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ABSTRACT 

We give a pedagogical review of Some aspect3 of quantum field 

theorie3 in the limit in which the number of internal degrees of freedom 

is large. The focus is on large N QCD. We briefly discuss several 

well-known approaches towards a solution of the N = m limit: loop 

equations, classical actions and master fields. Eguchi-Kawai models are 

diScuSsed in detail and Some numerical results obtained recently are 

reviewed. 
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Most interesting quantum field theories and statistical systems 

contain internal symmetry groups. In many cases the number of internal 

degrees of freedom may be regarded a3 a free parameter. In the limit in 

which N, which is Some measure of the number of internal degrees of 

freedom, becomes large, the dynamic3 of such theories very often 

simplify. One could then develop a systematic approximation scheme by 

studying the N=m limit and then considering finite N 

corrections -- leading to an expansion in powers of l/N. This “large N 

approximation” ha3 provided a valuable framework for studying several 

models. Frequently, the zeroth order approximation (i.e. at N = -) is 

fairly close to the real finite N theory, even when N is small. 

In the context of particle physics the l/N expansion was introduced 

by ‘t Hooft (1974) who proposed a generalization of the standard SU(3) 

gauge symmetry of QCD to SU(N) and an expansion in powers of l/N. In 

fact, l/N is the only known free parameter in QCD (Witten, 1979a). 

Consider a SU(N) gauge theory coupled to Nf flavors of quark3 in the 

fundamental representation, described by the Lagrangian: 

Tr (FPVFuw) + $x)EM~) . (1.1) 

F 
uv is the standard non-abelian gauge field, and I)(X) denotes the quark 

field. ‘t Hooft considered the limit 

N + m with Nf, g ‘N = fixed. (1.2) 

The dominant Feynman graphs in this limit can be classified according to 
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simple topological considerations ('t Hooft, 1974; Witten 1979a; 

Coleman, 1980). This allows one to study meson phenomenology at 

N = - -- th~is turns out to be remarkably similar to that in the real 

world. 

In the real world N = 3 and one might argue that l/3 is not a 

terribly small number. However, the true expansion parameter in the 

large N expansion is probably not simply l/N but a/N where CL is some 

number. It is certainly possible that a is in fact very small -- in 

that case the large N approximation is reliable. A similar situation 

occur3 in QED. Here the coupling constant e is about 0.3 -- certainly 

not too small. But the real expansion parameter in QED is e*/&rr, which 

is certainly small enough to ensure the reliability of the perturbation 

expansion (Witten, 1979a). In QCD we do not know yet how small CL is, 

but the qualitative success of large-N meson phenomenology certainly 

indicates that a is small. 

Veneziano (1976) has proposed a different large N limit for QCD. 

This is defined by: 

Nf 
N+-N +-;T,g2N,g2N f f = fixed, 

The Veneziano limit provides a better explanation of certain aspects of 

low energy phenomenology. The 't Hooft limit is, however, much simpler 

and has been studied in much more detail. In this article we shall 

almost exclusively deal with the 't Hooft limit. 

Over the past ten years there has been vigorous activity in the 

field of large N expansions -- both for four dimensional QCD and other 

two-dimensional models. Several classes of models,can be solved exactly 
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in the N = m limit leading to valuable physical insights (for a review 

see Coleman, 1980). More recently, following the work of Eguchi and 

Kawai 1982) it has become clear that at N = m field theories become 

equivalent to matrix models living at a single point. The advent of 

these “reduced models” (or Eguchi-Kawai models) ha3 raised new hopes for 

a quantitative understanding of the N = m limit of theories like QCD. 

In particular, large N theories are now amenable to numerical 

simulations which are providing interesting non-perturbative 

information. 

In this article we shall present an overview of some aspect3 of the 

large N limit. This is not intended to be a comprehensive review of the 

subject; rather we shall concentrate on a few specific topics. We shall 

mostly talk about large N QCD, but several other models shall also be 

discussed mainly for illustrative purposes. Our main focus shall be on 

Eguchi-Kawai model3 and we shall pay more attention to those aspect3 of 

large-N formalism which are necessary for an understanding of these 

models. 

In Section II we briefly discuss several phenomenological aspect3 

of large N QCD: mesons, baryons and the n’ problem. Most of the 

discussion consist of statements of results without proofs -- detailed 

review3 on the subject already exist in the literature (Coleman, 1980). 

In Section III we discuss more theoretical aspect3 of the large N 

limit. Factorization and its consequences are explored. These include 

loop equations, saddle point method3 and master fields. We derive the 

loop equations for the lattice gauge theory. The discussion of saddle 

point method3 and classical Hamiltonians is brief. One again, these 

topic3 are covered in other review articles (Yaffe, 1982). 
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In Section IV we introduce Eguchi-Kawai models and quenched 

Eguchi-Kawai (QEK) models. The perturbation expansion of QEK models and 

their equivalences with field theories are discussed. 

In Section V we discuss the Twisted Eguchi-Kawai (TEK) models. 

In Section VI we summarize some of the numerical results obtained 

with QEK and TEK models. 

II. HADRON PHENOMENOLOGY 

Perhaps the most immediate appeal of the large N expansion lies in 

in the fact that the phenomenology of QCD in the N = m is remarkably 

similar to that of the real world. The dominant Feynman graphs at N = - 

may be classified by simply counting the powers of N ('t Hooft, 1974; 

Veneziano, 1976; Witten, 1979a). For example, the graphs which 

contribute to the connected part of a n-point function of fermionic 

currents are all O(N) and have the following properties 

(1) They are planar 

(2) There are no internal fermion loops. 

(3) All current insertions are on a single fermion loop which 

forms the boundary of the graph. 

Similarly the graphs contributing to connected Green's functions of 

gauge-invariant operators constructed out of gauge fields alone are 

O(N2) and 

(1) are planar 

(2) contain no fermion loops. 

In general, each fermion loop costs a factor of l/N, while each 

non-planar crossing is suppressed by 1/N2. 
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Assuming that the N = m theory confines so that propagating states 

are color singlets, it is now possible to study properties of hadrons. 

This is done by applying the above rules and analyzing the intermediate 

states that contribute to the various n-point functions. A detailed 

discussion may be found in the papers of Witten (1979a) and Coleman 

(1980). We shall simply quote the relevant results. 

(a) Mesons 

The properties of mesons at large N are qualitatively consistent to 

those in the real world: 

(1) Mesons are stable: their decay amplitudes are O(l/dN) 

(2) Mesons are non-interacting: scattering amplitudes are 0(1/N) 

(3) Meson masses are finite; i.e. they are O(l) 

(4) The number of mesons are infinite 

(5) Exotics are absent 

(6) Zweig’s rule holds 

In fact, the l/N expansion is the only known framework within QCD which 

provides an explanation for Zweig’s rule. 

(b) Glueballs 

A similar analysis of glueball states reveal: 

(1 1 Glueballs are stable 

(2) Glueballs are non-interacting: a vertex involving P. glueballs 

is suppressed by O( 1 /NC-’ ) 

(3) There are infinitely many glueballs 

(4) Glueballs do not mix with mesons: a vertex involving k mesons 

and J. glueballs is of 0(l/Ne+k’2-‘). 
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Cc) Baryons 

Baryons pose a special problem at N = m. This is because a baryon 

in a SU(N) theory must be made out of N quarks while a meson is always 

made out of a quark antiquark pair, irrespective of N. This feature 

makes baryons behave in a fashion quite different from mesons (Witten, 

1979a) 

(1) Baryon masses are O(N) 

(2) The splitting of various excited baryonic states is O(l) 

(3) Baryons interact strongly amongst themselves: the typical 

baryon-baryon or baryon-antibaryon vertex is O(N) 

(4) Baryons interact with mesons with O(1) couplings. 

The above properties of baryons are remarkably similar to those of 

solitons in weakly coupled theories. Consider for example, monopoles in 

a model with a weak coupling constant g*. The monopole mass is O(l/g2); 

but the energies of excitations around the monopole background are O(1). 

The monopole-antimonopole scattering amplitude is O(l/g2), while 

monopole-electron scattering amplitude is O(1). This led Witten to 

suggest that baryons are in some sense solitons of large-N QCD, with N 

playing the role of l/g2 (Witten, 1979a). 

The precise sense in which baryons are solitons was not clear till 

recently. Low energy hadron phenomenology is well summarized by an 

effective SU(Nf) x SU(Nf) chiral model, where Nf denotes the number of 

flavors of quarks. The effective Lagrangian is given by 

L =f;r d4x Tr (2) )(a%) , 

with possible additions of Wess-Zumino terms to account for the 
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anomalies (Wess and Zumino 1971; Witten, 1983a). ITOW) f2 II IS of order N; 

hence at large N, f* 71 can act as a semiclassical WKB parameter -- and the 

theory can have solitonic sectors. In fact, it has been known for a 

long time (Skyrme, 1961) that the chiral model possesses topologically 

stable fermionic solitons -- the “skyrmions” which can be interpreted as 

baryons. This idea has been revived recently (Balachandran et al., 

1982; Witten, 1983b). The static properties of baryons computed in this 

framework seem reasonable (Adkins, Nappi and Witten, 1983) At present 

this approach is being vigourously pursued. A different approach which 

can, in principle, also deal with the chiral symmetry restored phase of 

QCD (at high temperatures) is based on a Nambu-Jona-Lasino type model 

(Dhar and Wadia, 1984). 

(d) The q’ Problem 

The large N limit provides interesting insight concerning the U(1) 

problem. With three flavors of quarks the standard Lagrangian of 

massless QCD has a U(3) x U(3) chiral symmetry at the classical level. 

However the axial symmetries are spontaneously broken and the 

corresponding Nambu-Goldstone bosons appear as the light pseudo scalar 

mesons. But in nature one observes eight light pseudoscalars -- the 

TI’S, k’s and the n -- instead of nine such mesons expected to arise from 

the breaking of axial U(3). The lightest SU(3) singlet pseudoscalar is 

the n’, with a mass of about 1 GeV -- much too heavy to be the expected 

ninth Nambu-Goldstone boson. The resolution of this problem lies in the 

fact that the U(1) axial current has an anomaly. The corresponding 

charge is actually not conserved and hence there is no ninth NG boson. 

What then is the n’? 
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It might be argued that the q' would have been a NC boson had it 

not been for the anomaly: the anomaly splits the n' from TI, k and il. For 

this to make any sense there must exist a limit in which the the anomaly 

turns off. The N = - limit is precisely such a limit. This is because 

the anomaly equation reads: 

2Nf 
a J5=---- 

!J u 162 
Tr (i' I1v Fpv) 

In the limit Nf = fixed, N + m with g2N = fixed the right hand side 

vanishes. 

On the basis of results obtained in other models Witten ( 1979b) 

argued that in the leading order of l/N expansion the vacuum energy of 

pure QCD depends on 8, the vacuum angle. Then, the requirement that 

this B-dependence must vanish in the limit zero quark masses leads, in 

the l/N expansion, to the existence of a meson whose mass squared is of 

order l/N. This is precisely the r~'. The li' is thus a genuine 

Nambu-Goldstone boson at N = m. For finite N 17' is a pseudo-Goldstone 

boson, with a (mass)* proportional to the symmetry breaking 

term -- which is of order l/N. 

III. FACTORIZATION, LOOP EQUATIONS, MASTER FIELDS, 
SADDLE POINTS AND ALL THAT 

The crucial feature of the large N limit which gives rise to many 

of its intriguing theoretical properties is factorisation. Stated in 

general terms this means that the connected Green's functions of 

invariant quantities are suppressed relative to the corresponding 

disconnected pieces by powers of l/N. Hence at N=- expectation values 
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of products of invariant quantities may be replaced by products of 

expectation values. Let us illustrate this in large N QCD by using the 

perturbation rules stated in Section II. Let Bi denote fermionic 

current operators and Gi denote gauge invariant operators made out of 

gluon fields alone. Then, according to the rules of Section II: 

<B,,B2...Bn>c = O(N) 

<B,...BnC,...Gm>c = O(N) 

<G, . . .Gm>c = O(N’) . 

From these equations it immediately follows: 

<g,...B > nc 
<B,><B2>...<8,> 

<B, . . .BnG, . . .Gm>c 

<B,><B~>...<B,><G,)...<G~> 
= 0 

1 

i ) Nn+2m-1 

<c,...c > mc 
<G,>...<G,> 

=o -I.-. 

( > 
N2m-2 

(3.1) 

(3.2) 

Factorisation may be proved also in lattice strong coupling expansion. 

As yet there has been no convincing general proof; it is, however, 

reasonable to assume that it is generally valid. 

Do all gauge invariant operators factorise ? In general, no. 

Several examples have been cited in the literature (Haan,1981; Green and 

Samuel, 1981) . However, all “reasonable” operators do factorise. To 
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determine which operators are "reasonable" one has to construct analogs 

of coherent states for the sequence of theories characterised by a given 

value of No. Let lu> and Iu'> denote such coherent states. An operator 

A is called "classical" if its coherent state matrix elements have a 

finite N + m limit, i.e. 

Lim J$$$$ = finite . 
N'= 

(3.3) 

All such classical operators are reasonable and do factorise 

(Yaffe,1982). Examples of such operators in QCD are Wilson loops, 

fermion bilinears (like Bi), and pure gauge operators like Tr FIIVFU" or 

Tr FU,Fuv. In fact the important properties of the large N limit 

discussed below are consequences of factorisation of these classical 

operators (Yaffe,1982). 

Loop Equations 

One important consequence of factorisation is that there exist 

closed Dyson-Schwinger equations relating invariant expectation values. 

For gauge theories the relevant quantities are Wilson loops: we shall 

refer to these as loop equations. The phenomenological success of 

string models suggests that the long distance behavior of QCD is some 

kind of a string theory. It was suggested by Nambu (1979), Polyakov 

(1979) and Gervais & Neveu (1979) that the Wilson loop average may be 

regarded as the wave functional for a closed string. Equations for the 

Wilson loop were derived and these resembled classical string equations. 

Later Makeenko and Migdal (1979) showed that at N=m Dyson-Schwinger 

equations for Wilson loops form a closed system. (These equations are 
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different from those obtained by the earlier authors.) We shall discuss 

these equations in the context of lattice gauge theories (Eguchi,1979; 

WeingartenJ979; Forester,l979). 

Consider the pure U(N) gauge theory defined on a hypercubic lattice 

with the standard Wilson action: 

s = 6 ): 1 Tr(U (x)U (x+~)U+(x+v)U:(x)+h.C.) , 
x u>v !J v u 

(3.4) 

where B-l/g”, g2 being the bare coupling. U,(x) is the standard link 

matrix belonging to U(N) in the direction u and originating at the site 

x. We have, as usual, 

UdP(X) = u;(x-u) . 

Let ha be the generators of U(N) normalised in the standard fashion. 

These obey: 

2: (qj(Aa) = “jksiL ki a 
(3.5) 

Consider now the quantity 

xa(c) = J II dU (x){Tr *aU~(x)Ul(x+u)...te-S (3.6) 
x,u Ii 

The quantity within curly brackets is the ordered product of links 

around the curve C shown in Fig.1 with a ha in front of it. For the 

moment, we have chosen C to be simple, i.e. without any 

self-intersection. Note that Xa(C) is identically zero. But that is 
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irrelevant to our discussion. 

Let us now make an infinitesimal change of variables on the link 

uv(x) keeping all the others fixed: 

Uu(x) f (1 +ieXa)Uv(x) 

i.e., 

dauv(x) = ie haUn(x) 

S,Ui(x) = -ie Ui(x)ha 

Evidently, 

1 6 xa(c) = 0 . 
a a 

(3.7) 

The variation on the left hand side of Eq. (3.7) consists of two types 

of terms: 

(a) Source terms obtained by varying the operator. This is easily 

seen to be 

iE j iI dU (x)[l Tr(haXaU (x)...)j es 
X,U p a li 

= ie N Z <Tr W(c)> , (3.8) 

where we have used the completeness relation (3.5). W(C) is the Wilson 

loop operator along the curve C: 
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W(c) = Up(x)Uu(x+d.. .Uu(x-ii) I 

and 2 is the partition function: 

2 = j II dUu(x)eS. 
x,il 

(b) Equation of motion term obtained by varying the action. This 

is given by 

6a~ = i Tr (haUp - AaUi(x)) , 
UfP 

(3.9) 

where Up(x) denotes the plaquette in the (uiv) plane contain~ing the link 

U,,(x). The sum in (3.9) includes all such plaquettes. 

Up(x) - u~(x)u”(x+~)u~(x+“)u:(x) , 

Eq. (3.9) contributes to 1 GaXa(C) a term 

“,, - iE B Z <Tr[W(c)Up(x) - W(c)Ui(x)I> . 

(3.10) 

(3.11) 

Collecting (3.8) and (3.11) we can now write Eq. (3.7) as: 

+ <tr W(C)> = 1 i {l <Tr W(c)Up(x)>- i <Tr W(c)Ui(x)>) , 
v#pN N 

(3.12) 

which is the loop equation we wanted to derive. Equation (3.12) is 

pictorially denoted in Fig.2. 
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So far we have not used the factorisation property. The reason we 

did not need factorisation is that we started out with 

non-selfintersecting loops. However, as Fig.2. immediately reveals, 

the loop equations relate simple loops to self-intersecting loops. Thus 

to obtain a closed set of equations for Wilson loops one must also 

consider the latter - and this is where factorisation enters the game. 

Self-intersecting loops on the lattice are loops in which a given 

link occurs more than once. For simplicity, we shall consider only 

those loops in which a given link can occur not more than twice. These 

can be of two types: one in which the links occur in the same direction 

(Fig.3a) and those in which they occur in opposite directions. Consider 

a loop of the first kind. This may be written as: 

Tr W(c) = Tr W(c,)W(c2) , 

where W(C,) (W(C,)) denotes the Wilson loop operator along C, (C,) with 

the link U,,(x) appearing as the first link in both W(C,) and W(C,). To 

deduce loop equations one starts with the quantity: 

Xa(c,c2) = i II dU (x)e’ Tr(haW(c,)W(c2)) . 
x,u !J 

(3.13) 

The equation of motion term in the variation of Xa(C,C2) is identical to 

that of a simple loop. The source term, however, contains two pieces. 

The first piece, coming from the variation of Uu(x) in W(C,) is simply 

given by: 
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is NZ <Tr W(c,)W(c,)> = ic NZ<TrW(c) , 

as in simple loops. The second piece occurs when the variation hits the 

Uli(x) contained in W(C2). In the usual fashion (i.e. using (3.5)) this 

yields a term: 

iE Z <Tr WCC,) Tr W(c2)> . (3.14) 

For any finite N the quantity (3.14) is not a Wilson loop operator and 

one does not have a closed equation for loops. However, at N=- (3.14) 

factorises into 

iE Z <Tr W(c,)><Tr W(c2)> , (3.15) 

so that one now has a product of Wilson loops. The full Dyson-Schwinger 

equations are now closed equations for Wilson loops alone. For 

self-intersecting loops of the second kind (Fig.3b) the derivation is 

analogous. The extra source term (3.15) now occ~urs with a negative 

sign. The final form of the loop equations read (Wadia,l98lc): 

$ <Tr W(c)> + k <Tr W(cl)><Tr W(c2)> 

= { 1 {i <or w(c)u~(x)> - + <Tr W(c)Ui(x)> 
“‘I1 

(3.16) 

where the + (-) sign is for self-intersections of the first (second) 

type. 
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Similar loop equations may be derived in the presence of quark 

fields. This would, in general, involve relationships between Wilson 

loops and quark- string-antiquark operators. In the usual large N limit 

(i.e. in which the number of flavors is held fixed) a string cannot 

split forming a quark-antiquark pair (since fermion loops are 

suppressed). However, this can happen in the Veneziano limit 

(Foerster,l979; Das,1984). 

Continuum forms of the loop equations can also be derived (Makeenko 

and Migda1,1979). These are essentially continuum versions of equations 

(3.16) which now involve suitably defined derivatives of Wilson loops. 

These derivatives in loop space have to be regularised in an appropriate 

manner. Details of this formalism may be found in the review of Migdal 

(1983). 

The existence of loop equations in the N=m limit shows that QCD, in 

some sense, may be written as a string theory. However, the loop 

equations for the four dimensional theory remain unsolved. Migdal and 

his collaborators have made some progress in this direction. They have 

shown that there exist self-consistent solutions where the Wilson loops 

obey an area law. The theory has been, in fact, reduced to a fermionic 

string theory - the latter, however, remains unsolved. Recently there 

has been some progress in attempts of solve these equations numerically 

(Marchesini,l984). One of the major difficulties in the program is the 

fact that the various Wilson loops are not all independent of each 

other. 

Dyson-Schwinger equations may be derived for various other 

theories. Exact solutions are readily obtainable for vector-like models 

- these can be ,however, solved by various other methods. For most 
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non-trivial models, like the matrix model and chiral models, there does 

not exist any exact solution as yet. 

While it is true that a solution of the loop equations would 

provide all gauge-invariant Green’s functions, it is certainly not true 

that they provide all information about the theory. As examples of 

physical quantities which loop equations alone cannot determine are the 

spectrum and scattering amplitudes. These require, in the present 

framework, calculation of connected correlations of gauge-invariant 

operators - which vanishes by factorisation. Such quantities can be, 

however, obtained (in principle) in the approach of classical 

hamiltonians which we shall briefly discuss below. 

Master Fields and Saddle Points 

Consider two invariant classical operators A and B. Factorisation 

implies: 

<A B> = <A><B> at N = m 

When A = B this becomes: 

<A2> = <A>* (3.17) 

which means that fluctuations vanish at N==. This has led Witten (1979c) 

to argue that at N=m the functional integral is evaluated by a single 

field configuration called the Master Field. For gauge theories one 

has, of course, a master orbit - i.e. a trajectory in configuration 

space whose points are related to each other by a gauge transformation. 

While the master field certainly exists it is not clear how to evaluate 

it except for trivially solvable models. Recently, recursive procedures 
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have been developed to find the master field numerically (Yaffe,1984) 

and equations obeyed by master fields have been obtained by several 

methods (Greensite and Halpern, 1983 ; Jevicki and Rodrrigues, 1983). 

The absence of fluctuations at I~== also suggests that the large N 

limit is some kind of a classical limit. To get a feeling about the 

nature of this limit we now discuss a solvable model in the framework of 

the quantum collective field method (Jevicki and Sakita, 19,80; Sakita, 

1980; Jevicki and Papanicolaou, 1980; Jevicki and Levine, 1981; Jevicki 

and Sakita,l981 1. Consider the linear U(N) sigma model involving a 

field qi(x) in the fundamental representation of U(N). The action of 

the lattice is given by: 

s = z 1; i I$i(x+u!-$i(xq* +; In* 1 +$i(x) x v,i 1 

+ ; CT +miw2j I 
1 

and the partition function is: 

Z = j II d$I(x)d@i(r) exp(-S) . 
x,i 

Ye shall consider the limit 

N + m, A = fixed. 

(3.18) 

(3.19) 

Now, each term in the action is of order N. By resealing the variables 

N may be brought out in front of the entire action. One might think 

that for large N the integral is then dominated by the saddle point of 
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the action. This is wrong. The reason is that the measure 

il d$i*(x)d$i(x) grows exponentially with N. In other words there is a 

large entropy which must be taken into account in the minimisation of 

the free energy. To extract the N dependence of the measure we go over 

to invariant collective variables defined by: 

O’(X,Y) = i P)Xhi(Y) I 
i 

and introduce 

1 = i Cdo’l II 6 iO’(X,$) - 1 ‘$~(X)‘J~(Y)] , 
X,Y i 

into the partition function (3.19). Z now becomes: 

Z = I [do’] JCO’I e -SC ‘3 ’ 1 

where S [o'l is the action written in terms of the o’s: 

SCa'l =; ' 1 K (x,y)o'(x,y) + T m 2 1 o'(x,x) 
X,Y,U lJ X 

-; 1 (o’(x,x))2 , 
x 

Kp(x,y) = 26(x,y) - a(~,~+;) - 6(x,y-;) , 

(3.20) 

(3.21) 

(3.22) 

is simply the second derivative operator on the lattice. The Jacobian J 

Co'1 is given by: 
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J[O’i = I [dW*d$i IL G[a’(X,Y) - i: $~(x)$i(y)] . 
XPY i 1 

This may be evaluated by a saddle point method at large N (Wadia,l98lb) 

by exponentiating the delta function: 

J[o’I = / [d$*d@l II dA(x,y)exp i 
XSY I 

z h(Y,X)[‘J’(X,Y) - 1 mps;cY)i . 
2.Y i 1 

(3.23) 

Performing the integration over $ and $* , one has: 

JCo’l = j II d,I(x,y)exp 1 [ih(y,x)o’(x,y) - N I.n A(x,y)6(y,x)] . 
X,Y I X*Y 1 

(3.24) 

Since each term in the exponent is of order N , J Co’] is given by the 

saddle point value: 

h(x,y) ‘= - i N a’ 
-1 

(x,y) . 

This yields 

J[o’] = exp[N i kn 0*(x,x)1 . 
x 

(3.25) 

The whole partition function may be now written in terms of the order 

one collective field o(x,y) defined by: 
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o(x,y) = & o’(x,y) 

Z = 1 [do] exp(- N SeffCal/ , 

where 

S effcol = 1 Kp(x,y)o(y,x) + “* i 0(x,x) 
X,Y,li x 

- + 1 (0(x,x))* - 1 en 0(x,x) . 
x X 

(3.26) 

(3.27) 

In Eq. (3.26) both S eff(~) and the measure do are of order one. Hence 

for large N the integral may be evaluated by the saddle point of Seff. 

The saddle point equations are: 

1 K,,(x.Y) + m26(x,y) + $ o~~(x,~) = ,, -‘(x,y) , (3.28) 
P 

where 

OO = 0(x,x) . 

In terms of the Fourier components defined by: 

O(X,Y) = I 
+n ddk - eik-(x-y) 

-n (2n)d Ok ’ 

one has 

1 
Ok = 4 1 sin* ku/2 + m* + 4h/N o. 

IJ 

(3.29) 

(3.30) 
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where u o is determined by the self-consistent gap equation: 

+’ ddk 
Oo = 0(x,x) = I 

1 

k,,/2 + m 2 + 4X/N o 
0 

u 

(3.31) 

In fact, Eq. (3.28) is simply the Dyson-Schwinger equation for the 

model. In this case equations (3.330) and (3.31) provides all the 

correlation functions of the model - since all invariant n-point 

functions are products of two-point functions by virtue of 

factorisation. However, the large N effective action (3.27) contain lot 

more information than the loop equations. This is because one can nor 

perform small fluctuations around the solution to the Dyson-Schwinger 

equations and thereby extract the spectrum of the theory. 

The collective field program has been carried out in the euclidean 

(Jevicki and Sakita, 1981) as well as in the Hamiltonian framework 

(Jevicki and Sakita, 1980; Sakita,1980). For the gauge theory the 

collective variables are the Wilson loop operators W(C) along all 

possible loops C. In the Hamiltonian framework these loops are all 

spatial; in the euclidean approach there are temporal loops as well. We 

shall not enter into the details of this formalism, but simply discuss 

the main issues. 

The loop space Hamiltonian may be written as (Sakita.1980; Jevicki 

and Rodrigues,l983): 
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g2 H = -22 Jc’ 1. 
ir(c)n(c,c’)n+(c) + ; 2 o+(c)u-‘(c,c~h(c~) 

- 2 1 Cm(P) + e(F)1 , 
g4 P I 

(3.32) 

where 

fl(c,c’) = -2 1 1 i~“(~)*(c)ii~u(a)0+(C’)l 
9.a 

w(c,c’) = 2 i 2(e)2?e)*(c) , (3.33) 
P.a 

and Q(C) is the Wilson loop operator around the spatial loop C. Es(l) 

is the standard electric field operator along the link 1. Q(P) denotes 

the elementary plaquette Wilson loop and 4(P) the conjugate loop. *(Cl 

denotes the momentum conjugate to G(C) in loop space. The above 

Hamiltonian is obtained in a way similar to that used in obtaining the 

collective field action for the sigma model. One makes a change of 

variables from the links Ul’s to the Wilson loops O(C) (which form an 

overcomplete set of variables). Subsequently a canonical transformation 

is performed to go over to variables in terms of which H is explicitly 

hermitian. Note that the @(C)‘s are not independent of each other. 

However, it has been argued that in the large N limit @(C)‘s and their 

conjugates T (C)‘s may be regarded as independent variables. 

By a resealing of variables: 

4 + N4 gz + N -‘A 

N2 factors out of the effective potential: 
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V eff(Q) = g 2 o+(c)rl -‘(c,c~h(c~) - 1_ 1 (o(P)+@(P)) . 
cc’ A2 P 

One might think that the expectation values of 9(C) in the large N limit 

is given nby the saddle point of Veff: 

BV eff(@) 
64 

= D 

This is, however, incorrect in the weak coupling region (Jevicki and 

Rodrigues, 1983) because of non-trivial inequalities coming from the 

fact that a(C,C’) is positive definite. Veff has to be minimised in the 

presence of these constraints. It has been shown, however, that a set 

of master variables can be introduced to transform the problem to that 

of an unconstrained minimisation (Jevicki and Aodrigues,l983). This 

approach has been pursued numerically for some models. 

Another approach to the large N limit is that of “constrained 

classical solutions” (Bardakci,l98la; Halpern.1981). We shall 

illustrate this method for a simple one-vector model consisting of a 

single N component vector xi(t) evolving in time. The relevant matrix 

elements are vacuum expectation values of index ordered product of 

operators, like 

Let us insert a complete set of quantum eigenstates after each field 

operator. Due to the restriction to index-ordered products such 

intermediate states must transform either as O(N) vectors or as O(N) 

singlets. Factorisation further implies that the only singlet state 
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which can contribute to the leading large N behavior is the ground 

state. One thus needs only the following matrix elements: 

<n,ilRjlO> = dijqn//N . 

Here n labels the number of O(N) vector eigenstates, i is an O(N) index 

labelling the states within such a multiplet and qn is the “reduced” 

matrix element. Since all states are eigenstates of the Hamiltonian, 

the qn’s have a simple time dependence: 

q,(t) = e 
iwnt 

q,(O) . 

where wn = E n - E, is the excitation energy of the nth. eigenstate. 

Taking matrix elements of the quantum equation of motion 

q + 2V’(ji2)Ci = 0 , 

(where V(x2) is an O(N) invaraint potential) and using factorization one 

has the following equations for the reduced matrix elements: 

q, + 2V’(q.qX) 4” = 0 I 

Thus q,‘s obey a classical equation of motion. These equations must be, 

however, supplemented by constraints obtained by taking vacuum 

expectation values of the commutation relations: 
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L (qiln-9rqn) = i . 

A similar set of constrained classical equations may be be obtained and 

solved for the familiar vector models. The approach has been also 

extended to gauge theories (Bardakci,l981b & 1982). 

The precise nature of the “classical” limit at large N has been 

investigated in detail by Yaffe (1982). Essentially one constructs 

analogs of coherent states of quantum mechanics for the sequence of 

theories labelled by N. Under certain conditions (on the state space 

and operators) the expectation values of operators in these coherent 

states behave as classical dynamical variables in the N=- limit. There 

is a well-defined procedure to construct the corresponding classical 

phase space and the classical hamiltonian which govern the dynamics. 

This approach has been recently used to develop a recursive method to 

construct the master field (Yaffe.1984). 
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IV. EGUCHI-KAWAI MODELS AND QUENCHING 

Recently, Eguchi and Kawai (1982) pointed out a remarkable 

consequence of factorisation. They showed that under certain conditions 

one can completely forget about the space-time dependence of fields at 

N=m. Consider the standard U(N) lattice gauge theory. From this field 

theory one could obtain a matrix model by making the following 

reolacement: 

Up(x) + II . (4.1) 
u 

The standard Wilson action becomes: 

s + SEK = 5 1 Tr(lJ&U; U+ + h.c.) v 

The quantity corresponding to a Wilson loop operator 

W(c) = TriU~(x)Uv(x+~)U~(x+~+~)...] , 

(4.2) 

(4.3) 

is given by 

W,(c) = Tr[U U U . ..] , (4.4) 
!Jvu 

which is just an ordered product of the reduced variables U 
P in the same 

order in which the corresponding links appeared in W(C). The partition 

function of the reduced model is given by: 

Z = 1 II dU exp(-S), 
P p 

(4.5) 

and reduced averages are obtained in the ensemble defined by (4.5): 
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<Tr WR(c)> = ; I ; dU T; W,(c)e -SEK ~ (4.6) 

One could derive Dyson-Schwinger equations for <WR(C)> in the same way 

as in the field theory. Consider the simple loop of Fig.1. once again. 

The quantity W,(C) for this loop is given by: 

WR(C) = uJpU&..UJ . 

To derive Dyson Schwinger equations we start with the quantity: 

Xi(c) = I II dUllITr AaU U . ..) e -SEK 
, (4.7) 

lJ u u 

(which is the direct analog of (3.6)) and follow exactly the same steps 

as in Section III. The contribution from the variation of the action 

(the equation of motion term) is exactly the analog of (3.ll),viz. 

i 
vfu 

- iEBZ<Tr(WR(c)U 
W+ 

1 - Tr(WRWJ;v+) 

+ Tr(W,(c)Uu$ - Tr(W.@U+ lJ"J> (4.8) 

U 
UV+ 

= u u u+u+ 
UVPV 

u = u u+u+u 
uv- UVlJV * 

(4.9) 
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Note that U ~,u+ (U,,y-) would correspond (via Eq. (4.1)) to a plaquette in 

the (P,v) plane ( (P,-V) plane). Thus (4.8) is the reduced version of 

the right hand side of the equation in Fig.2. The source terms come 

from variations of the U 
IJ ‘s contained in W,(C). When the variation hits 

the first Un in W,(C) one has, analogous to (3.8): 

is NZ<Tr WE,(c)> . 

But now we have some extra source terms. These terms come from 

variations of all the other U u’s contained in W,(C). Such terms are not 

present in the field theory case since one could vary only the link 

Up(x) - in fact such terms would occur only if the loop is 

self-intersecting. These extra source terms in the Eguchi-Kawai model 

are typically of the form: 

ie 1 ll dU e -SEK Tr(h=U U . ..A% u u . ..u ) 
P p u lJ IlPV u 

= ia Z<Tr(U U U+...Uu)Tr(U U U 
II LJ v u u v 

. ..Uu)> . 

Here the variation has hit a Uu which corresponds to the link which 

starts at the point y in Fig.1. Using factorisation, the above quantity 

becomes: 

ic Z<Tr(U U UC 
ULiV 

. ..Uu)><Tr(U U U . ..Uu)> ; 
II ii v 

(4.10) 

This is a product of UP ‘5 along open lines, i.e. the two open lines 

joining x and y. The Dyson-Schwinger equations for the Eguchi-Kawai 
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model are identical to those of the field theory only if such open lines 

vanish. 

The Eguchi-Kawai (EK) model, being a single point theory, does not 

have any local gauge invariance. The action (4.2) (as well as the 

measure) are, however, invariant under the following transformations: 

U -t suus -1 
Ii (4.11a) 

i8 
U f‘s plJ 

u iJ 
(4.llb) 

(4.11a) is the r emnant of local gauge invariance of the original field 

theory, while (4. 1 lb) is a L'U(l)ld symmetry (ZNd for SUCN)). The open 

line traces in Eq. (4.10) are invariant under ('l.lla), but not under 

(4.llb). Only Wi .l son loop operators along closed loops are invariant 

under both 'the symmetries. Eguchi and Kawai argued that the CU(l)ld 

symmetry protects terms like (4.10) from acquiring a non-zero value - 

and hence the model (4.2) has the same Dyson-Schwinger equations as the 

parent lattic e gauge theory. Assuming that the entire content of the 

N=- limit is contained in the Dyson-Schwinger equations, it then follows 

that the reduced model described by (4.2) is completely equivalent to 

the standard Wilson theory at large N. 

In the strong coupling region this is certainly true. The matrices 

U 
11 are all fluctuating randomly: the eigenvalues of U,, would be 

uniformly spread over the unit circle, thus maintaining the [U(l) Id 

symmetry. In fact, this symmetry is unbroken for all coupling for 

dimensions less than or equal to 2. It was, however, soon pointed out 
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(Bhanot,Heller and Neuberger,l982a) that in weak coupling the symmetry 

(4.llb) is spontaneously broken for dimensions &v-eater than 2. The N 

eigenvalues. of Uu all tend to be equal to each other. The Eguchi-Kawai 

model as it stands is not equivalent to the standard lattice gauge 

theory in weak coupling - and hence certainly not in the continuum 

limit. 

The Quenched Eguchi-Kawai Model: e4 Theory. 

Bhanot , Heller & Neuberger (1982a) proposed a modification of the 

naive Eguchi-Kawai model in which the above-mentioned [U(l)ld symmmetry 

does not break in weak coupling - known as the Quenched Eguchi-Kawai 

(QEK) model. We shall not describe the QEK model as originally 

formulated. Rather, we shall present it in the framework of more 

general considerations about the reduction mechanism in large N 

theories. 

A general formulation of reduced models emerged in a series of 

papers beginning with the work of Parisi (1982). Consider a scalar 

field theory with the field e(x) in the adjoint representation of U(N). 

The lattice action is given by: 

1 $ Tr Ic$(x+u)-$(x)~~ + i m'Tr c$~(x) 

+ i Tr e’(x) 
I 

(4.12) 

( s(x) has been written as a N X N hermitian matrix). The large N limit 

of this model is defined by 
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g = fixed, N + m . 

The perturbation expansion of this model is very similar to that of the 

gauge theory - the leading order diagrams are all planar. 

A naive Eguchi-Kawai reduction prescription, i.e.: 

does not lead to a model which is equivalent to (4.12). Consider, 

however, the reduction prescription: 

4(x) -t D,(x) 4 D;(x) , (4.13) 

where 

CD,(x)lij = exp(i(ky-ky)xp)6ij , (4.14) 

is a matrix in the internal symmetry space. We shall refer to (4.13) 

and (4.14) as the Quenched Momentum PreSCPiptiOn (QMP). Applying the 

QMP to the action (4.12) and factoring out the volume one obtains the 

reduced action: 

S(k) 
QEK 

=; J, /$$(2d + m2 - 2 ;;. cos(k;-k;)) 

1r.l P 
(4.15) 

+;Tr Q4 . 

which shall be shown to be equivalent to the field theory (4.12) at N==. 

To spell out the precise sense in which these are equivalent, one must 

have a prescription that relates averages in the reduced theory to those 
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in the field theory. Consider an invariant functional f(p(x)) of the 

field. The statement of equivalence then reads: 

dk? 
<f(+(X))>FIELD = i n ($1 <f(Dk(x)$D;(x))> , (4.16) 

THEORY u,i 

where the average of a quantity 0 in the reduced model is defined by 

(for a fixed value of the k’s): 

<ii> = k l i; deij e-“” 0 . (4.17) 

-s(k) 
Zk = I 

QEK n dQije . (4.18) 

ij 

The origin of the epithet “quenched” is now clear. The action SQEK 

defines an ensemble in which averages are to be taken for a fixed value 

of k. A quenched average over k is then performed. The k’s are 

dynamical variables, but not on the same par as the Qi’s. 

The form of the reduced action, (4.15) looks like the momentum 

space action of the field theory with kiu - kju behaving as the momenta. 

To make the connection precise, consider the zeroth order propagator in 

the reduced model: 

(4.19) cij = <“;j9ji> = 1 

2d - i: cos(k;-k;) + m2 
LJ 

which certainly looks like the usual momentum space propagator. To show 

that this is really so, consider Eq. (4.16) with 
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l-($(X)) = $+(x)$(o) . 

The right hand side becomes: 

dklf 
e 

i(ky-k!)xu 
<Gij$ji> 

dk!’ 

= ’ ,Ti (2n ij e --iI i 
i(kp-kv)x 1 J !J 1 

26 - 1 cos(ky-ky) + m2 
u 

(4.20) 

Note (4.20) diverges badly for i = j. To avoid this we impose the 

constraint 

eii = 0 . (4.21) 

These are N constraints amongst N2 variables: hence they are irrelevant 

in the leading order behavior at large N. 

The expression (4.20) may be viewed in two equivalent ways: 

(a) One could make a change of variables to 

P’ = ky - k; ; q ’ = ; (k;+k;) . 

With this (4.20) becomes 

N(n-1) I A- e ipmx 1 

(2*jd 2d - 1 co3 pu + m2 
u 

which is, up to l/N corrections, equal to the usual propagator 

<‘i-r $+(x)$(O)> , 

(4.22) 

in the field theory. Note that the difference between (4.22) and (4.23) 

are of order l/N due to the presence of the constraints (4.21). 
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(b) An alternative way of viewing this is to note that it is not 

necessary to perform the momentum integrations. This is because one can 

write 

i f(k;-k;) = 1 2‘ f(PJ) , 
i#j i j+i 

(4.24) 

where 

P; = k; - k; , 

and f is any function. Now, pj ’ lies in the Brilluion zone 

-7 < PJ” < +TI 

(all momenta are in units of the inverse lattice spacing). Let us 

divide this hypercube in momentum space into N parts and chose the p p,3 
j 

densely and uniformly over the entire hypercube. In other words, each 

of the N parts is labelled by an index i which runs from 1 to N. The 

PiU are chosen to be the particular momentum at the center of the cell 

labelled by i. Then, by the definition of a Riemann integral: 

+’ ddp 
i- 

-lI (2njd 
f(p) = Lim 1 t f(pi) . 

N+m N i=i 
(4.25) 

Using this in Eq. (4.20) one gets the same result as (4.22), for N=m. 

The latter way of viewing the sum in (4.20) tells us how large N 

is. From Eq. (4.25) one sees that there is a total of N momenta to sum 

over. Now, if the original field theory is defined in a periodic box of 



-37- FERMILAB-Pub-84/103-T 

side L one has Ld momenta. Thus for the reduced model to be equivalent 

to the field theory one must have: 

N = Ld~ . (4.26) 

We have demonstrated Eq. (4.16) for the two point function to 

O(gO). Of course, the equivalence holds order by order in the 

perturbation expansion. A perturbation expansion of the action SQEK may 

be derived in the usual fashion. The lowest order propagator suggests 

that we represent each propagator by a double line (Fig.4a.j: each line 

carrying a group index. This is the usual representation in the 

corresponding field theory (‘t Hooft,l974). However, here one assigns 

this double line a “momentum” (ki - kj). The propagator is, by 

definition, zero when i = j (this follows from the constraint $ii = 0). 

Vertices are similarly represented in Fig.4b. If ki - kj is to behave 

as a momentum it must be conserved at each vertex. From Fig.4b it is 

easily seen that this is true. In fact, the reason this is true is that 

each index line at the vertex once flows in and once flows out - as 

required by the internal symmetry of the theory. Thus the internal 

symmetry always guarantee3 momentum conservation. We shall discuss a 

deeper explanation of this fact later. 

Using the Feynman rules of Fig.4 one can now compute any 

correlation function. Let us illustrate this for the O(g2) correction 

to the propagator. The relevant Feynman diagram is shown in Fig.5. The 

contribution to <$fj$ij> from this graph is given by: 

22 L (0. .j2 GjeG~kGki ; 
N2 kiZ iJ 

(4.27) 

The corresponding graph in the field theory is given by: 
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g2N2 I ($ ($) (C(P))~ G(q)C(r)C(p-q-r) . (4.28) 

Renaming variables in (4.27): 

Gn. - gj = q’ $ Gi + gj + i: k + IT,, = 6 

one can now verify Eq. (4.16) explicitly in a way analogous to the 

zeroth order case. 

The equivalence stated in Eq. (4.16) holds only for planar graphs 

to all orders in perturbation theory. The reason is that our way of. 

assigning momenta to propagators in the reduced model does not work for 

nonplanar diagrams. In any nonplanar diagram of the field theory there 

is always at least one propagator which has its two indices equal to one 

another (e.g. Fig.6). This would be automatically zero in the reduced 

model. Since the leading diagrams in the large N limit are planar the 

QEK model of Eq. (4.15) is equivalent to the field theory (4.12) at N=m 

- at least to all orders of the perturbation expansion. 

There is another way to understand this equivalence - within the 

framework of stochastic quantisation. Any quantum theory may be viewed 

upon as a dynamical statistical system evolving in a fifth “time” 

according to a Langevin equation with a gaussian random noise (Parisi 

and Wu.1978). The quantum averages are then equal to the long time 

limit of stoachastic averages of this equivalent Langevin system. In 

this framework it is easy to see how the space-time dependence of the 
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fields factor out in the large N limit, exactly according to the QMP 

(Alfaro and Sakita,l982). 

The QEK Gauge Theory 

One might think that constructing a QEK model for the lattice gauge 

theory is straightforward: one simply needs to replace the original 

Eguchi-Kawai reduction prescription by a QMP for links. This is wrong. 

Consider the reduction ansatz: 

Uu(x) + D,W&x) . 

For a fixed value of Ii0 the partition function becomes: 

Zk = j dUu expjs 1 Tr(U~D~U”D~‘D~U:D~‘U~h.c.)] 
P>V 

where 

+ 
j 

= exp(i ky)bi i . 
.J 

Since the Du’s commute the QEK action may be rewritten as: 

‘QEK = 5 1 Tr[(U~D~)(UvD~)(UUD~)+(U~D~)+~ + h.c. 
OV 

(4.29) 

(4.30) 

(4.31) 

One can, however, make a change of variables: 

U -t U’ = U Dk 
P P vu’ 

(4.32) 

Since the Haar measure dU ~ is invariant, it is easy to see that in 
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terms of U ’ ~ , Zk is the partition function of the naive Eguchi-Kawai 

model. Replacing the naive EK reduction rule by the quenched momentum 

prescription did not change anything. 

To get around this impasse’ either the integration measure (Das and 

Wadia,l982; Gross and Kitazawa,l982; Migda1,1982) or the action (Chen, 

Tan and Zheng, 1982) has to be altered. There is no unique way to 

change the measure. In the QEK model the remnant of gauge symmetry is: 

UuDu + SVJllDll)S-’ . (4.33) 

One could first fix the gauge in a suitable fashion (say the Lorentz 

gauge) and introduce the constraint into the measure (Das and Wadia, 

1982): 

(log U”jii = 0 . (4.34) 

Another approach involving prior gauge fixing has been discussed by 

Parisi and Zhang (1983). 

Gross and Kitazawa (1982) use a procedure which involves a gauge 

invariant constraint and hence does not need prior gauge fixing. The 

measure they use may be written as: 

I Ii dUN C(Uu,Du) , 
11 

(4.35) 

where 
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C(Up,Dll) = II I dV A(D+JuD~-V~DuV;I I 
P IJ 
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(4.36) 

and 

ii = Il sin 
2 ,k;-k” 

i<j 
I--$) . 

Here V ~ denotes a U(N) matrix. The delta function constrains the 

eigenvalues of UuDU to be equal to those of Dp. Since eigenvalues are 

invariant under the similarlity transformation (4.33) this is an 

explicitly gauge-invariant constraint. A similar measure has been also 

proposed by Migdal (1982). 

The effect of the constraints (4.34) and (4.36) is to destroy the 

invariance of the measure under the change of variables in Eq. (4.32) 

Recall that the naive EK model does not work because in weak coupling 

the eigenvalues of (U,,Du) tend to cluster around the same value. The 

constraint implied in (4.36) forces the eigenvalues to be equal to 

,ik’. 1, which are randomly distributed over the unit circle since the k’s 

are totally random in the quenched model. This ensures that the correct 

vacuum is U = 1. 
v The constraint (4.33) achieves the same end by 

constraining the diagonal elements of log u ~. (Since the diagonal 

elements are not gauge-invariant one needs a prior gauge-fixing). 

Quenching thus prevents the [U(l)ld from breaking and hence forces all 

open lines to vanish. 

To investigate the weak coupling perturbation expansion of the 

model we expand Uu around the vacuum: 
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U 
LJ 

= exp(ig Au) , (4.37) 

in powers of g, and fix a gauge (which is already done if one uses the 

constraints (4.33)). There is a one-to-one correspondence between the 

Feynman graphs of the reduced model to those of the gauge theory, just 

as in the Tr Q4 model. In terms of the A,,‘.? the constraints (4.33) 

become: 

(AJii = 0 (4.38) 

which is the direct analog of the constraint $ii = 0. The constraints 

in (4.36) also tranSlate into equations relat,ing (Au)ii with the other 

(Au)ij, but those equations are different in different orders of 

perturbation theory. These, in general, generate new vertices apart 

from those contained in the action, leading to new tadpole graphs. 

Gross and Kitazawa, however, showed that all such tadpole graphs vanish 

after the integration over the k’s is performed. 

While all the various types of constraints lead to reduced models 

which are equivalent to the gauge theory, for numerical purposes it is 

particularly convenient to use the measure (4.36) since it is explicitly 

gauge-invariant. In fact, the QEK model with this measure is equivalent 

to the model proposed by Bahnot, Heller and Neuberger (1982a). The full 

partition function is given by: 

Zk = j li dU~dV~a(DY)d[U~DL-V~D~V~,e-sQEK 
P 

(4.39) 

with S QEK given by Eq. (4.31). Now integrate out the U,,‘s. Due to the 

delta function this amounts to replacing U 
u by VvDvVp+Dp+. Zk IlOW 

becomes: 
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2 ,=I Il dV a(D )eXp(-S’ ) , 
iJ p P QEK 

where 
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(4.40) 

‘&EK = 
p i Tr(V D V+V D V+V D+V+V D+V++h.c.) , (4.41) 

lJ>v p~~vvv!.L~!Jvvv 

which is precisely the model of Bhanot, Heller and Neuberger (1982a). 

Quarks in QEK models. 

So far we have dealt with theories involving fields in the adjoint 

representation of the symmetry group. Fields in the fundamental 

representation may be also incorporated in a straightforward manner. In 

fact, a general quenched momentum prescription reads: 

P(X) + D(x) - @ , (4.42) 

where the representation content of I$ determines that of D(x). Thus for 

a field in the fundamental representation: 

Gi(x) * D:;)(x)v, , 

with the D’s given by (4.14). 

In gauge theories, internal quark lines are, of course, absent at 

N=m. However, one might study the meson spectrum by looking at, say, 

<GJ(x)h(o)>c. In the QEK model this connected correlation cannot be a 

function of x ! This is because +$(x) is a local color singlet and 

hence translationally invariant in the reduced model. In index space 

this means that there can be no net index flow into a +# insertion - 

hence no non-zero momentum. Gross and Kitazawa, however,suggested that 

one can nevertheless force a net momentum to flow along the external 

quark lines - this would not jeopardise anything else since there are no 
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internal quark loops. 

A more systematic approach is to consider a reduced model for the 

Veneziano limit of QCD. Such a model has been constructed and shown to 

be equivalent to the field theory (Levine and Neuberger,l982a; see also 

Klinkhamer,l983). 

Other Hodels 

The quenched momentum prescription may be applied to a variety of 

other models. For models involving fundamental representation fields 

only (e.g. the (02J2 theory) it readily yields an expression for the 

master field (Das and Wadia,1982; Gross and Kitazawa,l982). Consider 

the linear sigma model discussed in Section III. The two point 

correlation function is given by: 

o(x) = ; ci e+$i(o)> = J 
+’ ddp .ip.x. 

- 
i -7l (2lr)d 4 1 sin2 pp/2 + m2 + 4h/N a0 

!J 

where the quantity a0 is determined by the self-consistent gap equation: 

+' ddk 
i- 

1 
Oo = 

-TT (27~)~ 4 1 sin2 kp/2 + m2 + 4h/N a0 
v 

Evidently, one would get the same equations in the QEK version of the 

model. The correlation function of the reduced fields is simply: 

<+y = 
1 

4 1 sin2 ky/Z + m2 + 4h/N o. 
!J 

and one obtains o(x) by the direct analog of (4.16). It is clear that 

(4.44) is obtainable from the reduced master field $:: 
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Gi = 
14 1 sin2 ky/2 + l2 + 4h/N. CI~]“~ 

IJ 

which, when plugged back into the reduction prescription leads to the 

master field of the full field theory: 

i k’lx 

igx) = 
1 u 

14 i si”2eky/2 + m2 + 4,4/N o~}“~ * 
ii 

This correctly reproduces a(x) since , as argued earlier, a sum over the 

index i is equivalent to a momentum integration at N=m. 

The master fields of other vector-like models can be obtained in a 

similar manner. Gross and Kitazawa(l982) has also obtained the master 

field of two dimensional pure QCD. 

QEK models have been constructed for SU(N) X SU(N) chiral models 

(Heller and Neuberger, 1982a & 1982b; see also Green, 1983; 

Bha”ot,1983). In fact there has been some progress in attempts to solve 

the two dimensional chiral model analytically (Bars, Gunaydin and 

Yankelowicz, 1983). 

Hamiltonian Versions 

Reduced models have been constructed for large N Hamiltonian 

theories (Neuberger,l982; Kitazawa and Wadis, 1982). This involves the 

reduction of the spatial dependence of fields, retaining the temporal 

dependence. Thus, typically the reduction prescription would read: 

$(;,t) -t Dk(:)e(t)D;(:) , 

with x denoting the (d-l) dimensional spatial position vector. The 
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resulting model is simply a one-dimensional field theory,i.e. quantum 

mechanics. It has been argued that reduced hamiltonians may be used to 

extract then glueball spectrum (Levine and Neuberger,l982b). This cannot 

be done in euclidean reduced models - one requires connected 

correlations of Wilson loops which vanishes due to factorisation. 

Furthermore hamiltonian formulations can be used to obtain reduced 

models at finite temperature (Neuberger, 1983). This is done by simply 

restricting the total time extent of the box to a fixed,value and 

imposing periodic boundary conditions in the usual manner. 

QEK in the Continuum 

All the above considerations may be applied to a field theory 

defined with a continuum regularisation, e.g. a momentum cutoff. The 

QMP of Eq. (4.13) then readily yields the following expression for 

derivatives: 

-i> 6. 
P 

ik + (k;-kj) 6yj . 

I” fact, even in gauge theories a momentum cutoff provides a 

gauge-invariant regularisation in the continuum (Gross and 

Kitazawa,l982). This is because Ward identities are satisfied before 

integration over the momenta Ik). 

The Meaning of QMP 

We shall conclude this section by trying to investigate the meaning 

of quenched reduction. Consider the QMP once again, 



$4~) + Dk(x)q D;(x) 

CDk(x)lij = Gijexp[i(ky-kyjxp] . 

Unlike the naive EK model the field e(x) is not translationally 

invariant at N==. Rather the translation group is represented within the 

internal symmetry group. At N=- there are a large number of internal 

degrees of freedom. Some of these are used as "momenta". Since the 

translation group is abelian, it is natural to represent it in the 

diagonal CU(l)IN subgroup of the internal U(N) symmetry - and this is 

precisely what equations (4.13) and (4.14) represent. In the next 

section we shall consider a different way of representing translations 

inside the internal symmetry group which works for an interesting class 

of models. 

V. THE TWISTED EGUCHI-KAWAI MODEL 

In the previous section we saw that quenched reduced models are 

obtained by representing translations within the diagonal subgroup of 

the internal symmetry group. In a sense this is a natural thing to do 

since translations between two given points along different routes 

commute. However, if a theory contains fields which are in zero N-ality 

representations of SU(N) group, (like pure gauge theory) one has a much 

wider possibility. One can now represent translations by matrices which 

fail to commute by an element of the center of the group, ZN. Since zero 

N-ality fields are blind to the center, translations along different 

routes would still commute. Such a reduction scheme is the basis of 
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twisted Eguchi-Kawai models (Gonzales, Arroyo and Okawa, 1983; Eguchi 

and Nakayama, 1983). Consider a field theory defined on a lattice 

containing a field p(x) in the adjoint representation of SLJ(N). The 

twisted reduction prescription is: 

G(X) -t D(x) e D+(x) , 

where 

x 
D(x) = II (T ) ’ 

lJ p 

(5.1) 

(5.2) 

and ru are traceless SU(N) matrices obeying the ‘t Hooft algebra 

r r =z l-r 
u v VP vu 

(5.3) 

Z liv is an element of the center of the group ZN: 

Z 
vv = exp( y “,“), (5.4) 

where n TV 1s an antisymmetric integer-valued dxd matrix (in d 

dimensions). Thus Avis the matrix which implements translations by one 

lattice spacing in the p direction by means of adjoint action on e. 

Since T 
IJ acts by acts by adjoint action the non-commutativity of the 

Tuls does not lead to non-commutavity of translations. This would not 

be true if there were fields in the fundamental representation. 

The reduced action is obtained by substituting (5.1) into the 

action of the field theory, i.e. 
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sTEK(@,npv) = -& S(D(x)@+(x)) 

and the partition function is given by 

ZTEK = 1 [dOI exp(-STEK) , (5.5) 

for a fixed value of Z ~iv. The expectation value of any functional of the 

reduced field + is given by: 

’ jCd$IO($)e-STEK . <o($)>TEK = -$j-- 
TEK 

(5.6) 

The correspondence between correlation functions of the reduced model 

with those in the field theory is as follows. Let f(w(x)) be any 

invariant functional of the field e(x). Then 

W9(x)>,1,,, 
+ 

= <f(D(x)eD (x)1>,,, < 

THEORY 

(5.7) 

All these relations are for a fixed value of Z TV. Note we are not 

summing over various translation matrices as in the QEK model. Of 

course Eq. (5.7) would not hold for any Z,,“. &I fact, Zuv must be chosen -- 

so that the equivalence (5.7) holds. The choice of Z --- uv which respects 

this equivalence depends on the specific model and on the dimensionality 

of space-tine. 
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Let us now apply the twisted reduction idea to the lattice gauge 

theory Andy figure out what Z 
PV should be (Gonzales-Arroyo and Okawa, 

1983). The reduction rule for the link matrices is a direct 

generalization of (5.1): 

Up(x) + D(xWD;(x) , (5.8) 

with D(x) given by Eq. (5.2). The standard Wilson action now becomes, 

(apart from the trivial volume factor) 

%K = g 1 Tr(U~r~U:r:ryU~+r~UI’) + h.c. 
U>V 

(5.9) 

Using the algebra of r matrices in Eq. (5.3) this becomes 

qEK = B 1 Tr(Z~v(U;r~)(u:ru)(u~r~)+(u;rv)+ +h.c. (5.10) 
U>V 

The partition function of the TEK gauge theory is given by: 

‘TEK = I II dU’ exp(-S’ 
TEK) ’ 

(5.11) 
IJ p 

where dU’ 
u is the standard Haar measure. Making a change of variables: 

U’ + u’r =u 
!J IJ lJ IJ ’ 

(5.12) 

and using the invariance of the Haar measure one gets 
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II dU ‘TEK = i li p exp(-S 
TEK) ’ 
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(5.13) 

‘TEK = 8 1 Tr (ZuvUuUvU:U:) + h.c. (5.14) 
!J>v 

The reduced form for the Wilson loop operator is obtained by simply 

plugging in the reduction rule (5.8). In terms of the U ~ variables one 

has 

W,(C) = { II (Zpy) ‘“1 Tr(U U U . ..) (5.15) 
lJu PVlJ 

The quantity inside the trace is simply an ordered product of U’ us in the 

same order in which they appeared in the field theory. NP denotes the 
uv 

number of plaquettes in the (pv) plane in the minimal surface spanning 

C. 

Everything looks just like the naive Eguchi-Kawai model apart from 

some ZN factors. However, it are these ZN factors which, when properly 

chosen, force the system to the correct vacuum at wak coupling. 

The derivation of Dyson-Schwinger equations for W,(c) in the TEK 

model is exactly similar to that in the Eguchi-Kawai model. Once again 

these equations are identical to the loop equations of the gauge theory 

apart from products of traces of U;s along open lines. Consider such an 

open line extending from the origin to the point (kU]. The remnant of 

gauge symmetry in the TEK model is the same as Eq. (4.11a). The [U(l )Id 

symmetry is now a (ZN)d symmetry (since we are dealing with a SU(N) 

theory) 
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u 
LJ 

+ zuup (ZuE ZN) . (5.16) 

Once again, in strong coupling this symmetry is unbroken -- forcing all 

open lines to vanish. In weak coupling Uu fluctuates around the vacuum 

value UL') which minimizes to action. This is easily seen to be 

“(0) = r 
LJ il . 

(5.17) 

Thus in extreme weak coupling the trace of product of links along the 

open line from (0) to (kv) is easily seen to be 

k 
V(k) = Z Tr ii (rv) ' 

!.I 

where Z is a ZN factor which depends on the particular route taken from 

0 to ikp). To see whether this trace vanishes let us first prove the 

following simple theorem: 

Theorem: Let A and B be two SU(N) matrices and let may be 

AB = el'BA (5.18) 

such that d f Zrrk for any integer k. Then 

(i) 6 = T where n is an integer less than N 

(ii) Tr AB = Tr A = Tr B = 0. 

To prove (i) take the determinant of both sides of (5.18): 
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(e 
ioN - 1) det CAB) = 0 . 

Since det(AB) f 0 and 6 f 2rrk, one must have 6 = Znn/N. To prove (ii) 

take the trace of (5.18). This gives 

(e 
10 - I) TP CAB) = 0 . 

Since ei6 i 1, Tr(AB) = 0. Similarly, from (5.18) 

Now let us substitute 

^ 
A = el'BAB+ , 

A = rlland B = V(k) , 

in the above theorem. By virtue of the algebra (5.3) a relationship of 

the type (5.18) holds. Thus TrV(k) can be non-zero only if 

$k) ,rv] = 0 for all u . 

Using the explicit form for V(k) this leads to the condition 

(5.19) 

kP n IJa = qaN (5.20) 

where qcr are integers (mod N). 

(a) In two dimensions n,,cL, being antisymmetric, must be of the 

form: 

n =nc 
ua 

~a (n = integer) 

(5.20) may be then inverted to give 
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nk =E 
Li pivqlJN * 

(5.21) 

Now choose n = 1, Then Eq. (5.21) means that for all open lines whose 

trace is non-zero k 
P 

is proportional to N. Now let the parent field 

theory be defined in a box of size N with periodic boundary conditions. 

Then the nonzero V(k)‘s correspond to open lines in the field which run 

from one end of the box to the other -- and hence closed by boundary 

conditions. However, these open lines are nonzero even in the field 

theory -- and such terms are present in the loop equations of the field 

theory! All other open lines vanish. Hence the TEK model with n = 1 

has identical loop equations with those of the field theory. 

(b) In four dimensions we shall consider twists of the form 

= ON , (5.22) 

where 0 is an integer (mod N) and 

n 
1 

p” = 7 E~vaE n 
a6 

Furthermore 

n 
WnPV 

= aN6 
PP ’ 

Eq. (5.24) may be used to invert (5.20) leading to 

ok - =ll 
u pvq” - 

(5.23) 

(5.24) 

(5.25) 
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Let L be some integer, and let 

N = L2 . (5.26) 

Let us choose the symmetric twist: 

n 
!Jv 

= L for all v > p . (5.27) 

Then 0 = 1 and Eq. (5.25) means k,, must be proportional to L. Using the 

same argument as in the two-dimensional case, one see that the TEK model 

with the twist given by (5.26) and (5.27) is equivalent to the field 

theory defined on a periodic box of size L. 

For odd number of dimensions the matrix n I1v is singular and it is 

ackward to construct twists (see, however, Gocksch, Neri and Rossi 

(1983)). 

We have so far considered only simple twists. There can be in 

general a wide class of twists leading to interesting structures. 

(Brihaye, Maiella and Rossi, 1983; Fabricius, Haan and Filk, 1984). 

Twist Eating Configurations 

We now investigate the vacuum of the TEK theory. Thus in d 

dimensions we need d traceless matrices r ” satisfying the algebra 

r r =z rr 
u v VP v u 

Since r,, denotes the translation operator for a single lattice spacing 

along the v direction, none of these matrices can be products of the 

others. Furthermore these matrices are determined only up to unitary 
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transformations. 

van Baa1 (1983) has discussed a general procedure to construct the 

twist-eaters, i.e. the ruls, given the twist matrix n 
iiV’ We shall, 

however, restrict ourselves to the simple twists refered to above. For 

two dimensions, the algebra is given by 

r,r2 = exp (J$) r2riI 

These matrices have been constructed by ‘t Hooft (‘t Hooft, 1981). They 

are given by (nodule unitary transformations): 

rl 
= p = (: : : =)r2=Q( ‘I’ri’ e4ni,N) 

(5.28) 

In four dimensions, with the twist given in Eq. (5.27)., one must have 

four L* x L2 matrices satisfying 

r r 
+*ni/L = e- r r 

PU v II: 

These may be constructed in a fashion entirely analogons to the 

construction of representations of Clifford algebras. A particularly 

convenient choice is given by the direct product matrices: 
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rO = QL @ QL 

rl = QL PL 63 QL 

(5.29) 

irhere PL and Q, are the L x L matrices given by Eq. (5~.28) with N 

replaced by L. 

From (5.28) and (5.29) it is now clear why the CZ,ld symmetry 

(which protects open lines from acquiring any nonzero value) is not 

broken even in weak coupling. The eigenvalues of each of the rp13 are 

given by the set are given by the set (1, e2rri’L, e4*i’L,...e2n(L-‘)i’L) 

which are thus uniformly distributed over the unit circle. This 

explicitly respects the (ZN)d symmetry, since the action of the symmetry 

is simply to shuffle the eigenvalues. 

Note that the r II ‘3 for the four dimensional case obey 

rL 1 = . P 

This is simply a manifestation 

operation in a periodic box of 

Planar Perturbation Theory 

of the fact that r 
lJ is the translation 

extent L. 

In the quenched Eguchi-Kawai model,the reduced field eij itself 

became the analog of the fields of the parent theory in the momentum 

representation. In the TEK model, “momenta” are generated from the 
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r-matrices themselves. The weak coupling perturbation expansion is done 

by expanding Up about the vacuum r,,: 

iga 
U = e ‘r 

iJ !J 

(5.30) 

where d = 1 /g2. a II is the reduced gluon fields. Usually one expands ap 

in a basis formed by the standard A matrices. In our case it is useful 

to use the following basis in the Lie algebra of SUCN) 

A(q) = r 
ko kl k2 k3 
orlr r 2 3 

(5.31) 

where 

k =;; v wJq!J ’ 
(5.32) 

and 4,, are integers in the range 1 ( q, ( L (except q,, = L for all p to 

ensure tracelessness of A(q)). The A(q form a set of N2 - 1 

traceless, unitary linearly independent matrices. Let us list 3ome 

useful properties of A(q): 

A(L-q) = AC-q) . (5.33) 

A+(q) = AC-q) expt T <k/k>/ (5.34) 
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Tr(A(q,)A(q2)... n(q,)) = N(G(Zqi)) x exp T ,i, <kijkj> (5.35) 
l<J 

+ 
Tr(A (q,)A(q2)...A(qn)) = N6 -4, + i q. 

i=2 1 > 
exp y i <kil’cj> 

i<j 

x exp ( y<k,lk,> j , (5.36) 

where 

<kijkj> = 1 “,u(ki)v(kj)v . (5.37) 
U>V 

These relations may be easily derived from the basic commutation 

relations. The reduced field av is expanded in the basis (A(q)): 

a 
P 

=' 1 a (q)A(q) . (5.38) 
LU iql p 

The value of c1 shall be derived below. To ensure the hermiticity of a 
P' 

one must require 

a:(q) = av(-q) exp ?$ <k/k> . (5.39) 

The basic property of the A(q)‘s which allows one to interpret the q’s 

a3 momenta is 

rvA(q)r+ = 
II 

(5.40) 

which can be easily shown from the commutation relations. Consider the 
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field ap(xO) in the parent field theory. The reduction prescription 

relates this to the reduced field au by: 

ali = D(x) apD+(x) 

where, as before, 

D(x) = I[ (r )‘p 
P lJ 

Consider a translation of single unit in the p direction in the field 

theory : 

ap(x+u) = D(x+u)apD+(x+p) 

= D(x)rUaUrLD+(x) , 

which, by Eqs. (5.38) and (5.40) become 

e 
-&i/L qp 

ap(q)D(x)A(s)D’(x) . 

This clearly shows that 

2nq 
P LJ 

P =r, 

(5.41) 

(5.42) 

(5.43) 

behave as the lattice momenta in a box of size L and Qp(q) are the 

momentum space components of the fields. 
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To perform the perturbation expansion one has to, of course, fix a 

gauge. The analog of the Lorentz gauge is, for example 

1 (r 
v 

IlaliiE-au) = 0 

The kinetic piece for au now becomes 

2 6 1 
u,v 

Tr(r,avrl-a 1' . 
v 

(5.44) 

(5.45) 

Using the expansion (5.38) and the relation (5.40): 

r a r+ - av = 
PUP 

$ i (eZniqy’L -1) ay(q)a(q) 

Plugging this into (5.45) and using 

Tr A+(q,)A(q,) = N 6(q,-q2) I 

(which follows from the relation (5.36)) one has, for the kinetic term: 

” 1 1 2d-2 1 cos [F qy) ai(q)ail(q) , 
L’“q IJ v 

(5.46) 

which shows readily that the zeroth order propagator has the same form 

as that on a L4 periodic lattice. Consider the zeroth order propagator 

in coordinate space. Using the reduction rule, and applying Eq. (5.40) 

repeatedly one has: 
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Tr <aU(x)av(0)> = 6UV-& 1 e 
L 14) 

-2ni'L $" <a:(q)au(q)> 

-2ni/L z-x' 1 
(5.47) 

2d-2 1 (cos 2rr/~ q,) 
v 

In the L + m limit, the sum over (91 goes over to an integral over the 

Brilluion zone: 

1 + Ld I ddq . 
Cq) 

Thus the claim of equivalence stated in Eq. (5.6) is true if 

N2 = Ld ) (5.48) 

which is certainly true for the twists we considered for d = 2 and 

d = 4. In fact, (5.48) is a general statement about the order of 

largeness of N in TEK models. This is to be contrasted with QEK models 

where one had N = Ld. 

The various interaction terms in the reduced action may be written 

down in an entirely analogous fashion. The momenta iq] are always 

conserved at each vertex since a term involving a product of n gluon 

fields would have the trace: 

which is Proportional to 6(Zqi) by Eq. (5.35). The momentum dependence 

of the vertices are also identical to those in the field theory, apart 

from the phase factor 
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(5.49) 

which comes from the above trace. The Feynman graphs for various 

Green’s functions of the TEK model are thus in one-to-one correspondence 

with those of the field theory with the following differences: 

(a) There is a” extra phase in each n-gluon vertex as given by 

Eq. (5.49). 

(b) If au,(q) is to be identified with the momentum space gluon field 

the propagator should be <a,,(q)a,(-q)> rather than <a;(q)a”(q)>. 

This gives an extra phase factor of exp(-2ni/N <k/k>) for each 

Propagator (ku=l/L fipvqu) -- as evident from Eq. (5.39). 

Cc) In the graphs of the reduced theory there is no remaining trace 

over the internal symmetry group -- the trace has been already 

performed when the action is written in terms of A(q)‘s. 

The presence of extra phase factors is a potential problem in arbitrary 

Feynman graphs unless they cancel. A typical phase factor has the form: 

exp (T <klk’>) = exp (i L AuvPvPv) 

where the p’s are the lattice momenta Pv = 2Tqu,L, and A uv ‘s are 

coefficients which can be easily determined. One thus has (in L + - 

limit) momentum intergrals of the form 
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iLA PP 
I 

(2r)d 
pv hJ v f(P+) . 

For large L the phase factor rapidly oscillates leading to a zero 

answer. In fact, (provided the integral above is regularized in the 

ultraviolet and infrared) the Reimann-Lebesgue lemna states (Eguchi, 

1983) 

1 
Lim 1 e 
N+- 0 

iNt f(t)dt - O[;, , (5.50) 

Thus in d dimensions a diagram containing nonzero phase factors vanish 

as O(l/Ld). 

It turns out, however, that in all planar diagrams the phase 

factors at vertices exactly cancel those coming from propagators. 

Furthermore, all non-planar diagrams have nonzero phase factors: hence 

they are suppressed by O(l/Ld) = O(l/N2). (Gonzales-Arroyo and Okawa, 

1983; Eguchi and Nakayama, 1983). We shall not repeat the demonstration 

of this cancellation. For the gauge theory this is discussed in detail 

in the original paper of Gonzales-Arryo and Okowa, while a similar 

discussion for matrix models is contained in the work of Eguchi and 

Nakayama. 

In the field theory all planar diagrams have the same N dependence. 

This comes about by a combination of factors of N contained in the 

vertex (through N dependence of the coupling g2, since g2N = fixed) and 

those coming from sum over color indices. As noted above the diagrams 

of the TEK model do not contain any index sums. Thus all vertices in 

the TEK model must be O(1) (Das, 1983). Consider the d dimensional 
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model. For generality let N = Lm. A term in the action involving n 

gluon fields has a sum over (n-1). momenta -- one of the momentum sums 

being killed by momentum conservation. .In counting the powers of L in 

the n-gluon vertex care must be taken to convert momentum sums into 

integrals -- since these involve powers of L and hence powers of N. The 

L dependence of this vertex is then: 

(i) Lm from the trace over products of A(q)‘s 

(ii) L-o” from the normalization factor in Eq. (5.38) 

(iii) (Ld)“-’ from conversion of a sum over (n-1) momenta into 

integrals 

(iv) (N)-(“-*)‘2 = L-“(“-‘)“’ from the coupling. (The n gluon fields 

bring down a factor of g”. Due to the overall l/g2 one is left 

with gnm2. Since g2N = fixed the above N dependence follows.) 

Thus the total L dependence is 

CL) 
n(d-m/2-a)+(2m-d) 

For this to be O(1) for all values of n one must have - 

m = d/2 

a = d - m/2 , (5.51) 

which gives a = 3/Z for d = 2 and c( = 3 for d = 4 -- and our known 

results N = L for d = 2 and N = L2 for d = 4. This ensures that all 

planar graphs in the reduced model have the same N dependence. 
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Quarks in TEK Models 

As mentioned earlier, it is not possible to construct TEK models 

for theories containing fields in the fundamental representation, since 

these fields carry a ZN charge. Thus quarks cannot be incorporated in a 

straightforward fashion. However if the number of flavors of quarks 

also goes to infinity it is possible to undo the twist in color space by 

a” opposite twist in the flavor space (Das, 1983). This yields a 

twisted reduced model for the Veneziano limit of QCD. Consider a quark 

field theory transforming as (Nc,Gf) representation of the 

(color) x (flavor) group SU(Nc) X SIP, denoted by Via(x). Here 

i = l,...Nc is the color index and a = 1 ,...Nf is the flavor index. The 

twisted reduction prescription is 

*(xl = D(x) w P+(x) 

G(x) = P(x) ; D+(x) 

where D(x) is, as before: 

(5.52) 

D(x) = 17 (fp)‘u 
u 

and 

P(x) s II (C )xp 
!J u 

(5.53) 

Translation invariance is maintained if G,,‘s obey the same algebra as 

l-“: 

GvGV = Z G G . 
VP v P 

Models for Nf = N, can be now readily constructed with the standard QCD 
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lagrangian and shown to be equivalent to the corresponding field theory 

in the Veneziano limit: 

N /N = 1 
f c 

g2N = g2Nf = fixed . c 

Hot TEK Model 

With the quenched momentum prescription one could retain the 

temporal dependence of fields and reduce in the spatial directions. To 

get a finite temperature theory one then simply considers a finite 

temporal extent and impose periodic boundary conditions (Neuberger, 

1982). In the TEK model there are difficulties in implementing this 

method in a straightforward fashion due to the singular nature of twist 

matrices in odd dimensions. Nevertheless, Gocksch et al. (Gocksch, 

Neri and Rossi, 1984) have shown that with specially chosen spatial 

twist nij one can construct a partially reduced model (i.e. with no 

reduction along the temporal direction) which is equivalent to the 

finite temperature theory up to one loop in perturbation theory. It is 

not clear, however, whether this equivalence persists to all orders or 

non-perturbatively. 

There is, however, another way of constructing TEK models which are 

rigourously equivalent to a finite temperature field theory which we now 

discuss (Klinkhamer and van Baal, 1984). 

The symmetric twist TEK (for a SU(N) gauge theory) is equivalent to 

the corresponding field theory defined in a periodic box of size L 

(N=L’). This means that at N = m, the box size goes to infinity in all 
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directions. If it is possible to construct twists such that at N = - 

the spatial extent of the box goes to infinity, but the spatial extent 

remains finite -- one would have a single point model equivalent to a 

finite temperature field theory (with the inverse temperature given by 

the temporal extent). Klinkhamer and van Baa1 constructed several such 

twists. Let us write down the most useful one. The twist tensor is 

given by: 

11 =N 
!Jv 0 

0 -2k2(4k2-1) 2k(4k2-1) 2k2(4k2-1) 

0 2k(2k+l) 4k2-1 

0 2k(2k-1) 

0 
(5.54) 

where No and k are integers. N is related to No and k by 

N- 2 N;k(4k2-1) . (5.55) 

The TEK model with the above twist is then equivalent, at k = m, to a 

gauge theory living in a periodic box of sizes 
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N, = 2NOk(2k-1) 

N2 = No(4k2-1) 

N3 = 2NOk(2k+1 1 

This is obviously a finite temperature theory. The lattice temperature 

T is 

where A is the lattice spacing and becomes equal to the physical 

temperature in the limit No + a, a + 0 with (NOA) = fixed. 

At sufficiently high physical temperature the gauge theory is 

expected to deconfine. The order parameter for deconfinement is the 

Polyakov-Wilson line 

No-1 

W=Tr II 
t=1 

uoc:,t, , 

where Uo(:,t) is the timelike link originating at the site labelled by 

(z,t) cx’ is the (d-1) dimensional position vector). W is thus the 

product of links along a straight timelike line running from one end of 

the box to the other and hence closed by virtue of periodic boundary 

conditions. In the confined phase W = 0, while WfO signals 

diconfinement. 
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In the above "hot" twist TEK model the reduced Wilson line is 

simply given by 

wR 
IJO = Tr Uo . (5.57) 

At extreme weak coupling, the functional integral is dominated by the 

following twist-eating configuration: 

(0) 
"0 

2k(2k+1)(4k2-1) 4k(1-4k2) = a;' @P, 
Q2 

"(0) = pk+' G p 2k(2k+l)(k+l) -(2k+1j2 
1 1 2 Q2 

(0) 
"2 

2k(Zk+l) =P, @P, -4k 
Q2 

“(0) = 1-k op (l-2k2)(Zk-1) (2k-1j2 
3 p1 2 42 (5.58) 

where (P,,Q,) are No x NO matrices of the form given in Eq. (5.28) and 

(P2,Q,) are similar M2 x M2 matrices where M2 = 2Nok(4k2-1). Thus in 

weak coupling 

NO W = Tr U. f 0 

while in NO strong coupling Tr U. = 0 due to standard reasons. Hence at 

some intermediate coupling there is a deconfining phase transition. 

Numerical results on this transition shall be discussed in the next 

section. 
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The hot twist discussed above is one of several choices which 

generalizes the TEK model to finite temperature. A general analysis of 

hot twists has been carried out by Fabricius and Korthals Altes 

(Fabricius and Korthals-Altes, 1983). 

Hot twists may be also used to write down Hamiltonians for TEK 

models (Klinkhamer, 1984b). This is done by considering the hot-twist 

model for IJ 0 = 1 and writing 

ZTEK(No=l) = Tr TTEK 

^ 
for a0 + 0, TTrK = exp(-aOHTEK) where iTEK is the desired Hamiltonian. 

There is an alternative way to simulate finite temperature effects 

in lattice gauge theories. This involves a symmetric box (i.e. the 

same number of lattice sites in all directions) but with asymmetric 

lattice spacings. Euclidean invariance in the continuum limit then 

necessitates use of asymmetric couplings, i.e. different couplings in 

front of spacelike and timelike plaquettes. Let a and a7 be the 

spacelike and timelike lattice spacings. When 

5 = a/a T 

is large enough, the physical temporal extent is much smaller than the 

spatial extent and one has a finite temperature situation. The action 

now reads 

s=l P x 
I 6 + 0 

f 
i*j=l ij 6 ?P T i=, ., 1 01 

(5.59) 

“here Pij and Poi are the standard spacelike and timelike plaquettes 
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respectively. The two bare couPli%s BO(a,~) and ~,(a,[) are functions 

of 5 - but in the weak coupling region they are related to each other to 

respect Lorentz invariance (Karsch,1982): 

Eo(a,S) = ’ 
S&a) 

+ ; Co(S) + oh;) 

(5.60) 

BT(a,C) = -J-- 
2 

gE(a) 

+ 5 CT(S) + ok;) 

gE2(a) is the euclidean coupling on a symmetric lattice. The functions 

C,(c) and c,(f,) are known in perturbation theory. 

A TEK version of the above model may be easily constructed (Das and 

Kogut, 1984c & 19846). The reduced action now reads: 

3 
s=-a ~ & ZijT’(‘JiUjU;U;) 

3 
- ET ,I Z ,Tr(U U U+U+) + h.c. (5.61) 

1=, 01 oioi 

The twists in Eq. (5.61) are the symmetric twists - the same as in the 

zero temperature TEK model. 

Other TEK Models 

TEK versions of other models containing zero N-ality fields may be 

constructed in a way essentially similar to that of the gauge theory. 

Several such models have been constructed and studied. Of particular 

interest are two-dimensional chiral models. These models share some 

features of the four-dimensional gauge theory: they are asymptotically 

free and they have the same Migdal-Kadanoff recursion relations. TEK 
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chiral models have been constructed and studied using Monte Carlo 

methods (Eguchi & Nakayama,l983; Das and Kogut,1984a, Aneva,Brihaye and 

Rossi, 1984; Gonzales-Arroyo and Okawa, 1984) 

Continuum TEK Models 

TEK models for continuum theories may be constructed, at least 

formally (Gonzales-Arroyo and Korthals-Altes,l983). Consider, for 

example, a two-dimensional model. The algebra of the twist matrices 

read : 

ror, = e q r,ro 

Let us write r 
u = exp(iY,). Then the YIl’s obey the algebra: 

[Yo,Y,j = - y I , 

(5.62) 

(5.63) 

where I is the identity matrix. One can now write 

D(x) = exp p k, (5.64) 

and proceed to reduce a field theory in the same way as one did for 

continuum QEK models. However, it is clear that the matrices Yp do “ot 

have any finite dimensional representation. This limits the usefulness 

of this formulation. 
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QEK vs. TEK 

Let us conclude this section by a comparison of the two ways of 

reducing a~ large N gauge theory. In the QEK reduction N is as large as 

the volume of the equivalent field theory, i.e. 

d N=L . 

In the TEK models, however, 

Thus, for a given N finite volume effects are less severe in TEK models. 

For numerical simulations of these one-point models the TEK model is 

much better since for the same value of N one is simulating a much 

larger system. The formulation of TEK models is, of course, much more 

elegant than their QEK counterparts. The integration measure is simple 

and does not involve constraints. Furthermore, even in the pure gauge 

theory the leading finite N corrections in the QEK model are of order 

l/N due to the presence of constraints. For the TEK model these 

corrections are of order 1/N2, just as in the full field theory. 

Moreover, since for TEK models N2 = L4, finite N corrections are simply 

finite volume corrections. 

One disturbing feature of all reduced models is that the large N 

and thermodynamic limit have to be performed simultaneously. In a 

general field theory there is no a priori reason why these two limits 

should commute. It would be much nicer if one could obtain a reduced 

model for any finite volume. This would allow one to take the study the 
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large N limit for a finite volume and finally take the thermodynamic 

limit. Such models have not been, however, constructed so far. 

VI. NUMERICAL RESULTS 

With the advent of Eguchi-Kawai models it has become possible to 

numerically simulate large N field theories. Monte Carlo and Langevin 

equation method studies have been carried out for several interesting 

models and have yielded important insight into the non-perturbative 

structure of these theories. 

QEK Models 

Bhanot , Heller and Neuberger (1982a) performed Monte-Carlo 

simulatations on the naive Eguchi-Kawai model and showed that the 

CU(l)ld symmetry protecting open lines from acquiring non-zero values is 

broken. This is shown by considering the order parameter <l/N Tr Up>. 

they also showed that this symmetry is not broken in the QEK model. 

These calculations were performed with N=5. 

The evidence for breaking of the [U(l)ld symmetry for the EK model 

has been confirmed by more accurate studies by Okawa (1982a) where an 

efficient way of updating the links was used. This was done for various 

values of N up to N=lO. Studies of the QEK model for higher values of N 

(upto N=20) (Okawa, 1982b; Bhanot,Heller & Neuberger,l982b) showed that 

this model has the same phase structure as that expected from the 

standard Wilson theory. In particular the QEK model with the standard 

Wilson action has a first order phase transition at about 6/N = 0.3. 

This is not a deconfining transition; rather it has the same nature as 
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the transition observed at N=Q and 5. It has been also checked that 

quantities like the internal energy behave in accordance with the 

results of weak coupling perturbation expansion around the correct 

vaouum in the relevant region. Monte Carlo studies of the Quenched 

chiral model in two dimensions have also been performed (Heller & 

Neuberger,l982b; Bhanot,1982). As opposed to earlier expectations 

detailed studies show that there is no first order phase transition in 

this model. 

TEK Models 

As discussed earlier, TEK models are better suited for numerical 

work. Extensive numerical simulations of various TEK models have been 

carried out. In the following we summarise some of the important 

results. 

(a) Two-dimensional Chiral Models 

Two dimensional SU(N) x SU(N) chiral models possess several 

properties similar to that of the four dimensional ,gauge theory. They 

are asymptotically free and possess a mass gap. Recently an exact 

solution to this model for N=2 has been obtained (Polyakov & 

Weigman,l983). The action on the lattice is given by: 

S = @ 1 1 Tr (U+(x+V)U(x)+h.C.j , 
xu 

(6.11 

where U(x) belongs to .SU(N). The TEK version of this model is given by 

S = R 1 Tr(r U+r U+h.c.) , 
u LJ P 

(6.2) 
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where the r II are the two-dimensional twist matrices. A particular 

representation of these twist matrices is simply provided by the 

matrices P and Q defined in Eq. (5.28). This model has been shown to be 

completely equivalent to the corresponding field theory (Das and 

Kogut,1984a; Aneva, Brihaye and Rossi,1984), and studied by Monte Carlo 

methods for N=12,24 (Das & Kogut,1984a) and for N=10,20,30 & 50 

(Gonzales-Arroyo & Okawa,1984). Invariant quantities like the internal 

energy : 

<E> = ; Re ): <Tr Ur U+I”+> , (6.3) 
u u u 

agree very well with the corresponding object computed in the field 

theory in the strong and weak coupling limits. Both the studies also 

indicated that there is no first order phase transition at intermediate 

couplings. The two point correlation function: 

C(x) = i Re<Tr IJ D(x)lJ+D+(x)> , (6.4) 

was also computed to look for a mass gap (Das & Kogut,l984a). While 

some evidence for an exponential fall-off of G(x) was found , the 

statistics was not good enough to compute a mass gap reliably in the 

continuum limit. The study of the correlation function, however, 

revealed a strange non-analyticity in the weak-coupling edge of the 

intermediate coupling region. In very long runs the system seemed to 

flip between a “normal” state and an “abnormal” state. In the normal 

state the behavior of various quantities is consistent with that at 

other values of 6. In the abnormal state, however, the internal energy 
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is slightly lower - and more dramatically the correlation function is 

highly disordered becoming eve” negative at large x. Of course, G(x) 

cannot be negative in a field theory satisfyin& clustering properties - 

so these effects would go away at large N where the TEK model is 

equivalent to a field theory. 

An explanation of this peculiar behavior has bee” offered in terms 

of instanton-like finite action saddle points of the model 

(Klinkhamer,l984). Such non-trivial saddles in the TEK gauge theory 

have been found earlier (van Baa1,1983) and interpreted as analogs of 

torons. For the chiral model these are of the form: 

U = D(n) = r”r-” 
12 ’ (6.5). 

with a classical action equal to 8n2n2 for small n. The contribution of 

small fluctuations around such a saddle point alone to various 

quantities may be computed. The contribution to the internal energy E” 

is given by: 

E" = co3 (Gg, (2 + <E:> 
0 

gaussian I 9 (6.6) 

while that to the correlation function G” is given by: 

G”(x) = COS[+ x,+x2)] (1 - < 1 (l-co3 g q-xl>1 . 

q 

(6.7) 

The results for n=l seem to be consistent with the behavior observed in 

the Monte Carlo runs. The abnormal behavior thus probably reflects the 
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fact that the system falls into one of the non-trivial extrema. It is, 

however, not clear how this happens in spite of the enormous suppression 

due to the Boltzman factor. Equations (6.6) and (6.7) clearly show that 

the negativity of C(x) for large x is a finite N effect - for large N 

the cosine factor in front of the expression for G” goes to one and C(x) 

becomes positive. 

Gonzales-Arroyo and Okawa (1984) pointed out that in the TEK chiral 

model there are large finite N corrections for non-invariant quantities. 

In particular they showed that <Tr U> does not vanish in the weak 

coupling limit. However, the value of <Tr U> in weak coupling decreases 

rapidly as N increases so that at N=-, <Tr U> = 0 as in the field 

theory. 

(b) Four dimensional gauge theory at zero temperature 

Detailed Monte-Carlo studies of the four dimensional pure gauge 

theory at zero temperature have been performed for N=36 (Gonzales-Arroyo 

and Okawa, 1983b) and for N=64 (Fabricius and Haan, 1984). In these 

studies both Wilson loops and internal energies were measured. The 

string tension is extracted from the X-ratio: 

x(I J) = _ ln W(I,J)W(I-l,J-1) 
I,J-1 W I-1 ,J 

where W(1.J) denotes a rectangular Wilson loop of size I X J. These 

studies show that physical quantities do not depend significantly on N. 

The standard TEK model with the Wilson action shows a first order 

phase transition at B/N = 0.36 L 0.02 (Gonzales-Arroyo and Okawa,1983b). 

This is manifested by a jump in the internal energy by about 0.8 at this 

value of B/N. This transition is a bulk transition: it does not spoil 
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confinement but the string tension is discontinuous. The bulk 

transition is similar to the third.order phase transition found in the 

two dimensional Wilson theory at N=- (,Gross and Witten,1980; Wadia, 

1980). The string tension measured on the weak coupling side of the 

transition shows some tendency towards asymptotic scaling. In 

particular for N=64 while x(3,3), x(4,2) and x(3,2) show some scaling 

x(4,3) definitely does not (Fabricius and Haan,1984). These results are 

summarised in Fig.7. It is fair to say that asymptotic scaling has not 

been established yet in TEK models on the basis of string tension 

studies. Nevertheless let us quote the values of the string tension 

derived from the existing data: 

/“/AL = 280 t 20 (Gonzales-Arroyo & Okawa,1983b) 

Jo/AL < 264 (Fabricius & Haan, 1984) 

where AL is the lattice A-parameter. In terms of Amin, the A parameter 

with minimal subtraction these values are: 

JO/Amin = 19 * 2 (Gonzales-Arroyo & Okawa,1983b) 

Jo/Amin < 18 (Fabricius & Haan, 1984) 

This may be compared with the corresponding values for SU(3) and SU(2): 

/e/hmin = 16 t 3 (su(3)) (Bhanot & Rebbi,l981; Pietarinen,1981; 

Creutz & Moriarty,l982) 
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J~/J$,~” = 10 + z (su(2)) (Creutz,l980). 

These values are not too different from those obtained at N=-. This 

indicates that the N=m theory has a behavior fairly similar to that of 

the realistic SU(3) theory. 

Migdal et.al. (1984) have used Langevin equation methods to study 

the TEK model for N=9,16,25 and 36. While plaquette energies are found 

to be independent of N for N greater than 16, larger Wilson 10~0~s show 

detectable l/N2 corrections. This is direct numerical evidence for the 

fact that finite N corrections in the TEK model start at O(l/N2). 

Combining their data with those of Gonzales-Arroyo and Okawa (1983b) the 

authors obtain an improved value for the string tension: 

JO/AL = 345 

Migdal et. al. have also calculated the density of eigenValUeS pIJ(“) 

of the untraced Wilson loop matrix: 

“IJ 
= z*JuIuJu+Iu+J 

lJv!lvv v * 
(6.13) 

In the strong coupling side of the phase transition the eigenvalues are 

distributed uniformly over the entire interval (-rr,n). However, for E/N 

> 0.36 a clear gap is seen in the spectrum - the magnitude of the phases 

of the eigenvalues are all less than some number ac; i.e.: 
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This behavior of p(u) is identical to that in the solvable two 

dimensional theory (Gross & Witten,l980; Wadia,1980). I* fact P,, (a) 

shows excellent agreement with the exact formula obtained in two 

dimensions. Such an agreement has been also observed in the SU(2) 

theory (Makeenko et.a1.,1982; Belova et. al.,1983). Knowledge of the 

spectral density may be used to compute the various moments of the 

Wilson loop matrix: 

IJ 
!J,= 

+IT 
p(a)cos na da . 

-TI 
(6.14) 

Some of these moments turn out to be negative. It has been argued that 

this is evidence for a lack of correspondence between N=m QCD and the 

naive Nambu type string theory (Migdal et.a1.,1984) 

In the abovementioned studies clear evidence for scaling has not 

been found. Clearly a much more careful investigation has to be done 

before drawing any firm conclusion about the physics. 

(c) Four dimensional pure gauge theory at finite temperature 

At a sufficiently high temperature gauge theories are expected to 

undergo a deconfinement phase transition. Such a phase transition may 

be observed in the laboratory in the near future. At the theoretical 

level the deconfining transition has been indeed observed and studied in 

SlJ(2) (McLerran 8 Svetitsky,l981; Kuti et.a1.,1981) and SIJ(3). (Kogut 

et. al.,1983; Celik et.a1.,1983; Svetitisky and Fucito,1983) pure gauge 

theories. For SU(2) the transition is second order, while SU(3) shows a 

strong first oder transition - in conformity with expectations based on 

general universality arguments (Svetitisky and Yaffe,1982). For N 1. 4, 

universality arguments do not predict the order unequivocally. However, 
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strong coupling mean field studies show a first order transition (Green 

and Karsch,1984; Gross and Wheater,l984; Oglivie, 1984). Numerical 

studies for SU(4) seem to vindicate these predictions (Bartrouni and 

Sevetitsky, 1984; Wheater and Gross,1984). It has been argued that the 

N=- theory shows a first order transition (Gocksch and Neri,1983; 

Oglivie, 1984; see,however, Pisarski,1984). 

The deconfinement transition in pure SU(m) QCD has been studied by 

Monte Carlo simulation of TEK models quite extensively. This sheds 

important light on the confinement mechanism - and comparison of the 

results with those of the SU(3) theory provides a basis for examining 

the validity of the large N approximation itself. Furthermore, 

deconfinement serves as an excellent laboratory for studying the 

continuum limit of lattice gauge theories. This is particularly so if 

the transition is first order. In that case it is fairly simple to pin 

down the critical temperature for deconfinement quite accurately. In 

terms of the critical coupling gc2, the deconfining temperature Tc is 

given by: 

T= ' , 
Noa 

(6.15) 

where N o is the temporal extent of the box and a(g, 2) is the lattice 

spacing at coupling gc. One could now measure g, for various values of 

NO and test whether equation (6.15) is consistent with asymptotic 

freedom prediction for a(gc 2). If so one is simulating continuum physics 

and T c is the physical deconfinement temperature.(The early SU(2) and 

SU(3) studies seemed to show such a scaling behavior. Recent work on 

SU(3) (Kennedy et.al.,l984),however, shows that asymptotic scaling does 
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not set in before No=lo). 

Gocksch et.a1.(1984) performed Monte Carlo simulation of their 

version oft the hot TEK model for N=ll and No = 2 and 3. They indeed 

find a sharp jump in the thermal Wilson line with evidence for 

coexisting phases and interpret this to be physical first order 

deconfining transition. It is not clear, however, whether this is 

really so - as we shall see shortly. Furthermore this model has been 

shown to be equivalent to the finite temperature field theory only up to 

one loop in perturbation expansion. An exact equivalence is yet to be 

shown. In addition, there is no evidence for scaling in the data. 

There is a serious problem in studying deconfinement at N=*. This 

is because the zero temperature theory with the Wilson action has a 

first order bulk phase transition. This transition is also present in 

the finite temperature theory. Since the string tension drops 

discontinuously as one crosses this transition from the strong coupling 

side, the confinement length increases abruptly. For moderate values of 

No this makes the confinement length larger than No - thus simulating a 

deconfining transition and forcing the Wilson line to jump 

discontinuously. The bulk transition, however, has nothing to do with 

physics - it is a lattice artifact. Thus the “deconfinement” it induces 

is not physical deconfinement. The interference between the bulk 

transition and the deconfinement transition has been observed in Monte 

Carlo simulations of the asymmetric twist hot TEK model for No = 2,3 

(Das and Kogut, 1984b). Further simulations (Fabricius, Haan and 

Klinkhamer,l984) indicate that this interference persists up to No = 4. 

To obtain =*y information about physical deconfinement the two 

transitions must be clearly separated. 
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In principle such a separation is possible. For sufficiently large 

N 
0 

the deconfinement transition is .pushed into the weak coupling region 

while the bulk transition remains where.it is (around B/N = 0.350). 

However, this is a rather unpractical method. From equation (3.55) N 

grows as No2. For the minimal value of K, i.e. K=l (for which the above 

simulations have been performed), N=96 for No.4 and NC150 for No=51 This 

is extremely time consuming even on large supercomputers. 

SU(N) lattice gauge theories with the Wilson action have bulk 

transitions for N > 4 which are artifacts of the particular action - 

chosen. In fact, the interference between bulk and deconfinement 

transitions has been observed for N=4 (Batrouni and Svetitsky,l984). 

For finite N, however, one can add a negative adjoint piece to the 

action and adjust the adjoint coupling to get rid of the bulk transition 

altogether. This allows one to study deconfinement freed of the effects 

of the bulk transition (Batrouni and Svetitisky, 1984). At N=- this 

trick does not work, essentially because the “mixed” action theory is 

now equivalent to a Wilson theory with a redefined coupling (Makeenko 

and Polikarpov,l982, Samuel,l982, Das and Kogut,1984c). 

Nevertheless, it is indeed possible to decouple the transitions in 

the asymmetric coupling version of the hot TEK model (Das and 

Kogut,l984c). This formulation has the advantage of having a 

continuously adjustable parameter - the asymmetry parameter F,. Since the 

twists are the same as the symmetric twists of the zero temperature TEK 

model, the possible values of N are much less restricted compared to the 

asymmetric twist model. Monte Carlo simulations with N=16,25,36,49,64 

and 81 (Das and Kogut,1984d b 1984e) show that with a sufficiently large 

F, the bulk transition disappears. The Wilson line, however, continues 
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to jump in a discontinuous fashion, providing evidence for a first order 

deconfining transition freed from the effects of any bulk transition. 

This is supported by the presence of two state signals and hysteresis 

loops. In most cases this happens at a value of 5 for which the 

critical coupling is not in the weak coupling region. At N=64, ~=l .5 

and N=81 f,=1.5 the bulk transition is still present, but is clearly in 

the strong coupling side of the deconfinement transition. 

The N=64 data, in fact, shows some tendency towards scaling. Let 

Tc denote the physical deconfining temperature. If a(B,/N) is the 

spatial lattice spacing at the critical coupling 8, and E, is the 

asymmetry parameter, one has: 

If 8, is in the asymptotic scaling region one would have: 

(6.16) 

(6.17) 

where AE is the “euclidean I’ A parameter. Reversing the argument one 

could calculate Tc/nE using Eq. (6.17) and see whether this is 

independent of 5, and L. For II less than 64 one does indeed find a 

gross violation of scaling. For N=64, however, there is some tendency 

towards scaling. This is evident from Fig. 7 where Tc/ng is plotted 

against 5 ( a flat curve signifies perfect scaling). 
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To establish scaling properly a lot more work has to be done. 

Nevertheless let us get some idea of the value of T c assuming that 

scaling has already set in. The N=64, 5=1.5 data gives 

T 
C=llSt6 . 
*E 

Using the string tension data quoted earlier (Fabricius & Haan,l984) one 

has 

T 
c = 0.42 k 0.05 , 
Jo 

compared to 

T 
-J? = 0.50 r 0.05 (N=3) . 
Jo 

The value of Tc/Ja at N=- is thus rather close to that at N=3. To get a 

really good number, however, one must evaluate o on the asymmetric 

lattice. This involves computing the connected part pf correlation of 

Wilson lines- which vanishes in TEK models due to exact factorisation. 

Clearly a lot more work has to be done to establish scaling 

properly and extract physically meaningful numbers. The numerical work 

doen so far is certainly encouraging, though not definitive. The fact 

that the deconfinement temperature in physical units is close to the 

SU(3) value indicates that the confinement mechanisms at N=- and N=3 are 

similar. This means that the large N approximation is probably a good 

approximation to the real world. It is certainly worthwhile to continue 

to investigate the large N limit- particularly in the analytic front 
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where there is more chance of success compared to the N=3 theory. 
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FIGURE CAPTIONS 

Fig. 1: The "simple" Wilson loop 

Fig. 2: Dyson-Schwinger equation for the simple loop 

Fig. 3: Self-intersecting Wilson loops 

Fig. 4: Feynman rules for the e4 QEK model 

Fig. 5: Feynman graph for O(g2) contribution to the propagator 

Fig. 6: x-ratios for the N=64 TEK model at zero temperature.(reprinted 

from Fabricius and Haan,1984) 

Fig. 7: Tc/AE versus 5 for asymmetric coupling TEK model at 

N=64.(Reprinted from Das and Kogut,1984d) 
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