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I. Introduction 

The formulation of field theory on a lattice has provided a great 

deal of new insight into both the theoretical and the computational 

aspects of quantum field theory. Recent large scale Monte Carlo 

simulations of lattice QCD have produced encouraging results for a 

variety of hadron properties.' Such computer simulations of lattice 

field theory necessarily entail two limits which must be taken in order 

to compare with experimental results. One limit involves taking the 

lattice spacing to zero to recover the results of the continuum theory. 

In this process, coupling constants and masses must be renormalized as 

the lattice spacing is taken to zero in order to hold the physical 

length scale fixed. The other limit, which is of less fundamental 

conceptual importance but may be equally important as a source Of 

numerical uncertainty, 2 is the infinite volume limit. Since the 

limitations of computer speed and available memory tend to restrict the 

physical size of the lattice to be not much more than the size of a 

hadron, it is important to understand the effects of a finite lattice 

volume on the results of numerical calculations. 

In this paper we will address the question of finite volume effects 

by reporting some results of a Monte Carlo study of the Baxter model, 3 

which is an exactly solvable lattice version of the massive 

Thirring/sine-Gordon field theory.ll-' This model has a" interesting and 

nontrivial spectrum consisting of both fermions and bosons. 6 Here we 

will use the Thirring model interpretation of the spectrum in which the 

fermions are elementary and the bosons are fermion-antifermion bound 

states. (I" the sine-Gordon interpretation, the fermion is a 
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topological soliton and the lowest mass boson is elementary. 7, The 

Baxter model is only one of many possible lattice formulations of the 

theory, but it has a number of unique advantages for our purposes. 

First, the Baxter model action is given exactly in terms of local 

two-spin and four-spin couplings which become the quadratic and quartic 

fermion terms of the Thirring model after fermionization. The ability 

to formulate the Monte Carlo algorithm in terms of spins instead of 

fermionic variables obviates the usual problems associated with 

simulation of dynamical fermions. The Baxter formulation incorporates 

the fermions on the lattice in an exact way, including closed loop 

effects, and there is thus no uncertainty analogous to that of the 

quenched approximation in QCD. In addition, for an infinite volume 

lattice, the Baxter model is itself exactly solvable for arbitrary 

values of the lattice spacing (i.e. not just in the scaling limit). 

The finite lattice spacing analogue of the well- known 

Dashen-Hasslacher-Neveu8 bound state spectrum, as well as the fermiOn 

mass itself, are given exactly in terms of elliptic functions. 6 Thus, 

any measured deviation in the calculated spectrum compared to the 

analytic results will be strictly attributable to finite size effects. 

In addition to the lattice size, the Baxter model contains three 

adjustable parameters. 9 One of these, Baxter’s v parameter, which is 

associated with the horizontal-vertical asymmetry of the lattice, Will 

be held fixed at the symmetric point v=O throughout this study. The 

other two parameters correspond to the mass and coupling constant of the 

Thirring model. One of the nice features of this model is the ability 

to adjust the coup1 ing constant at will. This allows us to 

independently vary the size of the bound state wave function and the 
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size of the lattice while holding the theoretical (i.e. infinite 

volume) bound state mass fixed and convincingly demonstrate that the 

finite size effects on the bound state mass are controlled by the 

relation between these two sizes. 

This paper is organized as followS. In Sec. 2 the definition of 

the massive Thirring model is given and some of the drawbacks Of Using 

one of the standard lattice fermion formulations of the model are 

discussed. We then review the Baxter model and its relation to the 

massive Thirring model. In Sec. 3 we gather the basic mass formulae 

relevant to our analysis. The results of the Monte Carlo calculations 

are presented in Sec. 4. Some conclusions and discussion are given in 

Sec. 5. 
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II. The Massive Thirring Model and the Baxter Model 

The massive Thirring model is the theory of a self-coupled fermion 

field in l+l dimensions with dynamics determined by the Lagrangian 

density 

L = T(S)-m,)V - $-go(TYp$)2 (2.1) 

The massless model (m,=O) was proposed by Thirring” in 1958 as an 

example of a nontrivial relativistic fermionic field theory. There is a 

vast literature analyzing the massless case, 11 and more recently the 

full structure of the massive model was exposed. 5 The massive model 

possesses a rich spectrum, which makes it an interesting toy model for 

Monte Carlo studies. For couplings g,>O, the particle content consists 

of fermions and one or more bound states. The number of bound states is 

determined by the strength of the coupling. Since the spectrum of this 

model iS known exactly for the case of infinite VOlUme, it iS a natural 

candidate for an analysis of finite volume effects in Monte Carlo 

calculations. The presence of both fermions and bosons in the spectrum 

will allow us to determine how the fermionic and bosonic sectors of a 

field theory respond to volume and boundary effects. 

A direct latticization of the massive Thirring model action iS 

possible using either the Wilson or Kogut-Susskind formulation of 

lattice fermions. However, either of these approaches would introduce 

the standard problems associated with Monte Carlo simulation of 

f ermions . Alternatively, one might introduce the sine-Gordon boson 

field on the lattice. The implementation of a Monte Carlo algorithm 

would be straightforward in the bosonic formulation, but such an 
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approach would make it difficult to study some of the quantities we wish 

to calculate such as fermion correlation functions and 

fermion-antifermion bound state wave functions. Thus we will eschew the 

conventional procedures for putting the massive Thirring/sine-Gordon 

model on a lattice and instead take advantage of the connection between 

fermion models and spin systems which exists in two dimensions. This 

relation was discovered long ago by Jordan and Wigner, l2 who explicitly 

wrote down the transformation from a spin operator to a fermion 

operator. It is an essential feature of the Onsager-Kaufmann13 

treatment of the two-dimensional Isiing model. In that case the 

Jordan-Wigner transformation reduces the model to a system of free 

fermions, as discussed in detail by Schultz, Mattis, and Lieb.14 The 

Baxter model may be thought of as a staggered pair of Ising lattices 

with four-spin couplings in addition to the nearest neighbor Ising 

couplings. By exploiting the connection between the Baxter lattice and 

the XYZ Heisenberg spin chain Hamiltonian, l5 Luther’ showed that, just 

as in the Ising case, the Baxter model could be transformed to a fermion 

theory via a Jordan-Wigner transformation. The four-spin interaction 

leads to a Thirring four-fermion interaction, and in the scaling limit 

the theory reduces to the massive Thirring model. The Baxter model is 

therefore an acceptable latticization of the massive Thirring model. 

Furthermore, since the Baxter model is solvable, we have analytic 

expressions for the spectrum of the massive Thirring model on a lattice. 

Thus, there is no need to take the a+0 limit in order to separate finite 

volume effects in the calculations. 
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The action for the Baxter model on a lattice of M rows and N 

columns is given by 

s = - y ! [Joi j+loi+l j + J’o. .O q i+l ,j+l 
+ J o..o. 4 iJ i,j+lOi+l,jOi+l,j+l l- i=l j=l ’ 

(2.2) 

Here we are using the spin formulation of the model. An equivalent 

“arrow” formulation reveals the Baxter model as a generalized ice-type 

model with eight distinct vertices (c-f. Ref. 3, Appendix A). There 

are four independent vertex weights a, b, c, and d, whose relation to J, 

J’S and J4 is given in (3.12). The overall scale of the vertex weights 

enters trivially and there are thus three nontrivial parameters which 

determine the vertex weights. It is convenient to introduce Baxter’s 

elliptic function parametrization of these weights and define the 

parameters v and n and the elliptic modulus k by 

a:b:c:d = s”(v+“~k):s”(v-“~k):s”(2”~k):ksn(v+”~k)s”(v-”~k)s”~2”~k~ (2.3) 

where sn(xlk) is a Jacobian elliptic function of argument x and modulus 

k. This parametrization of the vertex weights has the important feature 

that all transfer matrices having the same value of k and n, but 

arbitrary values of v, will commute with each other. Thus the transfer 

matrices T(v) for all v are simultaneously diagonalized by a set of 

eigenvecters which are independent of v. 

We now briefly review the relation between the Baxter model and the 

massive Thirring model.’ The connection is established in two steps. 

The first step relates the Baxter and XYZ spin chain models. The XYZ 

spin chain is described by the Hamiltonian 
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J 0'0' 22 
x n n+1 

+.Joo y n n+1 + J 0303 ) , z n n+1 
(2.4) 

with i 
'N+l= 0;. The relation between the Baxter model transfer matrix 

T(v) and the Hamiltonian HXyZ was demonstrated by Baxter, 15 who proved 

that HXyZ is essentially the logarithmic derivative of T(v) with respect 

to v. Indeed, he showed that if the couplings Jx,Jy, and Jz are 

parametrized as 

Jx:J :J 
Y 2 

= cn(2SIl):dn(2SIl):l (2.5) 

where c=-i(l+k)" and l=(l-k)/(l+k), then the Hamiltonian, Eq.(2.4) iS 

obtained from the Baxter model transfer matrix T by the formula 

HXYZ = -JZsn(2~Il)~{&@(V) Iv+ -"y [c"(2~ll)+d"(2SIl)-lI/s"(2~~1)~ (2.6) 

where V=-i(l+k)v. Since T and HXyZ commute, both operators have 

identical eigenvectors, and the eigenvalues of these two operators are 

also related by (2.6). The second step makes use of the Jordan-Wigner 

transformation to map the XTZ Hamiltonian onto a lattice massive 

Thirring model. The Jordan-Wigner transformation maps the Pauli spin 

operators onto a set of fermionic operators, c". If 

n-1 
c n = II exp(in0~0~) 0, , 

j=l 
(2.7) 
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where then (c,,c~~=6,, m and ~c,,c,)=O. The Hamiltonian, 

Eq.(2.4), when expressed in terms of the cn, assumes the form 

HXYZ = - -2 ' ,i, [i(Jx+Jy)[c:cj+,+cjc:+, 1 - i(-)‘(Jx-Jy)C~:~:+,+~j~j+l 1 

+ 4Jz[c;cj- ;][ct c. 
J+l J+l 

(2.8) 

where the further transformation c,+(i)"c,, has been applied. In the 

Dirac representation (To diagonal), one defines the two-component 

Thirring field $ by identifying the upper CompOnent $, with cj for even 

j and the lower component +, with the cj for odd j (staggered fermions): 

JI= 
$1 

(2.9) 

*2 

The field equations for J, are obtained via the Heisenberg equations of 

motion 

Jla = iCHXyZ.Qal . a=l,2 (2.10) 

which yield the equations of motion for the Thirring model when the 

lattice spacing is taken to zero. 
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III. Exact Expressions for the Fermion and Bound State Masses 

Masses are obtained by evaluating two-point functions 

A(x,~) = <O~O(X,T)O(O)~O> (3.1) 

of operators 0 carrying the quantum numbers of the particle whose mass 

one wants to determine. The effect of integrating A(x,T) over the 

spatial direction is to project out those states with zero momentum, and 

thus the mass m of the lowest excitation in a particular channel can be 

read off from the large T behavior (where T is Euclidean time): 

E(T) = jd3x A(x,T) - ZeWm’ for T+m (3.2) 

where Z is a renormalization constant. For field theory on a lattice, 

the integral is replaced by a sum over spatial lattice sites. 

In this work, we are interested in analyzing finite volume effects 

in the Monte Carlo calculation of the massive Thirring model spectrum, 

so we seek operators carrying the quantum numbers of the fermion and 

lowest mass bound state, respectively. In the Ising spin language, the 

Thirring fermion mass mF may be extracted from the spin-spin correlation 

function when T>Tc, 

i(T) = 1 <O. o(Ix r> - ‘FeemFT 1 (3.3) 
x ” 

while the bound state mass mB is obtained from the correlation function 

between composite operators 0 constructed from the product of adjacent 

spins, i.e. 



-12- FERMILAB-Pub-8411 23-T 

B(l) = 1 <a 
o,o"o,lox,TOx,T+l 

> - ZBe3' (3.4) 
x 

On a periodic lattice, the masses are extracted by fitting the Monte 

Carlo data to the expressions 

F(T) = ZF(eTT + e-%(N-T)) (3.5) 

B(r) = ZB(eTP + e3(N-7)) (3.6) 

where N is the extent of the lattice in the r-direction, and ZF and ZB 

are the fermion and bound state wavefunction renormalization COnStantS. 

respectively. 

The fermion and boson masses $ and mB may be exactly calculated on 

an infinite volume lattice with arbitrary lattice spacing a. The 

results of these calculations, expressed in terms of Baxter’s 

parametrization are 

mFa = - &log k 2 ’ (3.7a) 

mBa = -log[k2/dn’[(~)(T(u)-2~),kl] 1 9 (n/2$.& .) (3.7b) 

where k 2 is the modulus of the complete elliptic integral K2 defined by 

nK;/K2 = 2A , (3.8) 

and 
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A = -inn/Kk (3.9) 

where n and k are the parameters defined in (2.3). In these expressions 

dn is a Jacobian elliptic function, and K; and Kk are the complete 

elliptic integrals of modulus k;=(1-kg)“2 and k, respectively. The 

parameter u is given by 

AK11 
11=- 

Kl 
(3.10) 

where l=(l-k)/(l+k) and l*=(l-12)“2. The relation between u and the 

coupling g0 of the continuum theory is 

cot )I = -go/2 . (3.11) 

The interval O<u<n covers the range --<g,,<*. Free field theory obtains 

when u=~/2. The bound state spectrum appears for u>n/2 with a new bound 

state appearing in the spectrum each time a point u=n-rr/n (“=2,3,4,...) 

is crossed. The modulus k2 completely specifies the fermion mass, via 

Eq.(3.7a). The bound state mass is given in terms ,of k2 and k, via 

Eq.(3.7b). 

In order to carry out the simulations on the Baxter model expressed 

in the spin language, Eq.(2.2), we need to relate the spin couplings J, 

J’, and J 4’ to the vertex weight functions a,b,c,d. The needed 

relations are 
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RJ = +log(ad/bc) 

BJ’ = ilog(ac/bd) 

8J4 = +log(ab/cd) 

(3.12a) 

(3.12b) 

(3.12~) 

where the vertex weights are specified in Eq.(2.3). In selecting the 

parameters for the Monte Carlo simulations, we first select k2 and u in 

order to fix the masses of the fermion and bound states. Corresponding 

values for n and k result via the relations (3.8)-(3.10). In order to 

work with isotropic lattices, we have set v-0 throughout the 

calculations. This allows a unique determination of the weights a, b, 

c, and d which are then translated into the spin couplings J, J’, and J4 

using (3.12). 
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IV. Monte Carlo Calculations 

Our first analysis deals with the effect of finite volume on the 

Monte Carlo calculation of the mass of the Thirring fermion in the free 

field case (u=n/2). On the lattice, this limit is realized in the form 

of two independent (decoupled) nearest neighbor Ising lattices. We 

first carried out a preliminary calculation of the spontaneous 

magnetization, as a check of our Monte Carlo algorithm, and for a rough 

indication of the kind of statistics we might anticipate. The 

spontaneous magnetization M is taken to be 

M = <lo 
kk 

>/v (4.1) 

where the sum runs over all lattice sites, V is the lattice volume, and 

the angular brackets denote an ensemble average. Strictly speaking, M 

should be defined by applying a small uniform magnetic field, taking the 

infinite volume limit, and then letting the field go to zero, since, for 

zero field and finite volume there is a nonvanishing probability of 

tunneling from positive to negative magnetization. However, for the 

size lattices we are using this tunneling probability is negligible even 

for temperatures quite close to critical, and M may be calculated from 

(4.1) using an ensemble generated with zero field from a "cold start," 

oi=+l for all spins i, or from a "hot start" (random spins), by 

considering only the absolute value of M in each Monte Carlo run. For 

the two-dimensional Ising model, the exact form of M is given by 
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M = [l - (sinh(28Jl)sinh(2gJ2)-2]1’8 I (4.2) 

where the Ji are the couplings in the two orthogonal directions. For 

our calculation of M, we performed a Monte Carlo simulation on a 30x30 

isotropic (J, =~~=i ) lattice for B=.20,.30,.40,.42,.45,.50,.60,.70, and 

.80. The critical temperature is given by sinh 28,=1, or B,=.44068... 

For each B value, we initialized with a hot start and let the system 

come to equilibrium by sweeping through the lattice 1000 times. After 

that, a configuration was saved every 50 sweeps. The results for the 

magnetization show” in Fig. 1 are based on ensembles of 1000 

configurations for each B value. A study of subensembles revealed no 

significant correlation between configurations separated by 50 sweeps, 

and the error bars shown in Fig. 1 are purely statistical. 

Our calculation of the fermion mass in the Ising (free fermion) 

case was carried out on Bx30. lox30, 12.30, 14x30, 20x30, and 30x30 

lattices for k2=.7g02, corresponding to a mass mFa=.l178 in the infinite 

volume limit. As in the magnetization calculation, the simulation was 

initiated with a hot start, and after equilibrating for 1000 sweeps, a 

configuration was saved after every 50 sweeps. For each lattice, a 

total of 6000 configurations were saved (corresponding to a total of 

300,000 sweeps). This required a total of about two hours of CPU time 

on a Cyber 175 or about 12 hours on a VAX 11/780. The extraction of the 

fermion mass follows from computing the spin-spin correlation function 

Eq. (3.3) averaged over the ensemble and then fitting the results to the 

exponential form in Eq. (3.5). In all cases the correlation function 

fit extremely well to a pure exponential over a large number of data 

points. Fig. 2 shows a typical set of results for the spin-spin 
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correlation on a 30x30 lattice together with the exponential fit. 

Statistical errors on the fermion mass were computed by dividing the 

full set of 6000 configurations into various subensembles. The results 

for the mass as a function of lattice volume are shown in Fig. 3. The 

dashed line is the theoretical infinite volume result. It should be 

noted that, for a one-fermion state (or more generally for a state with 

an odd number of fermions), the imposition of periodic boundary 

conditions on the spin system corresponds to non-periodic boundary 

conditions on the fermions. This gives rise to nonvanishing finite 

volume effects even in the free fermion case. This subtlety does not 

arise in the calculation of boson masses, which will be the main focus 

of this paper. We note that the mass %a=.1178 corresponds to a fermion 

Compton wavelength of about B$ sites. The results shown in Fig. 3 

confirm the expectation that finite size effects become appreciable when 

the lattice size is comparable to or smaller than twice the Compton 

wavelength (the factor of two coming from the periodicity of the 

lattice). 

We next investigate the volume effects in the full, interacting 

theory. With the two parameters k2 and u at our disposal, we are free 

to adjust the fermion and bound state masses independently of each 

other. Calculations were performed on 6x30, 10x30, 20x30, 30x30, 50x50, 

and 100x100 lattices with k2=.7902 and u=.65m, on 10x30, 20x30, 30x30, 

and 50x50 lattices with k2=.7250 and u=.73m, on 10x30, 20x30, and 30x30 

lattices with k2=.6645 and ~=.65n, and on a 30x30 lattice with k2=.4212 

and u=.@n. A total of 6000 configurations for each choice of parameters 

and lattice size were generated in the manner already described. The 

calculation of fermion and boson masses is obtained from the asymptotic 
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behavior of the correlation functions (3.3) and (3.4) respectively. In 

both cases, the correlation functions fit extremely well to an 

exponential over a large range of points, and the mass values could be 

extracted with very good accuracy. A typical boson correlation function 

on a 30x30 lattice is shown in Fig. 4. 

For the first set of calculations, we kept k2 fixed at the ValUe 

which was used for the free fermion case (k2-.7902), so that we could 

directly compare the behavior of the fermion mass calculations for two 

different couplings u, i.e. u=a/2 and u=.65n. The exact, infinite 

volume values for the fermion and bound state masses for k2=.7902 and 

v.6511 are %a=.1178 and mga=.1T62. The results of the mass calculations 

for this parameter choice are presented in Fig. 5. The response of the 

fermion mass to shrinking the lattice from 100x100 down to 30x30 is 

minimal, as we might have anticipated from the results in the decoupling 

limit. There is a slight dip in the mass for the 20x30 lattice. This 

is distinct from the result for the same lattice size in the free 

fermion case, where the fermion mass undergoes a 6% upward shift from 

its infinite volume value. An even more noticeable distinction between 

the free field and interacting theories occurs at the 10x30 lattice. In 

the free field calculation, the mass suffers a 27% upward shift, while 

for the ii=.6571 case, the shift is only 15%. 

Of greater interest is the striking behavior of the bound State 

mass. We find that this mass decreases substantially from its infinite 

volume value, 17 reaches a minimum, and then eventually increases to pass 

above the infinite volume value as the lattice is taken to very Small 

sizes. This dramatic response to varying the size of the lattice is 

actually the result of two competing effects. The first effect, 
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responsible for the decrease in mass, is associated with the extended 

size of the bound state. We can understand this effect by appealing to 

a simple potential model description for the bound state. Let Vm(x)<o 

be the potential in an infinite volume responsible for binding the 

Thirring fermions into a bound state, and let AEm denote the 

corresponding binding energy. By putting the system on a finite lattice 

with spatial extent L, and periodic boundary conditions, the actual 

potential is no longer given by V_, but is instead 

V,(x) = . . . + V-(x-2L) + V-(x-L) + V,(x) + V,(x+L) + v,(x+2L) + . . . (4.3) 

and in particular, VL(x)<Vm(x). The effective finite lattice potential, 

vL’ provides a deeper well, for a given x, than does the infinite 

lattice potential Vm. This leads to an increase in the binding energy 

AEL>AEm. Since the bound state mass is given by mB=2mF-AE, for fixed or 

slowly varying values of mF, we expect (mB)L<(mB)m. The second effect, 

which is responsible for the increase of the bound state mass for very 

small lattices, is due to the finite size effects suffered by the 

constituent fermions themselves. We have seen how the fermions respond 

when the lattice is varied to sufficiently small sizes. For such 

lattice sizes, mF is increasing rapidly and supplies a positive 

contribution to mB. Since both these effects are present, they combine 

to lead to the observed response of the bound state mass to variation Of 

the lattice volume. 

Based on the above description, if the fermion were to Suffer no 

finite size effects, we would expect the bound state mass to 

monotonically decrease from its infinite volume value as the lattice 
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volume is decreased. We confirmed this expectation by performing a 

second set of calculations, with appropriate changes in the parameters. 

We kept u-.657 and adjusted k2=.6645, thereby increasing the fermion 

mass (decreasing its Compton wavelength) to va=.2043. The fermion 

should now be fairly immune to finite size affects over a wide range of 

lattice sizes. The new bound state mass is mga=.3054. The calculated 

masses are shown in Fig. 6. The fermion mass is indeed unaffected, even 

for lattices as small as 10x30. The bound state mass, in marked 

contrast, decreases monotonically with diminishing lattice volume. 

Another set of bound state mass calculations which complements 

these considerations is shown in Fig. 7. For this set, k2=.T25C and 

u=.73r, which yields %a=.1762 and a!+-.1608. The bound state mass 

suffers a slightly smaller shift from its infinite volume limit as 

compared to the results in Fig. 5. The difference is that the coupling 

II is stronger, and hence the bound state wavefunction is less spread 

out, as we will now demonstrate. 

The above argument that the bound state mass is expected to 

decrease as the lattice size becomes smaller due to the fact that the 

potential is lowered by the periodic contributions in (4.3) also implies 

that the size lattices for which this effect becomes important is 

determined by the size of the bound state. We may confirm this 

interpretation of the finite size effects by directly studying the bound 

state wavefunction on the lattice. The wavefunction may be obtained 

from the same Monte Carlo data used for the spectral calculations. 

Recall that the boson mass was obtained from the correlation function 

for the operator D(i,.r)=oT i~T i+, on two different time slices T. To 
* 9 

obtain the bound state wavefunction, we consider the correlation 
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function between this operator and a spread out operator 

B(i,T;x)=oT iar,i+x. The bound state wavefunction $(x) is then obtained 

from the large T behavior of this correlation funCtiOn, i.e. 

i(X,T) = 1 <a o,oOo,lOT,YOT,Y+x > - *(x)e-ST for x odd (4.4) 
Y 

In the nonrelativistic limit of the continuum theory, the function o(x) 

reduces to the Schrodinger bound State wavefunction. More generally, we 

expect this function to give a reliable indication of the size of the 

bound state. The calculation was done on a 30x30 lattice for u=.65n and 

k2=. 7902, for u=.73n and k2=.7251, and for u=.82n and k2=.4212. Since 

the Monte Carlo configurations had already been generated for the 

spectral analysis, the calculation of wavefunctions required only an 

additional two to three minutes of Cyber 175 time for each choice of 

parameters. The theoretical infinite volume value of the bound state 

mass for each of these three cases was fixed to be mga=.1762. The masses 

calculated from the Monte Carlo data were mga=.1348+.0024, .1548*.0042, 

and .1751+.0050, for u=.65n, .73n, and .82n respectively. The 

corresponding wavefunctions, [*w12, are plotted in Fig. 8. We see 

clearly that the deviation of the bound State mass from its infinite 

volume value is directly correlated with the relative size of the 

lattice and the bound state. For the strongest of the three couplings 

(u=.82n) the wavefunction is essentially completely contained within the 

volume of the lattice (~~(15)~*/~~(1)~*-.005) and correspondingly, the 

measured mass is essentially equal to the infinite VOlUme value 

(.1751i.O050 compared to .1762). From this same perspective, we can 

also understand the previous results obtained from varying the lattice 
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size for fixed coupling. For example, at p=.65n, the measured bound 

State mass was mg=.1330+.0021, .1673+.0052, and .1808+.0046 for lattices 

of spatial size L=30, 50, and 100 sites respectively (c.f. Fig. 51, to 

be compared with the infinite volume value .1762. The corresponding 

bound state wavefunctions at maximum separation N on each lattice give 

I*(N)1'/1~(1)1'=.403, .105, and .0027 for N=15, 25, and 49 respectively. 

Again we see that the infinite volume result for the bound state mass 1.3 

obtained when the lattice is large enough to completely contain the 

bound state wavefunction. 
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V. Conclusions and Discussion 

We have taken advantage of the exact solvability of both the 

massive Thirring model and its discrete lattice counterpart, the Baxter 

model, to make a precise determination of the magnitude and nature of 

finite lattice volume effects in Monte Carlo mass calculations. Our 

results show clear evidence for substantial finite volume effects, and 

we have found definite criteria for what is meant by a “small” lattice. 

In the case of an “elementary” particle (i.e. the fermion in the weakly 

coupled Thirring model), the relevant size scale is set by twice the 

Compton wavelength of the particle. The measured mass of this particle 

is substantially shifted from its infinite volume value when the lattice 

size is comparable to or Smaller than this scale. In the 

Baxter/Thirring model, the finite size effects tend to increase the mass 

of the fermion. For the calculation of the fermion-antifermion bound 

state masses, the relevant length scale is determined not by the Compton - 

wavelength (i.e. inverse mass) of the bound state, but by the spatial 

extent of the wavefunction. In this case, a small lattice is one with a 

spatial size smaller than the spread of the bound state wavefunction. 

This was convincingly demonstrated by varying both the lattice size and 

the bound state size. 

Although our results have been obtained in a simple toy model, we 

expect that much of what we have found will have implications for Monte 

Carlo studies of realistic field theories such as QCD. There have been 

some recent Monte Carlo results for hadron wave functions. l8 Such 

calculations should give a clear indication of the importance of finite 

size effects on the spectrum. If these effects are nonnegligible, it 
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may be possible to obtain a quantitative estimate of them using the 

information provided by the wavefunction on a fixed size lattice. 
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Figure Captions 
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Spontaneous magnetization of the Ising model as a function of 

inverse temperature. 

Spin-spin correlation function, Eq. (3.3). on a 30x30 lattice for 

weakly attractive coupling (u=.65n). 

Fermion mass as a function of spatial lattice volume Car 

noninteracting fermions (u=.5Orr). 

Boson correlation function, Eq. (3.4), on a 30x30 lattice for 

weakly attractive coupling (u=.65n). 

Fermion and bound state masses as a function of lattice volume for 

weakly attractive coupling (u=.65n). 

Fermion and bound state masses as a function of lattice volume for 

weakly attractive coupling (u=.65v) with a heavier fermion. 

Bound state mass as a function of lattice volume for Stronger 

coupling (u=.73n). 

Bound state wave function, defined in Eq. (4.4), for three values 

of coupling strength. 
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