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ABSTRACT 

We consider a cosmological model in which an unstable massive relic 

particle species (denoted by 'X') has an initial mass density relative 

to baryons 6-l : pX/pB >> 1, and then decays recently (redshift z < 

1000) into particles which are still relativistic today (denoted by 

'R'). We write down and solve the coupled equations for the cosmic 

scale factor a(t), the energy density in the various components (p,, pR, 

PB), and the growth of linear density perturbations (6p/p). The 

solutions form a one parameter (6) family of solutions; physically R-' = 

(n,/n,,) x (1 + 2,) = (ratio today of energy density of relativistic to 

nonrelativistic particles) x (1 + redshlft of (decay). We discuss the 

observational implications of such a cosmological model and compare our 

results to earlier results computed in 'the simultaneous decay 

approximation'. In an appendix we briefly consider the case where one 

of the decay products of the X is massive and becomes nonrelativistic by 

the present epoch. 
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I. INTRODUCTION 

Theoretical prejudice, specifically the naturalness of the flat, 

Einstein-deSitter cosmology, argues strongly that R should be 1 (more 

precisely that the curvature term, k/a2, should be negligible).“’ The 

inflationary Universe paradigm provides a very attractive way of 

implementing this prejudice.2-5 To date, observations have not supported 

the view that R = 1. The observational data together with the highly 

non-trivial assumption that light (i.e., visible galaxies) provides a 

good tracer of the mass in the Universe seem to suggest that 0 = 0.2 ? 

‘0.1’. where the ‘iO.1 ’ is not might to represent a formal uncertainty, 

but rather indicates the spread in the determinations of R reported in 

the literature.” [It is already well known that the mass associated with 

the observed light cannot be the whole story as Rluminous = 0.01; so at 

best we can hope that light traces mass.1 Very recently, Bardeen’ and 

Kaisere (among others) have begun to explore the possibility that the 

discrepancy between theory and observation, the so-called ’ R-problem’ , 

could be resolved in scenarios where, for astrophysical reasons, light 

does not trace mass (specifically because visible galaxies form only at 

3-0 peaks in the density contrast 6p/p). 

Another possible solution to the Q-problem which has been recently 

suggested is that most of the energy density in the Universe resides in 

a smooth component.9”0 [All of the dynamical techniques for measuring R 

are insensitive to a smooth, unclustered (on scales >> 30 Mpc) 

component”.] That smooth component could be ‘hot’ particles (&, 

particles with a very large internal velocity dispersion, <v’>“~ >> 

10m3c), which by virtue of their high speeds could not cluster (on 
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scales < 30 MPC), and would thus be smoothly distributed. The most 

frequently mentioned origin for these ‘hot’ particles is the recent 

decay of a massive relic particle species. If the decay products of 

this parent species (denoted by ‘Xl) are very light, then they will 

still be relativistic today (v = c). On the other hand if at least one 

of the decay products has a mass not too different from that of the X, 

then today some of the decay products might be ‘hot’, but not 

relativistic. 

The other possibility for the smooth component is a relic 

cosmological Constant (of unexplained origin!).‘O In either smooth 

component scenario, the ’ R-problem’ is not resolved in a totally 

satisfactory manner. The ‘R-problem’ is in fact a timescale problem -- 

in an n f 1 (i.e., k f 0) cosmology there is an uncomfortably large 

timescale (relative to the fundamental gravitational timescale t pl = 

10e43sec) : the time at which the curvature term (k/a2) becomes 

comparable to the energy density term. In both the decaying particle 

scenario and the A f 0 scenario there are also timescales -- the 

lifetime of the unstable particle species X and for A f 0 the epoch at 

which the energy density in particles is comparable to il/8n~. The only 

consolation is that one of the latter timescales might be more easily 

explained in terms of fundamental microphysics. 

In this paper the cosmology of a model Universe with an unstable 

relic particle species which decays in the recent past (redshift <_ 1000) 

is explored in detail: the evolution of the cosmic scale factor a(t), 

the energy density in the various components, the growth of linear 

density perturbations, and the kinematics of the model (the age of the 

Universe, the look back distance, the comoving proper volume at various 
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redshifts, etc.). The brief introduction presented above was meant to 

provide the motivation for considering such cosmological models. In the 

next section the simultaneous decay approximation (i.e., that all the X 

particles decay simultaneously at a time t = TX z T -‘) which has been 

used previously to discuss decaying particle cosmologies will be 

reviewed. The exact equation3 for a(t), Pi, and 6p/p will be derived 

(for the case in which all the decay products are still relativistic 

today), and the one parameter family of solutions will be discussed. In 

Section III, the cosmological implications of the solutions will be 

described. Section IV contains a summary and concluding remarks. In 

the appendix the case where one of the decay products becomes 

nonrelativistic by the present epoch is briefly considered. Here the 

solutions form a two parameter family of solutions. 

II. EQUATIONS FOR THE DECAYING PARTICLE COSMOLOGY 

A. Review of the Simultaneous Decay Approximation (SDA) 

To begin let us review the basic scenario in the SDA. Consider a 

massive particle species X with mass mX, decay width I, and relic 

abundance (relative to 3K photons) before it decays r z nX/nY. For now 

assume that its decay products are so light that they are still 

relativistic at the present epoch; in the appendix the case where one of 

the decay products is sufficiently massive that it is nonrelativistic 

today is considered. We are interested in the case where the mass 

density contributed by Xs (before they decay) is significantly larger 

than that of the baryons and other stable nonrelativistic (NR) 
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particles. Define the ratio of their mass densities (before the Xs 

decay, i.e., t << I’-‘) to be 6: 

6:p~R’pX ’ (la) 

= 0.263(0 
NR h2/e3m 

loor') ’ (lb) 

= 0.965(nNRh2/t13, 
100)' (lc) 

where nNR is the fraction of critical density contributed by stable, NR 

particle3 today (E pNR/p,, pc = 3H:/8rrG), Ho = 100 h kms-’ Mpc-’ iS the 

present value of the Hubble parameter, 2.7 0 K is the present photon 

temperature, mlOO = mX/lOO ev, and m,OOIOOeV is the mass of a relic 

eutrino specie3 which would contribute the same mass density as the X 

does [mloo = (mX/lOOeV)(r/(3/11))1. Note that if the stable NR particle3 

are all baryons, then 

6 = 3.44 x 10-3 (Il,o/“,oo), (2) 

where n,o 2 1o’O ll 2 10’0 (nbhy); for reference big bang 

nucleosynthesis constrains n ,. to the interval (4.7) (ref. 12). 

At very early times the Universe is radiation-dominated; at 3 

photon temperature T 
-3’ 

time teq and cosmic scale factor a 
eq 

the 

Universe becomes matter-dominated (by Xs and the stable NR particles; 

sPeCific3llY: PX + PNR = py + pv;) where 

aeq/ao = 4x,0-5(6-‘+1)-‘(nNRh2/e4)-‘, (3) 
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= 4x10-5 6 (n NR h2/e4)-' , 

t 
eq 

= 3.8x10'0sec(l+6-')-2(~~~hz/e3)-2 , (4) 

= 3.8X10"SeC B2(ii NR 
h2/e3)-' , 

T = 5 geV(l+g-‘)(B eq * NR h2/e3) , (5) 

= 5.9ev 6-'(n h2/e3). NR ’ 

here a0 is the value of the cosmic scale factor at the present epoch. 

Note in the limit B + m we recover the usual results; for 6 < 1 the 

Universe becomes matter-dominated at an earlier epoch. 

From a = a eq to a = act=r -’ ) : aD the Universe is matter-dominated; 

a(t) 0: $0 and one expects linear density perturbation3 in the NR 

particle3 and X3 grow as: 6p/p = t2’3 = a(t). In the SDA at t = r-’ all 

the X3 decay at once; the Universe becomes radiation-dominated again (by 

the relativistic decay products of the X). For a ? aD, the cosmic scale 

factor a(t) a: t1’2, and one expect3 linear density perturbation3 in the 

NR particles to cea3e growing. ” Just after the decay epoch the ratio of 

the energy density in relativistic (Pi) debris to that in NR particles is 

PR/P),R = pX/pNR = g-‘(>>I). Due to the redshifting of the energy of each 

light daughter particle (E = a-‘) this ratio decreases as a(t)-'. Denote 

the energy density in relativistic debris at the present epoch by it3 

fraction of’ the critical density R R. [Note. in a k = 0 FRW cosmology 

with A = 0, we must have RNR + nR = 1.1 Using the fact that pR/pNR = 6-l 

aD/a(t), it follows that (in the SDA) 

8-l = (nR/RNR) ao/aD, (6) 
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where a given epoch is also specified by the redshift z that a photon 

emitted at that epoch will suffer by the present epoch: (l+z) z a,/a(z). 

Using the fact the Universe is radiation-dominated from a = aD 

until the present so that ao/aD = [to/(tD = r-‘)I l/2 , it follows that 

T = P-’ = (2.1~10’7SeC)(aD,ao)2(~Rhz)-1’2. (7) 

Taking this Eqn. together ‘with Eqns. (1,4) we find that 

n h2/e4 = . R 
0 30 f) 413 p3 

100 9’ 

mlOO * R 
= 2 45(~ h2/e4)3'4T-"2 

9 ' 

(8a) 

cab) 

where T g = (T/lOvyr) = (2.09 x 10-41GeV/r). 

To summarize the scenario in the SDA: from t=t 
eq 

to t=r-’ the 

Universe is matter dominated, a(t) = tz’3, and dp/p = a; at t = r-1 all 

the Xs decay so that just after t = P-l, pR/pNR = 6-l; thereafter the 

Universe is radiation-dominated, a = t1’2, PR/PNR = 6-l aD/a(t), and 

6p/p = cons't. Linear density perturbations grow very little before the 

Universe becomes matter-dominated again (when alao = RR/nNR); thus in 

the SDA the total growth factor for a linear density perturbation is 

predicted to be: 

Y = aD/aeq , 

= 2.5 x lo4 (nRh2/e4j(l+61, 

(9) 
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= 2.5 x lo4 (nRh2/e4). 

As noted by Turner etal.’ the growth factor is independent of E (or 

alternatively 1 + so). 

B. The Exact Equations 

Now let’s examine this scenario without making the SDA. 

we are considering a flat (i.e., k/a2 << 

Friedmann-Robertson-Walker (FRW) cosmology with line element, 

ds2 = -dt2 + a(t)2(dr2 + r2 de2 + r2sin2ede2). 

To begin 

8nCp/3) 

(‘0) 

The evolution of a is governed by the usual Friedmann equation 

H2 z (;/a)’ = BnGp/3, (11) 

where overdot signifies a time derivative and throughout we work in 

units where h = c = kB = 1. 

Write the total energy density p as: 

P'P X + pNR + pR ’ (‘2) 

where pi is the energy density contributed by X particles (i = X), 

stable, NR particles (i = NR), and the relativistic decay products of 

the X (i = R). During the epochs of interest (a > aeq), the energy 

density contributed by the photons and massless neutrino species can be 
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neglected. The equations governing the evolution of the energy density 

are: 

6, = -3HpX - rpx , (13a) 

Oi” d(a3pX)/dt = -r(a3PX) , (13b) 

i,, = -3HpNR , (14) 

LJ = -4HpR + i-px . (15) 

The first term on the rhs of Eqn. (13~1) is just the dilution effect of 

the expansion, while the second term is due to the decays. When Eqn. 

(13a) is rewritten as Eqn. (13b) the physics is manifest: the number of 

Xs Per Comoving volume (a a3PX/mX) is decreasing according to the usual 

exponential decay law. The energy density in stable, NR particles only . 

decreases due to the expansion, the solution to Eqn. (14) being the 

familiar pNR o: a -3. The two terms on the rhs of Eqn. (15) represent the 

dilution and redshift of the energy of the R particles (-IIHjlB), and the 

energy density being ‘pumped in’ by the decays of X particles. The 

solutions to Eqns. (13-15) are: 

px = pXi(a/ai)-3e-rt, 

PNR =&&$/$i!-3 '_ 

P R = (a/ai)-4PXiJi (a(t')/ai)e-rt'drt' , 

(16) 

(17) 

(18) 
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where the initial epoch t = ti is chosen such that t eq << ti << r -1 , and 

ai = a(ti), Pxi = Px(ti)e and ‘?NRi = PNR(ti)* 

In the linear regime the evolution of the density Contrasts in the 

various COmpOnentS, Ai s Gpi/pi, are determined by: 

;Ei + 2Hii + v2sik26i/a 2 = 47rG6P z 4TcPI(Pi/p)6i , (19) 
i 

where k is the comoving wavenumber of the perturbation (physical 

wavelength A 
ph = 2na(t)/k), and vsi is the sound speed in component i[E 

(dpi/dpi)“21. Eqn. (19) is only valid for perturbations with physical 

wavelengths much smaller than the horizon (= H-l). The wavelength A2 = J 

nVgi6i/G6p is the Jeans wavelength: for hph < AJ the perturbation will 

oscillate like a sound wave, while for i ph >- ‘J the perturbation is 

Jeans unstable and will grow. [For a more detailed discussion of Eqn. 

(19) see ref. 14.1 

For the R particle3 v’, = c2/3 and only perturbations on scales 

larger than the horizon will be Jeans unstable; perturbations on the 

scales of interest will at best oscillate with constant amplitude. In 

fact, if the R particles are collisionless (the most likely case) 

perturbations on scales smaller than the horizon will be damped due to 

free-streaming of the particles (see, e.g., refs. 15). For this reason 

we will take 6R = 0 always. For the NR and X components we will only 

consider perturbation3 with wavelengths greater than the Jeans 

wavelength 30 that the pressure terms can be neglected. [Again the Xs 

are likely to be collisionless and very NR, implying that pressure 

effects and free streaming effects will be unimportant on the scales of 

interest. If the NR component is baryons then after decoupling the 
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Jeans length corresponds to a mass which is always <_ jo5MB.] 

If initially 6X = 6NR and ix = ZNR, then 6X(t) = 6NR(t) for all 

time. On the other hand if initially 6X i 6NR, then within a few 

expansion times they will become equal. Thus it suffices to follow the 

svolution of 6NR alone, supplemented by 6X = 6NR: 

6NR 
. 

+ 2H6NR - 312 Hz6NR(~X+~NR)/~ = o . (20) 

Eqns. (l6-18,ZO) are the ‘master equations’ for the decaying 

particle cosmology. By introducing some dimensionless variables they 

can be recast into a more useful set of coupled differential equations. 

These variables are: 

x = rt, 

px = PX’PXi 

fR = PR/PXi 1 

fNR = PNR’PXi 1 

2 Hi = 8nC~Xi/3 , 

x H = r/Hi ; 

the dimensionless set of equations corresponding to Eqns. (16-18,201 

are 

al/a - (fX+f*+fNR) l/2 -1 XH I 

fR = a -’ JE a(x’) emX’ dx’, 

(21a) 

(2lb) 
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6;; + 2(a’/a)6hR - 3/Z (a’/a)26 = 0 , (2lc) 

fX - a -3 e- , (216) 

f NR = 8 aw3 . (21e) 

where as before 6 z GNR(fX+fNR)/(fX+fNR+fRl) prime indicates derivative 

with respect to x, and a(t) has been normalized such that ai = a(ti) = 

1. Note that early on ( &, t << r-1 OP x << l), the Universe is 

strictly matter-dominated so that a(x) = (x/x~)~‘~; thus Eqn. (2la) 

implies that 

x i = z/3 (1+E)-“2xH . 

It should be clear that (subject to specifying 6NR(xi) and ai,( 

the solutions to this set of equations are a one parameter (namely @) 

family of solutions. Recall that in the language of the SOA 8-l = 

(J+z,)(n,/n,,). How does one exploit this nice feature of the set of 

equations which govern the decaying particle cosmology? This should 

become very clear in the next section, but briefly the idea is: (1) 

select the value of B which is of interest; (2) integrate Eqns. 

(2la-e); (3) the present epoch is then specified by when the value of 

fR/fNR is equal to the desired value of RR/IINR; (4) the values of x and 

a(x) for the Present epoch (x0 and a,), along with the present value of 

the Hubble Parameter Ho can then be used to convert all dimensionless 

quantities into dimensional quantities. In the next section we will use 
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numerical solutions to these equations to describe the decaying particle 

cosmology in some detail. 

Before we go on to discuss the solutions to Eqns. (2la-e) consider 

the problem Of calculating RRh2 in term.5 Of mX, r, and 8. Because of the 

exp(-x’) factor, the integral in the expression for fR, cf Eqn. (Zlb), 

will converge for x >> 1. In fact, in the limit of small 6, it is 

straightforward to show that r: a(x)eexdx is = xH-2’3. Numerically we 

find that 

Iz a(x)ebxdx = 1.09 xH-“~; (22) 

for details see ref. 16. Assuming that to >> P-’ ( i.e., x0 >> l), so 

that all of the Xs have decayed by the present epoch, the present ratio 

of fR to fNR (z QR/RNR) can be used to solve for a,. and in turn fR(xo): 

a -1 -1 
= 0 l.o9(n,/n,,) 6 XH -2/3 . (23) 

= 1.09(l+zD)xH -213 
, 

4 4 
fR(Xo) = 0.77xH(RR/nN*) 6 . (24) 

In terms of fR(xo), RR is given by 

RR = pR/(3H02/8S) B 

= fR(xo)pXi/(3H5%& 

using this relationship and the expression for 6 in Eqn. Cl), it 

follows that: 



(n h2/e4) = 1.41 (m 4/3 213 
R loor) *9 ’ 

= 0.249 “,o;‘%y3, 
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(25a) 

mlOO . R = 2 84(q h2/C34)3’4,-1’2 9 I (25b) 

where as earlier Tg = r/,09 yrs = 2.09 x 10-4’ CeV/r. Comparing these 

expressions with the corresponding ones which are computed in the SDA, 

cf Eqns. (8a,b), we see that the SDA leads to about a 20% 

overestimation for RRh2/e4, or a 14% underestimation for rii 1oD. Lines of 

constant R h2/e4 R and of constant l+zD in the < 100 - T plane are shown in 

Fig. 1. 

III. THE DECAYING PARTICLE COSMOLOGY (DPC) 

In this section we will discuss the solutions to the equations 

derived in the previous section, paying particular attention to the 

cosmological implications and comparing the DPC to conventional 

cosmological models. 

A. Evolution of a(x), Px/PNR~ and PR/PNR 

In Fig. 2 the evolution of a, pR/pNR, and pX/pNR are shown as a 

function of x for 6 = l/10, 11100. SO low as (P, + Px) >> pNR the 

curves displayed are universal -- with all functional dependences being 

determined by only the mix of R and X particles (and relatively 

independent of the ‘slight contamination’ of stable, NR particles). In 

this scaling limit, a(x) is universal and independent of 6, while pX/pNR 

and PR/PNR 
-1 are universal and scale with g . This scaling behaviour can 
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be Clearly SW” in Fig. 2, as well slight deviations from it as pNR 

becomes comparable to pX + pP, for the 6 = l/10 c"r'"e~. 

At early times a(x) = x2’3 (a3 expected) and near x = 1 the 

behaviour changes to a(x) a x”~. For the B = l/10 curve the functional 

dependence starts to change back to a(x) 0: x2’3 as the fractional matter 

content increases. For reference the predicted behaviour of pX./pNR and 

PR/pNR in the SDA are also shown in Fig. 2. By x = 1, PX/PfJR (= 

0.378-l) and pR/pNR (= 0.34~~‘) are about equal. More interesting, (pX 

+ PR)/PNR = 0.71 6 
-1 

* implying that about 30% of the initial rest energy 

Per X (or decay product of the X) has been redshifted away. This, of 

course, is due to the redshifting of the energy of the decay products of 

Xs which decayed early on (note, a fraction 1 - e-’ = 63% of the X3 

decay by x = 1). 

As briefly mentioned in the previous section, for a chosen value of 

5, the solutions to the DPC equations are made into a cosmological model 

by using the ratio PR/pNR to identify the present epoch. The ratio 

PR/pNR is set equal to RR/RNR. The values of a0 = a(x,) and x0 = r to 

(to = present age of the Universe) are compiled in Table 1 for various 

v=lues of 6 and s/nNR = 5, 4, 3. 2, 1, 0.5. 

B. Evolution of Density Perturbations 

Let's turn now to the growth of density perturbations in the linear 

regime. Rec=ll in the SDA: for x 2 I. &p/p 0: s.; for 1 < x < xm, 6p/p = 

cons’t; for X >_ Xm, 6P/p 0: a; x = xm is the epoch when the Universe 

again becomes matter-dominated (i.e., pR/PNR = 1). 
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In Fig. 3 a-’ &p/p is shown as a function of a for 5 - l/3, l/10, 

l/30, l/80, l/300. The epoch x = 1 corresponds to a = 27; for reference 

the behaviour predicted in the SDA is also shown. The most striking 

feature of Fig. 3 is that the growth of linear density perturbations 

does not suddenly stop when the Universe becomes radiation-dominated (x 

1, a = 27) as expected, but instead linear density perturbations 

continue to grow slowly during the radiation-dominated epoch (1 < x 5 

Xp.fD; 27 5 a <- 27 g-l). There are two reasons for this. Firat (and moat 

important), is that the perturbations still have velocity ( i.e. d f 0) 

at the onset of radiation domination, and 30 continue ‘to coast’ and 

undergo further growth. Second, Si”W ‘FdPNR is finite (and not 

infinite), slow power law growth is still predicted (with exponent 

depending upon pR/pNR). Equally obvious is the fact that the behaviour 

6p/p = a does not immediately begin again when pNR = pR (a = 278-l), but 

takes several expansion times. 

In the simplified picture described in Sec. IIA no growth is 

predicted for 6p/p for 27 < a <- 276-l; that is, if 6p/p = c x a(x) for x 

<< 1, then 6p/p = (et?) x a(x) for the x >> X~ (a >> 276-l). This 

approximation predicts a ‘deficit in growth’ (compared to 6p/p = a) of 

about 8:’ From Fig. 3 it can be Seen that the deficit is considerably 

less. Likewise, in the SDA no growth in 6p/p is predicted from x E 1 

until the present epoch: in Fig. 3 it is apparent that there is some 

growth. The ‘total deficit’ and the growth of 6p/p from x = 1 until the 

present epoch are quantified in Table 2. 
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c. The Age of the Universe 

The present age of a cosmological model is just given by 

=0 
to = I, da/A ; 

it is most useful to express to in *Hubble times* (s Hi’): 

aO 
Hoto = I, da/Ca(H/Ho)l . 

(26~1) 

(26b) 

For a matter-dominated Universe H/Ho = (a/a,) -3’2, and we obtain the 

familiar result that Hot0 = z/3. For a purely radiation-dominated model 

H/Ho = (.A,)-~. and it follows that Hot0 = l/2. This fact is a very 

formidable difficulty which the DPC must face -- the prediction of a 

youthful Universe. [For reference, Ho is believed to be in the range 

50-100 kms-‘Mpc-’ = (20 Byr) -’ - (10 Byr) , -1 while various techniques 

(dating of globular clusters, nucleocosmochronology) suggest that to = 

15 'r 3' Byr . On the face of it this implies Hot0 = 0.6 - 1.8. At 

present, however, systematic uncertainties in both Ho and to preclude a 

definitive determination of Hot,!‘] 

In the SDA, H/Ho = [RR(a/ao) -4 + n&a/a,) -31”2 for (l+zD)-’ < 

a/a 0 < 1, and H/H, = (,+zD~1'2RR1'2(1+6)1'2~-3'2 for- 0 2 a/a0 ( 

-1 (l+z,) . Using this expression for H/Ho in Eqn. (26b) it follows that 

Hoto= Cl -3nR+nR 3'2(1+8)-"2(2+6)1 (27) 

(this is identical to the expression derived by Turner etal. in ref. 
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. 

9). There are two effects which cause Hoto to deviate from l/2 in the 

DPC: (1 ) the present contribution of matter to the energy density, 

quantified by RNR; (2) the early (a/a0 < (l+zD)-') matter-dominated 

epoch. For fixed l&, RR the second effect becomes negligible as 6 + 0 

(i.e., as 1 + ZD + m), and H o o becomes only a function of RNR, nR: t 

Hoto-(2n,;/3)c1-3n,+2n;‘2]. 

!3+0 

(28) 

Fig. 4 shows HtC=_(x/x,) x (fx + fNR + r,)“2l as a function of x 

for E = l/3, l/10, l/30, l/80 with the present epoch being identified by 

nR/RNR. The convergence of Ht (for fixed QR/RNR) to a value which is 

independent of 6 as 6 + 0 is manifest. In Table 3 Hoto is tabulated for 

various values of 6 and QR/RNR. For comparison the values computed in 

the SDA, cf. Eqn. (27), are shown in parentheses. In this regard the 

SDA is rather good (agreement to better than 5%). 

D. Age-Redshift Relationship 

A closely-related relationship which is also of some cosmological 

interest is the relationship between redshift and the age of the 

Universe. This relationship is given by: 

(l+z)-‘a 
Hot = I, ‘da/C(H/Ho)a] . 

For a matter-dominated Universe, H/Ho = (a/ao)-3’2, 

(29) 
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Hot = (2/3) (I+z)-~'~ ; 

while for a radiation-dominated Universe, H/Ho = (a/ao)-2, and 

Hot = (1/2) (I+z)-~ . 

At a given redshift, a radiation-dominated Universe is younger. This 

fact is of some importance when considering the evolution of galaxies, 

clusters, etc. The DPC cosmology, of course, lies somewhere in between 

these two models. This is illustrated in Fig. 5 for 6 = l/10, l/30, 

i /a0 and nR/flNR = 3. As can be seen in the figure for low redshift, 1 + 

z 51 + ZD= l/38, when the Universe is radiation-dominated (&, pR 2 

PNR) Hot evolves a (1 +z) -2 (as in the pure radiation case); while for 

higher redshifts, 1 +z>-1 +zD, when the Universe is matter-dominated 

(i.e., pNR >- pR) Hot evolves = (l+~)-~‘~ (as in the pure matter case). 

[For comparison a cosmological model with pR = 0, A f 0, k = 0 *A(= 

A/3$ = 3 ONR, and H/H, = Cn, + RNR (a/a 0 )-31”2 is also shown. At a 

given redshift, a A f 0 model is even older than a matter-dominated 

model. For further discussion of flat models with A # 0 see ref. 10.1 

E. Angular Size and Comoving Volume vs. Redshift 

Two kinematical quantities of significance are the observed angular 

size of an object at a given redshift, and the comoving volume element 

dvO a dRdz f(z) at a given redshift. Both are related in a simple way 

to present proper distance to an object with redshift Z. Physically 

that distance, do(z), is just the present value of the scale factor 
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times the coordinate distance covered by a photon from the epoch a = 

(l+z)-‘ao to the present epoch: 

do(z) = &to) Ito dt’/a(t’) , 
t(l+z) 

= H,’ j 
1 

(l+zPao 
aoda/C(H/Ho)a21 . 

(30) 

For a matter-dominated Universe (H/Ho) = (a/ao)-3’2, and 

Hod,(z) = 2C1-(1+~)-“~1; 

while for a radiation-dominated model (H/Ho) = (a/a,)-2, and 

Hodo = z/(1+2). 

In Fig. 6 Hodo( the present proper distance to an object at redshift 

z in Hubble units, is shown as a function of z for pure matter, pure 

radiation, %‘*NR = 3 and B = l/10, and pA/RNR = 3 models, In Hubble 

units, the distance to an object at redshift z increases as one goes 

from a pure radiation model to a pure matter model onto a model with A f 

0. The distance to the (particle) horizon is Ho do(s=.=) (in Hubble 

units). For pure matter Hod,(m) = 2(= 3H,t, -- the familiar result that 

the horizon distance in a matter-dominated Universe is 3t,); for pure 

radiation Ho do(-) = 1 (= 2 Hot,); and in the SDA: 

Ho do(-) = 24; [l - p;‘2/(1+f3)“2] . 
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Table 4 is a compilation of Ho do(“) for various values of 6 and nR/RNR; 

the values calculated in the SDA are also given. In general the value 

calculated in the SDA is higher, and the agreement iS quite good (< 8% 

difference). 

The observed angular size of an object at redshift z (in a flat 

cosmological model) is just its proper Size then (: e(z)) divided by its 

proper distance then (=_ d(z) = do(z)/(l+z)), 

e = k(z)/d(z) , 

= e(z)(l+z)/do(z). 

(31) 

For an object whose proper (&, physical size) does not vary (&, is 

independent of z), e.g., a galaxy, we have 

e = HO~,(l+z)~HOdO(z); 

the angular Size iS inVerSely prOpOrtiOna to Hod,(z). On the other hand 

for an object whose proper size = a(t), say, e.g., a certain comoving 

region of space, i = to/(l+z), we have 

e = H n. /H d (z) , 00 00 

= 1 .I ’ h(ko/Mpc)/Hodo(z). 

[For example the microwave temperature fluctuation on a given angular 

scale 8 << lo is related to the density constraint on the comoving 

length scale corresponding to that angle at the surface of last 

scattering, 1 + z = 1500; for more details see refs. la, 19.1 
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The comoving volume element dV o (which for simplicity we take to be 

the proper volume element at the present epoch) defined by the solid 

angle dR and redshift interval dz is just 

dVo = d/dz (d@/3) dR dz, 

= d/dz(do(z)) dz(z)dz dR , 

= H-‘(z)d;(z) dz dp , 

(32) 

where H(z) is the Hubble parameter at the epoch a = (l+z)-la 0’ It is 

convenient to write 

dVo = f(z) z2 dz dn Hi3 , 

where 

f(z) = (Hodo(z))2(Ho/H(z))z-2 . 

(33a) 

(33b) 

So defined, f(z) + 1 as z + 0. For a pure matter model, 

f(z) = 42-2[(l+z)-3’4 - (1+z.)-5'412; 

while for a pure radiation model, 

f(z) = (1+z)-4 . 
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The function f(z) is shown in Fig. 7 for pure radiation, pure 

matter, pR”NR = 3(8 = l/10, l/80), and QA/nNR = 3 models. At fixed 

redshift, f(z) decreases (meaning the proper volume defined by dR and dz 

is smaller), going from the A i 0 model to the pure matter model to the 

DPC to the pure radiation. The comoving number density of a given set 

Of objects in the volume defined by dR and dz is of course a f(z)-‘, 

implying that for a given set of objects their comoving number density 

is highest in a pure radiation model, and lowest in a A f 0 model. In 

principle, this fact could be used to differentiate between cosmological 

models. 

IV. SUMMARY AND CONCLUDING REMARKS 

The idea of the DPC is straightforward -- a massive relic species 

with energy density greater than that of the stable, NR particles 

present (baryons, etc.) decays in the recent past (since decoupling) 

into particles which are still relativistic today. The current 

motivation for the model is twofold; first, there exist particle physics 

theories which predict massive particle species whose relic abundances 

would be significant (e.p., neutrinos) and whose lifetimes are 

comparable to the age of the Universe (say L ‘0’ years). 20 Second, and 

more important, the DPC offers the possibility of solving the 

’ p-problem’ by producing a hot, unclustered component which dominates 

the present mass density. 

The solutions to the cosmological equations describing the DPC form 

a one-parameter (two, if one of the decay products becomes NR by the 

present epoch) family. The quantity 6-l is just the ratio of the energy 
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density in the massive, unstable particle species (before it decays) to 

the mass density in stable, NR particles. The parameter 6 is also 

related to redshift of the decay epoch and the ratio of energy density 

in R particles to that in NR particles: 8-l = (RB/CNB)(l+xD). To solve 

the Q-problem f$,/nNR should be 3-5. A number of unpleasant things occur 

if (l+z,) is too big, say >- 20 (excessively-large fluctuations in the 

microwave background on both small*’ and large’ angular scales; 

disruption of bound structures which form before the decay epoch’; kinks 

in the galaxy-galaxy correlation function’ -- for further discussion see 

Turner s, ref. 9). Thus the cosmologically interesting values of B 

are in the range of, say l/3 to l/100. 

The cosmological kinematics (e.g., age-redshift, angular 

size-redshift, comoving volume-redshift relationships) of the DPC are 

significantly different than that of a pure matter model, pure radiation 

model, or a model with a significant cosmological constant. In 

principle, cosmological observations could differentiate between models, 

and perhaps even rule out such models. 

The simultaneous decay approximation made by Turner et&.’ to treat 

the DPC is found to provide a reasonable description of many aspects of 

the DPC. e.g. lo-20% or better accuracy in determining RR, Hot,, and 

Hod,(*). However, it does not provide a reliable description of the 

evolution of linear density perturbations. In this approximation it was 

assumed that growth would shut off at t = l’-’ and not resume until the 

Universe again became matter-dominated. In fact 6p/p continues to grow 

after the decay epoch, however, at a slackening pace. Since the growth 

of density perturbations from the initial epoch of matter domination 

until the decay epoch is identical to that in the usual cosmology, the 
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fact that growth does not cease for t >_ P-’ implies that there is 

additional growth of linear density perturbations in the DPC (over that 

in the usual k = 0 model). 

As might be expected things happen more smoothly when the decays 

are not assumed to be simultaneous: growth of density perturbations 

gradually slows to a standstill, the enormous mass density in NR Xs is 

slowly converted into R particles, etc. This gradual change from a 

matter-dominated to a radiation-dominated may improve the viability of 

the scenario by easing some of the potential difficulties with the DPC 

(including the ‘puffing-up’ of structures due to the liberation of Xs 

into R particles, the sudden halting of the growth of density 

perturbations). 

The motivation for the DPC is clearly the R-problem. As was 

discussed in the Introduction ‘the R-problem’ is basically a timescale 

problem (although there are also difficulties with forming structure in 

a lo-9 model); the DPC does not resolve this problem in a totally 

satisfactory way, since it solves it by introducing a new timescale -- 

the lifetime of the X particle. However, if nothing else, it is an 

interesting new cosmological model. 
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Appendix - One of the X’s Decay Products is not Always Relativistic 

Here we consider one example of the general case where the decay 

products of the X are not always relativistic. The scenario we have in 

mind is one where the X decays to a + b, where the mass of the a(m,) is 

large enough so that by the present epoch the decay produced a’s are 

nonrelativistic, but the mass of the b is sufficiently small so that the 

decay produced b’s are ultrarelativistic. Before we go on to discuss 

this case, let’s briefly motivate it. 

Solving the ’ D-problem’ only requires a ‘hot’ component, not 

necessarily a relativistic component (v >> 10Y3c will do just fine), and 

so this case is also a logical possibility. In addition, allowing the 

smooth component to be hot but not relativistic can help to alleviate 

the age problem associated with the DPC. The idea then is to have (at 

the present epoch): 10e3c << <va> << C, (n, + RR)/RNR large (say 3 or 

4). and RR small (say less than 0.1). [Note, in this case the R 

component is the relativistic b’s.] The attraction of this scenario is 

the possibility of circumventing the age problem (&, pushing Hot0 

closer to Z/3), while still solving the R problem. There are some 

difficulties with this scenario however. 

In addition to the fact that such a scenario requires a coincidence 

of 2 masses and a lifetime, there is another diPflculty. Not only are 

there decay-produced a’s present, but there will, in general, also be a 

cold primordial component of a’s. If we denote the initial relic 

abundances of the X and a (relative to photons) by rx and r, 

respectively, then after the decay-produced a’s become NR we will have: 
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‘haInca = rX/ra, 

R NR = ‘5 + ‘ca 1 

*ha/$JR i rX/ra , 

where ‘ca’ and ha’ refer to the cold and hot components of a’s 

respectively, and it has been assumed that RR << 1. Therein lies the 

rub -- unless rX/ra > 3 or 4, the ~7 - problem will not have been solved. 

If both X and a are neutrinos, say, then =X/r, = 1, implying fiha/flNR ( 

1. Of course it is possible to have rX/ra >> 1 (e.p., if the a’s 

abundance is suppressed because it decoupled very early, T >> 1 MeV, or 

if the X has many more degrees of freedom). 

So much for motivation. Introduce another parameter ~1, 

a ‘. ma/mX . (Al 1 

In terms of a the initial momentum of a decay produced a or b is: 

PO = mX(l-a’)/2 . (A21 

Let PR denote the energy density of the decay produced b’s and pa the 

energy density of the decay produced a’s. The equation governing pR is 

very similar to the one we derived earlier in Sec. III, 

b, = -WR + (l-a2)rpX/2 ( (A31 

the only difference being the factor of (1x2)/2 which accounts for the 

fact that only that fraction of the decay energy goes into relativistic 
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b particles. Using Eqn. (16) for pX, PR can be expressed as before: 

P R = (a/ai)-4PXi[(1-a2)/21~~ a(t’)/ai eYrt’dFt’ . (A4) 

The evolution of P, is quite a bit more complicated. First 

consider the evolution of the number density of a’s, 

ri 
a = -3Hn, + rnX , (A5) 

where n X is the number density of Xs (9 pX/mX) and 

” x = (a/ai)-3*xi emrt. 

Using this expression for nx, Eqn. (A5) is straightforward to 

integrate: 

” a = (a/ai)-3 nxi Ji curt’ drt’ , (A6) 

where the contribution to n,(t) from X’s decaying in the time interval 

t’ + t’ + dt’ is clearly: 

(a/ai)-3nxi e-rt' drt'. 

The energy density in a’s is just 

p,(t) = (a/ai)-3*XiJk E(t,t’)emrt’dFt’ , (A7) 
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where E(t,t’) is the energy of an a which was produced by an X decay at 

time t’, at time t. This energy is simple to compute: 

E(t,t’)2 = rnz + pi[a(t’)/a(t)l’. 

Bringing everything together we have for pa 

‘a = a(a/ai) -3 PXiJ~[P(t,t’)2/m2$l l”2e-rt’drt’ , 

(Aa) 

(A9) 

where p(t,t’) = P, a(t’)/a(t). 

Since we have arranged things so that the a’s are always hot and 

cannot clump on interesting scales, 6a = 0 and the equation for the 

evolution of 6NR is unchanged, & Eqn. (20). Employing the 

dimensionless variables from Sec. II and introducing the additional 

dimensionless variable 

‘a = Pa/PXi I 

the equations governing this DPC can be written as 

at/a = (fX l fR + f, + fNR)“2xi1 , 

fR = a -4[(1-a2)/21~~ a(x’)emx’ dx’ , 

fa = aa -3j&(x,x~)2/m~ + 1]1’2e-x’dx’ , 

6iR + 2(a’/a)61jR - 3/2(a’/a)‘6 = 0 , 

fx = am3e-’ , 

f NR = t3am3 , 

(AlOa) 

(AlOb) 

(AlOc) 

(AlOd) 

(Aloe) 

(AlOf) 
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where 6 f %R ( fx + fNR)/(fX + fR + f, + fNR) and P(x,x’) = P, 

a(x’)/a(x). It should be clear that the solution3 to this set of 

equations (supplemented by 6NR(~i) and GljR(xi)) form a two parameter (a 

and 8) family of SOlutiOnS. 

In these models pa/pNR + a/E as the a’s become NR; as before pR/pNR 

decreases as a -’ (for x >> 1). Since Qa/pNR is fixed by a/B, the 

present epoch is specified by choosing the value of RR today. Assuming 

that at the present epoch the a’s are NR so that Ra/RNR = a/R, the ratio 

of ‘hot material’ to clustered material is: 

n HOT/$,R = (RR + n,)/f$,,, 

= a/B + nR/nNR , 

- ai6 + n,(l+de)/(l-n,) 

QR can be calculated in terms of mloo, T(zII -’ 1 , and a as in Sec. II, 

with the result that 

fi h2/e4 = 2 - 413 213 
R 0.249[(1-a )/21m,00 T9 . 

[The only difference between this and the analogous expression, Eqn. 

(25a), in Sec. II is the factor (1x2)/2, which is just the fraction of 

the X’s rest mass which goes into relativistic b particles.1 

What are the interesting values of CL and B. Since pa/pNR + &B at 

late times we will want to have a/B = 3-4 to solve the ‘n-problem’. 

Next, we want to arrange to have the contribution of the R particles 

small (say pR/pNR I l), so that the model is close to being a 

matter-dominated cosmology. At the decay epoch pR/pNR = 8-l/2; in order 
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that this ratio be < 1 today we need to have (1 +zD) >- B-‘/2. The 

condition that (l+zD) >- b-‘/2 also insures that the a’s are NR today 

(v,/c = .-'(l+zD)-' 12 <_ B/C, = l/3 - 1 /II). To summarize, solving the 

‘n-problem’ requires a/B = 3-4. Specifying nR(or nR/QNR) defines the 

present epoch for a given model (&, a and 6). The decay epoch for 

that model is 

(l+z,) = (B-'/2HnNR/RR). 

Until the decay-produced a's become non-relativistic, a/a(x=1) = 

l/Za = (l/6 - l/8)6-', this scenario is essentially identical to the DPC 

discussed in Sec. II (which in this parameterization corresponds to 

a-0). Thus the evolution of a, PR,pNR, and p./pNR shown in Fig. 2 is 

applicable here (with pR there to be identified with pa + pR). The same 

is true for the evolution of 6NR. However as the a’s become NR there is 

a new twist. Instead of the growth of linear perturbations 

asymptotically returning to hNR = a as RR becomes small, *NR 

asymptotically approaches 6NR = am, m < 1. The reason for this 

behaviour is easy to understand. As the a's become NR and RR + 0, the 

scale factor a = x2/3; however, by assumption the a’s remain ‘too hot’ 

to cluster and thus remain smooth. Therefore asymptotically 6 + 

(B/a) 6NR. With 6 = ( B/u)~~~ and a a x 213 It is straightforward to show 

that the growing mode perturbation 

6NR @G am or P'3, 

m - 1/4(1+246/~x)"~ - l/4 . 
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The reason for the impeded growth is simple; the NR particles must try 

to cluster in the presence of a smooth background component. [This 

suppressed growth is known as the Meszaros effect.‘“]. The evolution of 

bNR is shown in Fig. Al for cr/E = 4, and 6 -1 = 20. At late times hNR O/ 

.0.41 as predicted. 

The age-redshift relation (Hot vs. l+z) for this scenario is shown 

in Fig. A2. Table Al is a compilation of the values of Hot0 for 

various models. The age problem has been improved considerably, with 

most of the models having Hot0 greater than 0.6, and one as high as 

0.632. 

The distance-redshift relation (Hod,(z) vs. 1+z) and comoving 

volume factor f(z) vs. (l+z) are shown in Figs. 6 and A3 respectively 

for a model with cr/B = 3120, 6-l = 20. and nR = 0.1. Note, for this 

canonical model: 

Ra=.675 I 

0 NR=.225 , 

RR = .lOO , 

QHOT/RNR = 3.44 , 

(l+z,) = 23 . 
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Figure Captions 

Figure 1 - Lines of constant n h2h4 R and constant l+zD in the m[- 

m,(r/(3/11))1 - T plane. For reference R is also indicated on the right 

hand scale. Note that R h2/e4 - 413 2/3 
R = 0.249m,00 Tg and we have used 6 -1 = 

(~,/nN,)(l+z,) to calculate l+zD. 

Figure 2 - The evolution of pX/pHR (curves marked ‘Xl), pR/pNR (curves 

marked ‘RI), and a(x) for 5 = l/l0 and l/100. The dotted (broken) 

CWVeS show the evolution of PR/pNR (pX/pNR) in the SDA. All three 

curves are UniVerSal so long as PX + pR >> pNR; in this limit a(x) is 

independent of B, -1 while pX/pNR and pR/pNR scale as 6 . 

Figure 3 - The evolution of bNR/a : (6pNR/pNR)/a as a function of a for 

6-l = 3, 10, 30, 80, 300. The broken curves show the evolution in the 

approximation that linear perturbations grow like a” (n = 1, 

matter-dominated; n = 0, radiation-dominated). The different symbols 

denote the epochs when RR/HNR takes on the values indicated. The decay 

epoch (x = 1, a = 27) is indicated by the arrow. 

Figure 4 - The evolution of Ht as a function of x - ft for 6-l = 3. 10, 

30, 80, 300. The different symbols denote the epochs when RR/CNR takes 

on the values indicated. The limiting values of Ht (for fixed RR/pNR) 

as 8 + 0 are indicated. 

Figure 5 - The age (in Hubble units) vs. redshift relationship for a 

pure matter model, R = l/10, l/30, l/80 (all with nLR/fiNR = 3 at the 

present epoch), and a pure radiation model. The curve labeled A f 0 
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Corresponds to a k = 0 cosmology with h/8rrG = 3pNR (at the present 

epoch), that is: (H/H~) = co.75 + 0.25 (a/ao)-31”z. 

Figure 6 - The present proper distance to an object at redshift z (in 

Hubble units) ~3. redshift for the A f 0 model described in Fig. 4, a 

pure matter model, 6 = l/l0 (RR/nNR = 3 at the present epoch), and a 

pure radiation model. The arrows on the left axis indicate Hodo(z=-). 

The curve labeled ‘3.20’ corresponds to a model with CL = 3120, 6 = l/20, 

and RR = 0.1 (at the present epoch) -- see the appendix for details. 

Figure 7 - The weighting factor f(z) for the comoving volume element dVo 

(= f(z)z’ dz dR) vs. redshift z. The models indicated are the same as 

those described in Fig. 4. 

Figure Al - The evolution of QR/a vs. a for a model with a/B = 4, 6 - 

l/20. Asymptotically 6NR/a is predicted to vary as a -0.59 ; a line with 

slope -0.59 is shown for comparison. 

Figure A2 - The age (in Hubble units) vs. redshift relationship for a 

model with a/B = 3, 6 = l/20, and RR = 0.1 at the pre3ent epoch. For 

comparison the A f 0 described in Fig. 3, a pure matter model, and a 

pure radiation model are also shown. 

Figure A3 - The weighting factor f(z) for the comoving volume element 

dVo(= z2 f(z) dz dQ) vs. redshift for a model with a/B = 3. 6 = l/20, 

and 33 = 0.1 at the present epoch. For comparison the A f 0 model 

described in Fig. 3, a pure matter model, and a pure radiation model 

are also shown. 
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TABLE 1 - Parameters for the present epoch: x0/a,. 

QR/RNR = 5 4 3 2 1 0.5 

*-1 = 7 - - - 
10 - b/80 
15 - 7.5185 14/120 
20 9195 14/120 24060 
30 20/140 30/180 53/230 
40 33/180 541230 go/310 
80 150/380 220/470 3701630 

300 2000/1400 3000/1750 5500/2400 

6.5/85 25/180 80/340 
13/120 451245 160/490 
30/180 951340 3501710 
501240 1 go/490 620/950 

110/350 400/710 1400/1450 
190/470 7201950 
850/95o 2800/1850 

11000/3600 37000/6800 1.4x10 
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TiyLE 2 - Long term ‘deficit’ in growth of 6p/p [prediction in SDA (= 
B ) showin parentheses] and growth from x = 1 until the present 

mng-term Deficit’ Growth from x=1 until today 

3.2(10) 
RR/RNR = 4 3 

2.4 

‘I A0 

B-1 - = 10 
20 
30 

2 1 
300 

‘1.7izoj 
6.3(30) 
7.3(40) 4.0 4.5 

2;5(80) 5.1 
33(300) 7.0 85:: 

TABLE 3 - Hoto [numbers in parentheses are those calculated in the 
sudden decay approximation, cf. - Eqn. (27)I. 

flR/RNR = 5 4 3 2 1 0.5 

6-1 = 7 
10 
15 

:: 

2 
300 

--( .596) --C.571) --C.554) 
--C.556) --C.545) 

.557(.547) .560(.556) .579(.579) 
.552(.539) 

--C.534) .541(.530) 
.545(.539) .557(.554) .578(.578) 

i536C.530) 
.535(.526) .531(.525) 

.538(.535) .554(;553) :578(.57!31 
.530(.527) 

.524(.520) .524(.521) 
.536(.534) .553(.553) .577(.577) 

.526(.525) 
.520(.518) .521(.521) 

i534C.533) l553C.533) .577(.577) 
.525(.524) 

.516(.516) 
.533(.532) .552(.552) .577(.577) 

.519(:5191 .524(.523) 
.515(.515) .518(.518) 

.532(.532) .552(.552) .577(.577) 
.523(.523) .532(.532) .552(.552) .577(.577) 
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TABLE 4 - H d (z=-) (numbers in parentheses are those calculated in the 
sudden deca$ approximation). 

B-1 = 7 --(1.75) --(1.63) --(1.52) 1.31(1.42) 1.28(1.35) 

:i 
-~(1.56) --(1.47) 1.29(1.39) 1.25(1.33) 1.25(1.30) 

1.16(1.22) 1.15(1.20) 1;14(1.18) 1;15(1;18) 1.19(1.22) 
80 1.08(1.11) 1.08(1.11) 1.09(1.11) l.ll(1.13) 1.17(1.19) 

300 1.05(1.06) 1;05(1.07) 1;07(1.08) l;lO(l;ll) 1.16(1.18) 

TABLE Al - Hot0 

a/t+3 a/B=4 

rlR = 0.25 0.11 0.25 0.11 

6-l = 10 .607 .625 .625 .632 

20 .587 .620 .591 .622 

30 .584 .619 .586 .620 


