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ABSTRACT

We compare the canonical hamiltonian of the
monopole-fermion system, derived by Goldstein and Yamagishi,
Wwith the hamiltonian derived by Callan in the Dbosonized

formulation.
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The dynamies of the monopecle fermion system has been

-5 1n particular, Callan® has

considered by many authors
derived the effective hamiltonian for an SU{(2) monopole
interacting with fermions belonging to the doublet
representation of the SU(2) group. The hamiltonian takes a
simple form in the bosonized version of the model. For
massless fermions, the hamiltoenian is the sum of a free

hamiltonian for scalar fields, and an interacting part,

given by,
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whére ed(r)/2vym measures the total electric charge of the
gystem inside a sphere of radius r. Here ro is the radius
of the monopole c¢ore, hence e@(ro)/g/“ measures the total
charge inside the core.

An alternative feormulation of the problem, based on the
canonical quantization of the dyon fermion system, has been
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given by Yamagishi’ and Geoldstein”. In Yamagishi®s notation,

the effective interaction hamiltonian is given by,
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where the variable é is associated with the dyonic



excitation, and p(r) denctes the contribution to the
electric charge density (multiplied by Lare) from the

fermion fields. Here,
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where J, J are solutions of the equation,
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satisfying the boundary ccnditions,
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m . being the scale of breaking of the su{2) group. K{r) is

a function which appears in the expression for the gauge

field of a «c¢lassical 't Hooft-Polyakov monopole. K(r)

satisfles,
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The quantity I in Eq.(2) and (5) is of order mw~1, and may

be expressed as a funcetion of the parameters of the theory.

The total charge of the system is given by,

Qe = T + § ey T(a) dx (7)



The purpcse of this report is to show that the
hamiltonian given in (2) reduces to (1) in the proper limit.
To do this we define the monopole radius te be ro=mw_1/e,
where € is a small but fixed number. We shall ignore all

terms of corder exp{(-1/g}. Using (3) and (5), we may write,
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Using (7) and {(5), we get,
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We define a variable é{(r) for rary, such that,
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is the total charge inside a sphere of radius r, since

Jo(r') dr' is the total charge outside a sphere of radius r.
Another way to see that this is the total <charge 1inside a
sphere of radius r is te compute the radial electric field

at r, which comes out to be ed(r)/2/mre.



From (11) we get,

Pir)= Px)/edm Ffor A>A
and,
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Using Egs.(10) and (13) we may eliminate Qo and ¢ from
{2), and a s3traight calculetion using Eqs. (8), (9} and
(11) shows that (2) may be brought into the form,
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Let us now define,
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Using (15), (16) and (%), and doing an integration by parts
carefully treating the boundary term at Foo we may show

that,
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Thus the hamiltonian reduces to,
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The last two terms of the above hamiltonian are
identical to the last two terms of (1), In Ref.(2),
however, the fermionlc degrees of freedom for r(ro were
ignored, and hence (1) must be regarded as an effective

hamiltonian involving the fermionic degrees of freedom for



Plro. In order to compare the two hamiltonians, we must

eliminate the fermionic coordinates for r<r0 by using their
egquations o¢f meticon, and obtain the effective hamiltonian
involving the fields ¢(r) for rpr,. Looking at the first two
terms inside {...] in (1%), we see that this contributicn is

bounded from below by
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and hence the contribution from the terms inside [...] in
(19) may be written as ae2¢(r0)2/(32n2r0), where a is a
constant of order unity. The net effective hamiltonian is

then given by,
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which is identical to (1), except for the factor a
multiplying the first term, The deviation of a from unity
Is due to the interaction energy inside the core, and does
not significantly affect any physical result®.

One of the major lessons that we learn from this
treatment is that for a dyon fermion system we should not
interprete the charge Ié to be stored inside the monopole
core, since parts of the second and third terms in (1) come
from the I42 term in (2)%. The fact trnat I$ should not be

treated as a localized charge inside the core was also noted



in Ref.l.
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