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Abstract 

We develop a manifestly, generally coordinate covariant functional 

Schroedinger formalism. We study the usual problem of Hawking radiation 

in the Rindler coordinate system. The Hawking effect appears as a shift 

in the width of the ground state wavefunctional relative to a true 

vacuum state in the low momentum components. It can be a coherent 

rather than a thermal effect depending upon the choice of boundary 

conditions. We analyse the general d+l massive solution and discuss its 

strange features. For example, the d+l particle number distribution is 

thermal but not isotropic due to a peculiar energy momentum dispersion 

relation. We address a number of other conceptual issues. 

3 Opwatmd by Unlversitler Research Association Inc. under contract with the United States Department of Energy 
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I. Introduction 

In the present paper we construct a manifestly generally coordinate 

covariant functional differential Schroedinger equation which we take to 

be the basic definition of a quantum field theory. The Feynman path 

integral appears then as the Green’s functional of this equation, but 

the general solution of the functional differential equation defines the 

complete set of states of the theory. The equation defines the 

evolution of the states on arbitrary spacelike surfaces and will be 

supplied with some boundary condition appropos a given physical 

environment. The ambiguity in boundary conditions is the precise origin 

of coordinate system ambiguities such as “how many particles does the 

state contain as viewed by observer x?” We apply this formalism to the 

study of the Hawking effect(‘), i.e., the general appearance of a 

thermal excitation of the vacuum as seen by accelerated observers. 

The specification of the boundary conditions of a quantum field 

theory must make reference to particular global surfaces. While Lorentz 

invariant initial conditions can be prescribed in flat space (though 

they need not be), general coordinate invariant initial conditions do 

not exist. Furthermore, the quantum mechanical state of the system, 

which for field theory may be viewed as an amplitude to find some field 

configuration on a global surface, is itself a global object. The 

problem of formulating a generally covariant field theory is then to 

choose an arbitrary family of spacelike hypersurfaces (perhaps 

non-overlapping and contiguous, though certain singularities occur e.g. 

In the Rindler or blackhole cases, in which we encounter overlapping of 

the surfaces in the family at the horizon) continuously parameterized by 

a variable, It t,t , and to provide a manifestly covariant evolution 
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equation for the state wavefunction, vIq,t). Manifest covariance is 

then the statement that all observers agree upon the uniqueness of the 

evolution prescription of %P,t) with t on the chosen surfaces, though 

they may not agree upon the naturalness of the choice of evolution 

surfaces and initial conditions. 

There is a strict necessity of introducing certain global 

constructions into the definition of a field theory. For example, in 

Heisenberg picture the time evolution of a local operator is generated 

by a commutator with a global Hamiltonian. We may adopt the strong 

principle of equivalence in demanding that the Hamiltonian density be a 

covariant local tensor density, but the global Hamiltonian involves an 

integral of this object over space and is not uniquely specified. 

Alternatively, we may demand local covariance in the leading short 

distance behavior of the operator product structure of the theory, but 

then the extension to the large distance behavior is ambiguous. 

In a Feynman path integral the global breaking of general 

coordinate covariance resides in the implicit boundary conditions of the 

functional integrals. We are accustomed to taking limits of these 

surfaces, e.g. t--> +-co ) in flat spacetime, but these limits may not 

be taken in an unambiguous way in curved spacetime and will generally 

influence the infrared components of operator expectation values. Other 

than in these boundary conditions, the Feynman path integral is 

manifestly invariant. 

It must be emphasized that the global breaking of general 

coordinate covariance by initial conditions is essentially an infrared 

effect. The leading UV behavior of the theory, e.g. trace anomalies of 

the stress tensor and the infinite counterterms, provided that the 
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spacetime dimensionality is sufficiently small, should respect the 

covariance of the underlying local quantities that define the theory. A 

direct consequence of the infrared breaking of general coordinate 

covariance is the occurrence of Hawking radiation (1) . 

The Hawking effect arises as a consequence of the boundary 

condition ambiguity. Operationally we may define a vacuum state wave 

functional, e.g. properly defined as the ground state of the 

Hamiltonian, on a certain initial surface. This ground state may or may 

not be annihilated by particle destruction operators (it may contain a 

condensate). For the case of an “eternal” black hole we may take the 

family of surface3 to represent an “inertial” coordinate system i.e., 

Kruskal coordinate system in which comoving observers defined by fixed 

spatial coordinates fall along geodesics (the case of gravitational 

collapse is somewhat different a3 the metric is effectively time 

dependent as the star collapses, but one must still compare the 

evolution in an inertial system to that in a Schwarzschild system). 

We may then examine the inertial vacuum state from the point of 

view of an accelerating ensemble of observers, e.g. for a black hole we 

choose comoving observers in a Schwarzschild coordinate system. The 

observer’3 coordinate system generally fails to cover the entire 

manifold and possesses horizons. We may construct a definition of 

“Hamiltonian” and “ground state” in the accelerating system which now 

differ3 from that defined in the inertial system since the evolution 

along constant time surfaces in the accelerated system is not equivalent 

to the efilution along the inertial surfaces. The defining inertial 

vacuum can be compared to that defined by the accelerating observers on 

Some common surface and is found to be an excited state, e.g. it may be 
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full of particles as the particle number expectation is computed by the 

accelerating observer. Indeed, other attributes of excitation may be 

manifested (e.g. perhaps restoration of broken symmetries or 

deconfinement?). The spectrum of particles is generally cut-off in the 

uv, e.g. it is typically a thermal spectrum with exponential 

suppression of high momentum modes and thus contributes corrections only 

to the finite parts of operator matrix elements. 

In actuality, this system of states described by the accelerated 

observer is completely fictitious: one should ask only physical 

questions of the true global state but in the restricted space of the 

accelerated observer. That iz, the only real physics is that of 

experiments and detectors, e.g. Unruh-Dewitt detectors (2,3), comoving 

with the accelerated observers in the background inertial vacuum. 

However, these fictitious states "defined" by the accelerated observer 

may conveniently parameterize the outcome of detector experiments 

performed by the accelerated observers. Indeed, these fictitious states 

may be viewed as global Unruh-Dewitt detector3 covering the range of the 

observer's coordinate manifold. 

In our opinion, whether or not the spectrum appears to be "thermal" 

is somewhat secondary to the fundamental origin of the effect as a 

consequence of the infrared breaking of general coordinate covariance. 

Thus, Hawking radiation is a coordinate system dependent effect in the 

zenze of a boundary condition, and is not something intrinsic to a 

particular geometry and common to all coordinate systems in that 

geometry. 
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Presently we shall analyse the familiar Rindler problemC4), the 

Minkowski vacuum as viewed by an ensemble of accelerating observers, but 

in the context of our functional Schroedinger picture. As first 

described by Rindler(') and subsequently first addressed in free field 

theory by FullingC5), this problem contains essentially all of the 

global attributes of the black-hole case, but is technically somewhat 

simpler. 

In the context of Hawking's effect, the Rindler problem was first 

treated by Davies(') and subsequently amplified by Unruh '2) in hiz 

classic paper clarifying the notion of particles in curved spacetime. 

Unruh treats the d-dimensional caze of the Rindler problem by performing 

the Bogoliubov transformation on a light-plane. Though he obtains 

essentially the correct result, we believe that this derivation is 

incomplete since the transverse masz effect3 scale to zero on the 

light-plane. What is desired in this case is a direct transformation on 

a spacelike surface, e.g. t=o. The extremely peculiar features of the 

solution regarding it's anisotropy and energy-momentum dispersion 

relation have not been previously discussed. We find that a thermal 

distribution of particles is observed in the d+l massive problem, but 

that there is a preferred axis of motion in the longitudinal direction. 

In fact, the groundstate is simply an infinite direct product of 

two-dimensional vacua in the absence of interactions. A considerable 

body of literature on the l+l problem now exists (7-12) , but relatively 

few discussions of the full d+l massive problem have been previously 

given, none of which seem to address the physical implications and 

nature of the energy momentum dispersion relation. 
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We also study the issue of whether or not the Hawking effect is 

truly thermal. The measurement of the number operator expectation is 

insufficient~to determine this. In fact, if Dirichlet or Neumann 

boundary conditions are applied at the origin of Rindler space the 

density matrix is not thermal, but is that of a coherent state although 

the number operator expectation value is that of a thermal Bose gas. 

The presence of a horizon is necessary to obtain a thermal density 

matrix if one chooses to define the state by integrating out the modes 

beyond the horizon (If the world beyond the horizon is identified with 

the world at infinity this is not the correct procedure and the density 

matrix is again that of a coherent state. Here we consider the 

ambiguity recently discussed by 't Hooft in the value of the Hawking 

temperature(13). We claim this ambiguity arises in the nonthermal nature 

of the state. The number operator expectation involves the usual value 

of the temperature). 

In d+l dimensional Minkowski spacetime we may construct a quantum 

field theory for a real scalar field following the procedure of (1) 

obtaining the local stress-tensor and canonical momentum densities by 

functional differentiation of the action (2) imposing on a spacelike 

hypersurface, e.g. t-constant, equal time commutation relations between 

the field and canonical momentum (3) implementing the e.t.c. relation 

by replacing in the stress-tensor density the canonical momentum by a 

d-dimensional functional derivative with respect to the field and 

adopting the convention (Schroedinger picture) that all field variables 

are time independent in3tantaneou3 configuration3 (4) contructing 

Schroedinger’s equation by first constructing a global Hamiltonian by 

integrating To0 over the spacelike hypersurface and then introducing a 
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wavefunctional, q(s,t) , satisfying the functional differential 

equation: 

%14,t) is the amplitude to find instantaneous field configuration 

q (x) at time t. The solution to eq.(l) may always be given in 

free-field theory in the presence of external classical gravitational 

fields as a gaussian wavefunctional. An explicit implementation of the 

above recipe is given in Minkowski space in the Appendix. One of us has 

applied this recipe recently to the solution of field theory in deSitter 

space and obtains the trace anomaly by direct evaluation of the 

expectation value of T 
rv 

in the wave-functional solution of eq.(1)('4). 

This formalism has clear advantages in application to the problem of 

cosmological inflation (14) and the present understanding of Hawking 

radiation in the formalism is essential. 

There are distinct advantages to adopting the present formalism. 

One obtains an explicit representation of the vacuum state as an 

amplitude to find a given field configuration at a given time t. This 

prescription is especially useful for contemplating non-perturbative 

effects for an exact solution to es.(l) cannot be given, but a 

physically sensible ansatz approximation to the ground state can be 

studied. For example, Feynman has recently attempted to construct a 

model of a groundstate which contains the physics of quark confinement 

in an unbroken Yang-Mills field theory in 2+1 dimensions where an exact 
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solution to es.(l) cannot be presently be given(15). In a subsequent 

publication we intend to address the question: "Does the Hawking 

temperature restore a broken Zymmetry?" ,in which one must transform the 

broken vacuum state frcm the inertial system to the accelerated 

3yStem('6). The state is defined by a variational calculation of the 

one-loop effective potential in an interacting theory. This has a 

particularly simple interpretation in Schroedinger picture, but a less 

obvious one in Heisenberg operator formalism, or even in the path 

integral approach. 

II. Functional Schroedinger Picture 

How is the dynamical evolution of the wave-functional for the 

quantum field theory described in curved spacetime? There is no single 

prescription for the dynamics simply because of the different possible 

ways of slicing spacetime into families of spacelike hypersurfaces. 

However, it is possible to write the canonical commutation relations and 

the Schroedinger equation in a manifestly generally-covariant form. 

We begin by choosing a coordinate system, x P (r-O,l,...,d), for 

the spacetime manifold. Next, we choose a family of spacelike 

hypersurfaces, z:(z), labeled by the arbitrary parameter a; each value 

of 3 uniquely specifies a hypersurface. In each hypersurface we choose 

a system of coordinates, 5' (i=l I..., d), intrinsic to the hypersurface 

and independent of 3. The embedding of the hypersurfaces into spacetime 

is specified by the equation x P = x 93.~5. The timelike vector 

field axr/a 3, is locally normal to the hyperzurface s(3); we do not 
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need to assume any particular normalization for the normal vector. We 

may further define a differential volume element intrinsic to the 

d-dimensional hypersurface, Z: 

where EO,. ,d=i. This volume element is invariant under changes of the 

intrinsic coordinates fi, and is related to the invariant volume 

element in the spacetime manifold by: 

&kr oc, 6”$ & : \ I”’ &“... axd 
as D$ % 

where g=det(g &’ and g AL* are the spacetime metric tensor component3 

r in the coordinate system x . 

We now consider the dynamic3 of a real scalar field in d+l 

spacetime dimensions. The action, A, is given by: 
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The stress tensor T 
Y 

for the field theory (we shall not presently 

employ “new improved” stress tensors) is given by the usual functional 

derivative of the action with respect to the metric: 

-$v = -2,, SA = Q&j, 
\cg= 6fV r v - + p (yab - dd) 

(5) 
The canonical momentum on a given hypersurface is defined by: 

?r= I -‘/z f&r a 
a I asp9 = a$ a,9 16) 

The theory is quantized by imposing a covariant commutation 

relation on a given hypersurface: 
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(7) 

where &+< , 5’) is defined by: 

sr &,{‘J = ( g $$ \g’ ~~~Lsis’ 5”) . . . $((” 3’6) 

The factor \$~?/a s\ in the normalization of the commutator 

delta-function is present to guarantee the reparameterization invariance 

of the theory under the transformation s-->s(s’). There is also a 

Jacobian factor which maintains the invariance under redefinitions of 

the intrinsic coordinate system and which reduces to the usual 

commutator in the flat spacetime limit. The equal-time commutator is a 

global object in the sense that it refers to a particular spacelike 

hypersurface. 

In the Schroedinger picture the wave-functional evolves with s and 

the field operators are s-independent. The field operator T(.$ ) plays 

the analogue role of the coordinate of a particle in wave mechanics. We 

may now implement the commutation relations by taking l’f(<) to be a 

functional differential operator: 
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where s’:( i )/ sT(i’) = fd’(f - 5’). 

The Hamiltonian H(s) is defined on the hypersurface g(s) by: 

l-l(s) = \ gr Tr’ g AA< 
c 

where T ry is the stress-tensor of eq.(5). If the spacetime admits a 

timelike Killing vector field the hypersurfaces can be chosen so that 

‘3xr/as is the timelike Killing vector field and then H becomes 

independent of s. In general H(s) is s-dependent, e.g. on certain 

choices of hypersurfaces in deSitter space. 

The functional Schroedinger equation determines the evolution of 

the wave-functional Y) (q ,s): 

l-l Is)Wls, 5) = I$ wlQ,Sj 

Here one may solve for aOq in terms of lT as defined in es.(b) and 

substitute the operator expression into eq.(ll) to obtain the functional 

differential equation. The Schroedinger equation is manifestly 

invariant in form under changes in Xror and the reparameterization 

of the time variable s. 
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The complete set of solutions of eq.(il) defines the Hilbert space 

of the field theory and can generally by explicitly constructed in free 

field theory in terms of Gaussian wave-functionals, as in the Minkowski 

case as described in the Appendix. Moreover, the Green’s functional, 

G((Q1,s,; 4!,s2), satisfying: 

can be expressed as the Feynman functional integral with the boundary 

conditions of field configuration TL ( ql) on hypersurface z(s, ) 

(z(s,)). Here Ata, - q&l denotes a functional delta-function. 

It is useful to consider the reduction of the general formulation 

to the special case of metrics satisfying the gauge constraint 

goi=g 
oi =O, which can always be imposed without loss of generality. In 

this case we may directly identify 9 with the time variable, x0, and the 

canonical momentum, canonical commutator and its implementation become: 

I 

-k 5 (4 
=+ -yJg\ f&- 

We construct the global Hamiltonian over the spacelike hypersurface 

of constant s: 
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H = .\ Too dC” = -ru i” \$AxL...d. c 19) 
r 

Thus, for a real scalar field theory in this metric gauge we arrive at 

the functional Schroedinger equation: 

’ V[qvjg - &d 
i 

Vh,s> - y’%’ 

= ;$s Ykp,sj . 
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III. Applications to Accelerated Observers 

(A) Massless Scalar Field in l+l Dimensions 

We now apply the above formalism to the simplest case, a massless 

real (4) scalar field theory in l+l dimensional Rindler space . Rindler 

space is the region of Minkowski space defined by x> ft\ where t and x 

are the usual spacetime coordinates in flat Minkowski space. This 

region is covered by the Rindler coordinates ( 
7 4 

) which are related 

to the Minkowski coordinates (t,x) by (we follow the textbook 

conventions of Birrell and Davies (17)): 

( --y\f -41 Clb) 

where we shall presently restrict our attention to the “right-hand 

wedge” corresponding to x > 0. 

Along a world line defined by <= <aconstant, an observer would 

experience a constant proper acceleration in the positive x-direction of 

magnitude ae -a F. N l/\x\, and measure the elapsed proper time a . 

The metric in the Rindler coordinates is: 
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JsZ t p ( d l - A\‘) 2 

and the vector a/a 1 is a global timelike Killing vector. 

We shall presently assume that the scalar field obeys Dirichlet 

boundary conditions, q =O, on the boundary of the Rindler wedge (this 

is equivalent to demanding in the Rindler system that q =0 for a fixed 

5 and then letting k 
tend to minus infinity). At t=l=O, ‘Q may be 

expressed in terms of the appropriate Minkowski modes or Rindler modes. 

The Minkowski space analysis is essentially equivalent to the discussion 

given in the Appendix, except for the boundary conditions. In the 

present problem the expansion of q(x) in the Minkowski modes takes the 

form: 

a(\<) sk(Kw) ; Q&j = zii. 6%) 

The functional derivative can likewise be written: 
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where: 

b dLc\ 
6a[pl = s(K-$. 

Then the Minkowski Hamiltonian becomes: 

0 0 
(11) 

The corresponding Schroedinger equation is: 

ve 
; i r ck - g \t + k%lS au 6 

which has the ground state solution at t=O: 
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In Rindler space we can apply the formalism of Section II. In this 

system the invariant action is: 

and we shall consider evolution of the vacuum wavefunctional along the 

surfaces parameterized by 
T 

Thus: 

xr = IT, t); Q$;= Il,o) i Dgr= (l,O), (2s) 

and 5 1s the intrinsic surface coordinate. The canonical momentum and 

equal- commutators are: 



FERMILAB-Pub-84/l 00-THY 

Thus we implement these by the replacement: 

- bL s 
T = -i pl41 S(,) = -i &,, . 

The Rindler Hamiltonian iS given by eq.(15): 

00 

H, = yT,,& = 4 (-&f + ($$)I) AT. 
\ 

--ry, 
(1-8) 

An instantaneous field configuration may be written in terms of spatial 

Rindler modes: 

0 

qb \ 
-t 

+ J& jYp\ kf ; Pjq = p-$. (I’\) 
-do 

The Rindler modes are formally identical to Minkowski modes without the 

boundary condition. This result is special to the massless l+l 

dimensional problem and results because l+l dimensional Rindler space is 

conformal to l+l dimensional Minkowski space and the equation of motion 
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Of the massless scalar field is conformally invariant. The functional 

derivative is: 

s =* I 
-+A 2 + q$ e Se) -@ y3q ; spa 

s,(K) = ‘(f+ 

Hence the Schroedinger equation becomes: 

m 

2 ’ + i 1 -+& + pv\yQq~ = i $ w,(j3,1), -Ge ? /d 
and the groundstate solution in this system is: 

Y;ccp,Qj = e* I-: Jp l&qJjq]. 8 -*) 

The states 9; and vl are different because for equal values 

of their arguments, which are configurations of equal amplitude in their 

respective systems, we have different field configurations. At t=T=O 

both states are defined on a common spacelike hypersurface and they can 

then be compared. The Bogoliubov transformation connects the two sets 

of amplitudes which define field configurations in the Minkowski and 

Rindler spaces: 
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m 

a&\ = 
c 

dq A(qQ($ (K=). 133) 

In the present formalism the Bogoliubov transformation is simply a 

Fourier transform: 

/&) = +\A, 5in[+.‘P~~~‘~ ,.y(l+i;p)cosq~) ,ql-* 
9 ' * 

139) 

We may now substitute the relation of eq.(34) into the Minkowski 

state of eq.(23) at t-0. We obtain: 

y” = Jk ++’ k A(~,p)A(~,p’)p(~~~(~/) f , &5) 
0 -co 

or (using jj(P) = p C-p)): 
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y!; = ,,,r-i f+ p CJh (3) J~$jq) (36) 

where the positive k integration has become a delta-function in p-p’ and 

we use the familiar gamma-function identities, rhdr (1-d = 

n/sin(rrx). 

Thus we obtain the Minkowski groundstate wavefunctional in terms of 

the p(p) of the Rindler field configuration. Xe see that y; has a 

different structure for low momenta, p-->a, though for p-->eO it 

approaches the Rindler groundstate exponentially (note that 

pcoth(rrp/Za) is positive for all p as is necessary for the stability of 

the state). This is a reflection of the fact that the difference 

between Minkowski and Rindler descriptions is irrelevant for the 

short-distance properties of the theory. 

It iS interesting to compute the expectation value in the Minkowski 

state of the Rindler number operator for the pth momentum mode, n,(p) 

(we could have expressed the Rindler Hamiltonian in eq.(31) in terms of 

this operator in the usual way). This may be obtained directly, or more 

easily by considering a single simple harmonic oscillator in one degree 

of freedom, q. If we specify that the groundstate wavefunction is the 

gaussian exp(-Oq2/2), then the expectation value of the number operator 

in the state exp(-Sq2/2) is given by: 
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4vG& = Iw-Cj74w~ cw) 

Thus we take this result over immediately to the evaluation of the pth 

Rindler mode number operator expectation: 

4nR> = Cl+- ,c.M~\y = 
4ipIf’o+~(3) 

lexp(*+f.‘) - I j.’ (34 

We thus see that the Rindler modes in the Minkowski vacuum are populated 

in a thermal distribution (Bose gas) with a temperature T-a/2-~. This 

is the familiar result of the Hawking effect. 

If we had applied Neumann boundary conditions at the origin rather 

than the Dirichlet conditions (i.e. demand the vanishing of the 

derivative of the field configurations at x=0) we could use a Fourier 

cosine series rather than the sine series of eq.(18,19) and we would 

have obtained the state: 



-25- FERMILAB-Pub-84/100-THY 

YI,., .= e-y I- -: f+ f L& i%!)lJQ41] J 
-D 

where the cotho of eq.(36) has been replaced by the tanho. It is easy 

to verify that the number operator in this state is also that of a Bose 

gas with T=a/ZX , but we see that the state3 are distinctly different 

and clearly there will be distinguishing matrix elements. 

But do these states really describe thermal systems? Not 

necessarily. For a thermal system the density matrix in our formalism 

i3 a straightforward generalization of that of the simple harmonic 

oscillator and is discussed by Feynman (18): 

g,lo(,,d:~l = f$~fA!i\ PC&L(+) CldplZ' ldy, f2.x 

-a 

Q 
- sq(1/T\ [++ a/nf$q , (40) 

\ 

However, for the Mlnkowski state with Neumann boundary conditions the 

density matrix is just: 
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which is not equivalent to that of a thermal system by the absence of 

the cross-term3 which lead to thermal mode-mixing. 

Recently 't Hooft ha3 discussed the Hawking effect where he has 

exploited the ambiguity in the definition of the theory due to the 

structure of the vacuum outside of the accelerating observer's 

horizon('3). In particular, 't Hooft has considered a definition of the 

density matrix in which he identifies the physics of the left-hand wedge 

with that of the right. In our language, we should equate a field 

configuration on the right to one on the left which is equivalent to the 

use of Neumann boundary conditions (since the cosine expansion is even 

under x+-x). We might be tempted to compare the diagonal of a thermal 

density matrix to the density matrix obtained by such a prescription, 

i.e. compare eq.(40) to eq.(41) with &=di. In this case the thermal 

density matrix, eq.(40), becomes formally identical to eq.(41) if we 

identify the temperature to be T=a/R, which is exactly twice the 

Hawking result and is the result obtained by 't Hooft. However, this 

procedure 1s evidently erroneous because the two density matrices are 

clearly inequivalent and indeed that of the pure state doe3 produce a 

Bose gas distribution of the correct temperature, a/ZTr. 

The important point here is that the Minkowaki state specifies a 

density matrix which is that of a coherent state (factorizeable) and is 

not that of a thermal state. In fact it is straightforward to show that 
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there are matrix element3 of particular operators that differentiate 

between the thermal and coherent cases. For example, the matrix element 

of the operator a4,2de p 1s different when evaluated in eq.(40) than 

when evaluated in eq. (41 1. Thus, a physical probe coupled to -r$ would 

register a nonthermal excitation. 

What is the subsequent evolution of the State with 7 a3 viewed by 

the accelerated observer? Consider a general parameterization of the 

state: 

y&r= f-y\-Lf+ &quJY$+ m+l. (42) 

The differential equation satisfied by A(p,r) follows upon substitution 

into the Schroedinger equation: 

-i-1aA(e,7\ = 1- 
p a? 

ACp$. 

The boundary condition upon A(p,r ) is specified by the Minkowski state, 

e.g. for Dirichlet boundary conditions at ‘/1=0 we have 

A(p,O)=coth(% /Za). P We thus obtain the simple result: 
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AIp,ll = &4h( 2 + irr), (44) 

which determines the evolution of the state in eq.(42) for all 37 . 

Notice that A(p,l ) is complex, reflecting the phase shift of the state 

with increasing Y, a consequence of it3 coherence. It is readily seen 

explicitly that the number operator is conserved. It3 expectation is: 

dQ-9) = I IpI- p A&f 
4lpl Re(ppq~~ = &p&4) - 1y 

CC9 

which is independent of time. Thus the accelerated observer detects 

particles in a Bose gas distribution which is constant throughout proper 

time. Obviously this result is a consequence of the fact that the 

number operator commutes with the Rindler Hamiltonian. 

In the present construction one might argue that the boundary 

conditions are boost invariant about the origin and the Minkowski state 

is thus annihilated by booat generators. Thus the comparison for any 

7 
may be made to the Same (boosted) state, and thus the accelerated 

observer will always see this thermal distribution C&9). If the wall is 

located to the right of the coordinate singularity boost invariance is 

103t and the state has a more complicated behavfor (16). 
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(9) The d+l Dimensional, Massive Problem 

The right hand wedge of the d+l Rindler space is the region of d+l 

Minkowski space covered by coordinates (t,x,$, ) with x>\t\. The 

right-hand wedge can be covered by coordinates ( ‘195 *$I ) with (1 , 5) 

related to (t,x) as in eq.(16). We thus have $,- representing d-1 

transverse coordinates. The metric is: 

ds’ = ,‘“5~d~~-- A&$=) - dsp t.46) 

and a/a? is a timelike Killing vector on the manifold. 

The instantaneous field configuration in Minkowski space which 

vanishes at x=0 can be expressed in the appropriate modes at t-r-0. We 

have for the field configuration and functional derivative: 

where z(kl,k)= d(-kl ,k) and soC(k~,k)/sa((pl .P) - s(k-p)% (kl-pI). 

The Minkowski Hamiltonian takes the form: 
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a 
IAM=; St _ sx6a(uL,k, + m; kK,\\ (Vi) 

0 

where the energy of a given mode (k+, k) is Gl(kl,k) = Ck:+k*+m*j! Thus 

the groundstate solution to the Minkowski space Sehroedinger equation 

takes the form: 

y = ex(, [-$ \A% cJ&,,KMLdq . 
0 0 44 

The Rindler Hamiltonian can be constructed with the formalism of 

eq.(15) and we obtain: 

l-4, = ; pgi-k [-&& + (q+ P’(@$ &j 

--uo 

and the action of the functional derivative is: 
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WhJ - 
bdf ‘, xl) - 

S({- 1’) scd-i&-ji;) * 

Our problem is essentially that of finding a complete set of 

spatial mode functions which diagonalize the Rindler Hamiltonian of 

eq.(50) in the appropriate momentum space. Let us assume that an 

instantaneous field configuration may be written: CQ ‘pI~,xJ = I-IL r r f2;y-lYz 

-; -L kl 
+ e L 1'x1 R, qxL,\ (51) 

where the RkG(.$ ) are the “longitudinal” Rindler modes. We shall 

explicitly construct the Rkb($) below. They will be shown below to be 

orthonormal and complete: 
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R;(f) : Slf- $9, 00 r G Q;&)R; Q-) = l+p'~, 
and they are also real with the implication: 

R,K’QJ = %;&); jji~,~ = y-b ,p). w 

Thus, the functional derivative can be written in a Rindler 

representation: 

6 
Ss&xJ = 

* -ii& Xl 
c i 

A!-& 
@r, td-lk ,“’ e Q, 6) $?i,f~ j 

5&p) 
bp: ,Q’) 3 PGL-~J q-,q l 

Module surface terms at the origin the h Rk($) diagonalize the 

Hamiltonian provided it can be written in a form: 
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HR = $ p-4 [+ [-$$gkL,;) + ~;$q3k,~q. 
0 

(56) 
f&-e GJ,$k,,p) is the energy of a given mode determined by the 

energy-momentum dispersion relation. The sufficient condition that 

eq.(56) obtain follows by substituting the representations for the field 

configuration and functional derivative, eq.(52,55), into the 

Hamiltonian, eq.(50), and demanding: 

0 = y4 \ ($y+(!??q,:,,j - &liiS\, 
-m 

Integrating by parts we obtain: 

r r( A’i - Qyw + (eq = 25’ KL+@+d -#%)!?:lT)] 
+ $1 a*(f) y=oc f 25 I = 0. f5 -* 

In the double wedge problem as discussed in Sect.IV the surface term 

produced at tR=-@ (yL=@) by the RH (LH) integration need not vanish 

because continuity of the field configuration across the origin will 

ensure that the upper LH surface term cancels against the lower RH term. 

We require an expansion, however, which produces no such terms as tR --> 

60 +-> --oo ). In the present problem we must demand either 

Dirichlet or Neumann boundary conditions as te--> -61 and the 
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exponentially vanishing solution as IR-> m . The Dirichlet boundary 

conditions may be implemented by demanding that Rkk($ ) vanish for y = 1, 

and then taking the limit as y;->-@, which results in a discretization 

of the spectrum which approaches a continuum in the limit I,--> -@. 

Such an effect occurs in the Green’s function analysis of Candela3 and 

Deutsch(“). If we consider only momenta small compared to 1;’ the 

continuum spectrum obtains and we may neglect the effects of these 

surface terms. 

Thus, our basis functions satisfy the modified Bessel equation of 

imaginary index: 

a’u;ct j 
a?’ 

- e%&Yt) + w’,(k,p’~~~~j = 0; 

2 -L? 
PI1 = kl -c It(z’. 

These, of CO”~SB, are just the longitudinal modes obtained by separation 

of the Klein-Gordon equation in this coordinate system for a mode of 

time dependence exp(iW 7 )* 
Henceforth we shall write the “transverse 

mass”, rn: = L ;2 +.2 . 

The correct expansion is essentially that of the massive d=l case 

first studied by Fulling(5) and is based upon the standard analysis 

given in Titchmarsh(*‘). Candela3 and Deutsch(“) have constructed the 

Green’s functions for the problems of accelerating walls in d+l massless 

scalar field theories and also encounter these basis functions, though 

there are distinct physical differences between the problem studied in 

ref.(l9) and the present. Recently the full d+l massive problem has 

been treated by Haag, Narnhofer and Stein (7), though their analysis was 
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unknown to us until the completion of this work. These ideas have also 

been previously discussed extensively by Boulware (9). 

Here we. identify the Rki(s ) with the modified Bessel functions of 

imaginary order. In the range, x > 0 there are two solutions, one 

blowing up exponentially as x-->QQ which we discard. It should be 

noted however that this is an additional constraint which was not 

implemented in the l+l dimensional problem and which effectively halves 

the number of degrees of freedom in the d+l massive case. 

With the appropriate normalization the solution to eq.(59) is: 

R;Itj = + I $f sihh[y)\” y, (~,c?e~‘J, 160) 
CL 

where Kip(z) is the modified Bessel function of imaginary order, p. 

The dispersion relation between energy and momentum is thus: 

What is the physical interpretation of this bizarre result? Why 

does the transverse mass decouple from the energy-momentum relationship? 

In a sense we believe it arises because an eternally accelerating 

observer is not sensitive to the transverse ma33 in an ordinary 

Lorentz-boosted dispersion relation but for a brief instant of his 

proper time when the particle is at rest relative to him. This occurs 
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for a negligible amount of time over the entire history of his world 

line. For consider the particle having zero longitudinal momentum at 

some instant, thus p r= (m I pkl ’ 0). The accelerated observer at time 

7 
measures pr’ = (mlcosha) , kl, mLsinha7), or pdz = 

I2 pt coth2(d 
1 

). If we simply average this relation over a long interval 

IL 
of time we obtain the effective result p0 /Z 

=Pt . 

The completeness and orthogonality of the modes Rki(< ) may be 

demonstrated in several ways. These are neatly summarized by the 

properties of the Kontorovich-Lebedev transforms (21). The completeness 

is also inherent in the discussion of Titchmarsh(20) and the 

orthogonality may be proved directly by the use of Weber-Schafheitlin 

integralsC2’ ). We shall not presently elaborate these properties of the 

mode functions furth$r. 

The completeness and orthonormality of the mode functions thus 

establishes the diagonalization of the Rindler Hamiltonian, which now 

takes the form of eq.(%). Thus, the Rindler Hamiltonian has a 

ground-state wave-functional of the form: 

21) ’ R = Cxf[-; \ h: Idp u,W,$~%,p~\‘l. 
0 

&d 

The static groundstate of a system reflects correlations that have 

acquired over the entire preceding history of the system (hence 

spacelike correlations are not vanishing, though causality is 

effective). This state can be written in a form, as a consequence of 

the energy-momentum dispersion relation of eq.(58), which shows that it 
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is an infinite tensor product of independent and equivalent 1+1 

dimensional model groundstates: 

Y 
0 
R = ) e%f r-; fdp f Ipq\i’? l 

Kl 
0 

163) 

We note, however, that eq.(58-60) are strictly valid only for small 

longitudinal momenta (e.g. if the Dirichlet boundary conditions are 

applied at f0 then these are valid for momenta small compared to 

L;,-’ ). In the presence of interactions, and even free regulator fields, 

this decomposition will become invalidated. Free regulator fields must 

restore the full singularity structure of the field theory to that of 

the Minkowski case and they must reunite the transverse and longitudinal 

momenta and masses(‘6). 

We now turn to the comparison of the Minkowski and Rindler 

descriptions of the vacuum state. AS in the preceding section we wish 

to express the Minkowski ground-state, -%t , in terms of the P (PI BP) 

of the Rindler expansions. To accomplish this we introduce the 

Bogoliubov transformation relating the two sets of field configurations: 
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The same transverse momenta appear in both sets of mode amplitudes in 

eq.(64). The coefficients A(kL,k,p) are given by: 
m 

/i&K, p) = Ax \ J- 
$ sit- Ckx) a,“l(flxI) 

; (L& co&p CK\ en;]‘: 
= -1 

/fd&;~k);“- ((K’+:;- “)ip’a\s 165) 

To express 

evaluate: 

in terms of the Rindler amplitudes we need 

rg 

“I; = PX~ \- i [t’KL \df +dp (k?+w+ 

R(u,,~,jiA(K~,U,,‘)g~Kl)p~~~u~~p~)l. 
Performing the k-integration first and then introducing the 

substitutions: 
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\I=;1 ; u 2 v + @+ v+j (67) 

we find that the integration over u produces a delta-function 6(p-p’) 

which leads to the final simple result: 

OQ 
Y 

0 = ex w di; p cciti.,[~) @h,$fj. @) 

Thus, by the same arguments given previously for the 1+1 case we 

see that y: is an excited state relative to the groundstate of 

eq.(63) and will have the thermal Bose gas distribution in energy. 

However, now the distribution is not rotationally invariant but rather 

is directed along the longitudinal momentum axis. This is a consequence 

of the peculiar energy momentum dispersion relation and answers the 

puzzling question as to how the accelerating observer in d>l dimensions 

can see both a thermal distribution of particles and yet have a 

preferred axis of acceleration. 

Of course, as in the l+l problem, this is a coherent state and it 

will evolve with 7 in a manner identical to that in eq.(44), but the 

particle number distribution will again be conserved. 
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IV. The Complete Manifold Problem 

In the present section we shall conclude with an analysis of the 

standard two wedge 1+1 dimensional massless problem. We have been 

cavalier in our treatment of boundary effects, but will describe the 

subtleties as they arise. Our primary aim is to recover the 

prescription given recently by Unruh and Wald(23) under which the 

Rindler problem gives a truly thermal density matrix. 

We assume in Minkowski space an expansion in plane waves (complex 

exponentials) for the instantaneous field configurations and thus the 

analysis of the Appendix is strictly applicable. Thus, we take the 

groundstate solution to be that of eq.(A.lO), though we shall presently 

consider d=l . We introduce the familiar two-wedge Rindler coordinates: 

x >o IRti LJ,eA e) i 
3 

xc0 (Lcl L&he): 
4 

I 

x = cA-501L(,r) -' "t,.iLOi -7L= & e 
7 

-t = Lea L s;mha 2‘ 
164) 

1. 

An instantaneous field configuration we assume to be parameterized 

by: 
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oc, 

d);h) J(I 
G ) 

in terms of the R and L spatial Rindler coordinates. Thus, the 

functional derivative is: 

Q) CD 

% 
St{) 

= &) $ew d_p + fj(&) $wL,g , 
i g-$(j(P) 2-r i 

Note that there is a potential inconsistency in using the above 

expansions and the Minkowski expansion into plane waves. A”Y 

regularization of the Minkowski momentum integrals severely restricts 

the validity of an expansion as in eq.(70) as f,-->-oo (or ‘;, --> 

Ce ) since the Rindler modes oscillate wildly (have infinite Minkowski 

momentum) in these limits. Equivalently, if we adopt a Fourier sine 

series in Minkowski space on the right and independently on the left 

wedges, the range of non-uniform convergence in these series is a range 

of convergence in the above series. This suggests that we should be 

using Fourier sine series in Rindler space for rK> (lnaE)/a) and f,C 

(-ln(Pt)/a) where the range of validity in Minkowski space is x > f 

and x < -t . A more thorough treatment of the continuity conditions iS 

beyond the scope of the present treatment. 
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Proceeding, we take the coordinates within the evolution surfaces 

parameterized by 
Y to be ‘3’ 5;I.L 

) and the normal vector in Rindler 

coordinates is dxp/d T = (l,O), and goi = goi = 0. Thus, we find the 

Rindler coordinate system to lead to the Hamiltonian: 

tiR =-: \cqF$$+ [$] -t -: jq&$+~,‘i I7 
+ (S”& a2 terws 1. 

Here we’ve indicated another potential subtlety which is the possibility 

of surface terms connecting the left and right hand wedges. Such 

surface terms no doubt exist. If we imagine a lattice version of the 

field theory the mere presence of the coordinate singularity in eq.(69) 

does not permit us to sever the nearest neighbor interactions linking 

the left and right hand wedges. However, there would seem to be no 

obvious way for the observer intrinsic to a given wedge to decide what 

these terms must be. As mentioned earlier, the Minkowski vacuum 

dictates the physical outcome of any measurement by the observer. Thus 

one is free to define a Rindler state by a Hamiltonian in which these 

surface terms are neglected, though such states are not relevant to the 

physics. 

The ground state solution to the Schroedinger equation with the 

above Hamiltonian but neglecting surface terms is: 
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0 
Y R = exe I 1 

-; m$r\ IK\ @(~~I’+ \dq . 173) 

-00 

Again we wish to project the Minkowski vacuum state into this basis 

(in this sense we are performing a measurement in a generalized 

Unruh-Dewitt detector defined by the Rindler state). Equating Minkowski 

and Rindler field configurations over the entire space leads to the 

relation: 

aJ 00 

Alic,p\J(~~~ + 'DCWhIn~ @ 2n 
(74 

-IT 

where dk is the Minkowski field Fourier component as defined in 

eq.(A.l). The transformations are straightforward and we obtain: 

ACw,l\ = -.$ F(l+ $) 15 j_l-iu= ~&&+"a _ &&--l; 

&I I-k) ed’lk 1 . 
17s ) 

Thus, inserting eq.(T4) into the Minkowski vacuum state of eq.(A. 10) 

yields its representation in terms of the Rindler modes: 
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hb) 

- +,h@)j-‘(p~ai9e) + 8iJ(J$j. 

Note that the result of neglecting the surface terms in the Rindler 

Hamil tonian has led to the groundstate of eq.(73) which lacks 

cross-terms of the form Jqtii\ + hc. Thus, in that state the 

spacelike correlations across the origin are forced to vanish. The 

Minkowski vacuum clearly has such correlations and they show up in the 

cross-terms in the state of eq.(76). 

It is now possible to give a prescription by which the physics seen 

by an observer on the left hand wedge is truly thermal, but we emphasize 

that this is no more than a prescription. Construct the density matrix 

and functionally integrate out the modes on the left-hand wedge for the 

observer on the right: 
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= ‘“pi- ;\ 2 1 !LMp$) (lJ3lPf’ rJw> 

_ $;*h [~~“)~‘(jmJle) .+ j$Jq 1. 177) 

This result can be compared to the density matrix of a truly thermal 

system as given by Feynman (‘*) and written in eq.(40). We see that now 

the systems are identical and the temperature can be inferred directly 

from eq. (77) to be the usual a/zn-. This prescription has been 

previously given by Unruh and Wald(“). 

The problem here is that that the system on the left wedge need not 

be in it’s groundstate, i.e. we could equally well have integrated over 

the left hand wedge with some arbitrary operator function of the y/a)in 

the integrand. This will lead to a physical distinction between the 

systems and will affect the physical measurements on the right wedge. 

The previously considered wall at the origin is equivalent to inserting 

a projection operator that equates the yb) that are odd in their momenta 

to the p&) on the right, while forcing the even y(q) to be zero. 

Nonetheless, the Unruh-Wald prescription is physically reasonable. We 

certainly expect that the state which lies beyond the horizon of a 

black-hole is, to a good approximation, a true vacuum insofar as its 

Casimir effects are concerned. 

I” co”clusio”, there are several remaining ambiguities to be 

resolved concerning (a) the continuity conditions of the field 

configurations which are the basic degrees of freedom of the quantum 

field theory, (b) the role of surface terms in the Hamiltonian of the 

observer in the singular coordinate system (c) the limitations on 
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computability of the observer in the singular system owing to the 

ambiguity of the definition of the state beyond his horizon and the 

physical spatial correlations. Probably these are fundamental 

limitations which cannot be decided by observer’s intrinsic to the 

singular coordinate system, but they have not been faced by a 

fundamental approach to the construction of the field theory previously 

and will be discussed elsewhere (16) . 
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Appendix: Minkowski Space Formalism 

In the present appendix we review the functional Schroedinger 

formalism and establish our conventions. We assume flat d+l dimensional 

Minkowski spacetime. 

A time independent real field configuration may be represented in 

continuum OF finite volume mode sums: 

1 
a 

4w = g\A c& cik.x = \I-1 1 Qr $-k.x 

(A-1) 
D(K-oIci - a, = a-k . 

The d-space functional derivative is: 

bQG\ 
3+1 = Sd(L$ = \/-l&q 
s 

\ 
du ,ik.x Ti- - = hwa (GA e SC&) ; 2;) = @lrf Xdbf). 

Given the Hamiltonian: 

I- @q n-=+ ;ija& A- /m’Q’ 1 

and the equal-time commutation (e.t.c.) relation: 



-48- 

[c!m, lryl = i SC6j:), 

FERMILAB-Pub-84/100-THY 

we may implement the e.t.c. relation by the replacement: 

n-6) 4 - i sld)/sqc,, ( J A.5 

and arrive at the Schroedinger equation: 

- 

( ) A.6 

This is. of cowse, equivalent to a system of coupled simple harmonic 

oscillators. WQ,4) 1s the amplitude to find q(x) at time t. In 

momentum space we may write a diagonalized expression: 
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(A-7) 

With the ansatz: 

/\v = eK t!(K) \& \’ 0.g) 

we obtain: 

and the solution for the ground state is given by: 

(LA 40) 

-Q-, = $ \ ;g+ 4x-z Cl& S%) ; /I % (*7$ s yo) 
II- 

where flols the zero-point energy of the system. 

Multiparticle states can be constructed by the application of the 

particle creation operators: 
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‘12 - s1 
a, z q( D(-& + Qu 

t- I a,= z 
(AJI) 

each labelled by a given momentum, k. Furthermore, functional 

integration may be defined by limit from the finite volume theory 

(discrete momentum space) in the usual way. The only subtlety here is 

avoiding the double counting by respecting the reality conditions 

d,= d-,. 
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