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ABSTRACT 

Monte Carlo simulations of Twisted Eguchi-Kawai models 

with asymmetric couplings have been used to investigate the 

large N deconfining phase transition of pure SU(N) gauge 

theories. Data with N=25,36,49 and 64 and variable 

asymmetry parameter 5 allow us to disentangle these theory's 

bulk first order transition from its physical deconfining 

transition. The SU(64) data is in good agreement with 

asymptotic freedom and gives a critical temperature of Tc/nE 

= 118 A 6 ,or Tc/Ja = 0.42 + 0.05, which is close to the 

SU(3) ratio of deconfining temperature to the string 

tension. The data also suggest that the transition iS first 

order. 

a Operated by Universities Research Association Inc. under contract with the Unlted States Department of Enwgy 
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I.INTRODUCTION. 
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In recent years there has been considerable effort in 

the study of the deconfinement transition in non-abelian 

gauge theories [Il. A detailed knowledge of the nature and 

properties of this transition is essential for a complete 

understanding of the confinement mechanism. Heavy ion 

collisions shall soon provide us with situations in which 

deconfinement can be studied in the laboratory - and it is 

important to know what the theory predicts. Furthermore, 

deconfinement transitions are relevant to the early history 

of the universe. 

Lattice gauge theories provide a natural framework for 

a quantitative study of this phenomenon. It has been known 

for some time that the order of the transition depends on 

the gauge group. For the pure SU(2) gauge theory the 

transition is second order 121, while SU(3) shows strong 

first order behavior [31: in conformity with theoretical 

expectations based on universality [III. For SU(N) groups 

with N > 4, universality arguments do not predict the order 

unequivocally. There exist, however, several arguments 

pertaining to the order of the transition [5,61 : it is 

generally believed to be first order (see, however, 

Ref.[?l). Recently the SU(4) theory has been investigated : 

the results indicate a first order transition [8,91. 
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It is important to know the order and nature of the 

transition for higher values of N : particularly in the 

context of the large N limit. The large N approximation 

provides a valuable framework to study the dynamics of gauge 

fields. The study of deconfinement at N=m would throw light 

on the mechanism of confinement ; and a comparison with the 

SU(3) behavior would provide a basis for examining the 

validity of the large N approximation itself. 

Numerical investigations in large N theories have been 

made possible by the advent of Eguchi-Kawai models 

c10,11,131. The crucial observation is that at N=m ,field 

theories with an internal U(N) or O(N) symmetry become 

equivalent to matrix models living at a single site. 

Earlier, the Quenched Eguchi-Kawai model (QEK) Cl11 was 

studied at finite temperature [121 : evidence for 

deconfinement was found but the order of the transition was 

not clear. For numerical purposes, the Twisted Eguchi-Kawai 

(TEK) model [13] is more suitable. Both the TEK gauge 

theory at zero temperature and the TEK Chiral model in two 

dimensions Cl51 have been studied in detail. A finite 

temperature version of the TEK gauge theory was formulated 

in Ref.[16] using asymmetric twists. This hot TEK model has 

been studied in Ref.[l71 and [181. In Ref.[l71 it was noted 

that it is rather difficult to study the physical aspects of 

deconfiment in this model. The reason is that for practical 

values of No, the time extent of the box, the first order 

bulk large N transition in the Wilson action interfered with 
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the deconfinement transition. The former is not a 

deconfining transition, but involves a sharp change in the 

value of the string tension. For small No, this makes the 

confinement length larger than No, thus inducing a spurious 

deconfinement. This phenomenon persists upto No = 4 [IS]. 

In principle, it is possible to separate the two transitions 

by using very large values of No ; thereby pushing the 

deconfinement transition to extremely weak couplings while 

the bulk transition remains at the same position. This, 

however , seems to be unpractical. There have been other 

studies on large N deconfinement using a slightly different 

hot TEK model 1191 : we believe that their results are also 

plagued by the same problem. 

A similar interference between bulk and deconfining 

transitions has been observed in SU(4) Cal. In this case, 

however, the bulk transition could be avoided in the 

standard way by adding a small adjoint piece to the Wilson 

action. This trick would not, however, work for large N, 

since a mixed action theory at N=m is equivalent to a theory 

based on the standard Wilson action with a redefined 

coupling C20,211. 

A different way of formulating a hot TEK model is to 

consider the standard symmetric twist with different 

couplings for the spatial and temporal plaquettes. This is 

equivalent to a field theory defined on an asymmetric 

lattice in a symmetric box. When the asymmetry parameter 5 

(the ratio of the spatial lattice spacing to the temporal 
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lattice spacing) is large, the physical temporal extent Of 

the box is smaller than the spatial extent - thus Simulating 

finite temperature effects. In a previous communication 

C201 we presented preliminary results of a Monte-Carlo study 

of the asymmetric lattice TEK model with N=16. It was found 

that for E, '/ 1.75, the bulk transition disappears, but the 

Wilson line continues to show a discontinuous jump - 

indicating a first order deconfining transition freed fOrOr 

the effects of the bulk transition. In this paper we 

present the detailed results of our work for N=16,25,49 and 

64. The results for the larger values of N are 

qualitatively the same : though the critical value of F, 

beyond which the action does not show any discontinuity 

seems to increase with N. Nevertheless we can always find a 

region of 5 for each N where the action is perfectly smooth 

and there is clear evidence for a first order deconfining 

transition. Our data for N=64 has strong evidence for 

scaling and the value of the physical deconfinement 

temperature is given by 

T/AE = 113 35.6 

Using the string tension value of Ref. [14] one then has 

Tc /d-T?+ = G.42 =t G.05 

which is close to the value obtained in the SU(3) theory 

131. 
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In Section II we recall the essentials of TEK models, 

some aspects of field theories on asymmetric lattices and 

the asymmetr c coupling version of the hot TEK model. In 

Section III we present the results of our Monte Carlo 

simulations. Section IV contains analysis of the data and 

in Section V we make some concluding remarks. 
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II. THE MODEL 

The Twisted Eguchi-Kawai model is defined by the 

partition function : 

Fltti = -p dl+ Qxp C-s-=fiI 
i (2. I) 

where 

s -its< = - p 2- +v -G &+, u., c;r’ u,+) + h.c. (2.2) 

P7V 

u ‘3 are SU(N) matrices and Z ‘3 are constant elements of 
v PV 

quv =cxp /v c ‘ZTiL nrv J 
where n 

Ilv 
‘s are integers module N. Let L be ah integer and 

N=L2. Then with a Symmetric tWiSt,i.e. 

,r) MV 1 .I/ 
I .for CJA 'V >p 

the above model is equivalent at L=* to a SU(N) gauge theory 

defined in a symmetric box of size L 1131. The relationship 

between the link variables in the gauge theory and the 

reduced variables U is summarised by the reduction 
P 

prescription : 

where 
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and 
r!J’s 

are traceless SU(N) matrices forming a ‘t Hooft 

algebra : 

‘3 I-!! ,= q4v c pr 
For any gauge invariant quantity f(Un(x)) the following 

relation holds at N=m : 

(2 -6) 

($( Lh 00) FlELD 
~THEOK~ 

where < . lTEK denotes averaging in the ensemble defined by 

eqn. (2.1). 

One way to introduce finite temperature in this model 

is to construct suitable asymmetric twists. Such twists, 

and the corresponding T V’s were constructed in Ref.Cl61. In 

this scheme, one can keep the temporal extent of the box in 

which the equivalent field theory is defined fixed, while 

the spatial extents go to infinity as N goes to infinity. 

Monte Carlo simulations of the hot TEK model with the twists 

Of Klinkhamer and van Baa1 Cl61 have been performed in 

Refs.[l7] and [18]. As discussed earlier, for practical 

values of N o it is hard to decouple the bulk transition of 

this theory from the deconfinement transition. The possible 

values of N in such models are rather restrictive, rendering 

studies of higher N o models unpractical. 

An alternative way to Simulate finite temperature in 

lattice gauge theories is to consider a theory defined in a 

symmetric box (i.e same number of lattice sites in all 
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directions) but with different lattice spacings in the 

spatial and temporal directions. The asymmetry parameter is 

defined by : 

(P-8) 

where a and a ~ denote the lattice spacings in the spacelike 

and timelike directions respectively. In order to obtain 

the correct continuum limit one IlOW needs different 

couplings for the spat ial and temporal plaquettes. The 

action is given by : 

J 5: z { ff&?cj .t g $%_r @-9j 
‘X i -*j = 1 L =I 

where Pij and Poi denote the standard spacelike and timelike 

plaquette traces respectively. The continum limit is 

defined by : 

Let the above theory be defined in a box with L lattice 

sites in each direction. For sufficiently large 5 the 

physical time extent is much smaller than the spatial 

extent. In the limit : 

a+o, L -+oc, 

g .) La, = FIX ElJ 

the lattice model describes a finite temperature field 

theory with the physical temperature given by : 

‘T zz s/La (240) 
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The absence of renormalisation of the velocity of light 

in the continum limit imposes relations between the two 

couplings B,(a,S) and gT(a,S). In weak coupling one has : 

/$(%5, = &(a., .f +&G., + ol93 ( ‘) 
2 II 

?r @Lg = &) -+ ;4 c&j c “C9~~ 
& a 

where gE 2(a) is the “euclidean” bare coupling on a symmetric 

lattice. The functions cc(c) and cT(c) have been calculated 

in weak coupling perturbation theory in Ref.[221. 

A TEK model which is equivalent to the above asymmetric 

lattice theory at N=m may be written down in a manner 

entirely analogous to the cold TEK model. The reduced 

action is : 

,s ~ $ly~ ‘fG ~‘;((J&y&T) -/.!&Jr(~~“~ &w 

L#j=t i=, .t h C (2.121 

where the Z 
uv 

‘s are the same as in eqns. (3) and (4). The 

correspondence between the variables in the field theory and 

in the reduced model is the same as in eqn. (5). In 

particular, the thermal Wilson line is given by : 

<WL> = $<rrL’,L.) 
This is the standard order parameter for the deconfinement 

transition. As usual at low temperatures a ZN symmetry 

prevents this from acquiring a vacuum expectation value - 
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signifying confinement. At high temperatures this symmetry 

is broke" and (WL> acquires a "onzero value. I" our hot TEK 

model at extreme weak couplings U. is frozen "ear its vacuum 

value r. ; but since r. L = 1, <WL> f0. Note that L is the 

lowest integer for which Tr UoL + 0. This is just a special 

case of the fact that traces of all open lines vanish unless 

they i-"tl from one end of the box to the other. F0r 

standard reasons Tr U 
0 

= 0 in the strong coupling domain. 

Hence at some intermediate coupling BE = 8, there is a phase 

transition. 

The expression for the 'total action',i.e. the average 

plaquette is : 

0 s ‘I j$ PC< .2- .-<pv T;- (I+ C, L>+ ~1,‘)) (2. i4.l 
P7V 

(S> would show a discontinuous jump at a bulk first order 

phase transition. 
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III. MONTE CARLO RESULTS 

We have performed Monte Carlo simulations of asymmetric 

coupling TEK model for N=16,25,36,49 and 64 and various 

values of 5 ranging from 1.5 to 4.0. The Metropolis scheme 

used for updating is discussed in Refs [I31 and [17]. For 

each value of 5, the functions co(~) and ~~(6) were computed 

from the calculations performed in Fief.[221. These 

functions are of the general form (for SU(N)) : 

C,(S) = p& f, &f, -+ 4- N f,Cs) (3. I1 

c,w ‘= ,/qN N’-l g,(gj + 4-N 92.(U 

curves Of Co(C) and c?(c) vs. 5 are given in Ref[22] for 

N=2 and N=3. From these curves the values of f,(c), f2(S)' 

9, (5) and g,(E) were calculated for each 5 separately. 

Equations (11) were then used to compute Bo(a,~) and ~,(a,c) 

in terms of BE = l/gE *(aI and co(s) and ~~(0. This ensures 

that in the weak coupling limit one is simulating finite 

temperature physics with the physical temperature given by 

eqn.(lO). For each value of N and 5, we then scanned over 

various values Of 6 E measuring the total action, the Wilson 

line and the energy density. 

Let us first discuss the basic features of our results 

which are common for all values of N. The total action 

values show good agreement with the results of lowest order 

strong and weak coupling expansions at the respective ends. 
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The Wilson 1 ine is consistent with zero at strong couplings 

and makes a discontinuous jump at SOme intermediate 

coupling. The amount of the jump decreases slightly with 

increasing N. For small values of 5 the action, however, 

has a discontinuity at a place which coincides with the 

position where the Wilson line jumps for smaller N. This is 

the bulk first order phase transition. As discussed 

earlier, the bulk transition is driving a spurious 

deconfinement transition. The amount of the discontinuity 

of the action decreases as 5 increases. Beyond a certain 

value of 5 = 5, (which increases with N) the action becomes 

continuous. The Wilson line continues to show a sharp jump 

- indicating a strong first order deconfinement transition 

not affected by any bulk transition. 

The results for N=16 have been reported earlier in 

Ref.C201. Here we summarise our results for the other 

values of N. In Fig.1 we show the total action and the 

Wilson line for N=25 in the range 0.3 <BE/N<0.4 for 5 = 

1.5,2.0,2.5 & 3.0. For all of these values of 5 the Wilson 

line jumps discontinuously from zero to about 0.4 at some 

value of the coupling. However, for 5 = 1.5 and 2.0 the 

action has a discontinuity at the same value of the coupling 

(This was checked by making hot and cold runs in the 

standarad fashion). Somewhere between F, = 2.0 and 2.5 the 

discontinuity in the action disappears : the action is 

perfectly smooth for 5 = 2.5 and 3.0 while the Wilson line 

continues to jump. Fig.2 shows the same quantities for N = 
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36. At 5 = 2.5 the action is almost continuous; it is 

smooth at 5 = 3.0. However, for these values of 5 the 

coupling at which the Wilson line jumps is well into the 

strong coupling region. Fig.(j) shows the data for N = 49. 

Thre action becomes continuous only for E, 2 3.0. For other 

values of 5 , the position of the discontinuity of the 

action coincides with the position where the Wilson line 

jumps. Fig.(4) shows the results of our N = 64 runs. NOW 

there appears to be a slight discontinuity even at 5 = 3.0. 

However, at 5 = 1.5 the Wilson line jumps at BE/N = 0.3525 

which is clearly to the weak coupling side of the bulk 

transition which occurs at BE/N = 0.3425. (Note that at 

this coupling a change of BE/N by 0.0322 corresponds to a 

change of length scale by a factor of two, if we trust 

asymptotic scaling). This is the most reliable measurement 

of the deconfinement transition we could perform. For other 

values of 5 the bulk and deconfining transitions are not so 

clearly separated. 

Each point in Figs.(l)-(4) represents block averages 

over typically 1000-2000 sweeps. Our typical resolution in 

BE/N was 0.0025 as the figures indicate. The typical error 

in the total action was about 0.01, while that in the Wilson 

line was around 5%. 

It may be noted that the value of 5 above which the 

action becomes smooth increases with N. We do not 

understand fully the mechanism by which a higher 5 makes the 

first order bulk transition disappear. One possibility is 
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that as 5 is increased, the physical temporal extent of the 

box decreases. When this becomes smaller than the length 

scale of correlations causing the bulk transition, the 

latter is suppressed. Our data is roughly consistent with 

this possibility. 
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IV. DATA ANALYSIS 

As our results indicate, it is extremely difficult to 

decouple the bulk transition from the physical deconfinement 

transition and at the same time push the latter into the 

weak coupling regime. In most cases the bulk transition 

occurs at the same place at which the Wilson line jumps. 

For high values of 5 the bulk transition smoothens out, but 

the Wilson line tends to jump in the strong coupling side. 

The only clear exception is the N=64, 5=1.5 data. Here the 

bulk transition is still present, but deconfinement occurs 

in the weak coupling side. For other values of 5 the 

situation is not SO clear. TO determine whether this 

corresponds to deconfinement in the continuum theory, one 

must make sure that scaling has set it. Let Tc denote the 

physical deconfinement temperature. Then : 

‘r, = g 
L dBClf4 

where R c is the critical euclidean coupling. If 8, is in 

the asymptotic scaling region, one would have : 

IL3 6tix1exp ZW? e.’ /\I5 II -77 ) (Iii 
where A E is the euclidean A paramter. Reversing the 

argument one could calculate 
Tc'AE using (4.2) and see 

whether this is independent of 5 and L. Figure 5 shows 

TC'AE for various values of N as a function of 5, using the 

data in Figs.l-4. While the others show a gross violation 
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Of scaling (as expected), the N=64 data does show some 

tendency towards scaling. This should be, however, viewed 

with caution, since for 5 =2 and 2.5 the critical coupling 

is in the region of the bulk transition, while for 5=3 the 

bulk discontinuity has smoothened but 6, is at a much 

stronger coupling. However, scaling might have set in 

earlier than expected. As discussed the ~=64, 5=1.5 data is 

the most reliable measurement we could make. This gives our 

best estimate for Tc (assuming that scaling has set in) : 

‘TJ/,~ = /I 8 :r G 

TO get some idea of the value of the deconfinement 

temperature in physical units let us use the string tension 

measurements performed on the symmetric lattice TEK model in 

Ref.[l41 : 

qy+jE = 250 rt 20 

This yields : 

r; /\Tcr ‘Z 0.4-2 f 0.0.5 

This value of Tc/Jo is very close to the SU(3) value [33 : 

-&/u-r = O~!YO zk 0,os (Al = 3j 

To obtain more accurate numbers it is necessary to measure 

correlations of Wilson lines. The connected correlation is 

howvever down by O(l/N2) - this is the statement of 

factorisation- and impossible to measure in a EK model where 
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factorisation is exact. 



-19- FERMILAB-PUB-84/69-T 

V. CONCLUDING REMARKS 

The use of asymmetric coupling TEK model was crucial in 

making OUt- investigations possible. In O"r model N=64 

corresponds to a 84 lattice. To obtain a model using hot 

twists of Ref.C16l for a temporal extent No=8 one needs 

N=384 ! 

We have presented strong evidence in favor a first 

order deconfining transition in the pure SU(m) gauge theory. 

The discontinuity in the Wilson line, however, decreases 

markedly with increasing N, i.e. an increasing box size. 

(A<WL> decreases from 0 .4 at N=Z5 to 0.1 at N=64). This is 

very similar to what happens in the SU(3) theory, where 

A<WL> decreases from 0. 33 at No=2 [33 to 0.08 at No=6 C231. 

The latter is predominantly due to perimeter corrections to 

the Wilson line average which has to be divided out to 

extract the physical free energy of a quark. The free 

energy thus obtained is indeed independent of No, at least 

for large No. The situation at N=m is analogous. We have 

checked in our data that the decrease in the discontinuity 

Of the Wilson line is roughly consistent with a perimeter 

effect. However, it has been discussed by Pisarski c71 

that, in a certain sense ,a second order transition is 

"natural" in the N=m theory where one has a theory of free 

glueballs, and the transition is of the Hagedorn type. More 

detailed studies are required to clarify this point. 
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While we cannot conclude with certainity that scaling 

holds, there is definitely some indication of scaling in our 

N=64 data. If this is indeed true, this would indicate the 

existence of a continuum limit for TEK models -and for 

confinement at low temperatures. Clearly at lot more work 

has to be done to establish scaling in a definitive fashion 

and extract the physical deconfinement temperature 

accurately. This could be presumably done for higher values 

of N. Such studies are, however, extremely time-consuming 

with the Metropolis scheme we utilised. It is possible that 

the heat bath method for TEK models devised in Ref.[24] may 

make such investigations practicable. 

If we accept that our N=64 data shows scaling it is 

significant that the deconfinement temperature in physical 

units is very close to the SU(3) value. This indicates that 

the confinement mechanism in N=3 and N=m are very similar. 

In that case the large N approximation is a good 

approximation. It would be certainly worthwhile to continue 

the large-N program, particularly in the analytic front, 

where there is more chance of success compared to the N=3 

theory. 
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FIGURE CAPTIONS 

Fig. 1: Total Action and Wilson Line for N = 25 and 

5 = 1.5, 2.0, 2.5 & 3.0. The dots represent 

the Total Action; the crosses represent the 

Wilson Line. 

Fig. 2: Total Action and Wilson Line for N = 36. The 

dots are data points for the Total Action, 

the crosses for the Wilson Line 

Fig. 3: Total Action and Wilson Line for N = 49. The 

dots are data points for the Total Action, 

the crosses for the Wilson Line. 

Fig. 4: The Total Action and the Wilson Line for N = 

64. The dots are data points for the Total 

Action, the crosses for the Wilson Line. 

Fig. 5: The deconfinement temperature in units of 

the euclidean A parameter (calculated 

assuming that asymptotic scaling holds) 

versus the asymmetry parameter for the 

various values of N. (Scaling is valid if 

Tc'*E does not depend on 5). 


