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ABSTRACT 

We explore the possibility of compactification of 

Kaluza-Klein models containing elementary gauge fields into 

tori with the internal components of the gauge fields 

satisfying twisted boundary conditions. We illustrate the 

idea in a toy model. 
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Kaluza-Klein theories provide attractive Scenarios for 

unification of the fundamental interactions. In "pure" 

Kaluza-Klein models four dimensional gravity and gauge 

fields are all obtained from pure gravity in higher 

dimensions. The extra dimensions are supposed to wrap up 

into a compact manifold; isometries of the latter become 

gauge symmetries of the effective four dimensional world 

[l]. In such models, however, it is impossible to obtain 

chirally coupled fermions [21. 

A much less ambitious program starts with gravity and 

elementary gauge fields in higher dimensions. The 

motivation behind such models lies in the fact that vector 

or antisymmetric tensor gauge fields occur naturally in 

supergravity theories. Otherwise the gauge fields may be 

thought of as fields obtained by compactification from still 

higher dimensions. In this case one might have a vacuum in 

which topologically non-trivial gauge fields provide the 

energy-momentum tensor necessary for compactification and at 

the same time ensure the existence of chiral fermions in 

four dimensions [3,41. Several examples of this mechanism 

have been considered in the literature : with two extra 

dimensions compactifying on S2, the gauge field is that of a 

monopole [31 ; while with four extra dimensions compactifying 

on S4 one has an instanton 141. 

In this note we shall explore the possibility of 

spontaneous compactification induced by gauge field 

topologies of a different nature. This involves internal 
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manifolds which are tor 1. Usually a field theory defined on 

a torus means that all fields satisfy periodic boundary 

conditions. However, in gauge theory one has the wider 

possibility of having boundary conditions which are periodic 

upto gauge transformations. For SU(N) theories such gauge 

transformations fall into several topologically distinct 

classes : the topology being characterised by a certain ZN 

valued twist tensor [Sl. A non-trivial twist (in a sense to 

be defined shortly) corresponds to some electric and 

magnetic fluxes running through the torus. With a suitably 

chosen twist, the field configuration also carries a nonzero 

Pontryagin number [51. In the following we shall look for 

solutions of the equations of motion of Kaluza-Klein type 

theories which involve nonzero fluxes in the internal 

dimensions. We shall illustrate the idea by considering a 

toy model. However, we believe that the idea might be 

useful in more realistic theories. 

Our toy model consists of Einstein gravity, SU (N) 

Yang-Mills fields and adjoint representation fermions in 

eight dimensions. With the fermionic fields set to zero ( 

as expected in the ground state ),the equations of motion 

read : 

TAB = -k2[L3 - $yAJ + &J 

VAF; = o 
.* - I. C’) 



-4- FERMILAB-PUB-84/52-T 

where RAB is the usual Ricci tensor and TAB is the energy 

momentum tensor for the gauge fields : 

7- Ag = ;r, ( F-,C g8 - $ yAB fto FcD) 8 . . @I 

X is a cosmological constant and FAB is the gauge field 

strength of the SU(N) gauge potential AC. The covariant 

derivative vA contains both the usual Riemann connection as 

well as the gauge connection. 

In a suitable orthonormal frame the ground state 

solution has the form : 

9,&q 5 
i 

~?Y~v:?l I O 
* 0 1 s; &j 
) 

Ar 

. . . . (31 
= 0 

4, 04 = A&L) 
where 

gUV and g..,the metrics in the four-dimensional 11 
space-time and the internal space are diagonal. (Upper case 

latin indices are eight-dimensional, lower case latin 

indices run over the four internal dimensions and lower case 

greek indices refer to ordinary four dimensional 

space-time.) The field equations now separate : 

fjY= fpo 
vi Fj’ = 0 

~‘J. -’ - k’[ ~j - $9~.T e ~‘9~3 
Rl,” = - kL [ $v - + 9,~ T + 5 Xg,,] 
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where R ij is the Ricci tensor obtained solely from g. ij' and 

similarly for R,,v. 

Let us now briefly recall the idea of a twisted torus 

t51. Consider SU W) Yang-Mills fields on a torus of 

circumference a in each direction.The boundary conditions 

are given by : 

AiCX, =a> = nr 5 Ai(x, = O) - @,Li;‘) JZ,jfi;’ 

4 s J-2, @,I x3, x4) ek * - - cs) 

The gauge functions Sli must satisfy the following 

consistency conditions : 

Ji co) fij[al) = exr[ 2$'njJ-QJoLa~-Qi~4 *W 

The twist tensor n.. 
13 

must be a constant to ensure 

continuity. The twist is said to be orthogonal (or trivial) 

Icz + &+@ n’j’de . . ..(?!I 

is zero modulo N. For a non-trivial twist, the action is 

bounded from below : 

$= i 4 K ltj. f ti’ddx / > m$-@2/lP+j) d?~ 

and the Pontryagin index is fractional : 

3 = ,& 
G F5, F(j d4y =. v- + --- CP) 
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where v is the integral Pontryagin number in the absence of 

a non-trivial twist. Evidently , this means that the field 

strength must be non-vanishing. 

Solutions to the gauge field equations in the presence 

of non-orthogonal twists have been obatined by 't Hooft 151. 

For example, in the case : 

/yt34 =’ 
. 

- /nQ = > 
n,,= 9q4 =n23= 71rq‘Zo 

and N = 21 (1 is an integer), one has : 

A,(x) = - d m 2 6.. xJ* 
J’ 

where 

5 =-w/49 ij 

/l3 
I2 

2 & = & 

and L42= &CiJ (1-i -uj 

L 4 

The above configuration, called a "toron" has P = -l/N and a 

vanishing energy-momentum tensor. 

The toron actually describes electric and magnetic 

fluxes running in the 3 direction. One could, in fact, 

construct similar configurations in an abelian theory fl. 

Consider, for example, a four dimensional torus containing a 

U(1) gauge field A,,(x). The field strength is given by the 

self-dual configuration : 

F &=B 12 = 
. . - or) 
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In a suitable gauge, All is given by : 

A, = (0, =r, 0, -3) . -** C/2> 

/ 

The above gauge potential is ,like (10) above, periodic upto 

a gauge transformation. If a matter field of charge e is 

coupled to the gauge fields, consistency of the gauge 

functions relating the fields at the ends of the boundaries 

lead to quantisation of the magnetic-electric field : 

where n is an integer. The analog of the Pontryagin index 
A3 

(i.e the integral of E.B with suitable coefficients) is 

given by P = (1/2)n2. 

Antisymmetric tensor gauge fields ,in suitable number 

of dimensions, can also form toron configurations. A 

particular example is a second rank abelian gauge potential 

A mn in a six dimensional torus. 

Let us now investigate whether the equations of motion 

of our toy model, equations (4) admit solutions in which the 

internal space is a twisted torus. This means we must have 

g.. = LTij, 
17 but a constant nonzero Fij given by (9) or its 

abelian analog. Since a toron has Tij = 0, Rij = 0 requires 

rx = $T= -2 7;F2 * l . 

0 
14 
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The Einstein equations for ordinary space-time now become : 

where 

7p = - 7r 5 A FvA - $4,,7’ Fz= -&&s Fz 

Thus one has 

Rpv = jpv 4 
kk 

%y FZ = qyg-4 3pv . . . (IS) 

Ordinary space-time thus has a constant negative curvature, 

e.g. an anti de Sitter space. The scale of the curvature 

is set by the size of the internal dimensions. This might 

not be as disastrous as it looks : ads space-times occur 

frequently in compactifications of higher dimensional 

supergravity [71 and it has been,in fact, suggested that 

quantum effects tend to decrease the curvature [81. 

The fact that T.. 
13 

is zero is crucial in ensuring that 

the twisted torus is a solution of the Einstein equations. 

This, in turn, is ensured by the self-duality of the toron. 

It may be, in fact, argued that our model compactifies into 

a twisted four torus and a four dimensional space-time 

simply because the field F ij can be self-dual only in four 

dimensions. 
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Adjoint representation fermions may be coupled to the 

above background field in a straightforward way. Let us 

consider such fermions having an eight dimensional chirality 

Fc = +l.(A similar discussion holds for Fs= -1 fermions). 

The low energy fermions in the effective four dimensional 

space-time must be zero modes of the internal Dirac operator 

t21 : 

P CinQy =. 

P lint) 
5 l-9; 

where r i are the gamma matrices and D; the covariant 

derivatives in the internal space. One can choose a 

representation of the gamma matrices such that 

Y5 and fc int denote the chiralities in ordinary space-time 

and internal space respectively. This implies that 

solutions of (16) which automatically has a definite s fint 

also has a definite chirality in the effective four 

dimensional world. One would have low energy chiral 

fermions if each fpt = +l solution of equation (16) is not 

accompanied by a fint = -1 solution. 

In our background field D denotes the Dirac operator in 

a flat torus in the presence of a gauge field Ai given by 

eqn.(lO). Since the Pontryagin index of the background 

field is P = -l/N, the Atiyah-Singer index theorem implies 
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/y1+ -q- = 2N-P = -2 

where n+(n-) denotes the number of fint = +1(-l) zero modes s 
of D. (See Ref.[9] for a discussion of these zero modes). 

Since the background is self-dual eqn.(l7) is satisfied 

minimally, i.e. with n+ = 0, n = 2. (The opposite is 

true of an anti-self-dual background). Compactification on 

twisted tori thus leads to chiral fermions. These are 

coupled to the (U(1))4 gauge fields arising from gravity by 

compactification. 

In our model the gauge fields obtained from gravity are 

abelian. However, it is believed that in higher dimensional 

supergravity theories non-Abelian gauge fields are 

dynamically generated in a fashion analogous to two 

dimensional sigma models (101. If such models undergo 

compactification in twisted tori, it is conceivable that 

fermions shall form complex representations of the 

non-Abelian symmetry group. 

One possibility is that the twisted torus exists as a 

solution to the N=2 Chiral Supergravity theory in 10 

dimensions [61. The bosonic sector of this theory consists 

of a complex scalar, a complex second rank antisymmetric 

tensor gauge field, a real rank four antisymmetric tensor 

and a graviton. As mentioned above a rank two tensor gauge 

field can form a toron in six dimensions. One might wonder 
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whether there are solutions of the equations of motion in 

which six of the dimensions wrap up in a twisted torus. We 

do not know whether such a solution exists.(There is such a 

solution if the supersymmetry is broken by adding a 

cosmological term).If it does, it would necessarily involve 

several of the abovementioned scalar fields acquiring vacuum 

expectation values. 

Admittedly, the model described in this note has little 

resemblence to reality. The twisted torus has,however, some 

interesting properties. The toron is a fairly general 

object ; it occurs in abelian and non-abelian theories and 

it is present in theories with antisymmetric tensor gauge 

fields as well as in usual vector gauge theories. It is 

certainly worthwhile to try to implement the idea in more 

realistic theories. 
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FOOTNOTE 

This was suggested to me by E.Witten. 
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