diver-

gent integrals of the form
[da;e J7 (A.1)

one for each mode with an §2 eigenvalue Aj«:o. In flat background
geometries, negative eigenvalues are associated with the trace of the
graviton; in curved backgrounds other modes in addition may be asso-
ciated with negative eigenvalues. (This is the case in M1 SN.)

To make sense of expressions such as {A.1)}, some authors [28,13,14]
perform further analytic continuations applying just to the negative-
eigenvalue modes; namely, they multiply the coefficients of these modes by
factors of "i". This prescription is not only unpleasantly gg_ngg, it
is also in general ambiquous. Should one Tet aj-+iaj ar ai-+-1aj?--
the two choices yield reqularized effective actions which differ by
an amount pronortional to the reqularized number of neqative modes.

This number is, in general, a function of the background geometry, and



therefore cannot simply be discarded as an irrelevant constant in the
effective action.

These problems do not arise if we work in the physical Lorentz-
signature spacetime. HNo divergent Gaussian integrals are encountered,
and potential ambiguities invelving factors of +i are resolved by use
of the "-ic rule" (Feynman boundary conditions). The "-ie rule", in
turn, is in no sense ad hoc, but is a direct consequence of the fact
that we are computing groundstate-to-groundstate amplitudes of a sys-
tem in a static background (such as the present case) whose exact
energy eigenspectrum is assumed to be bounded from below (see appendix
B).

For hotational simplicity consider a real scalar field ¢ in a
D-dimensional static spacetime of Lorentzian signature. The one-loop
generating functional (also referred to as the "partition function")

is given by [9,10]
7 = @lS Z, . (A.2)

S is the classical action, a functional of the background values of ¢
as well as (possibly) other quantities, suth as an external classical
source coupled to ¢. Zq, the “quantum part" of the generating func-

tional, and the object we are concerned with computing, is given by

Zy = f vsexply fa°x /TAT 0 5, 0] . (A.3)

Since we are concerned with groundstate-to-groundstate amplitudes, we



perform the path integration in (A.2) over all configurations of the
field ¢, rather than keeping ¢ fixed at some initial and final times
(see appendix B). Denote the eigenvalues and orthonormalized eigen-

functions of §2 by -Aj and ¢j’ respectively:

Sz(TJJ = -AJ¢J (A,4)

) ] |
Ja2% /TTT 058, = 85 (A.5)

(If §2 has a continuous spectrum, as it doeﬁ in the cases we shall
consider, the discrete notation should be thought of as shorthand for
a continuum notation in which the Dirac delta function replaces éjk’
integrals replace sums, etc.).

Any function of x may be expanded in terms of the ¢j’

o =} asb,

aghs (A.6)
J

where the a; are x-independent coefficients. Using (A.4) - (A.6)}, the

path integral (A.3) becomes

} y; i 2
where u is a constant scale with the dimensions of mass. (The path
integral measure in (A.7) may be taken as the definition of [D¢; in
any case the Jacobian [29] arising from the change of path-integration
variahles will be unity to one loop, since the logarithm of this

Jacobian, which potentially gives rise to an anomaly, is zero in odd

39
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dimensions [18].)

Let us write (A.7) as

ZO = g qu , (A.8)
where
= P - 1 . 2
ZJ -cfo daJ exp[ ‘2‘1\JaJ ] . (A.g)

Aj is a real number, since §2 is a Hermitian operator. (Zj's with

Aj =0 may be discarded as physically irrelevant; see ref.[30]). Me

now evaluate (A.9):

Zj =2 { daj exp[ - %-Ajajz] = { du u'%[cos(% Aju)— isin O% Aju)]
- 7 du ucos(} [as]u) - P8 sintd [ai]u)] (A.10)
A 217 AR ’
where
_ N
Gj = TKET . (A.11)

Performing the integration in (A.10) [31], we obtain

.

-iTI’ﬁj
Z, =e T4 vz a7 (A.12)
or, equivalently
-im
Zy=e Yoz agt (A.13)

where we define



- 41

arg Aj = -r Aj <0 . (A.14)

Using (A.13), (A.8) becomes
i

ZQ = I (ueT‘/TﬁmA.'i) ) {A.15)
j J

Defining the quantum part of the effective potential, Vq, by the relation

-3V
Zg = e Q (A.16)

we have

= ¥ -] A,
Vg 11oq11§ 5 §1og ;o (A.17)
-jmT
TIESALINY - (A.18)

The sums in (A.17) are divergent and must be regularized; we employ
the zeta-function method [30,32] to accomplish this, Define, for

Re s>>0,

tls) = f A5 (A.19)
J

For Re s sufficiently large, the sum in (A.19} will converge to an

analytic function of s. Then (A.17) can be written as
Vg = ilogu 2(0) + z27(0) © (A.20)

where the values of y(s) and its derivative z7(s) at s= 0 are obtained

by analytic continuation of (A.19).



Now suppose that the eigenvalues Aj have the same general form

as the majority of the gravitational eigenvalues encountered in this

naper, i.e., the sum of a continuous part and a discrete part:

- . = U .
Aj AJ(ku) k |<U + AJ , (A.21)

where u runs from zero to n-1 < D-1,

kuku = (k)24 Kok = (k)2 (k)2+ (k)2 + e + (ko) (A.22)

{The eigenvalues ml(j,ku), mz(j,ku) which arise from the trace modes
are not of this form; we shall deal with them separately.) Aj is real

and nonzero, but may be of either sign, depending on the particular

made. The zeta-function is egual to

z(s) = ¢(s) « fd"x (A.23)
where ‘
~ N dnk R -
z(s) = § f oy [-(ko)? + K-k #2507 (A.24)

For nonintegral s the integrand in (A.24), viewed as a function

of complex k,, has branch points at

K, = =/ KoK + A, (A.25)

J

If k-k + kj > 0 (whatever the sign of lj, this will be the case for
some values of k) the branch points {A.25) apparently lie directly on

the contour of k integration (i.e., the real-k, axis); “apparentiy”,
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because when we compute a groundstate-to-groundstate amplitude we must

view the time coordinate as the limit of a sTightly complex variable,

t=Timt{l-4c) , >0 (A.25)

€0

(See appendix B.) The momentum-space zeta function (A.24) should

therefore be regarded as

~ n - -
2s) = 1im T /4K i)z e Rk e, - de] S L (A.26)

ero, § 0 (2m)" ’
This "-ie rule" is, of course, quite familiar [37]. Hhaf is important to
note here is that it applies whatever sign Aj may have.*

Whatever the sign of kek + Kj, the branch points in the integrand
of (A.26) are seen to occur in the upper left and lower right gquadrants
of the complex-k, plane. We are thus free to rotate the contour of
k, integration counterclockwise by any angle 5 between 0 and /2,
without changing the value of the integral. (We must also have Res >-%
so the contribution at |k,| - » vanishes.} Choosing 9 = %3 (A.26)

becomes

> oy i 7 d"k s T . 2 =S
z(s) = vim i Lf [ko? + kek + 25 - ic] . {A.27)

Performing the angular integration in Euclidean n-space,

2

c = 1im i b n-1, ., . \-S
C(S) = llr:+ 1 §m— g dg 2 (2, +)\j '|€) . (A.ZS)

or

*For k“ku + Ao <0 it is consistent with (A.14),



n n
R O 1.

) = iy § (3 - ie)? (A.29)

£*0

+

where (see reference [19], eq. 2.251.11)

|argl (4 N T (A.30)
Keeping in mind {A.30), (A.29) can be written as

. Y L 5 - s in(s-5)8(-2,)
T ;n/z e EE e T an
m j

where a8{x) is the Heaviside function,

a{x) =1 , x>0
(A.32)
=0 , x<0
Define yet another zeta-functidn (the last one!):
. r'(s - 5 L -
A . i 7 Zz
z(s) = a2 T § 251 : (A.33)
If % is even,
z(0) = z(0) (A.34)
~.. _ fa _ TT 1 _ n/2
z7(0) = z(0) 72 0. § 8(-A ;02 (A.35)

(We can set s=0 directly in the final sum in (A.35) because, in the

problem we consider in this paper, the number of eigenvalues Aj< 0 is

finite.} Using (A.20}, (A.23), (A.34), and (A.35), we find that

V. = 1l0oga2(0) + & £7(0) - & —T L5 a0 0.2 (a.3)
0 B 2 gy § N

where GQ is the quantum effective potential density,
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Vg = Vg - Ja . (A.37)

In a similar manner, the action for anticommuting c-number ghost fields [9,10]

1 D, -2
Sqh =7 {d%% A Sgh (A.38)

gives rise to the quantum effective potential density

Vgn = -210guz gy (0) - iz (0) (4.39)
. ~ *
where the eigenvalues of Zgn are [k“ku + Aghjl’ and
~ _ d"k u \ -5
fon®) = LS o 1 ans] (A.402)
n |
=7 (_dk UTHIRY u 2~8/2
) f 20)7 [(k"k )+ 2(k ku)_kghj + (kghj) ] {A.40b)

Lo r{s -n/2) n/2 - s

Let us now consider the trace eigenvalues ml(j,ku) and mz(j,ku). Since these
are defined to be the eigenvalues of the Hermitian matrix ﬁ(j,ku) (see eqs.(2.41),
(2.42)), they are both real numbers, so the analysis which leads to eq.{A.15) ap-
plies to them as much as to any other eigenvalues. The trace modes thus contribute

to ZQ in eq.(A.15) a factor which may be written as

1T
oute 2 (am)my(d,k Imyl5 .k 1712 (A.41)

1o =
TR j,k

u
Neither ml(j,ku) nor mz(j,ku) is of the form (A.21). However, their product is

equal to a product of factors linear in k“ku:

*The absolute value of the integrand appears in (A.40a) because the ghost action comes
from exponentiation of a functional Jacobian, i.e., the absolute value of a functional
determinant. MNo term like the third term on the R.H.S. oF eq.(A.36) occurs in the
ghost case. We are grateful to S. MacDowell for pointing this out to A. Chodos, who
pointed it out to us. To obtain (A.40c), from (A.40b), use ref.[42], keeping in mind
the "-ig" rule.




- 1A
:%E
- 2 2-N-ny-i, 1 N YNy, -
ZTR = jl'[k u- e QWHT} (k If.u + ]) (k ku+;j‘} t

(A42)
(gj is defined in eq.(2.48).) The contribution of the trace modes to

the effective potential density is therefore

Vig = illog i - 7 1og(?-'ﬁ”n‘ﬂ)1[£m+(o) +iio (0] + % (2o, (0) +25q (0)]
(A.43)
where
Tine(s) 23 J 4k [-(ky)? + K% + ;178 (A.24)
1o+ i (em)” !
and
n > >
RO - (N LI S (A.45)
i (2n) g

These zeta-functions are similar to (A.24}, except that £j, E;
have nonzero imaginary parts for any finite value of r. Whether or
not one takes care to follow the "-ie rule", the k,-integrand in 510+(s)
has branch points in the upper left and lower right quadrants of
the complex-k, plane, while 510 (s) has branch points in the upper
right and Tower left quadrants.- As before, we can simplifv the
k,-integrals by analytic continuation --1i.e., by moving the contour
of k,-integration in such a way that the value of the integral is
unchanged. However, the allowed motions of the contour are now dif-
ferent forglois)andglogs)due to the different locations of the branch

points. The most convenient choices are
Z1g.(s) ¢ ko > ik, (A.46)
+

Z1p (5) 1 ky»-ik, (A.47)
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So
= : d"k >, *. -
“10,(8) = 1 4§ 5 Llko)? K7+ 5] s (A.48)
- . dnk 2 +2 -
Zyp (s) = - § f 20 [(ky)2 + k2 + 2,17 (A.49)

or, upon performing the ku-integratfon,

n
~ _ i r{s - n/2) * 7S (A.50)
C10+(5) = (47‘_)”/2 T{s) § (EJ)
n
. - r(s - n/2) 7°5
2yg () = (g2~ T(s) § (&5) ' (A.51)

Since the gj's are complex numbers whose phases depend continuocusly

on r and A, it turns out to be convenient to use (A.50), (A.51) directly
in the expression (A.43) for the effective potential density, rather
than express (A.50), (A.51) in a form analogous to (A.31) - (A.35).

e see that, at least at the one-loop level and with the back-
ground geometry M" @ SN, it is possible to calculate the effective
potential without ad hoc Euclideanization and its attendant difficul-
ties. One may ask: In what way, if any, does the effective potential
calculated in this manner differ from the effective potential calculated
ﬂjﬁﬁ_Euc1fdeanization?

A Euclideanized calculation of the effective potential for
gravitons on M g sV has been performed by Chodos and Myers [17,33].
Their Euclideanization is equivalent to replacing, in all zeta-functions,

k, by +ik,. As we have seen, this is - with one exception! - precisely

what one does if one stays in Lorentzian spacetime and performs
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mathematically valid analytic continuations of contcours in momentum inteqgrals,
keeping in mind that one is comouting a vacuum-to-vacuum amplitude ("-ic
rule"). The exception is the trace mode zeta function %10 (s). Analytic
continuation from Minkowski spacetime yields the factor o; "-i" in eq.(A.51};
working in Euclideanized space would have the net effect of reolacing
the "-i" in (A.51) by "+i". Thus, the Euclidean version of the calcu-
Tation can yield results which differ from those obtained by a Lorentzian
calculation.

In our notation, the result of Chodos and Myers for the quantum

part of the effective potential density may be written as

5 fond) , ] hem(X)

v A.52
CM o o (A.52a)
where
fu®y 5 6 )
B N R T
N 2'(4W)n/2 (”)| N
¢ qi D 2 2 N/2 4
. [121 4(m LZL (L) NG ) L2 =27 E ] (A.52¢)

i

in contrast with the Lorentzian result 00 (eqs.(4.la-c)). The physics
of ch differs both qualitatively and quantitatively from that of 90.
For example, for odd N from 3 through 11, GCM has no "unstable ﬁo]u-
tions" [33], whereas GO does (see section IV), For N=13 both have

unstable solutions, but with different radii.



- 49

In addition to the question of Euclideanization, the calculation
of Chodos and Myers differs from ours in a purely technical aspect:
the two calculations use very different methods to analytically con-
tinue the individual zeta-function sums to the physical region s = 0.
If both methods are mathematically correct, then we should obtain
Chodos and Myer's results for the total effective potential V simply
by replacing (4.la-c) with (A.52a-c). Ve have verified that this is,
in fact, the case. For example, compare fig. 41 with fjg. 4 of
ref.[33].

In the absence of any relevant experimental data in the realm
of quantum gravity*, there seems to be no way of determining whether
it is the Lorentzian or Euclidean procedure which yields physically
corract results in cases where they disagree. Certainly, one may
supplement one's theory with the postulate that quantum effects be
calculated by Euclideanization, and proceed from there to obtain re-

b g
sults which are mathematically correct. These results must still be

interpreted in Lorentzian spacetime, since all available data show
quite clearly that our world is, not Euclidean, but Lorentzian. fiven
this fact, and given that the Lorentzian procedure avoids the ad hoc
aspects of the Euclidean procedure, it seems to us that the Lorentzian

procedure is to be preferred. .

“We are aware of only one quantum-gravitational experiment which has
been performed to date [34].

* %

If spinor fields are included, topological obstructions may even render

the Euclidean theory mathematically inconsistent [43]. We would Tike to
thank R. Pisarski for pointing this out to us.
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APPENDIX B

Groundstate-to-Groundstate Amplitude

We review here the path integral formalism for the groundstate-

to-groundstate amplitude of a system with a time-independent Hamiltgonian

whose spectrum contains a unique state of lowest energy.

For notational simplicity consider a system with a single degree
of freedom, corresponding to the Schrddinger-picture aperator a. The
eigenvalues of q are denoted by either q or Q. Ne add to the time-
independent Hamiltonian H a time -dependent term -J{t)3, where J{t) is
a time-dependent c-number source which vanishes during all but a

finite interval of time;
J{t) #0 only if by <t t, . (B.1)

Let |a,t> be the eigenstate of q(t) in the Heisenberg picture,

a(t)|q,t> = gq|q,t> , {(B.2)

and let IET> be the ith (time-independent) Heisenberg-picture eigen-

~

state of the unmodified Hamiltonian H,
H1E1> = E]'IE1'> . ' (8.3)

For notational simplicity we shall think of the states 1E1> as dis-

crete; it would make no difference if we were to think of them as a



continuum. What is important is that we shall assume that there

exists a unique state of lowest energy |E.>,

Eg < E; ¥YiFO0 . (B.4)

Define the generating functional in the presence of an external

source, Z[J], as

2091 = Vim [do°do <q-, 7,7 (8.5)
T =0
“too
where
T < t1 <ty < T, (B8.6)

the integrals are over the entire eigenspectrum of a, and the super-
script "J" is a reminder that the amplitude <Q”,7°|Q,T> must be com-
puted using the modified Hamiltonian H - J{t)g. Inserting complete

sets of states, we can write (B.5} as

Z[2] = Tlim J dQ”dQdg,dg, <Q‘,T‘]q2,t2><q2,t2}q1,t1>d<q1,tllQ,J>
T oo (B.7)

where (B.1) allows us to drop the "J" superscripts from the initial

and final amplitudes.
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2031 = lim ) J'dQ‘dequql
Tr=o  1,]
T >4

- - J
<07, T7[E><Es | ap,ty><as,t,lay 5ty <ap,t) [Ep><EL{Q,T>

= lim E f dQ‘deqqul
T+== 1,]
T koo

) SR TT ] 13
<Q lE1'>e <E1[Q2st2"'<q2:tglq1:t1> <q1-t11Ej>e ' <EJ'ID.> (B.8)

where |Q> is the Schrodinger-picture eigenstate of §.
Now, evaluate (B.8) as the real-time 1imit of a system whose time
coordinate has been rotated through an angle -¢ in the complex-time

plane (s > 0):

Tim Z[J] = lim { Tim fdQ’deq dq
o I e e 1 2%
T >+{1-ig )}»

LR J 15T
<Q |E-i>e <Ei|q2,t2><q2,t2|q1,t1> <qlst1|Ej>e <EJ|Q>}

(B.9)

In the Timit T+ -{l-ig)=, T"» +{1-ic)e, all the terms in the double
sum in (B.9) for which E. #E, and E}. # By will be exponentially small

compared to the single term i=3j=0, and may be ignored:



Tim  Z[J] = 1im { 1im ( dQ’deqqu1
g+0+ €+0+ T-*-‘(l—'iE)m
T >+{1-1c )
~iEyT” ] iEQT
<07 Epve <Eglagaty><pitylaratyTaay ty[Epe ‘EOWQ>}
. J
= llT {[ququ1<Eo‘92’t2><q2’t2|q1’t1> <q1,t1[E0>]
+
-iEgT* HET
. Yim [de‘dO<Q‘1EO>e e <EOIQ>]}
Tr-{1-ig o
T‘—>+(1-1.E)°°
- J
= <E0|E0>
~{EQT" E,T
Tim { Tim [0 d0<Q”|Ey>e e <EO|Q>} (B.10)
>0 T+-(1-'ig)m

T s+(1-ig)e

We can add back the i #0, j#0 terms to (B.10) for the same reason we

could remove them in the first place:

-1E, T HE.T

Tim  z[J] = <E0|EO>J Tim { Tim 3 [d07dO<n”IE;>e Ve d <Ej[Q>}
e, E+0 T+-§1-1Egm i,]
“at 1-15 o
R . R
= <E.[Eq> 1im Tim dQ-dn<Q-,T*E;><E,[0,T>
0{ Q £>0, To-{1-ie}w ; f 1 !
T s+{1-ig)w
J 4 . . PR
= <Eg|Eg>" 1im 1im fd0-dn<n~,T7|0,T> . (B.11)

S T+-El-isgm
T s+{1-ig)e»
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Comparing {B.11) with the definition (B.5), we conclude that the
groundstate-to-groundstate amplitude in the presence of an external

source i$ given by

Tim Z[J]
g+ﬂ+

<EglEpY = Tim 207 - Ba2)

€+0+

In terms of path integrals, Z[J] can be written (provided His

quadratic in the canonical momentum) as

+{1-1¢g oo
Z{J] = 1im [pq exp(iS[q(t)] + i [ dt J(t)a(t)) , (B.13)
£-0 -{l-ie)=
where t is complex,
t=(1-ig)t t real , _ (8.14)

and where the path integral is over all possible paths q(t), with no
restrictions on the values of g(t) at t-=z(l-ie)=. (S[q(t)}] is the
classical action, a functional of the path a(t)).

The foregoing material is, acuite Tikely, familiar to the reader,
and has been presented in essentially identical form in refs. [9,35].
Qur purpose in repeating it here is to remind the reader that the

rule
t+ (1-ielt (B.15)

applies whenever the quantum system under consideration has



1) a Hamiltonian not explicitly dependent on t and 2) a unique
groundstate. The system we consider in this paper --small gravitational

N _.satisfies (1) by inspection, and (2) by

fluctuations about M e §
ansatz. (See discussion in saction IV.) In particular, the fact that
the bare Lagrangian of our system has tachyonic eigenvalues

u
kuk + Aj s Aj <Q , (B.16)

and "wrong-sign" eigenvalues
- H )
(kuk + AJ) (8.17)

makes no difference.

We shall not repeat here the analysis [9,10] which Teads from Z[J]
to the effective action I', or the expression for T in the one-loop
approximation, except to remind the reader that the condition (2.10)

is independent of the loop expansion.



APPENDIX C

Values of Various Quantities

J\) »M
v =1
v =2
v =3
v =24

A =13
11,0
A = -2, A =23
11,-1 11,0
A, . =-8, A =2
21,'1 21,0
1 1 .
Ad0 = T2 A1 TE
0 0
A - .4; A = 1 .
2,0 30 217 3 3
1 1
A -341, A, L = % .
52,0 52,1
A = 1 A = --1— =
73,0 T30 0 53,1 770 A3 = TEg S
_ 3 o 1.
?3,0"215’ ?3,1“‘ § M3,2%80
N S 1
53,0 T T8 > 53,1 8 232°18
9 49 7
AL o= 7T A= TIT s A4 7t T
0 0 0
oo 18 O e 0T a
40" TT 2 41T A= -7
1 1 1
A 21000 7129 3
24,0 " T576 > 48,2 T576 * 4,27 7376



Ac n = % x576 , A. , = -0..x820, A

920 50 02,1 30 05,2
Ao 4 = -4 .x30 , A =
053 = 750 05+

?5,0 = Oslx 1,800 E] Als’l = -0151*2,522 ) ?

T
I

= -0 . x78 , A
15,3 %1 1544

=
1]

_aszx 1,800 , A

a.,x 1,296 , A
25,0 52 2531 2
A = - x50 , A
25,3~ k2 25,4
-1 - 2 . = 154
(%0 2T 3 %1 " 1I7 ¢ %2 " ToT)-
136’0 = 'GBOX 28,800 L] gs’l = (160)( 42!152 ?
[566,3 = Q60X2,046 s 36,4 = "asox ].].0 ]
?6,0 = -'U-slx 20,736 5 ?6,1 = (xslx 30,096 )
?6’3 = QSIX 1,353 Y fis’4 = —aslx 66 3
;5,0 = ""OL62>< 28,224 , gs,l = Ct62x40,756 s

2533 = aszx 19743 3 25’4 = -u62>(79 ]

5,2

= 0'.51

. x798 ,
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+
?

5,20 7 Y52% 553,

= QSZ

36,2 = -GGOX 15,290 ,

A = 2xq 5
06,5 60

A
1652

A
16,5

A,
26,2

A

1]

% 10,648

=2 M
61

56,5

g X 14.192 ,
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d.{n)

di(n) = dy(n) = dy(n)
dg(n) = dg(n) = dg(n) =
_n(n+1
dg(n) = 201 g
digaln) = =1
d1= ;
J2= 4=J7=1
J3—J5=J6=J8 Jg
(vzﬂél) For N 2 3
Y1 = =3v + 2vu+
3 = =3V +Bu+A
G = =3vi+2v+ X,
Y22 = (v+1)?
:\)2 s

H

~3vZ +4vu+ 142
“3v2 41+
-3 - 2v+ A

v2 +4v

i
~3v? +2v+ ) t4\JE - Znn2+\)2+v1_ :l
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i
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0 = Ly D3+ 1,y = Clilvy2 i1
0; = Olv;2 I+ 1,
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Figs.

Figs.
Figs.

Figs.
Figs.

Fig. 41:

1 - 8:

9-.16:

17-22:
23-28:

29-34:
35-40;

A Guide to the Graviton Graphs

Real part of the effective potential density V for
each of the "unstable solutions” in table 1.

Same as 1 - 8, showing the behavior of ReV for large
and small r.

h(A) = r*x Imgq, N=3,5,...,13 (with some close-ups).
Same as 17 - 22, showing the behavior of h(X)} for
A» 0 and A<« Q.

F(A) = r“xRe\?Q, N=3,5,...,13.

Same as 29 - 34, showing the behavior of f(A) for
A» 0 and A« 0,

Real part of the "Euclideanized" effective potential

density, N = 13,
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