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Abstract 

The cosmological prodllction of Kaluza-Klein monopoles is discussed. 

The present monopole to entropy ratio is calculated in some simple models 

with the conclusion that this ratio is unacceptably large unless additional 

mechanisms for entropy production or monopole annihilation are present. 
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In 1974, ‘t Hooft [l] and Polyakov [2] demonstrated that the field 

equations of many spontaneously-broken gauge theories admit magnetic 

monopoles. Suppose that one starts with some compact gauge group G which is 

spontaneously broken down to HxU(~)~M, then such a theory will admit 

soliton-type solutions which correspond to massive, stable magnetic 

monopoles. The typical mass scale for such objects is Mx/e where Mx is the 

mass of the heavy vector particles, and e is the coupling constant. lhese 

monopoles can be regarded as topological defects in the orientation, in 

group space, of the vacuum expectation value of the Higgs field. In 

standard big-bang cosmologies, one starts off with a very hot initial phase 

(T>>Mx/e). The Higgs field then varies randomly over space due to thermal 

fluctuations. As the universe cools, the phase where the VEV of the Higgs 

field does not vanish becomes stable, and the Higgs field becomes frozen. 

By chance, this field will contain topological defects which will persist to 

the present day, and manifest themselves as magnetic monopoles [3,4,5,6]. 

It has recently been shown explicitly by Gross and Perry [7] and Sor- 

kin [8] that five-dimensional Kaluza-Klein theories [9,10], which are 

unified theories of electromagnetism and gravitation, admit the existence of 

magnetic-monopole solutions. These solutions are completely non-singular. 

In general, in any Kaluza-Klein theory, one has a n-dimensional space which 

is locally the product of some compact d-dimensional space Z with an 

isometry group I, with a four-dimensional spacetime M. In general the 

z-valued fibres over M need not be trivial. The result is that the action 

of I can have isolated fixed points. In Kaluza-Klein theories I is 

interpreted as a low-energy gauge group [ll]. If I is of the form HxU(l), 

then these fixed points can be magnetic monopoles. Typically, one expects 

the size of 1 to be of the order of the Planck scale. The mass of the 

monopoles is then of the order of M Planck/e where e is now the low-energy 



coupling constant of the effective low-energy I-valued gauge fields. This 

precisely parallels the scenario of spontaneously-broken gauge theory 

models. Gravitation in n-dimensions has as a gauge symmetry Diff" the 

diffeomorphism group in n-dimensions (group of coordinate 

transformations). This group is spontaneously broken down to Diff4 x I. 

Topological defects in the fibration of C over M correspond to magnetic 

monopoles, and possibly other types of excitations [I2]. 

In what follows, we wish to discuss the role of Kaluza-Klein monopoles 

in cosmology. However, we face a problem. At the present epoch, we know 

that if the universe really has more than four dimensions, the (n-4) 

remaining dimensions must have scale sizes of the order of the Planck 

length. Furthermore, these scales must be constant over cosmological time 

scales. Consider a Kaluza-Klein theory in which electromagnetism arises via 

the Kaluza-Klein mechanisn. Then the U(1) symmetry is associated with a Sl 

generated by a Killing vector which commutes with all other Killing vectors 

contained in I. The "Kaluza-Klein" circle has radius R - l/e. Thus e 

determines the size of the Kaluza-Klein circle. There are (at least) three 

observations which tell us the e has been constant over cosmological 

timescales. The first is an observation by Bahcall and Schmidt [13]. They 

showed that by looking at various emission lines of Oxygen in active radio 

galaxies at redshifts of z - 0.2, that 

e(z - Om2) = 1.0005 * 0.001 e(lab) 

The second is an observation due to Shlyakhter [14]. Approximately 2~10~ 

years ago, a natural nuclear reactor at Oklo in the Gabon operated. 

Examination of the isotope ratios in the fission products enabled him t0 
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deduce that 

e (Reactor) 1 1 + IO-8 
e (Lab) 

Finally, even at the era of nucleosynthesis e cannot have been 

substantially different from at present. The reason is that the neutron- 

proton mass difference is almost entirely electromagnetic in origin, and it 

is this quantity which essentially determines the primordial Helium and 

Deuterium abundances. These are correctly determined by traditional 

schemes. The point is that even as far back as a few minutes after the big- 

bang, the compact part of the spacetime must be substantially the same as 

now. 

This leads us to a problem of how to control the size of the compact 

piece, and how to arrange some dimensions to be compact. It could be that we 

should assert that even as far back as the big-bang, part of space was 

always compact. In this case, the Kaluza-Klein scenario arises as part of 

the initial conditions. On the other hand, it could be that certain 

directions of space simply rolled themselves up at some point - spontaneous 

compactification - at a time somewhat after the big bang. 

A simple example of a Kaluza-Klein cosmology is provided by a general- 

ization of the Kasner [15,16] solution. Suppose that the metric on large 

scales is given by 

n-l 
ds2 = -dt2 + z a? (t) dx 

iZ 

i=l 
(1) 

x'(i=1,2,3) should be regarded as coordinates on R3 representing the spatial 

part of the universe. x'(i=4 ,...n-1) should be regarded as coordinates on 

T n-4, the (n-4)-dimensional torus giving an isometry group of U(1)n-4. The 

vacuum Einstein equations then give 



ai(t 1) = (t/to)pi 

' Pi = 1 

E p?=l 
1 

(2) 

It follows from this that at least one direction must be contracting 

unless the spacetime is flat. Presumably, this contraction will stop once 

the radius is of order the Planck scale since it would seem inevitable that 

quanttm effects would become important. One can try to make a more 

realistic model by demanding that pI = p2 = p3 z pA and p,, = . . . = p 
n-4 z PD 

in which case 

3PA + OP8 = 1 

3p$ + Dp; = 1 

(3) 

where now D = n - 4. Solving for PA and PD gives 

P* = 
1 _+ (: D2 i $ D)l" 

3+D 

(4) 

D f 3 (+ D2 +; D)1'2 
PD = - 3+D 

lhus either pA > 0, pg< 0 or pA < 0, pD > 0. b/e will concentrate on the 
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first case. We note the following three features. 

First, the compact directions do not have constant proper spatial 

extent. Second, the point t=O is a spacelike singularity (rather like the 

big-bang) and finally, the Kaluza-Klein ansatz has been put in as an initial 

condition. A consequence of this is that monopoles appear as initial data 

since topological defects may or may not be ruled out a priori. 

For the GUT monopole in the standard cosmology there is a temperature 

above which there are no monopoles, so the nrmrber of monopoles produced is 

independent of initial configurations of the Higgs field. For the Kasner 

cosmology discussed above the number density of monopoles depends on the 

initial orientation of compactification, and cannot be calculated. Even 

knowledge of the initial conditions (hence the initial monopole number 

density) is inadequate. The relevant parameter is the monopole-to-entropy 

ratio. The Kasner solution describes a "vacuum" solution, and if it is to 

be relevant it is necessary to create entropy either through particle 

creation in the anisotropic gravitational background [17, 18, 191 or through 

viscous damping [20, 211. In either case the entropy produced depends on 

the details of the cosmology and the microphysics. The monopole-to-entropy 

ratio cannot be calculated in this class of cosmologies; neither the 

monopole density nor the entropy density is calculable. 

A second example of a Kaluza-Klein cosmology is one in which the 

"spatial" directions are like those in a Robertson-Walker spacetime, and the 

"internal" directions are some space which is itself Einstein, with positive 

curvature. (If it does not have positive curvature, then it will fail to 

have any Killing vectors and not generate a satisfactory low energy theory 

[22].) Such models have been considered previously by Freund [23], Sahdev 

[24], and Kolb, Lindley and Seckel [25]. The metric is taken to be 

ds2 = -dt2 t a2(t) gmn dxm dx" + b2(t) guVdx“dx" (5) 



where a(t) is the scale factor for the three observed spatial dimensions, 

b(t) is the scale factor for the extra dimensions, 9,,(x) is the metric for 

a maximally symmetric three-space, and g,,,(y) is a metric on the compact 

internal space with positive scalar curvature. At early times the stress- 

energy tensor is assumed to have a (4+D)-dimensional perfect fluid form with 

an equation of state for radiation. 

A diagram describing the evolution of the scale factors for the "ani- 

sotropic" FRW case is shown in Figure 1. The scale factor associated with 

the extra dimensions reaches a maximum value, bM, then decreases toward a 

singularity [Fl]. After a time t, defined by bT = 1 (T is the (3+D)- 

dimensional temperature) the universe is effectively 4-dimensional. One 

must assune that at some time t FRW 2 t,' the extra dimensions stabilize at 

some fixed radius. This presunably occurs due to quantum mechanical effects. 

It will not occur if the effective energy-momentum tensor is that of a 

fluid. 

The "anisotropic" FRW class of cosmologies has the feature that the 

effective S-dimensional entropy is not constant [24-X3]. Even with the 

assunption that prior to t, the n = (3+D)-dimensional expansion is 

isentropic, i.e. 

a3bDTD+3 = constant (t-x 19 (6) 

the temperature may increase in the evolution, since the mean volume may 

decrease as b decreases. The increase in temperature (hence in entropy 

density) is presumably cut off at time t = t,, when bT < 1. At this point 

there is insufficient thermal energy to excite the modes of the extra 

dimensions, the (Dt3) dimensional perfect fluid term for T 
MN 

is not 

relevant, and one may ignore the extra dimensions and consider 4-dimen- 
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sional cosmologies. At t = t, the excitations of the extra dimensions are 

realized as 4-dimensional massive particles, which presumably decay [F2] , 

thereby increasing the effective 3-dimensional entropy. Detailed 

calculations give an entropy, S,, in the horizon 3-volume at t = t, of [25] 

ln s, : -2(D+3)[3/D(D+2)11’* ln (RKK 

l-2[3/D(D+2)] 
IIL 

-F' (D>1) 

- In (RKK/R~~) (D>>3) 

where RKK is radius of the compact extra dimensions. Although the entropy 

in the horizon three-volume increases while b decreases, the total entropy 

in a co-moving N-volu;ne remains constant until t = t, (eq. 6). Therefore at 

t = t,, the monopole-to-entropy ratio must simply reflect its initial value 

since,the number of monopoles in the co-moving voltmie is also conserved. In 

the absence of entropy production after t = t,, the monopole-to-photon ratio 

today would simply reflect the initial value. The principal reason a 

monopole-to-entropy ratio cannot be predicted in this model is that the 

defects are present at t = 0, and hence they depend on the initial data. 

The final cosmological model we consider is one in which the 

compactification occurs for dynamical reasons during the expansion. In this 

model, we assuae the universe expands isotropically in n + D f 3 spatial 

dimensions from t = 0, and at t = tc there is a fluctuation in the geometry 

which causes D dimensions to compactify. In this case one may regard 

compactification as a phase transition and use the horizon distance as the 

order parameter. This would result in an average production of one monopole 

per horizon [3-51. In an isotropic 
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N-dimensional, radiation-dominated expansion, the horizon distance at 

compactification is [F3] 

d,,(tc) = tc q 
n(n-l)r($r(-+l) 1'2 MplM;; 

321r~+~+~'~ r(n+l) Tcn+l'2 
(8) 

where tC is the time from the initial singularity, and we have assuned an 

isotropic expansion in n = 3 + D spatial dimensions with a radiation 

dominated equation of state pn = 2n n'2Tn'1/r(n/2) = np,. We asstme that 

compactification occurs at T 
C = MKK, so that 

dH(tc) = Mpl/MiK 

which results in a monopole density of 

nM(Tc) = di3 (T,) * MEK/Mil . 

(9) 

(10) 

If we asstmre that compactification is instantaneous, the photon density at 

-1 compactificiation (T = RKK ) would be 

n D 
Y 

= VDpn = RKKT n+l = M3 
KK (RKK = T) (11) 

Therefore the monopole to photon ratio in this model would be given by 

“M 3 
- = 

n 
Y 

(5) . (12) 
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which is the same as the prediction of GUT monopoles if one takes M 
KK = 

MGUT' The Kaluza-Klein scale is expected to be close to the Planck scale so 

an initial monopole-to-photon ratio of O(1) is predicted [F4]. 

For GUT monopoles, MTci annihilations would reduce an initial nM/nr of 

O(1) to a final nM/nv of O(lO-lo) [3]. However, for the Kaluza-Klein 

monopoles, the Mv system does not have the quantum numbers of the vacuum, 

and hence M andfi cannot classically annihilate [7]. The fact that the MM 

system has non-trivial topology also implies that M7;i cannot classically be 

created in thermal processes. Of course in the final model we have 

invoked fluctuations of the geometry to achieve compactification; it is 

likely that similar fluctuations would allow Ml? pairs to be created or 

destroyed. In fact, such fluctuations are necessary to create the Mfi pairs 

in the compactification transition. 

In this paper we have attempted to estimate the density expected for 

Kaluza-Klein monopoles based upon some simple cosmological models in more 

than 4 dimensions. The conclusion is that in some cosmologies the density 

depends upon initial data, hence unknown. In the final model the predicted 

monopole-to-photon ratio was of order unity. In either case it seems 

necessary to dilute the monopole density. The same dilution methods used 

for GUT monopoles may be used for Kaluza-Klein monopoles [F5]. Inflationary 

dilution may be even more eFfective for Kaluza-Klein monopoles, because 

thermal production of Mg pairs is (classically) forbidden. 
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Footnotes 

[Fl] This of course was guaranteed by th.e choice of a closed space, 

kD = +l. 

[F2] k'e assume here that all the excitations can decay. The possibility of 

stable excitations was considered in ref.[2g]. 

[F3] For simplicity we assume the extra dimensions form a D-sphere with 

D D/2 volme vD = RKK~ /r(D/2 + l), where RKK E MKK -' is the radius of the 

D sphere. 

[F4] However there are compactification models with ItK = 0(102 GeV)[30] 

in which case an initial n /n = 10 -21 
M Y 

is expected. 

[F5] For a review of monopole dilution mechanisms, see e.g. [23]. 
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Figure 1. Time evolution of scale factors for the three observed spatial 

dimensions (a) and for extra dimensions (b) in three Kaluza-Klein 

cosmologies 


