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ABSTRACT
We consider a cosmological model in which an unstable massive relic
particle sgpecies (denoted by 'X') has an initial mass density relative
to baryons 6-1 = pX/pB »> 1, and then decays recently (redshift =z ¢
1000) into particles which are still relativistic today (denoted by
'R'). We write down and sclve the coupled equations for the cosmic
scale factor a(t), the energy density in the various components (px, PRs
DB), and the growth of linear density perturbations ({(&p/p). The
1 =

solutions form a one parameter (8) family of solutions; physically g ' =
(Qp/ayg) = (1 + zn) = (ratic today of energy density of relativistic to
nonrelativistic particles) x (1 + redshift of {decay). We discuss the
observational implications of such a cosmological model and compare our
results to earlier results computed in 'the simultaneous decay
approximation'. In an appendix we briefly consider the case where one

of the decay products of the X is massive and becomes nonrelativistic by

the present epoch.
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I. INTRODUCTION

Theoretical prejudice, specifically the naturalness of the flat,
Einstein-deSitter cosmology, argues strongly that Q should be 1 (more
precisely that the curvature term, k/az, should be negligible}.!'*? The
inflaticnary Universe paradigm provides a very attractive way of
implementing this prejudice.? ® To date, observations have not suppecrted
the view that & = 7. The observational data together with the highly
non-trivial assumption that light (i.e., visible galaxies) provides a
good tracer of the mass in the Universe seem to suggest that § = 0.2 =+
'0.1', where the '#0.1' is not might to represent a formal Iuncertainty,
but rather indicates the spread in the determinations of @ reported in

the literature.® [It is already well known that the mass associated with

the observed light cannct be the whole story as 2 = 0.01; so at

luminous

best we can hope that light traces mass.] Very recently, Bardeen” and
Kaiser® (among others) have begun to explore the possibility that the
discrepancy between theory and observation, the so-called 'Q-problem',
could be resolved in scenarios where, for astrophysical reasons, light
does not trace mass (specifically because visible galaxies form only at
3-0 peaks in the density contrast 6p/p).

Another possible solution to the Q-problem which has been recently
suggested 1s that most of the energy density in the Universe resides in
a smooth component.®'!® [All of the dynamical techniques for measuring Q
are insensitive to a smooth, uneclustered (on secales >> 30 Mpe)
component'?!.] That smooth component could be 'hot' particles (i.e.,
particles with a very large internal velocity dispersion, <v2>1/2 >>

10'3c), which by virtue of their high speeds could net cluster (con
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scales < 30 Mpe), and would thus be smeothly distributed. The most
frequently mentioned origin for these 'hot' particles is the recent
decay of a massive reliec particle species. If the decay products of
this parent species (denoted by 'X') are very light, then they will
still be relativistic today (v ® ¢). Cn the other hand if at least one
of the decay products has a mass not too different from that of the X,
then today some of the decay products might be ‘'hot', but not
relativistic.

The other possibility for ¢the smooth component is a relic
cosmological constant {of wunexplained origin!).!® In either smooth
component scenario, the 'Q-problem” is not resolved in a totally
satisfactory manner. The 'Q-problem' is in fact a timescale problem --
inan 2 # 1 (i.e., k # 0) cosmology there is an uncomfortably large
timescale (relative to the fundamental gravitational timescale tpl =
10-u3sec): the time at which the curvature term (k/a?) becomes
comparable to ‘the energy density term. In both the decaying particle
scenario and the A # 0 scenario there are also timescales -- the
lifetime of the unstable particle species X and for A # O the epech at
which the energy density in particles is comparable to A/8mG. The only
consolation {s that one of the latter timescales might be more easily
explained in terms of fundamental microphysics.

In this paper the cosmology of a model Universe with an unstable
relic particle species which decays in the recent past (redshift < 1000)
is explored in detail: the evolution of the cosmic scale factor a(t),
the energy density in the various components, the growth of linear
density perturbations, and the kinematics of the model (the age of the

Universe, the look bhack distance, the comoving proper volume at various
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redshifts, ete.). The brief introduction presented above was meant to
provide the motivaticn for considering such cosmclogical models., In the
next section the simultaneous decay approximation (i.e., that all the X

particles decay simultaneously at a time t = 1y = r™1) which has been

used previously to discuss decaying particle cosmologies will be

reviewed. The sexact eguations for a{t), »p and ép/p will be derived

i»
(for the case in which all the decay preoducts are still relativistic
today), and the one parameter family of solutions will bhe discussed. In
Section III, the cosmolegical implications of the solutions will be
descr ibed. Section IV «contains a summary and concluding remarks. In
the appendix the case where one of the decay products becomes

nonrelativistic by the present epoch is briefly considered. Here the

solutions form a two parameter family of solutions.

II. EQUATICONS FOR THE DECAYING PARTICLE COSMOLOGY
A. Review of the Simultaneous Decay Approximation (SDA)

To begin let us review the basic scenarioc in the SDA. Consider a
massive particle species X with mass My, decay width I, and relic
abundance (relative to 3K photons) before it decays r = ”X/“Y' For now
assume that 1its decay products are so light that they are still
relativistic at the present epoch; in the appendix the case where one of
the deecay products 1is sufficiently massive that it Is nonrelativistic
today is considered. We are interested in the case where the méss

density contributed by Xs (befeore they decay) is significantly larger

than that of the baryons and other stable nonrelativistic {NR)



-5- FERMILAB-Pub.-84/89~-A

particles, Define the ratic of their mass densities (before the ¥s

decay, l.e., t << I 1) to be B:

- O.263(QNRh2/63m100r) , (1b)

where QNR is the fraction of critical density contributed by stable, NR

' is the

; _ B 2 - -1 -
particles today (= PNR/ Per Po = 3H0/8nG), H, = 100 h kms ~ Mpc
present value of the Hubble parameter, 2.7 8 K is the present photon
temperature, m100 = mx/100 eV, and 5100100ev is the mass of a relic

eutrino species which would contribute the same mass density as the X

does [5100 = (my/100eV)(r/(3/11})]. Note that if the stable NR particles

are all barycns, then

8 = 3.44 x 1073 (ny /Mg 00) » (2)

where Mg = 1010 n = 1010 (nb/nY); for reference big bang
nucleosynthesis constrains Mo to the interval (4,7) (ref. 12),.

At very early times the Universe 1is radiation-dominated; at a
photon temperature Teq’ time teq and cosmic scale factor aeq the
Universe becomes matter-dominated (by Xs and the stable NR particles;
apecifically: °x * PNR = Py * pv;) where
276"y, (3)

“Seg=leqy"!
3aq/80 = 4x10 “(B T+1) (R
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= ~5 2 4, -1
4x10 ° 8 (QNRh /87) ,

- 10 ~1y=2 2,232
teq 3.8x10" “sec(1+g ') (QNHh /9°) s (4)
= 10 2 2,.3y-2
3.8x10'“sec 38 (QNRh /8°)
Teq = 5-9eV(1+8” ) (R n?/03) (5)
= =1 2,a3
5.9eV B (Q.n"/8°);

here ao is the value of the cosmic scale factor at the present epoch,
Note in the 1limit B =+ = we recover the usual results; for B < 1 the

Universe becomes matter-dominated at an earlier epoch.

From a = aeq to a = a(t=F—T) 2 ap the Universe is matter-dominated;

a(t) = t2/3 and one expects linear density perturbations in the NR
particles and Xs grow as: §p/p « t2/3 « a(t). In the SDA at t = r~! all
the Xs decay at once; the Universe becomes radiation-dominated again (by
the relativistic decay products of the X). For a > ap, the cosmic scale
factor a(t) « t1/2, and one expects linear density perturbations in the
NR particles tc cease growing.!? Just after the decay epoch the ratic of
the energy density in relativistic (R) debris to that in NR particles is
Pr/PNR = Py/eyg = g7 (>>1). Due to the redshifting of the energy of each
light daughter particle (E = a~!) this ratio decreases as a(t)”'. Denote
the energy density in relativistic debris at the present epoch by its
fraction of the c¢ritical density QR' (Note, in a k = 0 FRW cosmology
with A = 0, we must have g * % = 1.] Using the fact that Pr/PNR = 8—1

aD/a(t), it follows that (in the SDA)

871 - (ﬂR/QNR) a,/ap, (6)
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= (QR/QNR)(T+ZD) s

where a given epoch is also =pecified by the redshift z that a photon

emitted at that epoch will suffer by the present epoch: (1+z) = aO/a(z),

Using the fact the Universe is radiation-dominated from a = apn

until the present sc that aj/ap = [t/ (ty * r"1)]1/2, it follows that

-1 . -1/
v =17l o= (2.1x1017860)(aD/ao)2(ﬂRn2) t/2, (7)

Taking this Eqn. together with Egns. (1,4) we find that

fen®/e° = 0.30 &, 03 15’3, (8a)
= 2, 4\3/4_~1/2
Migo = 2.45(0gh"/8 ) ERE (8b})
where = E = -4
Ty = {1710 yr) = (2.09 x 10 " GeV/T).
To summarize the scenaric in the SDA: from t=t to t=r-1 the

eq

Universe 1is matter dominated, a(t) « t2/3, and §p/p = a; at t = r!

all
the Xs decay so that just after t =T ', po/p.- = g '; thereafter the
Universe i3 radiation-dominated, a =« t1/2, pR/pNR = 5-1 aD/a(t), and
Sp/p * cons't. Linear density perturbations grow very little before the
Universe becomes matter-dominated again (when a/ao = QR/QNR); thus in
the SDA the total growth facter for a lilnear density perturbation is

predicted to be:

Y ® ap/ag. (9)

2.5 = 10% (an2/e"3(1+8),

it
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= 2.5 x TOLI

2.4
(fgh /87y,
As noted by Turner etal.® the growth factor is independent of 8 {(or

alternatively 1 + zD).

B. The Exact Equations

Now let's examine this scenario without making the SDA. Te  begin
we are considering a flat (i.e., K/a2 << aqnGp/3)

Friedmann-Robertson-Walker (FRW) cosmology with line element,

as? = -~dt? + a(t)2(dr? + r? de® + rsined¢<). (10)
The evolution of a ia governed by the usual Friedmann equation

HS = (4/a)° = 8nGp/3, (11)

where overdot signifies a time derivative and throughout we work in
units where h = ¢ = kB =1,

Write the total energy density p as:

P=Py *PNR * PR (12)

where Py is the energy density contributed by X particles (i = X),
stable, NR particles (i = NR), and the relativistic decay products of

the X (i = R), During the epochs of interest (a > aeq)' the energy

density contributed by the photons and massless neutrino species can be
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neglected. The equations governing the eveolution of the energy density

are:

Py = ~3Hpy = Toy {13a)

or d(a3px)/dt = 'F(a3DX) ) (13b)
Bp = -UHpp + Toy . | (15)

The first term on the rhs of Egqn. {13a) is just the dilution effect of
the expansion, while the second term is due to the decays. When Eqn.
{13a} is rewritten as Egqn. {13b) the physics is manifest: the number of
Xs per comoving volume (« aBQXImX) is decreasing according to the usual
exponential degay law. The energy density in stable, NR particles only
decreases due to the expansion, the solution to Eqn. (14) being the
familiar pyo = a"3. The two terms on the rhs of Eqn. (15) represent the
dilution and redshift of the energy of the R particles (-MHbﬁ), and the
energy density being 'pumped in' by the decays of X particles. The

solutions to Egns. (13-15) are:

=3
PNR < uraldap) T ol an

o = (a/ai)'”pXijg (a(t')/ai)e'rt'drt' , (18)
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where the initial epocch t = t’i is chosen suchh that teq << ti << I‘—1 , and

33 = alty), pyy = pxlty), and pypy = eygltyl.

In thé linear regime the evclution of the density contrasts in the

various components, Gi = 8py/py, are determined by:

2 2

8, + 2H3, k°6;/a° = 4GP = HmGpZ(p;/p)é; , (19)
i

+ ,
i it Vosi

where k is the comoving wavenumber of the perturbation (physical

wavelength lph = 2ral(t)/k), and v_;

gy 18 the sound speed in component i[
1/2}

(dpi/dpi) Eqn., (19) is only valid for perturbations with physical

wavelengths much smaller than the horizon (= H-1). The wavelength li =
ﬂvgidi/GGp is the Jeans wavelength; for Aph £ Ay the perturbation will
oscillate like a sound wave, while for Aph 2 Ay the perturbation is
Jeans unstable and will grow. [For a more detailed discussion of Eqn.
(19) see ref. 14.]

For the R particles vg = 02/3 and only perturbations on scales
larger than the horizon will be Jeans unstable; perturbations on the
scales of interest will at best oscillate with constant amplitude. In
fact, if the R particles are collisionless (the most likely case)
perturbations on scales smaller than the horizon will be damped due to
free-streaming of the particles (see, e.g., refs. 15), For this reason
we will take 8y = 0 always. For the NR and X components we will only
consider perturbations with wavelengths greater than the Jeans
wavelength so that the pressure terms can be neglected. [Again the Xs
are likely to be c¢ollisionless and very NR, implying that pressure
effects and free streaming effects will be unimportant on the scales of

interest. If the NR component is baryons then after decoupling the
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Jeans length c¢orresponds to a mass which is always < 105MG,]
If initially 8y = éyp and éx = SNR' then 6y(t) = &yp(t) for all
time. On the other hang¢ if initially 6x # Syg,» then within a few

expansion times they will become equal. Thus it suffices to follow the

evolution of 6NR alone, supplemented by &y = dyp:

. , 5
GNR + 2Héyp - 3/2 H GNR(pX+pNR)/p =0 . (20)

Eqns. (16-18,20) are the 'master -equations' for the decaying
particle cosmology. By introducing some dimensionless variables they
can be recast into a more useful set of coupled differential equations.

These wvariables are:

x =Tt,

Py = px/eyi

fp = ep/ox; o
Ty = PNR/Pxi
H? = 8npr1/3 .
Xy = F/Hi ;

the dimensionless set of equations corresponding to Egns. {16-18,20)

are

. 1/2, -1
a'/a (fx+fR+fNR) Xy (21a)

- P |
fR = g 4 Iz a(x') e ¥ ax', {21b)
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Sin + 2(at/a)sly - 32 (at/a)8 = 0, (21c)
fy = a™3 ¥ (21d)
fyg = 8 3 ° (21e)

where as before é = 5NR(fX+fNR)/(fX+fNR+fR), prime indicates derivative

with respect to x, and a(t) has been normalized such that a; = a(ti) =
1. Note that early on ( i.e., t << I ! or x << 1), the Universe is
strictly matter-dominated sc that a(x) = (x/xi)2/3; thus Egn. (21a)

implies that

x, = 2/3 (1+8)V2xy

It should be clear that (subject to specifying 6NR(xi} and 6ﬁR(xi))
the solutions to this set of equations are a one parameter (namely g)
family of solutions. Recall that in the language of the SDA g ' =
(1+ZD)(QanNR). How does one exploit this nice feature of the set of
equaticons which govern the decaying particle cosmology? This should
become very clear In the next section, but briefly the idea is: (1)
select the value of B which 1is of interest; {(2) integrate Egns.
(21a-e); (3) the present epoch is then specified by when the value of
fR/f‘NR is equal to the desired value of Qp/Qup; (4) the values of x and
a(x) for the present epoch (x0 and a_), along with the present value of
the Hubble parameter H can then be used to convert all dimensionless

quantities into dimensional quantities. In the next section we will use

i R
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numerical solutions to these equations to describe the decaying particle
cosmelogy in some detail,
Before we go on to discuss the solutions to Eqns. (21a-e} consider

. . o e s - P2 i s ) N )
the problem of calculating Qpn" in terms of my, r, and 8. Because of the

exp(~x') facter, the integral in the expression for fR' cf Eqn. (21b),
will converge for x >> 1, In fact, in the limit of small g, it is
straignhtforward to show that I: a(x)e—xdx is = xH—2/3. Numerically we
find that

[2 a(nye™dx = 1.09 ;723 (22)

for details see ref. 16. Assuming that t0 > r‘1 ( i.e., X, >> 1), so
that all of the Xs have decayed by the present epoch, the present ratio

of fo %o fyr (= %z/Qyp) can be used to solve far ag, and in turn fp{x,):

ol

-1, =1_=2/3
&, = 1.09(g/0yg) B Xy , (23)
5 -2/
= 1.09(1+25) %2 3,
(%) = 0.7T%u(Rn/Dye) 8" (24)
p(xg) = 0.77xy(ag/Oyg) 8 -

In terms of fR(xo), g is given by

2
QR = pﬁ/(3HO /8nG)
- 2 .
= fR(xo)pX1/(3H0/8“G} :
using this relationship and the expression for g in Eqn. (1), it

follows that:
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/3 2/3

2,4y
(QRh /87) 1.41(m100p) g 7 (25a)
= 0.249 5103/313/3.

3/e“)3/“r;1/2 , (25b)

Mg = 2.8H(QRh

where a3 earlier Tg = T/109 yrs = 2,09 x 10’“1 GeV/I'. Comparing these

expressions with the corresponding ones which are computed in the 3DA,

ef Egns. (8a,b), we see that the SDA leads to about a 20%

overestimation for ﬂﬂh2/8u

4

, or a 14% underestimation for 5100. Lines of
constant Qhafe and of constant 1+zD in the 6100 - T plane are shown in

Fig. 1.

III. THE DECAYING PARTICLE COSMOLOGY (DPC)

In this section we will discuss the solutions to the equations
derived in the previous secticn, paying particular attention to the
cosmological implications and comparing the DPC to conventional

ceamological models.
A. Evolution of a(x}, Px/eyge and pgp/pyg

In Figf 2 the evolution of a, pR/pNR' and px/pNR are shown as a
function of x for B = 1/10, 1/100. So long as (pR + px) >> pyp the
curves displayed are universal -- with all functional dependences being
determined by only the mix of R and X particles (and relatively
independent of the 'slight contamination' of stable, NR particles). In

thls scaling limit, a{x) is universal and independent of B, while px/pNR

1

and Pr/pyg are universal and scale with g ' . This scaling behaviour can
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be c¢learly seen in Fig. 2, as well slight deviations from it as PNR
becomes comparable to Py * PR for the B = 1/10 curves.

At early times a(x) « x2/3

(as expected) and near x * 1 the
behaviour changes to a{x) =« x1/2. For the 8 = 1/10 curve the functional
dependence starts to change back to a(x) = x2/3 as the fractional matter
content increases. For reference the predicted behaviour of QX/pNR and
Ppr/pyp in the SDA are also shown in Fig. 2. By x = 1, px/pNR (=
0.3767") and Pr/oyr (% 0.343-1) are about equal. More interesting, {pX
* Pp)/pgg T 0-T1 5-1, implying that about 30% of the initial rest energy
per X (or decay product of the X) has been redshifted away. This, of
course, is due to the redshifting of the energy of the decay products of
Xs which decayed early on (note, a fraction 1 - e ! = 63% of the Xs
decay by x = 1).

As Dbriefly mentioned in the previous section, for a chosen value of

B, the solutions to the DPC equations are made into a cosmological model
by using the ratio gp/p.o to identify the present epocn. The ratio
Pr/oyg 1s set equal to Qgp/Qyg. The values of aj = a(xo) and x5 = ' tg

(tO = present age of the Universe) are compiled in Table 1 for various

values of § and QR/QNR =K 4, 3, 2,1, 0,5,

B. Evoclution of Density Perturbations

Let's turn now to the growth of density perturbations in the linear
regime. Recall in the SDA: for x <1, 6p/p =« a; for 1 ¢ x < Xyps 8p/p =

cons't; for x 2 x,.., 8p/p = a; X = Xyn 19 the epoch when the Universe
MDD MD

again becomes matter-~dominated (i.e., pp/oyp = 1).
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“! §p/0 is shown as a function of a for 8 = 1/3, 1/10,

In Fig., 3 a
1/30, 1/80, 1/300. The epoch x = 1 corresponds tc a ® 27; for reference
the behaviour predicted in the SDA is also shown. The most striking
feature of Fig. 3 1s that the growth of linear density perturbations
does not suddenly stop when the Universe becomes radiation-dominated (x
= 1, a * 27) as expected, but instead linear density perturbations
continue to grow slowly during the radiation-dominated epoch (1 < x <«
Xypi 27 $a <27 3‘1). There are two reasons for this. First (and most
impertant}, is that the perturbations still have velocity ({ i.e. § £ 0)
at the onseft of radiation demination, and so continue 'to coast' and
undergo further growth. Second, since pR/pNB is finite (and not
infinite), slow power law growth 1s still predicted (with exponent
depending upon pp/pyp). Equally obvicus is the fact that the behaviour
8p/p = a does not immediately begin again when pyr = o (a = 273—1), but
takes several expansion times.

In the simplified picture described in Sec. IIA no growth is
predicted for §p/p for 27 < a ¢ 273-1; that is, if &8p/p = ¢ x a{x) for x
<< 1, then §p/p = (cB) x a(x) for the x >> Xy (a > 278 ). This
approximation predicts a 'deficit in growth' {(compared to 6p/p = a) of
about Bf1 From Fig. 3 it can be seen that the deficit is considerably
less. Likewise, in the 3DA no growth in &p/p is predicted from x = 1
until the present epoch; in Fig. 3 it is apparent that there is some

growth. The 'total deficit' and the growth of &p/p from x = 1 until the

present epoch are quantified in Table 2.
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C. The Age of the Universe
The present age of a cosmological model is just given by

t = Iaoda/é ; (26a)
o Jo ’

it is most useful to express to in 'Hubble times' (= H;1):

a
Hoto = [, dasCaCi/Hg)] . (26b)

For a matter-dominated Universe H/H_ - (a/ao)"3/2, and we obtain the

familiar result that H t = 2/3. For a purely radiation-dominated model

H/H - (a/a,) "¢, and it follows that H_t, = 1/2. This fact is a wvery
formidable difficulty which the DPC must face -- the prediction of a
youthful Universe. [For reference, HO is believed to be in the range
50-100 kms 'Mpe™' = (20 Byr)~! - (10 Byr)™', while various techniques
(dating of globular clusters, nucleocosmochronology) suggest that to =
15 '+ 3' Byr. On the face of it this implies Hotc = 0,6 -~ 1.8, At

present, however, systematic uncertainties in both H0 and t, preclude a

definitive determination of Hotof’]

| PaN

- - /2 -
In the SDA, H/H_ = (Qp(a/a)™' + fygplara) 31V72 for (1+zp)™

afa, < 1, and H/H, = (1+ZD)1/2931/2(1+B)1/23_3/2

-1

[ PN

for 0 < a/ao

(1+zD) ., Using this expression for H/HQ in Eqn. (26b) it follows that
_(na"2 - 3/2 -1/2
H,tg=(20yp/3)[1-30p+ag" “(1+6) (2+8)] (27)

{this is identical to the expression derived by Turner etal. in ref.
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Q). There are two effects which cause Hoto to deviate from 1/2 in the
DPC: (1) the present contribution of matter to the energy density,
quantified by QNR‘ (2) the early (a/ao < (1+ZD)—1) matter~-dominated
epoch. For fixed fygs 9 the second effect becomes negligible as 8 + 0

{i.e., as 1 + 2p * =), and H,t, becomes only a function of Oyge gt

Hoto*(2“§§/3)["3“3*293/2]' (28)

8+0

; /

Fig, U4 shows Ht[i(x/xH) x {fx + fNR + fR)1 2] as a function of x
for g = 1/3, 1/10, 1/30, 1/80 with the present epoch being identified by
QR/QNR' The convergence of Ht (for fixed QR/QNR) to a value which 1is
independent of 8 as B + 0 is manifest. 1In Table 3 Hoto is tabulated for
various values of 8 and p/Qyg. For comparison the values computed in
the SDA, cf. Egn. (27), are shown in parentheses, In this regard the

SDA is rather good (agreement to better than 5%).

D. Age-Redshift Relationship

A closely-related relationship which is also of some cosmological
interest is the relationship between redshift and the age of the

Universe. This relationship is given by:

(1+z) 'a

Ht =], oda/[(H/HO)a] . (29)

For a matter-dominated Universe, H/H0 = (a/ao)-3/2,
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Hot = (2/3) (1+2) 7372 ;

ob

while for a radiation-dominated Universe, H/HD = (a/ao)'z, and

Hot = (172) (1+2)7% .

At a given redshift, a radiation~dominated Universe is younger. This
fact 1is of some importance when considering the evolution of galaxies,
clusters, etc. The DPC cosmolegy, of course, lies somewhere in between
these two models. This is illustrated in Fig, S for g = 1710, 1/30,
1/80 and 8p/Gyr = 3. As can be seen in the figure for low redshift, 1 +
z <1+ zp = 1/38, when the Universe is radiation-dominated (ilg;, PR 2
Pyg) Hot evolves « (1+z)r-2 (as in the pure radiation case); while for
higher redshifts, 1 + 2z > 1 + Zp, wWhen the Universe is matter-dominated
(i.e., Pyg 2 pR) H,t evolves « (1+z)—3/2 (as in the pure matter case).
[(For comparison a cosmological model with fp =0, A £ 0, k = 0, QA(E
A/3HE) = 3Q and H/H, = [, + @ {a’a )—3]1/2 is also shown. At a

o NR® 0 A NR o}
given redshift, a A # 0 model is even older than a matter-dominated

model. For further discussion of flat mcdels with A # O see ref. 10.]

E. Angular Size and Comoving Volume vs. Redshift

Two kinematical quantities of significance are the cbserved angular

size of an object at a given redshift, and the comoving volume element

dVO « ddz f(z) at a given redshift. Both are related in a simple way

to present proper distance to an object with redshift z. Physically

that distance, do(z), is just the present value of the scale factor



-20~ FERMILAB-Pub.~-84/89-a

times the coordinate distance covered by a photon from the epoch a =

(1+2) " 'a_ to the present epoch:

(o]
t'O
d,(z) = a(ty) ) dt'/a(t') (30}
t(1+z)
-1 11 >
= H .. a.da/[(H/H_)a“]
% T(1+2) 1ao ° ©

For a matter-dominated Universe (H/Ho) = (a/ao)'3/2, and

Hod(z) = 2[1-(1+2) " /435

while for a radiation=dominated medel (H/HO) = (a/ao)‘z: and
Hodo(z) = z/(1+2).

In Fig. 6 Hodo(z), the present proper distance to an object at redshift
7z in Hubble units, is shown as a function of z for pure matter, pure

radiation, Op/fyp = 3 and B = 1/10, and Q /Qyp = 3 models. In Hubble

A
units, the distance to an object at redshift z increases as one goes
from a pure radiaticn model to a pure matter model onto a model with A #

0. The distance to the (particle) horizon is Ho d (z==) (in Hubble
units). For pure matter Hodo(=) = 2(= 3H t, -- the familiar result that

the horizon distance in a matter-dominated Universe is 3t0); for pure

radiation Ho do(w) = 1 (= 2 Hyto)s and in the SDA:

-1 _ S1/72 1/2
Hy dg(=) = 2ayp [1 - 2 /(1+8) 1.
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Table 4 is a compilation of H_ d (=) for various values of B and Qp/Qyp;
the values calculated in the SDA are alsc given. In general the value
calculated in the SDA is higher, and the agreement is quite good (< 8%
difference).

The cbserved angular size of an object at redshift z (in a flat
cosmological model) is just its proper size then (= 9(z)) divided by its

proper distance then (= d(z) = do(z)/(1+2)),

(e8]
"

(z)/d(z) , (31)

Lz)(1+2)/d_(2).

For an object whose proper (i.e., physical size) dces not vary (i.e., is

independent of z), e.g., a galaxy, we have

8 = Hoa(1+2)/H d(2);

the angular size is inversely proportional to Hodo(z). Cn the other hand

for an object whose proper size « a{t), say, e.g., a certain comoving

region of space, % = 20/(1+z), we have

& = H 2 /H,d,(z) ,

= 1,11 h(RO/Mpc)/HOdO(z).

[For example the microwave temperature fluctuaticn con a given angular
Scale 8 << 1° is related to the density constraint on the comoving
length scale corresponding to that angle at the surface of last

geattering, 1 + 2z = 1500; for more details see refs. 18, 19.]
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The comoving volume element dVO (which for simplicity we take to be

the prope

r

volume element at the present spoch) defined by the solid

angle d2 and redshift interval dz is just

W = a/dz (43(2)/3) da dz, (32)
= 2
= d/dz(d (z)) dg(z)dz da ,
- H'(2)d3(2) dz an,
where H(z) is the Hubble parameter at the epoch a = (1+z)_1a0, It is
convenient to write
av, = f(z) 22 dz dq H;3 , (33a)
where
£(z) = (Hod (2))2(H_s/H(z))z™2 . (33b)
oYo o

So defined, f(z) + 1 as z » 0. For a pure matter model,

£{z)

while for

f£(z)

a

42‘2[(1"'2)-3/” - (1"'2)-5/}4}2;

pure radiation model,

(1+2)"4 .
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The function f(z) is shown in Fig. 7 for pure radiation, pure
matter, QR/QNR = 3(g =1/10, 1/80), and f,/@yp = 3 models. At fixed
redshift, f(z) decreases (meaning the proper volume defined by d@ and dz
is smaller), going from the A # 0 model to the pure matter model to the
DPC to the pure radiation. The comoving number density of a given set
of objects in the volume defined by df and dz is of course « f(z)_1.
implying that for a given set of objects their comoving number density
is highest in a pure radiation model, and lowest in a A # 0 model. In
principle, this fact could be used to differentiate between cosmological

models.

IV. SUMMARY AND CONCLUDING REMARKS

The idea of the DPC is straightforward -- a massive relic species
with energy density greater than that of the stable, NR particles
present (baryons, ete.) decays in the recent past (since decoupling)
into particles which are still relativistic today. The current
motivaticn for the model is twofold; first, there exist particle physics
theories which predict massive particle species whose relic abundances
would be significant (E;E;v neutrincs) and whose lifetimes are
comparable to the age of the Universe (say > 108 years).?° Second, and
more important, the DPC offers the possibility of solving the
'Q-problem' by producing a hot, unciustered component which dominates
the present mass density.

The solutions to the cosmological equations describing the DPC form
a one~parameter (two, 1if one of the decay products becomes NR by the

present epoch) family. The quantity 8'1 is just the ratio of the energy



density in the massive, unstable particle species (before it decays) to
the mass density in stable, NR particles. The parazmeter R 1s also
related to redshift of the decay epoch and the ratio of energy density

-l = (QR/QNR)(T+ZD). To solve

in R particles to that in NR particles: 8
the Q-problem QR/QNR should be 3-5, A number of unpleasant things occcur
if (1+ZB) is too big, say > 20 (excessively-large fluctuations in the
microwave  background on both small?! and large® angular scales;
disruption of bound structures which form before the decay epoch?; kinks
in the galaxy-galaxy correlation funetion? -- for further discussion see
Turner etal., ref. %), Thus the cosmologically interesting values of B
are in the range of, say 1/3 to 1/100.

The cosmological kinematics (gég;, age-redshift, angular
size-redshift, comoving volume-redshift relationships) of the DPC are
significantly different than that of a pure matter model, pure radiation
model, or a model with a signiflicant c¢osmological constant. In
principle, cosmological observations could differentiate between models,
and perhaps even rule cut such models.

The simultanecus decay approximation made by Turner EEE&;Q to treat
the DPC is found to provide a reasonable description of many aspects of
the DPC, €.8. 10-20% or better accuracy in determining QR' Hoto' and
Hodo(w). However, it does not provide a reljiable description of the
evolution of linear density perturbations. In this approximation it was
assumed that growth would shut off at t * F-1 and not resume until the
Universe again became matter-dominated. In fact ép/p continues to grow
after the decay epoch, however, at a slackening pace. Since the growth

of density perturbations from the initial epoch of matter domination

until the decay epoch is Identical to that in the usual cosmology, the
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fact that growth does not cease for ¢ > r'l implies that there is

additional growth of linear density perturbations in the DPC (over that
in the usual k = 0 model).

As might be expected things happen more smoothly when the decays
are not assumed to be simultaneous: growth of density perturbations
gradually slows to a standstill, the enormous mass density in NR Xs 1is
slowly converted into R particles, ete. This gradual change from a
matter-dominated to & radiation-dominated may improve the viability of
the scenario by easing some of the potential difficulties with the DPC
(including the 'puffing-up' of structures due to the 1liberation of Xs
into R particles, the sudden halting of the growth of density
perturbations).

The motivation for the DPC s clearly the Q-problem. AsS was
discussed 1in the Intreoduction 'the Q-problem' is basically a timescale
problem (although there are also difficulties with forming structure in
a lo-Q model}; the DPC does not resolve this problem in a totally
satisfactory way, since it solves it by introducing a new timescale --
the lifetime of the X particle. However, if nothing else, it is an

interesting new cosmoclogical model.

This research was carried cut and written up at the Aspen Center
for Physics during the 1984 Summer Program. I wish to acknowledge
useful discussions with and comments from R. Kron, D. Seckel, and G.
Steigman. This research was supported in part by the DOE (at Chicago
and Fermilab), the NSF (at Aspen}, the NASA (at Fermilab and Aspen), and

an Alfred P. Sloan Fellowship.
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Appendix - One of the X's Decay Products is not Always Relativistic

Here we consider one example of the general case where the decay
products of the X are not always relativistic, The scenarioc we have in
mind is one where the X decays to a + b, where the mass cf the a(ma) is
large enough so that by the present epech the decay produced a's are
nonrelativistic, but the mass of the b is sufficiently small so that the
decay produced b's are ultrarelativistic. Before we go on tc discuss
this case, let's briefly motivate it.

Solving the 'Q-problem' only requires a ‘'hot' component, not
necessarily a relativistic component (v >> 10 3¢ will do just fine), and
30 this case is also a logical possibility. In addition, allowing the
smooth component to be hot but not relativistic can help to alleviate
the age problem associated with the DPC. The idea then is to have (at
the present epoch): 10-30 << <va> << ¢, (Qa + QR)/QNR large (say 3 or
4), and 8 small (say less than 0.1). ([Note, in this case tne R
component 1s the relativistic b's.] The attraction of this scenario is
the possibility of circumventing the age problem Ql;g;, pushing Hoto
closer to 2/3), while still solving the @ problem. There are some
difficulties with this scenario however.

In addition to the fact that such a scenario requires a coincidence
of 2 masses and a lifetime, there is another difficulty. Not only are
there decay-produced a's present, but there will, in general, also be a
cold primordial compcgnent of a's. If we denote the initial relice
abundances of the X and a (relative to photons) by Py and r

a

respectively, then after the decay-produced a's become NR we will have:
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Ba’ g = ry/Ty
R = 9B * 93 >

Bpa/ Mg < ry/ry

where 'ca' and ha' refer to the cold and hot components of a's
respectively, and it has been assumed that QR << 1. Therein 1lies the

rub -- unless ry/r_ > 3 or 4, the Q - problem will not have been solved.

if both X and a are neutrinos, say, then ry/ry = 1, implying Qp /g <
1. Of course it 1is possible to have Px/ra >> 1 (e.g., If the a's
abundance is suppressed because it decoupled very early, T >> 1 MeV, or

if the X has many more degrees of freedom).

S5¢ much for motivation., Introduce another parameter a,

o = ma/mX . (A1)

In terms of o the initial momentum of a decay produced 2 or b is:

Py = my(1-a2)/2 . (A2)

Let PR denote the energy density of the decay produced b's and the

Pa
energy density of the decay produced a's. The equation governing PR is

very similar to the one we derived earlier in Sec. III,
B = ~UHp, + (1-a2)Tpy/2 (A3)
R PR X'e

the only difference being the factor of (1-a2)/2 which accounts for the

fact that only that fraction of the decay energy goes into relativistic
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b particles. Using Eqn. (16) for Px» PR can be expressed as before:

-rt

PR = (a/ai)'upXi[(1—a2)/2]Ig a(t')/a, e [“larer | (Ak)

The evclution of Py Is quite a bit more complicated. First

consider the evolution of the number density of a's,

i, = -3Hn, + ray , (A5)

where Ny 1s the number density of Xs (= px/mx) and

nx = (a/ai)-3nXi e-rt.

Using this expression for Ny, Eqn. (A5) 1is straightforward to

integrate:
_ _3 t -Tt! ,
n, = (a/ay) 7 g, Io e are’ , (A6)

where the contribution to na(t) from X's decaying in the time interval

L' > t' + dt' is clearly:
‘3 -rt! '
(a/ai) Ny e dare'.

i

The energy density in a's is just

pa(t) = (aza)Bay JE E(e,tne T are (AT)
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where E(t,t') is the energy of an a which

time t', at time t. This energy is simple

FERMILAB~Pub.-84/89-A

was produced by an X decay at

to compute:

B(t,t1)2 = m + pZla(tt)/a(e)]?. (A8)
Bringing everything together we have for pa

o = alara,) 3oy, Jiip(t,t1)8/me+117 /27T greo (A9)

a~ @ i XidotPils a ’
where p(t,t') = P, a{t')/a(t}.

Since we have arranged things so that the a's are always hot and
cannot clump on interesting scales, 6a = 0 and the equation for the
evolution of §yp is unchanged, _cf. Eqn. {20). Employing the
dimensicnless variables from S3ec. IT and intreducing the additional

dimensionless variable

f

a = PalPyi v

the equations governing this DPC can be wri

1/2.-1
R * fyr) ¥y

- a-u[(1-a2)/2]f§ a(xVe X dx'

T
a'/a (fx + f. + fa

T3

P

v 111726
a

- !
= X dxl

aa 3 ¥ p(x, x")2/mS
sne + 2(a'/a)8ly - 3/2(a'/a)%6 = 0 ,

_ ade
fX =3 ~e

fNR

’

_3 ,

= Ba

tten as

(At0a)
(A10B)
, (A10¢)
{A10d)
(A10e)

(A10F)
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where § Syp (fy *+ fyp¥/(fy =+ fg + o+ fygr) and p(x,x'} = py

a{x')/alx). 1t should be clear that the solutions to this set of
equations (supplemented by 6NR(xi) and dﬁﬁ(xi)) form a two parameter (a

and B) family of solutions,

In these medels p_ /pyp » a/B as the a's become NR; as before pp/pyp
decreases as a™! {for x >> 1), Since Qa/QNR is fixed by o/8, the
present epoch is specified by choosing the value af G today. Assuming

that at the present epoch the a*s are NR so that Qa/QNR = q/R, the ratio

of "hot material' to clustered material is:

Uyor/fng = (8g * 93)/ R,
a’B + §

R/8NR >

a/f Qp(i+asg)/{1-9p) .

QR can be calculated in terms of 5100, T(Er-1), and o« as In Sec. II,

with the result that

agnZ/a" = 0.2490(1-a%) /2, 3573
[The only difference between this and the analogous expression, Eqn.
{25a), in Sec. II is the factor (1-a2)/2, which is just the fraction of
the X's rest mass which goes into relativistic b particles.]

What are the Iinteresting values of g and B. Since pa/pNR + of8 at
late times we will want to have a/8 = 3-4 to solve the 'Q-problem'.
Next, we want to arrange to have the contribution of the R particles
small (say Pr/’Pyg £ 1), so that the model 1is close to being a

matter-dominated cosmology. At the decay epoch pH/pNR = 3'1/2; in order
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that this ratio be < 1 today we need to have (1+ZD) 2 3'1/2. The
condition that (1+zD) b 3—1/2 also insures that the a's are NR today

(Va/o = a—T(1+ZD)-1/2 < B/a ® 1/3 - 1/4), To summarize, solving the

'H

'Q-problem’ requires a/f = 3-4, Specifying Qp(or Qp/fyp) defines the
present epoch for a given model (i.e., a and B). The decay epcch for

that model is

(1+z5) = (5‘112)(9NR/QR).

Until the decay-produced a's become non-relativistic, a/a(x=1}) =
1/2¢ = (1/6 - 1/8)87), this scenaric is essentially identical to the DPC
discussed in See. 11 (which in this parameterization corresponds to
a=0). Thus the evolution of a, PrsPyps and py/pyg Shown in Fig. 2 is
applicable here (with P there to be identified with Pyt pR). The same
1s true for the evolution of &... However as the a's become NR there is
a new twist, Instead of the growth of linear perturbations

asymptotically returning to GNR « a as f{p becomes small, SNR

m

asymptotically approaches § « a, m < 1, The reason for this

NR
behavicur is easy to understand. As the a's beccme NR and QR + 0, the
scale factor a « x2/3; however, by assumption the a's remain 'too hot'
to cluster and thus remain smooth. Therefore asymptotically & =+

2/3

(B/u)GNR, With & = (BIG)GNR and a « % it is straightforward to show

that the growing mode perturbation

) @ am or X2m/3.

m = 1/4(1+24p/7a) 172 - 1 .



The reason for the impeded grewth is simple; the NR particles must try
to cluster in the presence of a smcoth background component. [This
suppressed growth is known as the Meszaros effect.'?®]. The evolution of
byp 13 shown in Fig. Al for a/B = 4, and 8-1 = 20. At late times Sy =
ao'u1 as predicted.
The age-redshift relation (Hot vs. 1+z) for this scenario is shown
in Fig. A2, Table A1 is a compilation of the values of Hoto for
various models. The age problem has been improved considerably, with
most of the models having Hoto greater than 0.6, and one as high as
0.632.

The distance-redshift relation (Hodo(z) vs. 1+z) and comoving
volume factor f(z) vs. (1+2) are shown in Figs. £ and A3 respectively
for a model with o/8 = 3/20, 81 = 20, and @p = 0.1. Note, for this

canonical model:

R, = 675
QNR = .225 »
QR = . 100 ’
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Figure Capticns

y

Figure 1 - Lines of constant QRhZ/a and constant 1+zy in the ml=

mx(r/(3/11))] - t plane., For reference B iz also indicated on the right

] 4/3 2/3 1

hand scale. Note that QRh2/8 = 0.249m, /315’3 and we have usec 87! =

(QR/QNH)(1+ZD) to calculate 1+zp.

Figure 2 = The evolution of pX/DNR (curves marked 'X'), PR/ PNR {curves
marked 'R'), and a(x) for 8 = 1/10 and 1/100. The dotted (broken)
curves show the evoluticn of pp/pus (py/pyg) in the SDA. All three
curves are universal so long as Py * pg »> pygi in this limit a(x) 1is

independent of g, while Py/pyg and PR/PNR scale as BH1-

Figure 3 - The evolution of §o/a = (6pyg/pyg)/a a@s a function of a for
8~ = 3, 10, 30, 80, 300. The broken curves show the evolution in the

approximation that linear perturbations grow like all (n = 1,
matter-dominated; n = 0, radiation-dominated). The different symbols

denote the epochs when 2o/fyg takes on the values indicated. The decay

epoch (X 1, a = 27) i3 indicated by the arrow.

Figure 4 - The evolution of Ht as a function of x = Tt for 8'1 =3, 10,
30, &0, 300. The different symbols denote the epochs when Qn/Qyp takes
on the values indicated. The limiting values of Ht (for fixed Qp/yg)

as B + 0 are indicated.

Figure 5 - The age {in Hubble units) vs, redshift relationship for a
pure matter model, B = 1/10, 1/30, 1/80 {(all with Qp/Qup = 3 at the

present epoch), and a pure radiation model. The curve labeled A # 0
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corresponds to a k = 0 cosmology with A/87G = BpNR (at the present

epoch), that {s: (H/H ) = [0.75 + 0.25 (a/ao)-3]1/2-

Figure 6 = The present proper distance to an cbject at redshift z (in
Hubble units) vs. redshift for the A # 0 model described in Fig. 4, a
pure matter model, B8 = 1/10 (RR/QNB = 3 at the present epoch), and a
pure radiation model. The arrows on the left axis indicate Hodo(z=m),
The curve labeled '3,20" corresponds to a model with a = 3720, 8 = 1/20,

and QR = 0.1 {(at the present epoch) -- see the appendix for details.

Figure 7 - The weighting factor f(z) for the comoving volume element dVO
(= £(z)z° dz dQ) vs. redshift z. The models indicated are the same as

those described in Fig. 4.

Figure A1 - The evoluticn of SNR/a vs. a for a model with a/B = 4, B =
1/20. Asymptotically Syg’a 1s predicted to vary as a-0.59; a line with

slope =0.59 is shown for comparison.

Figure A2 - The age (in Hubble units) vs. redshift relationship for a
model with «/8 = 3, B = 1/20, and g = 0.1 at the present epoch. For
comparison the A # 0 described in Fig. 3, a pure matter model, and a

pure radiation model are also shown,

Figure A3 - The weighting factor f{z) for the comoving volume element
dV (= z° £(z) dz @) vs. redshift for a model with o/f = 3, 8 = 1/20,
and QR = (0.1 at the present epoch. For comparison the A # 0 model

described in Fig. 3, a pure matter model, and a pure radiation model

are also shown.
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TABLE t - Parameters for the present epoch: xO/ao.

R/OR = 5 4 3 2 1 0.5

87! = 7 - - - 6.5/85  25/180 80/340
10 - - 6/80 137120  45/245 160 /490
15 - 7.5/85 14/120 30/180  95/340 350/710
20 9/95  14/120 24/160 50/240  190/490 620/950
30  20/140  30/180 53/230  110/350  400/710  1400/1450
40 33/180  54/230 96/310  190/470  720/950  2500/1900
80 150/380 220/470  370/630  850/950 280071850  107/3700

300 2000/1400 300071750 550072400 11000/3600 37000/6800 1.4x10 /1.4:10“



TABLE 2 - Long term 'deficit' in growth of §p/p [prediction
B '} show in parentheses] and growth from x =

20
30
4o
80
300

'Long~term Deficit’

3.2(10)
4. 7(20)
6.3(30)
7.3(40)
12.5(80)
33(300)

FERMILAB=Pub.-84/89-A

in B8DA
1 until the present

(8

Growth from x=1 until today

QR/QNR =

TABLE 3 - H t, [numbers in parentheses are those
sudden decay approximation, c¢f. Egn. (27)].

fg/0yg =

5

y

3

b

b L I g FR I AV ]
v s e a.
O = O ;o

[0 ' 3 I g — X ST RN N
- - &, 9 =
oV O v

calculated

in the

0.5

g7 a7
10
15
20
30
40
80

300

--{.596)
--(.556)
--{.534)

.535(.526)
.524(.520)
.520(.518)
+516(.516)
.515(.515)

-=(.571)

-=(.554)

557(.547)

-=(.545) .552(.539) .545(.539)

.5%1(.530)
.531(.525)
S24(.521)
.521(.521)
.519(.519)
.518(.518)

.536(.530)
.530(.527)
.526(.525)
.525(.524)
.528(.523)
.523(.523)

-538(.535)
.536(.534)
.534(.533)
.533(.532)
.532(.532)
.532(.532)

.560(.556)
«557(.554)
.554(.553)
.553(.553)
.553(.533)
.552(.552)
.552(.552)
.582(.552)

.579(.579)
.578(.578)
.578(.578)
STT(.577)
STT(.5TT)
STT(.577)
ST7(.577)
ST7(.57T)
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TABLE 4 - Hod (z==) (numbers in parentheses are those calculated in the
sudden decay approximation).

L ~=(1.75)  -=(1.63)  ==(1.52) 1.31(1.42) 1.28(1.35)
10 -~{1.56) «~=(1.47) 1.29(1.39) 1.25(1.33) 1.25(1.30)

30 1.16¢(1.,22) 1.15(1.20) 101480118y 10150118 1.19(1.22)

80 1.08(1.11) 1.08(1.11) 1.09(1.11) 1.11(1.13) 1.17(1.19)

300 1.05(1.06) 1.05(1.07) 1.07(1.08) 1.,10(1.11) 1.16(1.18)

TABLE A1 - H ¢
Qvo

a/f=3 a/g=4
fg = 0.25 0.11 0.25 - 0.11
81 - 10 .607 625 .625 .632
20 .587 .620 .591 .622

30 .584 .619 .586 .620



