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DISTORTION FUNCTIONS 

There is a pressing need for a better description of the 
simple, non-resoaaot distortion of a beam in a proton storage 
ring, created by non-linear (multipole) elements. The distortion 
functions provide a new technique for predicting the major part 
of this distortion. 

A very large superconducting storage ring cannot be designed 
solely by linear theory. The quality of its performance is 
largely determined by the non-linear properties of the magnets. 
The large size, very slow cycle, slow recovery from beam-induced 
quenches, need for sophisticated diagnosis of minor faults - all 
demand a rational beam behaviour; and that means a linear beha- 
viour. On the other hand it is apparent that one can easily push 
too far on the reduction of magnet size (cost) creating a really 
irrational device. 

Tracking, following a particle for many turns through 
computer simulated fields, is the usual approach to non-linear 
problems. Tracking is at its best when demonstrating that a 
design is very good and that nothing significant has been over- 
looked. For this purpose it is irreplacable. It is not so good 
when a design is marginal, particularly if the problem is 
multiple random arrays of magnet errors. There is difficulty 
with cause and effect and therefore little guidance as to cures. 
Tracking is not a design tool in the sense that linear theory 
guides the layout of a focussing lattice. 

In linear theory tracking is not necessary, there is a much 
more direct way of finding the size and shape of beams than by 
following particles for many turns. This is done by describing 
the shape of the bean that exactly repeats after oae turn. In 
analogy with "the closed orbit" we will call this "the closed 
beam shape". The beta functions - @,a - are simply the shape 
parameters for this particular beam. The beta functions vary 
around the ring but they also must "close". 

Linear theory is much more than a computational device for 
avoiding tracking. We do not design by guessing at a complete 
lattice and then finding the beam size. We think in terms of 
beta and we understand the patterns of focussing which generate 
beta. This is what we mean by "a design tool". 

W'e will propose a set of closed distorioa functions which 
are generated by multipole distributions in much the same way 
that beta functions are generated by quadrupole distributions. 
These functions describe a portion of non-linear behaviour, the 
closed, amplitude-dependent beal shape. The functions themselves 
do not depend on amplitude. There are not too many and they are 
easy to calculate by simple familiar algorithms, including their 
variation around the ring. 
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The relation between a distortion function and its multipole 
distribution is formally the same as the relation of orbit disto- 
rtion to dipole error, or of dispersion to e(~p/P). Also, more 
complex non-linear phenomena can usually be described as a 
further interaction of the simple closed beam distortion with the 
multipole arrays. This means that, after a little experience, we 
should have a new design tool to supplement tracki ng. 

The reader may well complain that this is an old problem (it 
is), that it has been completely solved by . . . . . (it has, many 
names), and that everyone knows that beam distorti on is caused by 
the influence of nearby resonances (not everyone). The solution 
starts with an evaluation of "driving terms" for all the simple 
resonances, involving the usual resonance phase combinations 
(m+x +n+y). Resonances produce closed beam shapes which are 
combined by a double summation. If necessary, one proceeds to 
the next order of resonances which involve products of the multi- 
pole strengths. Numerical factors in the combination greatly 
enhance the effect of the nearest resonances. 

Consider a numerical example: a ring of 200 simple FODO 
cells near 600 (tunes -33.41, with a string of 11 cells 
containing a specific pattern of 10 sextupoles. (This example 
will be explained later). Figure 1 is a plot, without multi- 
poles, for. a particle with equal amplitudes in x and y. Figure 2 
is a plot at the center of the sextupole array. It shows a 
characteristic effect of sextupoles, a triangular x shape and a 
smearing of both x and y, clearly there is a large nearby thirds 
resonance. Figure 3 is a plot at a position outside the array of 
exactly the same particle, but it shows only a small higher-order 
distortion. The problem is that there cannot be a large resonance 
at one point in a ring which doesn 't appear at most other points. 

The word resonance in the above is a mistake; replace it by 
harmonic - same arithmetic but different connotation. The 
example is a very precise arrangement of sextupoles in 200 cells. 
It requires something like 200 harmonics to describe it, and to 
describe the effects. This distortion bump has been constructed 
as a dramatic example, but it is not unfair. Much more than a 
few nearby bsrronics are required to give an adequate description 
of any particular beam distortion, which is why this theory has 
never become a useful design tool. 

There is an analogy to orbit distortion. A few harmonics 
tell us nothing about the actual displacement at a particular 
point. Actually, we can calculate the displacement directly with 
no more effort than would be needed for one harmonic, and this 
also applies to closed beam distortion! 

The existence of another perturbation solution for a solved 
problem is not suprising. The claim is that the new solution 
provides a long-sought design tool. The proof will come only 
when others, after some instruction, actually use that tool. 
This paper then is a how-to-use-it exposition. 
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The 
Although 
allowed. 
a single 

LINEAR RINGS 

betatron theory for linear lattices is well-known. 
not strictly non-linear, skew quadrapoles are not 

The theory starts with the observation that a plot for 
particle on successive turns will trace an ellipse in 

X,X’ space. 

x' X' 

(qIJ+-&l 
: CM) 

: CM) 

One can proceed immediately to the 
concept of starting a beam of 
particles which lie on this parti- 
cular ellipse. After one turn the 
beam shape is exactly the same, but 
individual particles have a new 
position. We describe this closed 
bear shape by parameters @,a in 
the equation 

X2+(pX'+aX)2=fic, nc= emittance. 

There is a standard transformation 
from real space to a slightly 
abstract circular space: 

x = x (Bo/@x )" 
x' -ax = X' (&J&X )" 

x2 +x'2 =flo c 

(60 is simply a scaling value re- 
quired because we have changed the 
independent variable to (p from s.) 
In this *pace we can see exactly 
what we mean by beam amplitude and 
tune Yx (fi=2nv) and initial phase 
9 and lattice phase 9~. 

Once we have established the closed values for ,9,dl at one 
point in the ring (from the one turn matrix), we can easily 
propagate the ellipse to other points and develop a table of 
functions for the ring. This table will also include the lattice 
phase 9~. One never needs to "track" a particle in a linear 
ring. One simply calculates directly from the circles (dotted 
line) using the established beta functions. 

All of the above is repeated for the other plane. The 
motion is described by two independent circles, which are the 
projection of a particular surface in four-dimensional phase 
space - a hyper-sphere. 
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MULTIPOLE DISTORTION 

In a ring with non-linear (or skew quadrupole) elements, 
multiple turns of a single particle do not trace a clean ellipse, 

make the standard transformation. If 
will still be a closed heam shape, but 

nor clean circles when we 
we avoid resonances there 
the particles move on a 
phase space (call it the 
are simply projections of 
lines. 

distorted surface in four dimensional 
hyper-egg). Our two dimensional plots 
this surface and show bands rather than 

In order to restore precision to the concepts of amplitude 
and phase, it is necessary to start with two simple circles (a 
hypersphere). Without distortion we would write 

x = a co9 q y = b cos 19 
x'=-asin $ y'=-b sin 9, 

however with distortion we are first going to squeeze our hyper- 
sphere into the hyper-egg by making local changes in a,b,q,a, so 

x = xo+(a+8a) cos(*+b9) y = yo+(b+sb) cos(S+sS) 
x'= x'o-(a+sa) sin(*+69) y'= y'o-(b+sb) sin(9+89). 

(Some multipoles produce a 
shift of the beam center, x0 
etc., by a field average over 
the amplitude.) 

The b's are expressions 
which contain several pairs of 
coefficients (B,A). Because 
the distortion varies around 
the ring, these distortion 
functions, the B,A's, also 
vary but they must close. (TO 
be useful, the distortion fun- 
ctions must not depend on 
amplitude, only on the multi- 
pole distribution.) 

Consider sa(a,b,$,9) and 
follow the solid line. To 
this initial distortion each 
multipole adds its own Aa, for 

Oan 
one-turn total of Z(Aa).. 

the other hand, following 
the dotted line we have 
ba(a,b,7+~x19+~r),(the F'S may 
be shifted from linear 
values.) Thus, symbolically, 
the closure condition for each 
8 expression is 

8(w) - S(o) = ZAs . 
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The closure condition on the F expressions cannot be ful- 
filled in a closed form. We use the usual expansion in a power 
series of multipoles. The first-order distortion will use only 
the first power of the multipole strengths. This means that we 
will use only x-a COS(~+++~) and.y= b cos(9+&) when we evaluate 
the terms in EA. We do not include the initial distortion 6's 
because they already contain a first power of multipoles. 

Once we have obtained the proper closed first-order distor- 
tion equations then we can directly (dotted line) express the 
additional, closed, first-order displacement at each multipole 
and accumulate second-order A's, which in turn give closed 
second-order distortions; and so on. 

The first-order distortion expressions contain familiar 
combinations of 9 and 9. The second order contains all sums and 
differences of the first-order angles, a substantial increase in 
the number of terms. The second-order distortion functions 
involve local products of the first-order functions and the 
multipole strength. 

The word "order" is soften used, but with quite different 
meanings. We use it in its strongest sense as the mathematical 
power of multipole strengths. In transport theory it is used as 
the power of the displacement variables; thus sextupoles produce 
second-order terms, octupoles produce third order (x3) etc. This 
would be confusing in our context. There is also a rather 
sloppy, weak usage where simple multiples of the tune are 
referred to as orders; thus a simple sextupole resonance at a 
fractional tune of l/3 is called third order. In our terms this 
is a first-order sextupole resonance at l/3 . At the same tune 
one can have a second-order sextupole resonance (2/6 with an amp2 
dependence), and a first-order decapole resonance (l/3 with amp4, 
from expanding cos5). To make our usage more specific "order" is 
followed by "distortion" or "resonance", nor else these words are 
clearly implied. 

It is clear from our expansion in orders that the key to 
avoiding complex difficulties is to control the closed, first- 
order distortion. If it is small then the higher order distor- 
tion is negligible. Because we can easily calculate the first- 
order distortion functions, using algorithms which follow anu 
without "tracking", they become the design tool for studying 
systematic multipole arrays and for specifying permissable random 
errors. 

There is one second-order term of great significance (for 
some multipoles), amplitude-dependent tune shift. It arises when 
a* or A9 does not depend on 9 or 9, usually from sin2 or co52 
terms. Tune-shift of course is not a distributed function and it 
can be calculated as a simple extension of the first-order 
distortion algorithms. 
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The GENERAL ALGORITHMS for DISTORTION FUNCTIONS 

It is easy to express the effect of a single multipole in 
terms of Aa, Ab, A(p, A9. (If this is not familiar, see sextupole 
distortion).~ In "generic" terms 

A.= . . . f(a,b) ms cos(cc+aa) . *. where a is a combination 
OX- sin(ct+as) . . . of ‘4 and 9 

a is the phase at s=O, aa is the lattice phase from 0 to s. ms 
is the strength of the multipole at s, and contains a function of 
Bx #BY. In general there is more than one ms for each multipole. 
WC? must generate expressions ba,Sb,69,69 which describe the 
distortion of the hyper-egg (with respect to the hyper-sphere). 
In generic terms we had 

S(p) - 6(O) = GAB. 

Define a vector B,,A. (where A=dB/da) to have the formal 
properties of a closed orbit, 
with kicks AA=m. and propagation 

Expand the angles:, 

B,(O)=Zm.cos(aa-Y2/r.,)/ZsinYlr, 
A,(O) =&n.sin(u.-k?/r,)/ Esinh/r, 

B,(O) = y2S +VzC/tanYzr, where c = Zms cos as 
A,(O) =-HC +YzS/tan tip,, S = Zmssin as 

Now define two functions of the initial phase a: 

F(a) = A, cosa+B, sin a and find F(a+r,) -F(a), (also C) 
G(a)=A(qsina-B, cosa using the values for B and A above. 

F(a+&=)-F(u)=Ccosa-Ssina=~macos(U+U~) 
G(a+p,)-G(a)=Scosa+Csina=~mssin(a+as), which is what we want. 

ALGORITHM: If the single multipole expression 

A contains then distortion 6 contains 

f(a,b) rns cos(a+h) f(a,b) F(a,B,,A,) 

or f(a,b) ms sin(a+as) f(a,b) G(a,B,,A,) 

where B,,A, is found by a closed orbit algorithm using ms and as 
We need one distortion vector for each combination of ms and US 
It is convenient to include common numerical factors in mm. 
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One should note that the distortion functions do not depend 
on amplitude, only on the distribution of the multipoles, so one 
calculation can apply to many cases. The distortion itself of 
course depends on amplitude, often very strongly. 

This theory has been clearly labelled as a IlOP-~C?SOOSfJCt? 
theory. We can now be more specific about its limitations. The 
resonances to be avoided are the primary resonances of the multi- 
pole under consideration. In these cases sinYzr, in the denomi- 
nator of our "closed orbit" expression approaches zero and the 
distortion functions become very large, just like ordinary orbit 
distortion near an integer. There is a difference, however, 
because orbit distortion near an integer is large but not 
inaccurate, whereas the distortion functions become large but not 
large enough. 

When a tune differs from resonance by a very small amount we 
find that the phase shift generated by the multipoles is as big 
as the tune difference. This is the essential part of the 
"locking" phenomenon which creates fixed points, blow-up, is 
and all the usual things that we associate with resonance - 
more than simple division by a small number. None of this 
our expressions for the distortion functions. 

ands 
much 
s in 

The reason is simple. In order to solve the express i ens, 
and in particular to make them amplitude independent, one 
persisted in using the unmodified tune. Actually the theory 
works well up to about one-half of the fixed-point amplitude for 
a particular tune, which means over all the tune space that we 
should be using, unless we are extracting the beam. 

Resonance theory has much the same problem. It is solved by 
crossing out all terms except the resonant one, and assuming the 
tune difference is very small. It does not give correct 
distortion beyond about twice the "locking" tune difference. The 
two theories are complementary. 



SEXTUPOLE DISTORTION 

We define sextupole strength as S=bz9 where br is the 
usual multipole error coefficient for a dipole with bend angle 
8. To be consistent S=(B"l)/Z(B~) for a sextupole magnet. The 
kicks are: 

Ax' = -s(x'-Y*) 
AY': 2SXy. 

The conversion to circular form is best done by defining two 
values for each sextupole: 

8 =(&YVj3o)'fi s 
3 =(/3x&2/80)~ s = (BY/BX)S 

then Ax' : --9x2 + sy2 
Ay'= 2EXy. 

Our first step is to remove the amplitude-dependent orbit 
distortion, thus 

AX'= -s(acos q)s+E(b cos 9)s 
=-bsazcos 2y+YzHbscos29-[Yzsas-YZEbsl 

where the last two terms are to be set aside. We can now express 
these kicks as Aa, Ab, A$, A9 (first order): 

X' A*=-(Ax'/a)cos(P 
I =tisacos2qcos~-Y28(bs/a)cos29cos~ 

Aa =-Ax' Sin 9 
=~satcos 2*sin(p--YlZibscos 29sin (P 

A.9 =-(Ay'/b)COS 8 
:-2Eacos*cos29 

Ab =-Ay' Sin 6' 
=-ZHab co8 (pcos Ssin 9. 

Aa=&as(sin3q-sinq)-WEbs(sinu-sins) 

A8=-%%E2a(2cos*+cosu+cos6) 

Ab=-%GZab(sino+sin8) 

u=29+4p 
s=29-$9 

The angles are phases at the sextupole. They should read as 
9+9s and 9+9s , an initial phase plus the lattice phase advance 
from the reference point to the sextupole. For one turn simply 
sum the individual A's. 
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The A’S for a single sextupole are now in the form where we 
can apply the algorithms. Five B,A pairs are needed (fifth one 
from the firs-t term of AI?). The various meanings for a are shown 
in the following table. 

name: angle I ms : r,/zn : : F(a) 
B : us : : G(a) ___9___---_------------------------------------- ------- 

B1 : 9s I s/4 : YY I: Fi=Aicos P+ Bisin (P 
Ai : ~ I Gi=Aisin.p-Bicos@ 

B3 
A3 

Es 
AS 

Bd 
Ad 

39s 

4S=z&+!#S 

Fs=2&-qS 

I Fo=A3cos3q+ Bosin39 
: Go-Aosin3q-Bocos39 

I Fs=Ascos Q + Bssin IY 
I Ge=Assinu-Bscose 

: Fd=Adcos b + Basin 6 
I Gd :Ad Sin 6 - Bd cos 6 

The B,A's at aa=O are evaluated by the closed orbit algorithm 
using ae and ms. Note that they depend only on the multipole 
distribution. We can now write the distortion expressions, using 
f(a,b) from the A's: 

Sq= a(Fs+ Fi) - (bs/a)(Fs+ Fd) 

gg=-Za(ZF+Fs+Fd) 

bb =-Zab(G,+Gd) 

XO- -Za*Bi+ZbsB, x'o=-ZasAi+Zbeil (set-aside terms) 

These expressions are to be evaluated for each point of interest 
on the hyper-sphere (a,b,q,9) to determine the local distortion 
to get to the correct hyper-egg. In "circular" space 

x= xo+(a+-sa)cos(~+6g) y= (b+sb) COS(~+S~) 
x': x'o-(a+Sa) sin(+9+6q) y'=-(b+ab) sin(9+69) 

The figures traced by a beam of particles, all with the same 
amplitudes, or by many turns of a single particle (which is the 
same thing) are no longer two circles but are distorted broadened 
shapes. As we shall see, most of this distorted, two dimensional 
motion is described by the expressions above. 

Let al=a+Sa, ai can be found from x,x', and sa calculated 
using it in place of a should differ only in second order, 
however this inverse distortion calculation is much improved by 
iteration:ai + 6a+a-6a-a+4 (also include b,q,o). 
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Figures 12 and 13 show what we have accomplished. This 
example uses 384 simple 8Oo FODO cells, with 768 random sextu- 
poles. (The. rms <s> is chosen to simulate the ssc reference 
design sextupole error at 5mm amplitudes). First one ca,lculates 
the B,A values for the observation point. They are shown at the 
lower right in units where a,b would be 1 (Pzcm. units). The 
particle starts with a=b=l and (p=.+=O and the starting values 
x,x' and Y,Y' are calculated using the B,A's. This ensures that 
we start with a consistent emittance. 

Figure 12 shows the distorted "circular" shape created by 
plotting many turns, with tunes near 85.4 . The shapes are 
typical of sextupole distortion. About one third of random 
arrays would show equal or greater distortion. What we must now 
show is that the distortion functions predict most of this 
distortion. 

One can directly plot these same figures by choosing an 
array of values for (p and 9. The result is plots that are not 
different from figure 12; however a better way is to follow one 
particle as before but this time to perform the inverse distor- 
tion before plotting. Th,is is shown in figure 13 (indicated by 
the label corrected in place of diaiorted). A perfect prediction ___.- 
would produce perfect circles, any remaining distortion would be 
from higher order effects. Clearly our distortion functions do 
an excellent job. 

A note 0~ computation. The following algorithm, borrowed 
from normal orbit ~distortion calculation, is used for large 
arrays. One needs from normal linear theory 6x and BY at each 
sextupole, to calculate s and s; also A9 and A@, the phase 
advance between sextupoles. In the usual long strings of matched 
standard cells these are repetitive values. 

One starts a vector B 
Between sextuiAkz’* 

At each sextupole one adds AA=ks 
(or !LG). , rotate 

B 

0 i 

COS AU sin Aol B'. 
= 

) 
/ 

A -sin AU cos AU 2 \A;E 
a=combination(++,S) 

obtaining, say, Bt and At after one turn. The closed values are 

B,o=PzBt +YrAt/tan(Ys&,), A,o=YzAt -!'zBt/tan(Yz&). 

One repeats the same calculation but starting with the closed 
values, then all intermediate values are also closed and one 
collects them as needed (for a plot, or just the maximum, etc). 
One can also collect the sums EBs required for the tune-shift 
calculation below. 

In the example just examined, the computation of the distor- 
tion functions took about the same time as tracking two turns. 
The section of code was shorter than this explanation! 
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Second-order sextupole terms. There are many second-order 
terms but we are particularly interested in tune shift, that is 
terms in A* and A9 that do not depend on 9 or 9. They will be 
generated by expanding cos2 or sin2, or by xo. It is now 
important that we did allow for a shift of the center of the 
motion, xo and x'o, but we must be precise about it. Thus 

AX'= -sxe+Sye-(-Yzsae+YzZb") 
=-s(xo+(a+Sa)cos(9+6~))*+~((b+6b)cos(9+6~))*+~sa2-~~b2 

and A+3 = -Ax'cos(q+69)/(a+Sa). 

We expand and collect terms with S'S and xo. On they left is 
that portion of the S'S which we need to get tune shift. 

Y~S(COS 3++5cos+9) 6a Sa=-ao(Bocos 3q-Bicos(p . . . 
-ks(3sin 39f sin 9) a69 89= a (Bssin3r+Bisin.p . . . 

s x0 xo =-2aeBi . . . 

-WZ(COS Z~+COSO+COS 6) (b/a)sb Sb =Zab(Bacos c+ Bdcos 6 . . . 
%(sinu-sin 6)(b2/a)S9 69=-2a(Bssinu+BdSin 6 . . . 

9 x0 xo =2ba B 1.. 

WE(COS Q+ cos 6) (~bs/a2)6a Sa= be (Bscoscr-Bdcos 8 . . . 
!&g(sinu-sin 6) (b2/a)Sq s++:-(bs/a) (Bssinu+Bdsin 6 . . . 

We now turn to the A9 expressions, which are easier 

A9= -23(x0 + (a+6a)cos($+Ss))cos2(9c69) 

YzS(sin o+ sin 8) a69 69=-2a(Bssino+Bdsinb . . . 
-Bcosq 8a 8a= a* Bicosq . . . 

Ssin* a69 69: a Bisinq . . . 
-zi x0 xo =-2a2Bi . . . 

-yZ%(cosu+cos 6) Sa se= be (Bscos (r- BdCOS 6 . . . 
YzS(sinu-sin 6) a69 sq =-(be/a) (B~COS u + BdCOS 6 . . . 

-x x0 x0 = 2bs B . . . 

Collecting the terms and summing the products of B s at each 
sextupole, we get the most important expressions 

2nAvx= -y2(zBos + 3zBis) - (ZB,;s +ZBdz - 2ZB1S) 
<same 2 

2,fAvy= -(~B?,~+~BdZ--2ZB1Z') - hZ(zB&?- zBda+4ZBsi) 

These expressions only use B's because the symmetry of A- 
term distortion does not give tune shift. Most second order 
terms use both. The expressions are exact for amplitude-squared 
tune shift. The next terms are fourth order. In numerical 
verification by tracking, there is often a substantial z$Q-zlS 
term which requires a careful choice of the number of turns to be 
sure that it averages out when YX--YY. 
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The Sextupole DISTORTION BUMP as an example. 

In the introduction we used a special sextupole structure as 
a dramatic demonstration that distortion varies around the ring. 
'This structure is very simple'and instructive. (Figures 4 and 5 
correspond to 2 and 3 except that the tune is exactly .4,.4 . 
Figure 6 is a corrected version of 4.) 

Consider simple cells, close to 600 in 
S -s 9 both planes, with sextupoles as shown. 
I I I For three functions with a--600 this is a 

-F F F- "bump" with no effect outside. For the 
600 60" functions with a--1800 (Bo,Ao and 
three b"DP B,,Aa) the kicks add. Because BY/Bx=1/3 

for 600 cells, AAs=AAs/3. 

We use four of these 
bumps to construct a big 
bump shown on the right. 
It has no effect outside 
and a large As and As at 
the center. The angle is 
not exactly 600, but by 
adding many empty cells 
we have 60.120 for a tune 
of 33.4 . One finds the 
actual distortions funct i 
values are As=-5.84(s/4 ) 
tion s=.15 so AZ=-.219, 
effects. We can write 

69 = aAocos 3*- (b*/a)Aecos c 
6a q asAosin 3~-bsAssino 
69 = -2aAscos Q 
sb = -2abA.sin Q 

s -s 2s -s s -s 9 -2s s -s 

B&n f-l ,n 
-c~y;6(~,,e~-;” ->- 

LU 
B3 

ons using the simple algorithm. The 
and A*=-1.96(s/4). In the computa- 

As=-.073, which for a=b=l means strong 

r for a=b=l, (p=9=0 
x =cos(Aa-As) y=cos(ZAs) 

x'=-sin(As-As) y' =sin(ZAs) 
(both angles are -.146) 

If one started x=y=l,x'=y'=O then a=1.14, b=1.03 - a bigger beam. 
One must iterate several times to perform the inverse distortion 
(hyper-egg to hypersphere) which was used to plot figure 6. This 
not suprising in view of the large 6's. The problem is, why does 
it work so well? Of course there are many small higher order 
resonances but the tune shifts, which only use B, are small: 

peaks B1=.866(s/4) CBi~=-.866~* 
B =.866(s/4)/3 ~B~E=~%~=-.866~2/3 AYX- .0029 
Bd=.866(s/4)/3 zBdE=z%E=-.866s*/9 Avy=-.0012 

SKEW SEXTUPOLE DISTORTION 

Call x (and a,rp,etc.) vertical and y horizontal and use 
all of the above equations! A large skew sextupole is just as 
bad as the normal kind, it just does it standing up. 
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SKEW QUADRUPOLE DISTORTION 

Skew quadrupole effects are linear, thot is the amplitude 
factors out. Nobody talks about skew quad effects beyond the 
obvious resonant coupling at vX--cyy, which is readily cured by 
rotating a few quads, any quads because the coupling depends on a 
simple sum around the ring. Obviously there remoins a skew 
distortion but it has not been solved in s practical way. Because 
the efffect is linear and doesn’t disappear at small amplitude, 
the moment we admit to its existence, then we begin to lose hold 
on our linear theory - not just amplitudes, but betas, phases, 
everything! Unfortunately, it now appears that the largest 
multipole error in superconducting magnets is usually skew 
quadrupole; so, with s sense of relief we write 

AX'=PY Ad = q y Q = ale 
AY'= Q X Ay' = q X q =(BxBY)"w 

Aq=(-Yzq)(b/a)(COSu+ CO9 6) A.9 =( -bq (a/b)(cos (r+cos 5) (T=‘p+l9 
Aa= b (sinu+ sin 8) Ab =(-Vzq a (sin o- sin 6) s=(p-9 

Then ms=-Ozq and we have two U'S, c and 6, and we need two 
distortion functions, Bs,As and Bd, Aa . They are found by a 
closed orbit algorithm, as usual. The n we can write 

6@ =(b/=) Ascoso+Bssino+Adcos6+BdsinS) 
aa= b A.sinu-84cosu+Adsin6,-BdcosS) 
69=(a/b) Ascosu+Bssinu+Adcos6+BdsinF) 
sb= a Assinu-Bscoso-Adsins+Bdcos6) 

lo this, case only we will use a different procedure: let 

distorted x = acos(~+ SX, where sx- Sacos(p-aSqssin@ 
x':-ssin (p+ 6x' 6x1 =-sasin (p- adlpcos up, etc. then 

sx =-(Bs+Bd 
6x'= (Bs-Bd 
sy =-(Bs-Bd 

6y' = (Bs+Bd 

y -(b-Ad )Y’ where x,x' y,y' are points on the 
Y'-(A~+A~)Y hypersphere, and the 6's are distortion 
x -(A.--A~)x' displacements to reach the hyper-egg. 
x'-(As+Ad)x The inverse distortion is easy. 

The na ,t ure of the second order terms is easy to see. Sub- . . L1 ~~, stitute y+6y in t 
depend only on x 
small contribution 

ne expression snove nor AX- , the added terms 
X' and are still linear, so there is only a 
to normal quadrupole error (beta distortion). 

This theory 
figures. It mak e _ 

works very well indeed as is shown in the 
s paper machines calculable, but it does not ^. make real rings any easier to operate. sxew quadrupole does not, 

by itself, cause beam loss, but it can make a ring very difficult 
or even impossible to adjust in a reasonable time. our 
distortion functions provide a rational basis for effecting a 
cure, such as "shuffling" measured dipoles on installation. 
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OCTUPOLE DISTORTION 

The aor~al octupole equations are 

AX’ = -m X3 +3mxy* where m = 0(5x2/50 1 m = 0(5X5V/50) 
Ayt= 3mx2y- iiiyyJ 3 = O(BY2/50 1 and O=bsB 

Following the usual expansion, we require eight functions 

B A I ms --OLL-Q--, ------- us 

from a 
closed-orbit 
algorithm 

BiAi I m/8 
BsAz : g/a 

BsAs I m/8 
84 A4 : m/8 
BsAs : m/8 
BsAs : wa 

B7 A7 : ia/8 
Be As : ii/8 

4%% 
299 

2‘&+ 29s 
2$X%.- 2.3% 
295 
299 

49s 
29s 

Use F,= A,cos (x+ B,sin Cy, G,= A,sino- B,cos OL, as before, 
and the distortion expressions sre 

sg = as(Fi+ 4Fa) - 3bs(Fs+F4+2Fs+ZFs) 

63 = aJ(Gl+ 2G2) -3abs(Gs+GG'+ 2Gs) 

~a=- 3ae(Fs+F.,+ZFs+ZFs)+ bs(FT+ 4Fs) 

sb =-3asb(Go- G4+ 2Gs) + bo(GT+ 2Gs) 

In eddition there is the usual octupole tune shift 

2nAYx= a* (3/8)zm - b2 (3/4)zm 
2navy=-as (3/4)zm + b2 (3/8)ziii 

(See discussion at end of skew octupole.) 
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SKEW OCTUPOLE DISTORTION 

The skew octupole~ equations are 

Ax’=3mX2y- iiiy3 where m = o(5*35y/j3n*)1~* E = O(5x5rV5o~P 
Ay’ = m X3 -3iiixyz and 0 = 338 

Following the usual expansion, we require eight functions 

B A : ms -2L-9--,------- : us --------- 

from a 
closed-orbit 
algorithm 

B1 A1 : -m/8 : 3.+l,+ Q5 
BaA2 : -Ill/8 :3 9s - 9s 
B3 A3 : -m/8 : q.3 + 9s 
B.aA4 : -m/8 : 9s - 95 

Bs As : -iii/a : $5 + 9. 
B6 A6 : -i6/8 I 99 - ~95 
8, A7 : -?ii/8 1 9% + 39s 
Be As : -a/8 : 94 - 39s 

use F,= A,cos cf+B,sina, G,= A,sin u- B,cos 01, 3s before, 
and the distortion expressions ==e 

69r xab(Fl+ Fz+3F3+ 3F4) -b3/=(3F5+3F6+ F7+ Fs) 

s3= 3aZb(Gl+Gz+ G3+ G4) - b3 (3Gs+ 3Gs+ GT+ ‘A) 

F8= a3/b(F1+F2+3F3+3Fa)- 3=b(3F5+3Fs+F7+F7) 

sb = 3a (G,-,&+ 3G3- 3G4) -3abz( Gs- Gs+ G?-Ge) 

Octupoles have a small second-order tune shift which is 
usually negative. 

Figures 18-21 show that predictions of beam distortion are 
good. The strengths are the same as the sextupole case but they 
normally would be substantially smaller; thus we probably do not 
need to continue to higher multipoles. There are so many terms 
that there is no typical octupole pattern: the normal example has 
particulaly small mixing terms (the middle four), and the skew 
example has its tune shifted to 5/13 (it is not on a resonance). 
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TRACKING and DISTORTION FUNCTIONS 

There are two suggestions for enhancing tracking studies by 
the use of distortion functions. The first step in both cases is 
the evaluation of the functions, a modest increase in the program 
but not a significant increase in running time. 

The first suggestion is to use the "inverse distortion" 
calculation, before plotting, to remove the fuzzy but predictable 
first order distortion from the plots in order to see underlying 
structure. The figures make this clear. 

In this paper, the tracking plots include a third "a-b" plot 
in addition to x,x' and y,y' . Two-dimensional resonances, which 
are more numerous and stronger than one-dimensional resonances, 
do not show patterned behaviour in the normal plots but they do 
have characteristic a-b plots. A particle on an mvx +nvy 
resonance (n can be negative) will move so that mbz-naz=const. 

Skew quadrupole effects are shown iii figures 7 - 11, all for 
the same random set. Figures 7 and 8 show the variation with 
lattice position. Figure 9 is a "corrected" version of figure 8 
using the inverse distortion calculation before plotting. Almost 
all the distortion is calculable without tracking. The sum terms 
(s) generate a-b plots which slope upward, the d terms down- 
ward. In this random set, the mean is made precisely zero to 
avoid resonance coupling (Bd=O). In figures 10 and 11, 10% of 
the "natural" mean is restored and the a-b plot is wider in the 
direction expected. 

The sextupole diagrams, figures 12 -17 are better examples 
of uncovering hidden structure. Figures 12 and 13 show the 
typical sextupole distortion. It is predictable. In figures 14 
and 15 we have tuned the rings to YX=YY, allowing for tune shift. 
The a-b plot in figure 15 is simply az+ba=l, showing that the 
smearing in the other plots is just a coupling - in this case a 
second order term 2vX-2vy which is not removed by the first order 
correction. Figure 16 shows an a-b plot with a slope 2/3, a 
small 3vX+2vY resonance (as verified by the tunes) which would 
never be seen in the usual plots. The following example will 
show how these small effects can combine in a serious manner. 

Figure 17 is a carefully chosen example. It uses a 
different random set with more tune shift. The initial tune was 
set at . 399,.399 which of course generates second-order coupled 
motion. In this case the tune shift coefficients are such that 
for smaller a (larger b) vxe.4, where there is a small third 
order resonance. The a-b path starts off normally towards small 
a but after a brush with the resonance it returns on a different 
path. After 2500 turns it has not returned even close to the 
initial point! Those "benign" difference resonances combined 
with amplitude dependent tune shift can use minor sum resonances 
to create meandering amplitudes. 
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The second suggestion is to make a prior selection of 
suitable random sets for tracking studies, based on distortion 
functions, and to include a statement of random set properties 
with the tracking results. 

One knows from ordinary orbit distortion that various random 
arrays with the same rms. can have very different effects, and 
this also applies to distortion functions. We must allow for "bad 
luck", particularly when we do not have clear diagnostic and 
correction proceedures. To find what is bad it will be necessary 
to mix a variety of extreme examples, with particular attention 
to tune shift. 

The random arrays for our examples were selected by 
examining the amplitude of the distortion functions - (Bz+AZ)"2 - 
for several random seeds and choosing an interesting case. It is 
instructive to estimate the probability for the sextupole case, 
as an example. 

Let there be N cells with n magnets per half cell. One can 
attribute n magnet errors to each quad (approximatly). The rms 
<m> will be bk,909/n4 times a function of ~~x/@~,@Y/@o. Standard 
scaling of lattices makes BOG-3, and for the sextupole B3,Az the 
function is 1; thus if bz=1.6/ma for n=5 then <m>=Z/m. (We used 
a<m>=.Ol, so a=5mm.) The rms value for 83 (or As) should be 
<m>(N/2)"/(8sin~r,)z 3<m>. From ordinary orbit theory we know 
that 50% of the time we can expect a peak of twice the rms, or 
greater, and ~a=.06 is just twice the rms. Of course one was 
also selecting larger values for the other functions so the 
probability of a "worse" array is less than 50%, to say how much 
one needs to study the correlated distributions. 

The distribution of second-order tune shift is particularly 
sensitive to correlations. All the coefficients have negative 
means and wide distributions, and have a tune dependence which 
suggests that one should avoid the lower (O&)and upper quarters 
of tune space. It is necessary to evaluate the tune shift for 
each normal sad skew sextupole array. 

AD al~l-in-together example. In figures 22-26.there is a 
combination of all the previous random sets plus skew sextupole. 
The rms values at the quads at-e: 

skew quadrupole .004 (mean=O) 
(-.SSC normal sextupole .02/cm 
values) skew sextupole OZ/cm 

normal octupole :Ol/cm' 
skew octupole Ol/cma, 

and the (equal) amplitudes are shown ai the bottom left in cm. 
The first-order predictions are still good, however there are now 
many more higher combinations and hence a background of "little 
ones". Previously we saw a 2v~--2~~ coupling. From the CPOSS 
product of skew and normal sextupole there is even more at YX-VY, 
and this shows in the "corrected" plots as a modest contribution 
to the smearing. The 7mm case is included to show that a 
particle can be stable but totally irrational! 
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NON-TRACKING 

The most significant results from this method may well come 
from simple expressions derived without tracking. Consider this 
example. Superconducting dipoles have a systematic sewtupole at 
low field. It will be corrected by the chromaticity adjustment 
of sextupoles at the quads. Is this good enough? 

In the following table, the values for '~SF and 'h.5~ and the 
beta functions were calculated by the usual thin lens 
expressions. The distortion functions are calculated Like off- 
momentum vectors (with c( and s) Use A's=0 at quads for closure. 

quad dipole position quad 
F .18 .34 .50 .66 .82 D 

8x 1 .785 621 
:371 

483 
1483 

.371 284 .217 
BY 217 

'0 
284 

3.48 
621 

18.96 
:785 1 

‘Pe 7.43 12.45 27.46 40 
de:. i% 

9s 0 12.54 21.04 27.55 32.57 36.51 40 deg. 

S -.325 2 2 2 2 2 -.537 (bze) 
S -.325 :139 :098 :067 :045 :034 -.054 (Bobze) 
E -.071 .050 .058 .067 .076 .084 -.250 (Poke) 

B3 0293 .0141 0034 
B1 : 0089 0035 

-:0124 
'0003 

-.0039 -.0074 -.0057 .0032 (Bob261 

-:a119 
-.0017 -.0023 -.0014 . 0015 

B$ -.0045 -.0056 .0054 0219 
Bd 0105. 

-:0011 
.0033 .0014 .0023 0037 

:0014 
:0033 

0447 
-:a028 

B -.0022 -.0025 -.0017 . 0081 .0222 

zB3s =-.a164 zBsZ=-.0205 (j3ob2'3)2 for a full cell 
ZB1.s =-.0052 zBdg= .0018 
IBIS=-.0024 ZBS =-.OlOl 8=Yzcell bend 

In a normal proton ring Bo0+3m. The tune shift is systematic, 
for N cells 

a~~=(.0025 a?+ .0022 b") N (Bobz8)Z 
avy=(.0022a* +.0050b') N (Boba8)' 

Assume N=lOO, bz*1.3/m2 then Avy=.0012 (doubler) 
N=400, bz+ 33/m2 at lcm Avy> 2 units! (an SSC design) 

The distortion and tune shift in each cell is very small. The 
distortion repeats from cell to cell, which keeps it small, but 
the tune shift accumulates. Tracking adds nothing new. 

We have "derived" aa important, second-order non-linear 
expression, using a hand calculator! 
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CONCLUSIONS 

We have a set of distortion functions which are a new form 
of solution to the old problem of describing the non-linear beam 
shape that repeats. They have an exact formal similarity to our 
usual orbit distortion calculation, and therefore have the nice 
property that a modest arithmetic effort will yield a precise 
value at one point in the ring and twice that effort will give 
values at all points. This latter property pemits an easy eva- 
luation of the second-order tune shift from sextupoles - both 
type* - which is very important. 

The distortion is expanded in "orders" which here means the 
power of the multipole. There is no reason why one cannot extend 
the calculations to higher orders but from the numerical examples 
one can see that practically the first order is enough (except 
for tune shift). The first order does describe most of the 
distortion for marginally acceptable beams. Higher order effects 
do appear as small, closed resonances but there is often not much 
distinction between second and still higher orders. In any case 
the nature of the expansion (and the examples) makes clear that 
small first order is a necessary and sufficient conditoo for good 
beams. One possible exception are higher-order coupling terms, 
nvx -nvy , from sextupoles. 

This paper is avowedly pedagogical. The author has absolu- 
tely no desire to be the custodian of a non-linear calculation 
code. In fact the primary purpose of this theory is to diminish 
our dependence on extensive calculation by providing a design 
tool. The examples in this paper were calculated in BASIC on a 
PC I and no program listing exceeded two pages, so anyone can join 
in. 
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