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Sum rules previously derived for proton decay are extended and 

applied to treat effects of bound state spectroscopy on radiative 

quarkonium decays. The transitlon involves boson (photon or pion) 

emission followed by quark annihilation. Sum rules for the contributions 

from different intermediate bound states are derived by using closure and 

the assumptions: 1) that the boson emission is described by a plane wave 

or multipole operator which satisfies a wave equation. 2) that the 

annihilation depends on the bound state wave function or its derivative 

at the origin. 

Many interesting decay processes involve the emission of a boson 

(e.g. a photon or a pfon) by an initial single-hadron state and subsequent 

annihilation of its quark constituents (quark-antiquark pair or three quarks) 

via a short-range interaction proportional to the wave function at the origin 

for the bound state [l-5] . There can also be mixing of states in the 

quarkonium spectrum via a short-range interaction; e.g. a hyperfine 
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interaction or annihilation and subsequent pair creation, associated;with 

decays of the above type 12.31. The intermediate single-hadron states which 

are annihilated or created by the short-range interaction can include the 

whole spectrum of bound states; e.g. higher radial excitations. Many results 

can depend upon the parameters of these higher states which are generally not 

known. This paper examines some general 8um rules which give results 

essentially independent of these parameters. 

Sum rules have been used in proton decay to estimate the 

COntribution8 of higher resonances to pole diagrams Ill. The same formalism 

can be generalized to apply to all such processes involving bO8on emission and 

quark annihilation, e .g. radiative quarkonium decays. The matrix element for 

a transition from an initial State (I> to a final State (fB>, where B denote8 

the emitted boson, can be written 

<fBlMji> = K 2 x(;,;/M;;[i> 

where K is a constant depending upon the decay process but independent of 

hadron wave functions, X denotes an intermediate hadron state produced after 

the emission of a boson with momentum q, X(0) 18 the wave function at the 

origin of hadron X, B(q) is the factor in the operator describing the boson 

emission which depends upon the variables of the hadron bound state (the 

remaining factor is absorbed In the constant K), and EX, El and EB are the 

energies of the state X, the initial State and the emitted boson respectively. 

A more general form is useful to include decay8 in which the 

annihilation occurs from a State of nonzero orbital angular momentum and 

depends upon the derivatives of the wave functfon at the origin 
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<fBIMIi> - X 1 <r-o;q~;!~XB;q)!i> 
X 'X IB 

(lb) 

where A denotes an operator describing the annihilation process and Ir=O;q> 

denotes a state of total momentum q in which the quark and antiquark are at 

the same point and normalized so that <r=O;q(X) - X(O). For the case where 

the annihilation involves the wave function at the origin, A is simply the 

identity operator and the expression (lb) reduces to eq. (la). For electric 

dipole transitions, where the annihilation involves the derivative of the wave 

function at the origin, the operator A-ip and ip acts as a derivative on the 

wave function lx> in eq. (lb). 

We now note that two sum rules can be obtained from eqs. (la) and 

(lb) by closure if the energy denominators are replaced by some approximate or 

average energy and taken outside the summation. 

The Matrix Element Sum Rule: 

so x = 1 -';qlAI=XlB(q)li> - <r=o;qla(q)li> (*a) 

The Energy Weighted Sum Rule: 

S 1 - 1 <r=O:qlAlX><XIB(q)Ii> [EX-EiI - <r=O;qlA[H,B(q)]li> (2b) 
X 

where H is the Hamiltonian of the bound state including the center-of-mass 

motion so that recoil energies are automatically included. In many cases of 

practical interest like electromagnetic multipole transitions and pion 

emission the operator B(q) depend8 only upon the coordinates and spins of the 

constituents and not on momenta, while the Hamiltonian depends upon momenta 

only in the kinetic energy tens. Thus 

,, - . 
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[&B(q)] = (&) [P*,B(q)j + ($) [p*,B(q)] ,.(3a) 

where M is the mass of the constituents, P is the center-of-mass mmentum and 

p is the relative momentum. The relevant factor in B(q) describing center-of- 

mass motion is a plane wave with wave number q. For the case where the 

relative motion B(q) is described either by a plane wave with wave number q/2 

or by say ten8 in the multipole expansion of such a plane wave, we - use the 

fact that B(q) satisfies the wave equation and replace its Laplacian by 

-q*B(q) and (-q/2)*8(q) in evaluating the commutator for the center-of-mass 

and relative motions respectively to obtain 

[B.B(q)lli> - ($)?B(q;r)*;li> + (&q*B(q;+> (3b) 

where $ refers to the relative motion only, and the analogous term for center- 

of-mass motion vanishes because the initial state (I> is chosen to have total 

momentum zero. The sum rule (2b) then become8 

3 ,I! 2M ‘0 - F 
*’ <r=O(A+B++> (4) 

These sum rules can be used to obtain approximate expressions or 

bounds for the transition matrix element (1) by using the following identities 

to expand the energy denominator 

1 1 EX-E 1 
E 

X-Ei+BB 
-E+E-E -( 

1Bi EI+EB-Ei)(EX+eB-Ei’ 
(54 
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1 E1+B2+EB-2Ei 

E-E+!?, =( 
EX-Ei 

XIB E1+EB-Ei)(E2+BB-El) - ~E1+EB-gi)(~2~B-~i~ 

(EX-E1)(BX-~ 

+ (B1~B-~i)(B2~B-~ij 

where El and E 2 are any two energies 

intermediate states. The purpose of 

) 
E +E -E (5b) 

X B I) 

e .g . the energies of the two lowest 

these expansions is seen by noting that 

the first term on the right hand side of eq. (5a) and the first two terms in 

(5b) give expressions easily evaluated by the sum rules (2) when they are 

substituted into eq. (2), while the last t era is constructed to cancel the 

contributions from the dominant intermediate states. Thus, substituting eqs. 

(2) and (5) into eq. (lb) gives 

<fBlM(i> - K E,~~-~, 11 - $ i (~>~& <r=O;qlAIX><X/Nq) 101 (64 

<fBIMli> - K S [ 
El+E2+EB-2Ei 

sl'sO 
0 (B,~B-Bi)(E2~B-Ei)111 - E1+B2+EB-2Ei 

+'I 
(BX-B1)(EX-B2)<r=O;qlAlX><x(B(q)(i> 

so x (El+e2+EB-2Ei)(EX+eB-~i) ] 
(6b) 

Note that neglecting the remainder terms in eq. (6) is a much better 

approximation than neglecting the contributions from the higher intermediate 

states in the original expression (1). The contributions of the leading terms 

in the expansions (6a) are reduced by factors ( 
EX-E.l 

( 
EX-E I EX-E2 E1+BB-Bi 

) in eq. (6a) and 

)( E1+BB-El E2+EB-El 
) in eq. (6b) relative to their contributions in (1). 

These are considerable reduction factors for any state X whose excitation 

energy EX-El is much less than EB. 

The simplest application of this sum rule is to cases described by 

eq. (la), like proton decay [I] or radiative quarkonium decays to pseudoscalar 



. 
final states r4.51. In these cases A-l, the second term on the right hand 

side of eq. (4) vanishes and the operator B(q) does not depend upon momenta. 

The two sum rules (2a) and (4) then simplify to give 

So (A-1) = <f(B(q;r-O)lD$O) 

S1 (A-1) - & So 

(7a) 

where B(q;t=O) denotes the operator B when TO is substituted, and the 

subscript s on the matrix element denotes that the matrix element is 

calculated only in spin space; the spatial part has already been removed by 

the factor i(O), the wave function at the origin of the initial state Ii>. 

The right hand side of the expression (7b) is just the energy of a 

particle of maa8 M recoiling with momentum q. This "free recoil energy" 

recalls similar sum rule8 for the l4%8baUer effect [61, where a photon is also 

emitted from a bound system and the question arises of how the bound state 

spectrum affects the radiative transition. 

The analogy with the MEssbauer effect points out the existence of 

three mass or energy scales in the problem, the quark mass M, the boson 

momentum q and the characteristic excitation energies (E2-El) of the bound 

state spectrum. "Strong binding" occurs when the free recoil energy is 

smaller than the bound state energies. The binding effects then become 

important and the transitions are dominated by the low-lying excited States. 

This in fact occurs for the case of the radiative decay of the upsilon at 9460 

MeV to a state called the zeta [4,5,7,8] at 8300 MeV. Then q - 1 GeV. 2~ - 10 

GeV, and the energy spacings are - 0.5 G8V which IS much larger than the free 

recoil energy of 0.1 GeV. 
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In the case of proton decay, a simple relation has been noted 111 

between the sum rule (7a) and the pole approximation in which only the 

contribution of the initial state (2) is included in the calculation of the 

matrix element (la) 

<f++~pole - K<i)B(q)(i>i(O) 

Mi-"f 
(8a) 

where Mf is the mass of the final state remaining after the emission of the 

boson. This has been compared with the fictitious degenerate case in which 

all intermediate states Ix> are degenerate with the initial state Ii>, 

<fB(Mli>deg = 2 
if 

(8b) 

The pole contribution (8a) include8 only the contribution from the 

lowest state. The degenerate model includes all contributions, but 

overestimates the higher contributions. The two differ only by the factor 

<ilB(q)li>/<ilB(q; r=O\i> which is just the form factor of the initial state. 

This form factor is thus a measure of the error in using only the pole 

approximation. 

An approximate formula can be obtained from eq. (6a) with the state 

)l> taken as the lowest intermediate state above the initial state Ii>. This 

gives the result obtained for the proton decay case in ref. 1 

=0 <fB(MIi> -H+ 
(Ml--MI) 

l-"f 
(M -M ) <fBfMli’pole - “’ 

lf 

KSO-(Ml-Mf)<fB)M)i> ale 
z4 

<f+fl~~po~e + 
Y+f 

. . . (8~) 
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For the case where the terms in the sums&ion in (6b) are positive 

definite and give a negative contribution to the matrix element, the 

expression (SC) also gives an upper bound for the matrix element as well as an 

approximate correction to the pole approximation. 

We now apply the sum rules (7) and the relation (6b) to the case of 

radiative upsilon decay to a pseudoscalar final state [4,5,7]. We neglect 

hyperfine splittings and set El and E2 in (6b) to be the energies of the 1s 

and 2s states (T and T’) of the upsilon system. We then obtain 

<pylMIT> -F 11 - & + . . . 1 

where T denotes either the Is or 2s states. 

This result (9) is expected to be a good approximation in the region 

where q is small compared with 2M but lower than the excitation enrgies Ex-E, 

of the dominant intermediate states. The first correction term in (9) is of 

order q/M, the dominant higher terms in the sum (6b) contain factors of order 
E -I$ 
x . Similar results have been obtained by explicit calculations using a 

9 

potential model [4,5]. 

In the pseudoscalar case the operator B(q) describes a magnetic 

dipole transition and a factor of q appears in B(q) which exactly cancels the 

factor q in the denominator of eq . (9) . The right hand side thus depends on 

the properties of the initial state (i> mainly via the factor i(0) in So and 

otherwise only very weakly through the value of q in the second term. This 

suggests that the transition rate, normalized to the wave function at the 

origin, is about the same for the ground and first excited states of the 

upsilon family. 
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For the case of decay to a scalar meson final state the intermediate 

states are produced via an electric dipole transition, and the situation is 

somewhat more complicated. One phenomenon which can occur is a suppression of 

the transition by destructive interference between the contributions from two 

different intermediate states. 

The radiative decay of the T' to a scalar can proceed either via the 

lowest Of state of the bottomonium system or via the first radially excited 

state. These two contributions can be shown to have opposite phase by the 

folloving general and simple argument (21. Let us choose a phase convention 

in which all wave functions are positive at or near the origin. The factors 

involving wave functions at the origin are then always positive by convention 

and have the same phase for all intermediate states. The electric dipole 

matrix element can be expected to have a positive phase for the transition 

between the two radially excited states, since both wave functions have one 

node and will have a positive relative phase at both short and long distances 

where they contribute positively to the overlap integral. There can only be a 

very small negative contribution if the two nodes do not occur exactly at the 

same radius. 

The transition from the T' to the lowest C+ state involves a radial 

overlap integral between a wave function with one node and a wave function 

with no nodes. The phase of this integral depends upon whether the integral 

is dominated by short distances, where the relative phase of the two functions 

is positive or by long distances where the relative phase ts negative. Since 

the electric dipole operator involves a factor r which enhances the long-range 

contribution, we can expect the sign of the overlap integral to be determined 

by the long-range phase which is negative. Thus, the contributions from the 

two dominant scalar intermediate states to radiative decays of the T' have 

- 
,I 



opposite phase and a suppression by destructive interference can occur. 

In the case of T' decay, one would expect the dominant matrix 

element to be the one to the radially excited O+ state which has the same 

number of nodes. The matrix element to the lowest O+ state should be smaller 

and interfere destructively. But the contribution of this lowest state to the 

transition amplitude is enhanced by the smaller energy denominator. The 

degree of destructive interference thus depends crucially on the relative 

enhancement of the lower state due to the dffference in energy denominators. 

One can see that there must be a value of the final state mass where an exact 

cancellation occurs, since the contribution from the lowest 0+ state can be 

made arbitrarily large by choosing B in eq. (1) to make the energy denominator 

for this lowest state arbitrarily small. Whether the parameters in a 

realistic case are such that an appreciable cancellation can occur requires a 

wave detailed investigation, such as the explicit calculations of refs. [4,5]. 

We now show how the two sum rules can be used to show the strong 

cancellations due to interference. The pseudoscalar intermediate states are 

p-wave quark-antiquark states whose wave functions vanish at the origin. The 

transition matrix elements for this case involve the derivative of the wave 

function at the origin. 

We therefore take A-1; in the sum rules (2a) and (4) and the 

operator 8(q) as the electric dipole operator which satisfies the wave 

equation and vanishes at the origin. Let us normalize s(q) so that 8(q) 

behaves like the vector : near the origin. Then 

<r=O;q(AB(q)li> = <r-O;qj[A,B(q)]li> = <r=O;q(div ii(q)10 = 31(O) (10a) 
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Combining the commutator (5b) and eq. (lOa) then gives 

<=-%qlA[H,B(q)lli> = (~)<=‘O:qIA~BB(q).~li> + ($<K=O;q/Aq2S(q)Ii> p 

= (+O;q/p2~i> + (&jq2i(0) (lab) 

Note that in the simple approximation for the electric dipole 

operator as just the relative coordinate :, only the first term of eq. (lob) 

appears [4 1 . The second term can be considered as the correction which 

appears when the full dipole operator which satisfies the wave equation is 

used. Substituting these relations into the sum rules (2a) and (4) gives 

sO 
= 31(O) (lla) 

s1 - 2[Ei-V(O) + ($)q21i(0) (lb) 

where we replace the kinetic energy term p2/M by E-V(r). Note that only the 

relative motion appears here as II> has total momentum zero, and it is the 

M 
reduced mass (7) that appears in the kinetic energy. 

The energy weighted sum rule (lib) is not useful as it stands 

because it depends upon the value of the potential V(0) at the origin, and 

most relevant potentials like the Coulomb potential are singular at the 

origin. However, this tens can be eliminated by taking the difference of the 

sum rules for two different initial states; e.g. the IS and 2s. 

S1(i) -_ S,(j) 
i(O) m - 2(Ei-Ej) + &i)M)2-q(j)2] (12) 

! 

,? 



This result can now be substituted into ei. (6b)'.' We note.that the 

energy of the final meson, Ef-El-EB can be taken as independent of the initial 

state Ii> by neglecting the small change in recoil energy with Ii>, thus 

- iEl-Eff(E2-Ef) 13(Ej-El) - $$ + g + . ..I 

- (El-ef;(e + 
2 f 

) 15(Ej-Ei) (l+F) + . ..I 

3 
F-itzi 

g(&& 

Ei-Ej 

(138) 

(13b) 

defines the correction to the simple approximation of the dipole operator. 

Since for the T-T' system q(i)-q(j) is equal to El-Ej if we neglect recoil 

corrections and El is approximately 2M, the correction F is of order 

($j)tq(i)+q(j)j/M or ($[Ei+Ej-2Efj/Ei. 

We now apply this relation to the case of the T and T' decays and 

note that the correction terms have contributions only from the third and 

higher transitions. We next substitute the sum rule (lla) into eq. (6a) for 

the T initial state, where it is reasonable to expect the lowest transition to 

be dominant 

+.&? m Ml;-Mf ( 1 _ + ; R <=-O;q!A;~‘X/B(q) IT>] (l&a) 
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Combining eqs. (13a) and (14a) then gives 

.$@$f$$# i 1 -$ ::;I;; [l + F + . ..I (14b) 

Eqs. (14) already show the qualitative features discussed above. 

The opposite signs of the two dominant contributions to the T’ decay on the 

right hand side of eq. (14b) indicate the presence of destructive interference 

and the possibility of a cancellation. 

The right hand side of eq. (14b) vanishes when 

M =M 
f 2P 

- [5(I+F)/3][MT,-MT1 + . . . (15) 

The amplftude for the T’ decay thus vanishes when the mass of the 

final state mass Mf satisfies the condition (15). Substituting the values for 

the upsilon system, k$. - 9460 &V, qI = 10025 MeV, MIP = 9873 MeV, M2P = 

10233 MeV, neglectlng the higher order term and setting F-1 as a first 

approximation gives “f = 9294 MeV for the mss at which the T’ amplitude 

vanishes. This is very close to the value obtained by an explicit calculation 

for the particular potential used to fit the upsilon spectrum [4,51. 

when of is set equal to the zeta mass, 8320 MeV, the right hand side 

of eq. (14) is 0.51. This is consistent with results obtained by the explict 

calculations. When the correction factor F is included, the result changes to 

0.44 and gives 9239 MeV for the mass at which the T’ amplitude vanishes. 

Note that for this case the leading correction term neglected in eq. 

(14a) is multiplied by the factor M2P ‘Mlp 

Mlp-HC 
= 0.2 in comparison with its 

contribution to the direct calculation (lb). The leading correction term 

neglected in eq. (13a) comes from the 3p intermediate state and is multiplied 

. 
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(M3p-MlpF3p-Mzp) 
by (M 

1P 5 
-M )(M2p-MS) 

= 0.09, where we have taken M3p = 10600 MeV. Thus 

expansions are expected to converge much more rapidly than the expansion 

these 

(lb). 
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