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ABSTRACT

We show that charge carrying propagators in axial gauges involve spurious
sources that move aiong the rays of gauge-fixing. Although these spurious
sources are hidden in the axial gauge in question, they are manifest when the
same propagator is viewed in other gauges. Therefore, they influence the propa-
gation of the dynamical fields. Thus the naive electron propagator in axial
gauge quantum electrodynamics does not have the spectrum of a free, mass-
renormalized electron. We confine our remarks to quantum electrodynamics here,
In the sequel the implications for axial gauge quark and gluon propagators in
quantum chromodynamics is discussed. Gauge-independent propagators do not suffer

this affliction.



I. Introduction

Since axial gauges were introduced by Schwinger [1] and Arnowitt and
Fickler [2] much has been said about the interpretation of the "kinematical"
singularities of the momentum space gauge-vector propagator £3]. Although
these singularities do not occur in Green's functions of gauge-independent
operators, they do affect gauge-dependent propagators. In this report we
discuss a related axial gauge phenomenon that seems not to have been widely
appreciated, namely, that in axial gauge the propagation of fields induced by
charged operators occurs in the presence of spurious sources that, although
hidden, nevertheless have a dynamical effect upon the propagation.

Our observation proceeds from a rather elementary remark that is easily
illustrated in temporal axial gauge quantum electrodynamics. In this gauge

physical states satisfy Gauss' law in the form

> >
[veE(y) - ply)]]phys> = 0O (1.1)
-+ 3,7 +
where ply) = - e:xp'{y) ¢(y):. Therefore, the state
s
$T(x)|phys> (1.2)

satisfies a modified version of Gauss' law
> ¥ > 3++ 1,+
[veE(y) - ply) - e8°(x-y}] ¢'(x)|phys> =0 , {1.3)

with an additiona) fixed "spurious" source at the position ; with charge
opposite the dynamical fermion. Apparentiy, all axial gauges have the feature
that local gauge-dependent operators are associated with spurious point-like
source currents. These currents affect the propagation of the dynamical field
in peculiar ways. The appearance, interpretation, and dynamical effect of these

sources is discussed at length in the following sections.
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We shall confine our remarks to a class of "superaxial" gauges obtained by
completely fixing the gauge up to a global gauge transformation. These are

gauges in which any pair of space-time points x and y is connected by a unique

path R defined by r(<), where r(0} = y and r(1) = x, such that

e T2 g (1.4)
dt

for all r on the path. Thus, for example, we may define a super-temporal gauge

by the conditions

Ad(x) = 0 for all x#
3 > >
A%(t*, x) =0 for all x
(1L.5)
Az(t*,xl,xz,z*) =0 for a1l x1,x2

Al(t*,xl,y*,z*) for a1l x1

]
(o]

where y*, z*, and t* are real constants. Then every pair of points x and y is
connected by a path that moves from x parallel to the x0 axis to t*, then paral-
lel to the x3 axis to z*, then parallel to the x2 axis to y*, then parallel to
the x! axis until it connects with a corresponding path from y. Retraced seg-
ments are then dropped leaving the unique path. The gauge given by (1.5) is
simply a temporal axial gauge with a specific choice fixing the subsidiary

gauge freedom that would otherwise have permitted arbitrary time-independent
gauge transformations in temporal axial gauge. Fixing the gauge in this way
removes any ambiguity in the propagators. It is necessary to remove any residual
gauge freedom for another reason: Failing to do so in temporal gauge prevents

propagation of charged operators between different points in three space {4].



After a brief discussion of the origin of the spurious sources in the
functional integral formulation of quantum electrodynamics in Sec. II, we give
an explicit, elementary example of their appearance in the classical Maxwell
theory and in the one-loop electron self-energy in perturbative quantum electro-

dynamics in Sec. 1II. We mention some consequences in the concluding section.



I[I. Origin of the Spurious Sources
Green's functions for guantum electrodynamics are obtained from the usual

generating functional
(3, m,m) = [[dA,1(d¥]0d¢]
exp 1 [H(A, T0) = [(J A + T + Tgdd¥x] (2.1)

where N(Au, ¢,p) is the QED action for the vector potential A, and Dirac fields
¢, &. The super-axial gauge Green's functions are obtained by restricting the
functional integration over Au to those configurations conforming to the gauge
restricpions* and carrying out the usual functional differentiation of nZ with

respect to the various currents. The fermion correlation function is, as usual

<0[¢(x) ${y)|0>sa = [LdA Isaldb]ldp]

where SA refers to a restricted integration over fields satisfying the super
axial gauge condition. Of course on the right side the product ¢(x) ¢{y) can

be replaced by the gauge-invariant expression

G{x) Clx,y,RY$(y) (2.3)

where
C(x,y,R) = exp [ie jRA”{r)dru] (2.4)

without altering the result, provided that the path R is the unique path in this

*In temporal gauge it is essential to include what is called in hamiltonian
language the projection onto states satisfying Gauss' Taw. In the action
language (2.1) this restriction is accomplished by taking care that on at least
one timelike surface A, is not set to zero, but is integrated functionally. 1In
this sense there is a slight difference between the conditions {1.5) and the
conditions defining the functional manifold.



gauge connecting x and y satisfying (1.4), i.e. along which Au(x) dr¥ = 0.
With such a path, C = 1. 1In other words, the expression
<0] ¥{x) C(x,y,R} ¥l{y)|0>sp =
(2.5)
STdA, Jsaldg1ldwlexplin{A,, ¥, ¥ w(x)C(x,y,R) ¥(y)/Z5a(0,0,0)

is the same as (2.2), but is gauge invariant. After carrying out a gauge
transformation from the gauge SA to a different gauge G the expression is
still unchanged if the string remains at R. In the new gauge the string
operator is not trivial. In this way the string “remembers” the gauge in
which the correlation function was originally defined. However, in the new
gauge the string corresponds to an explicit spurious external source that

moves along the path R connecting x to y, i.e. the string operator has the

form
Clx,y,R) = exp (ifdM(x) A (x}) d*x] (2.6)
where
M (x) = e jl dr 6%[x - r(0)] 9 (2.7)
o dr

and where the path r{t) is described in Sec. 1. The expression in {(2.6), when
substituted into (2.5), corresponds to an action in the presence of the external
source JS“(x). This external source certainly affects the propagation of the
fermion even though it is hidden in the original gauge. Moreover, it contributes
to the ultraviolet-divergent self energy of the propagator.

To be more concrete, consider the super-temporal gauge (1.5). Suppose
that the point y does not coincide with the subsidiary gauge-fixing coordinates,
ji.e. y0 2 t*, y3 # zx, y2 # y*, as is usually the case. Suppose, also, that
t* > y0 and x0 > y© so that a fermion is created at y and propagates to x.

Then the path R emerges from y moving initially forwards and parallel to the



x9 axis--i.e. it is initially a static source with charge opposite that of the
fermion. Thus in operator language, the fermion creation operator, acting upon
the physical vacuum, creates not only the dynamical fermion, but also generates
a fixed opposite charge at the point of creation as noted in Sec. 1. As the
dynamical fermion moves away from the point of creation it generates an electric
field with flux Tines that end on the fixed charge. Thus it propagates as an
electron in the hydrogen atom in the approximation of an infinite proton mass
and zero proton spin! The spectrum of the propagator must reflect the presence
of the spurijous source.

In A3 = 0 axial gauge the current would run initially along the x3 axis to
a point z*. In operator language such a current is associated with the creation
of an infinitesimal tube of electric flux along the same path. The creation of
such a structure also has a dramatic effect upon the fermion propagation.

The spurious sources associated with the vector potential are more subtle.
Let us consider temporal axial gauge. It is convenient to consider the string-

bit operator

. x+dx
B(x,dx) = exp [iq [, Au(y) dy*]1 , (2.8)
X
for which
> > + 3 > > > 3 > > > >
[veE(y) - p{y) + q&°(x+dx-y} -q56°{x-y)}] B(x,dx)|phys> =0 . (2.9)

Therefore the operator B generates a pair of spurious sources at ; and ;+d;
with fixed charge strength q. The choice of charge strength here is entirely
arbitrary, of course.

Since the Hilbert space of states containing fixed sources is orthogonal
to the physical Hilbert space, which contains no fixed sources, it follows that

for g # D



<phys|B(X,dx)|phys> = O . (2.10)

Consequently Au is an infinite operator on the physical sector. To see this,
-»
Tet us suppose that A, has finite matrix elements. Then in the 1imit dx » O

we can approximate the exponential

Tim  <phys|(1 + fe A(x) » dx)|phys> = O . (2.11)

dx - 0
Therefore, as long as the physical state has non-zero norm, K(;) mustlhave an
expectation value that is not bounded from below. Failing to recognize this
fact leads to bizarre consequences [5]. Other axial gauges undoubtedly have
similar problems. To define the temporal axial gauge correlation function of

the vector potential, naively given by
Dij(x,y) = <O]A1(X)Aj(y)|0> R (2.12)
we propose instead the expression

. * > 4 +> > _ 2
llm N <0{B*{x,dx) B(y,dy)|0>gp =1 + ¢ dxidijij(x,y) (2.13)
dx,dy - 0
0f course the expression (2.12) is singular in temporal axial gauge, but the
expression (2.13) does not appear to suffer from this difficulty.
Because the spurious sources induced by the vector potential correspond to
an electric dipole of vanishing strength, they are not expected to have an

+ >
effect upon the propagation of the photon in the limit dx, dy » 0.



III. Spurious Sources in Classical and Quantum Electrodynamics

In this section we will demonstrate our previous remarks concerning spuri-
ous sources by performing two model calculations in electrodynamics. We will
begin in a classical context by defining the photon propagator as the Green's
function for the four-dimensional vector wave equation. This Green's function
will reflect the boundary conditions imposed on the vector potential both
without and with the subsidiary gauge constraints allowed in temporal axial
gauge. In the classical theory, one deals with conserved current sources.
However, in the quantum theory, because one often deals with non-gauge invari-
ant operators, the photons can couple to non-conserved currents. Hence, with
an eye towards the quantum theory, we will discuss the action of the classical
Green's function on both conserved and non-conserved currents. Then we will
proceed to a quantum description and calculate the second-order contribution
to the electron propagator in temporal gauge QED. It will be shown that the
super-temporal gauge electron propagator is equivalent to the Coulomb gauge

propagator in the presence of a fixed source, which exists upon the rays of

gauge fixing. Then we will relate this result to the gauge invariant electron

propagator G(x,y), defined by
iefdz A¥(z)
6(x,y) = <T(g(x) e R T, (3.1)

where the path R connects the points x and y according to the gauge condition.

A. Classical Theory
Our model calculation is to show how spuricus source currents appear when
we attempt to find the vector potential AH(x) due to some known current configu-

ration JH(x). The equation of motion for the potential is given by

LH, AY(x) = [T]6%, - a¥a JAY(x) = JH(x) . (3.2)



Because this equation is invariant under the change of gauge AP(x) » AH(x) +
aMA(x}, A(x) an arbitrary function of x, in order to solve it for AM we must
first set constraints or gauge conditions upon AY. Having done this, we may

solve (3.2} by finding the Green's function D“v(x), such that

R (x) = fdby D* (x,y) 0VIX) (3.3)
satisfies equation (3.2).
For example, in the Coulomb gauge we require that V-KC = 0 and that the

potential A“C(x) vanish at infinity. Then the Green's function is given by

5(ty - ty)
_ 0 X
D, (x,y) = LUt ““':‘—*%“
dnjx - y|
(3.4)
> >
: ; i De{t,-ty, X'-¥)
-6ty 8d, (87 Dplx-y) - 8y By Jadxr XY Ay
Au|x - x'|

[Greek indices run from O to 3, Latin indices from 1 to 3, and 5“1 =0 ifp =
6“1 =1ifp=1i=1,2, or3.] Here DF{xﬁy) is the massless Feynman
propagation function satisfying |~|Dp(x-y) = 64{x-y).

One may easily check, using D¢ in (3.3), that

B -i 4 6(tx‘t )
L, AVx) = JH(x) + a#y o Jdty — XX a0V (g
du|x - yj
= JP(X) . (3-5)

if J* is a conserved current. This is consistent with (3.2}, since au L“v

is a nilpotent operator. However, eq. (3.3} in itself makes no reference to

conserved currents, and we may consider.the action of Dc“v upon non-conserved
currents J*. In the case that auJ” # 0, we may define the right hand side of

Eq. (3.5) to be a new current

10

0,
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J' = J + Jg (3.6)
and find that au J'¥ = 0. In any gauge this procedure defines a gauge dependent
"return current” or spurious source that completes the non-conserved current.
We are particularly interested here in the spurious sources associated with
axial gauges.
Now let's turn to the temporal axial gauge A® = 0. We may construct the
temporal axial gauge potentials from the Coulomb gauge potentials by a gauge

transformation:
i) B A
Ap(x) = Gac » Ac(x) (3.7}

The subscripts A and C refer to axial and Coulomb, respectively, and G”R is a

Vinear integral operator. For example, we may choose

4 0 3+ >
Ghca (X,y) = 8% & (x-y) - 0% &) & (x-y) 6{ty - ty) 8(ty-T)  (3.8)
and then

t
AR(x) = AC(x) - 8" ij dt' AC(t,x) . (3.9)

Here T is an arbitrary end point. (The principal value prescription corresponds
to a slightly different choice and is discussed after Eq. (3.19) below.)
Under the transformation (3.7) and (3.8), the Green's function changes

according to
4 4 A
Div (x,y) = Jd x" dy' Gﬁch(x,x') chv(y,y') Dcp(x',y')

. . : t t
i i b 4 4] -»> »>
T

T (3.10)

Notice that in the new gauge the operator Dp is still the identity on the

space of conserved currents. This can be seen by direct substitution
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A
Lo, Jdty DY (x,y) 37 (y)

4 A
P Jdty dyt Gac% (ay') DEYo(x,yt) 3T (y)
v A
b 1ty b (xy) 9Tty

A
J (y) {3.11)

where in obtaining the second line we use the fact that L3 is nilpotent, in
obtaining the third 1ine we integrated by parts and used d-J = 0, and in the
last line we used (3.5). The result is obviously true of any gauge.

As we have stated before, the A® = 0 gauge constraint still allows for
time independent gauge transformations. To completely specify the gauge in
the manner of eqs. (1.5) we carry out further gauge transformations. Thus to

>
fix AS(t*, x) = 0, with t* being an arbitrary fixed point in time, we define

A
ASA(X) = G5an AR(X)
X3 3
-+
= Ahx) + % T Ay (RN . (3.11)

z*
ool 2 30y - (Y 3, . 4 . . .
[x' = {(x-, x°, x¥') = (xl, %x°')]. Here z* is an arbitrary fixed point on the
x3-axis.

This transformation yields DgAv in terms of Div, and we get

3
: + s X
i i , 3 >,
DEa, (%oy) = 8% ai [Daj(xsy) + 3y i* dx® Dpzlt*, x5 ¥)

/3 _ 3 )3 5
3! 1 . +I 1 3| 3! +l. +|
S dy5 d, 7 Dagla T T = o yg AT LAy Dagles X R YT,
{3.12)
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Of course, at this point the gauge is still not completely specified for we are
allowed to make transformations which are t and x3 independent, as in egs. (1.5).
However, doing so would increase the number of terms in (3.12) to sixty-four and
certainly not add constructively to our arguments. In the following we will

3 L.
plane, keeping x, fixed

avoid these complications by working only in the t - x
in all quantities. Afterwards we will comment briefly on the general case.

We shall now find the spurious current Jg that completes a non-conserved
current in this super-temporal gauge. In analogy with the Coulomb gauge result
(3.5) we consider the action of the operator Dgsq upon various currents. As

before this operator is the identity when acting upon conserved currents. Thus
L P fdby DgpYy (x,y) My) = JH(x) (3.12)

for J*(x) conserved. To find its action upon a non-conserved current we may

proceed by a tedious direct evaluation in anatogy with (3.5) or we may simply
observe that if it is possible to guess a Jg such that J + Jg is a conserved

current, and such that Dgp Jg vanishes, then we have the answer immediately,

for then

L Jdy DgpY, (x,y) dM(y)

H

& [dhy Dep¥, (x,y) [My) + J My

Hy) + I y) . (3.13)

With our choice of subsidiary gauge fixing it is easy to find the desired Jg.

For example let J¥ be a non-conserved line current

1 dx M
JHx) = [ de 6%0x - xglx)] -gFi- (3.14)
t

with x (t) a trajectory in the x° - x3 plane such that
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Xs(o) = (11,0,0321)
xs(l) = (1'2,0,0,22) . (3.15)
as shown in Figure 1. Clearly
3 JH(x) = - 8(t, - 1,) 8(x3 - z,) 62(x,)
U X 2 2 L
. 3 _ 2(%
+ G(tx Tl) 5()( Zl) 8 (Xl) . (3-16)

The return current Jg shown in Fig. 1 allows for current conservaton: i.e. with

the definitions

I = oY 0lzp-xd) 00x3-zp) (1, - t%) §2(x))
-5, alry - 1) 6ty - t%) s(x® - 2p) 6%(x))
£ sb oty - t,) alt, - t9) 803 - zp) 63(x) . (3.17)

the total current is conserved

3, [g* + g4 .3 =0. (3.18)
Furthermore, because Jg lies precisely along the rays of gauge fixing we have
dty Do, (x,y) duly) = 0 (3.19)
Jaby DgpY, (y) iy = 0 :

Notice, of course, that we have chosen an example for which the return current
occurs entirely in the x0 - x3 plane. With complete subsidiary gauge fixing a
more general case could be considered, and the return current would follow the
path R described in Section 1. Notice a{so, that the arbitrary constant T in

(3.9) does not appear in (3.17}. In fact, because we have chosen to construct

the axial gauge quantities by starting in Coulomb gauge, we have implicitly
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chosen at each stage, a particular restriction on the remaining residual
gauge freedom. This restriction is expressed in an indirect way in terms of
the Coulomb gauge quantities. By replacing this implicit restriction by an
explicit and simple choice, as in (1.5) through a sequence of gauge trans-
formations as in (3.7) we remove by stages the dependence upon arbitrary
constants, such as T.

The principle value preséription [3] corresponds to making the replace-
ment jzxdt' +> %.jfmdt‘ e(t,~t) in {3.9). If we follow up with the gauge trans-
formation Ggp that makes A3 vanish at t*, then we arrive at the same vector
potential and the same spurious current as before.

It is interesting to speculate on the consequences of instead letting
the Coulomb gauge potential implicitly fix the subsidiary gauge freedom, as
in (3.9). In that case the spurious current associated with JF in (3.14) runs
parallel to the time axis from t) te T, then emerges from z) along electric
dipole field lines at fixed t = T, converging on 25, and then returns along a
line parallel to the time axis from T to 3. With the principal value prescrip-
tion replacing (3.9) as described above, the spurious source carries half the
current to t = + = and half to t = - » at fixed zj, and returns each half at
fixed zp. In any case, the spurious current is required.

We are led to the physical picture that DEX contains contributions that
do not couple to conserved currents but that do coupte to non-conserved currents
in a way that generates additional, spurious sources JSp to yield a net

conserved current. That is,

Agalx) Jdty Dgpol(x.y) 1y

1]

fay D txy) [07(y) + 95T + 27 Alx) (3.20)
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Here A(x) is the function that takes AH from the temporal axial gauge to the

superaxial gauge, and

(i) Jg =0 for JP conserved ,

p

(i1) o, (37 +J3) = 0 otherwise . (3.21)

Then note, since J + Jg is in any case a conserved current, (3.20) has a
simple transformation law under a change of gauge. Suppose we write (3.20)

in the Coulomb gauge:
0 (x,y) = fdx'dy’ Gean(X,x") G0ap (¥sy') DA (X',y") (3.20)
Then
Meptx) = faby oE toy) WPy + En T+ e L (3.23)

where A'(x) takes A* from the Coulomb gauge to the super-axial gauge. The
same current appears in the integrand, but now DEp(x,y) does not vanish along
the trajectory of Jg. In an axial gauge we may calculate a gauge invariant
function and "hide" the spurious sources by forcing them to run along the rays

of gauge fixing. In another gauge the spurious currents are manifest.

B. Perturbation Theory

We now extend our analysis to a quantum mechanical model. Specifically,
we will use the action functional in quantum electrodynamics (QED} to find a
photon propagation function identical to the one appearing in (3.12), and use it
to show how string functions naturally appear in super-temporal gauge QED.

Consider the action or generating functional for the free photon propagator:

Zgp 191 = LdA 1g, T (WAL + 0 A} (3.24)
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(The notation J « A implies integration over space and time.) The subscript SA
refers to having restricted the integration domain to include only those field
configurations that satisfy the super-temporal gauge constraints (1.5}. In (3.7)
above we constructed the axial gauge from the Coulomb gauge by a gauge trans-

formation linear in the field variables:

Ah(x) = Gigy AL(x) (3.25)

Since the Jacobian of this transformation is independent of AY, it does not

contribute to functional derivatives of 1n Z[J], and hence we may write
23001 = [Tdn ]g el (WAL + 0 = GA} (3.26)

where we have indicated our restriction to Coulomb gauge fields by the subscript

C. Thus, if D¢ is the Coulomb gauge propagator, using an obvious notation,
+> “
Zp[d] = exp id » [GD¢ G » J . {3.27)

We conclude that the bare quantum propagator for the photon is Dzv (x,¥) =
[dx'dy’ GiCh(x,x') Gicv(y,y') Dép(x',y‘) as in (3.10). Since we may compound
gauge transformations, we may follow the transformation (3.25) with the trans-
formation (3.11) leading to the same expression for the propagator as the
classical expression (3.12), provided we restrict our attention to the x0 - x3
plane.

Now consider the electron propagation function in super-axial gauge. 1In

perturbation theory, we define

iScalx,y) = iSp(x-y) + 500y +0ldy . (3.28)
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(2)
where iS5  (x,y) is the lowest-order gauge variant contribution to the propagator

and is given by
. {2) , 0 0 | 0 u
is  {x,y) = -e? jd4zd4z Sg {x-2) YuSF(Z"Z ) vaF(z'-y) DS: (z,2'),(3.29)
UV . .
and where Dsalz,z') is given by (3.12).
Instead of proceeding directly, let us decompose DQX(x,y) in terms of the
Coulomb gauge propagator as follows:

DEa(x,y) = Dp (x,y) + [DA (x-y) = D (x,y)] + [O5alx.y) - D (x,¥)]

pblx,y) + aD” (x,y) + 4D (X,y) - (3.30)

uiv is given by (3.10), and DEV is given by (3.4). Note that

N 5 t t
v 0 0O v 1 1 X Qo
20" (x,y) = [6p 8p 8 3y - 67 85 ax dy] [_dt | Yar' g (x,y)
T T

(3.31)

t t
v v u 0 p 0 v X Y., , .00
(- ai 3y + (8g 3x 9y + 8 9x 3y)] IT dt fT dt' D¢ (x,y) .

“uv
A quick glance back at (3.12) shows that ADu can also be written in terms of

single and double gradients, and thus we have the generic form

“uo v
AMHXJ) zmmwhy)+adj(ny)=a:gﬂxd)

m

+

. v
a; gb (x,y) + 3y oy hix,y} , (3.32)
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. . . . BV v .
which is as it should be, since Dgp is related to Dp by a gauge transformation.
Now consider the amplitude that Dgp couples to in (3.29):
BV . 0 p 0 v 0
Jayn(xsys z,2') = Sp(x-2) v S (z-2') v Splz'-y) . (3.33)

This amplitude is not conserved in either z or z', for a simple application

of the Ward-Takahashi identity,

0 0 4 0 4 0 3.34
az [Sp(x-2) v, Splz-y)] = is (x-z) Sp(z-y) - i8 (z-y)} Spix-z} , ( )

readily shows that az Juyx,y; z,2') # 0 and a:- Jyvlx,ys z,2') # 0.

However, we may add contributions to Jﬁ;n due to fixed spurious currents
that run along trajectories where we had required DEX to vanish by our subsidiary
gauge transformations and in so doing obtain a conserved amplitude. Without

changing S{2)(x,y), we could then replace

BV . uv .
Jdyn(X,¥,2,2') > Jgotlx,y,z,2")
in (3.29} where

AV . Vv . uv .
Jtot(x.¥32,2") = Jgyn(X,y32,2') + dgp (x,y32,2') . (3.35)
Such a spurious amplitude is

0 0
ng(x,y;z,z') = %.[SF(x-z) Y4 Splz-y)i Jg¥(2")
0 0
+ SF(X-Zl) Yv SF(Z'-y)l \Jsu(Z)

0
- Splx=y) Iz} 9 0(z")] (3.36)

where Jg is given by (3.17). One may readily verify that



Uy Hv
azydtot{X,y,2z,z') = 3z Jtotlx,y5z,2") = 0. {3.37)
That is, Jgot is a conserved amplitude. Thus we rewrite (3.37) as

(3.38)

) LI\J [} 3 1
= - el fd4zd4z Jtot(x,y,z,z ) [Dcuu(z,z ) + Auv(z,z )]

Now using (3.33), integrating by parts, and using (3.37) we see that the

remainder involving 4,, gives no contribution so that
, ¢ A HY ' 1
i 5(2)(x,y) = - 2 fd4zd4z Jtot (x,y,z,2") Ucuv(z,z ) (3.39)

. . uv .
An examination of the form of Jygt reveals that the first order super-
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axial gauge self energy (3.39), now expressed in the language of Coulomb gauge,

v
has the following graphical interpretation. The contribution Jﬁyn comes from

the first order Coulomb gauge self energy in Fig. 2(a). The first and second

v
terms in Jip in (3.36) come from the interaction between the dynamical and

v
spurious sources, shown as in Fig. 2(b), and the third term in Jgp comes from

the self energy of the spurious source as in Fig. 2(c).
The reader may verify that (3.38) is precisely the form one gets when

i [db2 A (z) JZ(Z) _

iSgalx,y) = <Tly(x) e viy))> (3.40)

: . H s s
is evaluated to order e2 in perturbation theory; i.e. with Jg{z) specified
in eq. (3.17), then we have the gauge invariant expression

1'edezlJ A (2) _
iSgplx,y} = <T{ypix)e piyl)> . (3.41)
The line integral is evaluated along the trajectory R running from y to x

described in Sec. 1.



1V. Concluding Remarks

We have shown that in quantum electrodynamics propagators of charged
operators in axial gauge contain hidden spurious sources that affect the
propagation of the dynamical fields. If the operators are also local, then
they contribute to the ultraviolet divergent self-energy of the fields. We
have given an explicit demonstration of the appearance of spurious sources in
classical electrodynamics and in the electron propagator in QED. Similar
problems arise in non-Abelian gauge theories. There the spurious sources may
combine with the dynamical fields to produce a confined gauge singlet state.
The consequences for non-Abelian theories are discussed in the sequel in the

language of the Polyakov-Wilson lattice gauge theory [6].
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Figure Captions

1. Spurious current Jg(x) induced by a non-conserved current J(x) in a super-
temporal gauge. In this gauge A vanishes everywhere and A3 vanishes at
x0 = t*,

2. Coulomb gauge Feynman graphs for the 0{e?) electron self energy showing

the interaction with the spurious source x.
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