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ABSTRACT 

Magnetic monopoles may catalyze baryon number violation 

due to weak 't Hooft anomaly, even if the boundary 

conditions at the monopole core conserve baryon number. We 

show, by analyzing a simple toy model, that this effect is 

unsuppressed by any power of the monopole size, weak 

symmetry breaking scale, or coupling constant, provided the 

radius of the monopole core is smaller than Eg2/m 
W21 

E being 

the energy of the external fermions, g the coupling constant 

of the SU(2)weak group, and m w the SU(2)weak breaking scale. 

It is argued that this is a general feature of all monopoles 

(not necessarily 't Hooft-Polyakov monopoles). Possible 

suppression factors due to the presence of higher generation 

fermions are discussed. 
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I. INTRODUCTION 

Rubakov[ll and Callan[21 have proposed that grand 

unification monopoles may catalyze baryon number violation 

at the strong interaction rate. In the original model of 

Rubakov and Callan, where we ignore the ~~(21 weak 
gauge 

fields, the origin of baryon number violation is the 

presence of the baryon number violating gauge field 

configuration inside the monopole core[2,31. A simple 

explanation of this phenomenon may be obtained by studying 

the conservation laws of the full four dimensional field 

theory[41. In the case of the lowest charge SU(5) monpole, 

interacting with one generation of massless fermions, the 

conservation of electric charge, color isospin, color 

hypercharge, and the charge associated with the anomaly free 

global phase transformation of the fermions, uniquely 

determines the final state for a given initial state[41. 

For example, for an initial state of the form ulL+d3R, the 

unique final state is u;D+ei. Thus, baryon number violating 

processes are forced on us by the conservation laws of the 

system. In the case of more than one generation of massless 

fermions, if we ignore the off-diagonal gauge interactions 

other than those in the SU(2) subgroup in which the monopole 

is embedded, the conservation laws still uniquely determine 

the final state for a given initial state, and force us to 

baryon number violating processes. 
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All the discussion so far uses the structure of the 

underlying grand unification gauge group. A close 

examination of the conserved charges shows that the 

conservation of these charges automatically guarantees the 

conservation of the weak hypercharge[3,51. It was pointed 

out by Goldhaber(61 and Schellekens[71 that we can turn the 

argument around, and demand the conservation of the color 

isospin, color hypercharge, electromagnetic charge and the 

weak hypercharge, to deduce that monopoles catalyze baryon 

number violation with a cross-section unsuppressed by any 

power of the monopole size. This may seem surprising at 

first, since the argument does not involve the underlying 

structure of the grand unified theory. But the point is 

that in the presence of the weak 20 field, which is 

responsible for the conservation of the weak hypercharge, 

the baryon number becomes anomalous[81. This gives a new 

source of baryon number violation in the monopole fermion 

scattering. The possibility of monopole induced baryon 

number violation through weak anomaly was first noted by 

WilczekL91. The importance of imposing the conservation of 

weak hypercharge in the monopole fermion interaction was 

first pointed out by Grossman et. al. [lo]. 

This analysis, however, assumes that weak interaction 

symmetry is unbroken. One would naively expect that due to 

the spontaneous breakdown of the weak =J(2) symmetry, any 

effect caused by the SU(2) anomaly should be suppressed by 

some power of E/mw (if not exP(-mw/E)) I where E is the 
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energy of the external particles and m w is the scale of the 

weak symmetry breaking. In this paper we shall show that 

this is not the case, even in the case of broken SU(2)weak, 

monopole induced baryon number violation due to weak anomaly 

is not suppressed by any power of E/mw, provided the radius 

of the monopole core is smaller than g2E/m w2r g being the 

gauge coupling constant. We also show that there is a 

subtlety involved in applying the conservation of the 2' 

charge to predict baryon number violation[6,7]. One may 

argue that for a monopole radius small compared to mw -1 , we 

may assume the 20 field to be effectively massless, and 

hence the Coulomb energy associated with this gauge field 

will force the conservation of the 2' charge carried by the 

fermions, and consequently enforce baryon number 

non-conservation. However, the fermion fieLds are not the 

only fields that carry the 7, 0 charge, the higgs field also 

carries 2 0 charge. In the region r<<mw -1 the higgs field is 

effectively massless, and the 2 0 charge may be transfered 

from the fermion field to the higgs field, which is then 

absorbed by the vacuum at a scale of order m -1 Thus the 2 0 
w * 

charge carried by the fermions need not be conserved 

separately, and the conservation laws no longer force us to 

baryon number violation. This is precisely what happens 

when the monopole radius r. is small compared to -1 m w ' but 

large compared to g2E/mw2. The baryon number is conserved in 

the scattering, whereas the Z 0 charge is transfered to the 

vacuum through the higgs field, if the boundary condition on 



the fields at r. are baryon number conserving. 

We illustrate our result with the help of a simple toy 

model, which we introduce in Sec.11. In Sec.111 we study 

the dynamics of this model and show that a charge s3' 
which is conserved by the boundary conditions, but is 

anomalous due to the presence of a gauge interaction, is 

violated in the monopole fermion interaction at the strong 

interaction rate, even if the gauge field, responsible for 

its violation, acquires a large mass mw by higgs mechanism. 

We first give a heuristic argument which shows why the 

violation of S3 need not be suppressed by any power of m,. 

We then bosonize the theory, and derive the effective 

Lagrangian of the system in the presence of the 

spontaneously broken gauge interactions (Eq. (3.21) of the 

text). The effective Lagrangian in the case where the gauge 

symmetry is spontaneously broken is very different from that 

in the case of unbroken gauge interactions, even at a 

distance r<<mw -' from the monopole core. However,. we find 

that for a monopole radius r. small compared to g2E/mw2, the 

scattering of external solitons (which represent fermions) 

from the monopole core conservesthe charge Sb associated 

with the gauge symmetry, but violates the anomalous charge 

S3, as in the case of unbroken gauge symmetry. We also 

check the consistency of our result with all the 

conservation laws. In Sec.IV, we calculate S3 violating 

condensates in our model, and show that they are indeed 

unsuppressed by any power of mw. We also point out a 
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subtlety involved in the calculation of such condensates for 

finite monopole radius. We summarize our results in Sec.V, 

and discuss possible suppression factors that may be present 

in the baryon number violating processes due to higher 

generation fermions. In appendix A we give the details of 

the bosonization procedure which gives us the effective 

Lagrangian in our model. In appendix B, we derive some 

results which are used in Sec.111 to derive an upper bound 

on certain terms in the effective Hamiltonian. 
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II. THE MODEL 

We shall iLlustrate our result with the help of a 

simple toy model, which we shall introduce in this section. 

Let us consider an SU(2) monopole interacting with two Dirac 

doublet of fermions, (Et:) and 6::) . As was shown by 

Callan[21, in the J=O partial wave, the system is described 

by an effective two dimensional hosonized field theory with 

four fields ai, Qi (i=1,2) and their conjugate momenta ni, 

'it with the Hamiltonian, 

j-(= i-‘[+&-,i + qL +(&y+ @J’) 
*L. --I 

t CL c Q-,c *F;lc Q, + Q,) ‘7 cl.% 
.3ZTrLIIZ 

(2-l) 

with the boundary conditions 

q-, = EL c& .sr- 5a, 6i' g G;.i 2 c t a- A= .+7.i 

r. being the radius of the monopole core. 

We may express the various components of the fermion 

fields $I,,, Jli+ in terms of the boson fields. But more 

important for us is the expression for various fermionic 

charges in terms of the fields oi, Qi. These have been given 

in appendix A. The conserved charges of the system arel31, 

5; = $ $~‘pL,L YZ 55, & =*L ;g(+,<i- 6: I dJ2 

‘1 L 



s3 = ,$,, ( (& ‘Y’S )‘j Y’,,[ - -1:? ‘Y’-f”+:+) dx ;,LJ& ..(.$r&J& 

<- ‘r 5 (. Fi, .$” 3fl,r- v;, Y Vj~<,) ;t3r z 2 (.:‘-,,+4,,~~~;*~:)‘~l~ .=> 7 - 
I :1 4 r >,-I 

(?-4 
where the conservation of S4 is guaranteed only in the r,+O 

limit, in which case we obtain the dynamical boundary 

condition 

@l+@2+~1+~2=0 at r=ro (2-4) 

by requiring the finiteness of energy. 

We shall now introduce an extra gauge interaction in 

the theory, which makes the charge S3 anomalous. This may 

be done by coupling the new gauge field bll to the fermionic 

current, 

YwYf = $( y4t YbW, - E* Y’Iy& -v/,T Y%,.+~*r+%*) 

W 
This gauge interaction may be assumed to be coming from a 

bigger gauge group in which the monopole SU(2) subgroup is 

embedded. The charge S3 is thus the analog of baryon number 

in the case of a grand unification monopole where the baryon 

number is conserved by the boundary condition at the 

monopole core, but is violated due to anomaly. Such 

monopoles have been discussed by Dawson and Schellekens[ll]. 
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We shall study the violation of S3 in the monopole-fermion 

interaction when the new gauge symmetry is broken by the 

higgs mechanism. 

There is one apparent qualitative difference between 

the charge S3 in the present model, and the haryon number in 

the real world. The charge S3 is chiral, and the gauge 

field b, which makes it anomalous, couples to the vector 

current. In the real world, the baryon number is 

vector-like, whereas the Z0 field, responsible for the 

anomaly in the baryon number, couples to the chiral current. 

This, however, is only an apparent difference. To see this, 

Let us define new fermion fields in the present model, 

%, = cy,,, + Y&L 

+& = Y27R + Yf’lL 

where L and R denote positive and negative helicities 

respectively. The charge SS, expressed in terms of the new 

fermionic fields, is vector-like, whereas the current JE, 

expressed in terms of these new fields, become chiral. 

Hence there is no basic qualitative difference between the 

case analyzed here, and the physical case. 

In our discussion so far, we have concentrated on the 

grand unification monopoles only. We shall argue in Sec.V 

that our conclusion is valid also for monopoles which do not 

originate from grand unified theories, e.g. Kaluza-Klein 

monopoles[l2]. For these monopoles the boundary conditions 
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at the core have been argued to be baryon number 

conserving[l31, and hence weak anomaly is the only source of 

baryon number violation. 

If the gauge symmetry associated with the field b is 

unbroken, we may choose to work in the bo=O gauge. The part 

of the Lagrangian involving the b field, and its coupling to 

the fermionic fields is then given by, 

( 4 Tr,‘l cch [ + b*- - ,q hA. 
( v,, ;.‘y y,, -u,!* :;;.‘v %& 

- 
& -- 

,- ~7 t.fz T + q,, ,i~ ‘I’ Y’Z& II 
- v-(l+ ,i 

(2.71 

which, when expressed in terms of the two dimensional boson 

field theory, becomes, 

,$ ci,i [ z7T,%2 b,’ +~ T& b-i. (;L‘, f 4, - 5, ,$ j ] 

47 

i r may now be eliminated by using the equations of motion, 

giving a term in the effective Hamiltonian of the form, 

-0 I 
.: 

$2 (: q,- PjYJ;z+ c,- h,)’ CL%. Q- 9) 
.5 ,, i‘TC,-cC 

This new interaction gives us a new dynamical boundary 

condition, 

\@I 
, cl\, - $1 z - (3 z ) ‘2 i. 7t C~C * ~: -; i: (5. i@) 
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giving rise to a new conserved charge, 

3 
zz &z 

LTJ- 
( Jy c +, i :;, i - G,? i - q2: ) 

,J 
i o 

@II) 

On the other hand, S3 fails to commute with the new 

term (2.9), and is no longer conserved. This is the effect 

of anomaly. The conservation laws of Sl, s2, Sb and S4 

uniquely determine the final state for a given initial 

state, and in some of the processes, (e.g. 

'14L+J'2$R+~lfR+J12$L ), S3 is necessarily violated. 

We now want to study a model, in which the gauge 

symmetry associated with the field b is spontaneously broken 

at a scale m w. We take m, to be large compared to the 

external energies, but small compared to the inverse size of 

the monopole. In order to do so, we introduce a higgs field 

x, with coupling in the Lagrangian, 

(&, ~ ,t(drx ) _ ,\ qlxl.‘-~~y (2-u / 

where, 

&Q _ (L:, - ‘;1 Lb ) -x (_2- i3 ) 
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X acquires a vev of magnitude a, thus breaking the U(1) 

symmetry associated with the b field. Defining shifted 

fields, 

X = a+(U, tia;)/fi (2.14) 

the Lagrangian involving the b and x fields become, 

-$ (Q~T;~” + i (d,,-~~)~ + 2 tn,’ b, b” - J%, b, 2’~.5;_ 

!i.,,,C Z‘L<‘ -;t ic ~te+%rnmi 

(2.15) 

mw = a -‘.j. CL (2.16) 

The cubic terms involve higher powers of the coupling 

constant, and we shall ignore them in the rest of our 

discussion. The truncated Lagrangian is still invariant 

under the gauge transformation bp+bp+aph, cr2+a2+mwA, hence 

we believe this is a consistent approximation. 

We choose to work in the gauge aObO+mwu2=0. Formally, 

we add a gauge fixing term -C2/2 to the Lagrangian, where, 

c = ~\. - ! i < jsc 0 4 PY1, 5, + .x92 &g J&k (2.17) 

and take the limit a+O. In principle, we also need to add 

the ghost term, but we ignore it here, since it couples only 

to the al field. In the approximation where we neglect all 

the cubic couplings, u1 decouples from the rest of the 

fields. 
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We now restrict all the fields to the J=O partial wave 

(J denotes the total. angular momentum), and bosonize the 

fermionic ?art of the Lagrangian. 4 detailed prescription 

for bosonization has been given in appendix A, hence here we 

just sketch the derivation. We express the fermionic 

current (J[)f in terms of the boson fields, Iusing Eqs.(A.B), 

and define the field @ as, 

<p -= (4-, + a ( - SL - d,) 12 

We may then express (2.15) in terms of the fields ul, 02, b 
u 

and $. Of these, u1 decouples from the rest of the 

Lagrangian. u2 may be eliminated easily by using the 

equations of motion, which, in the a+0 limit becomes, 

u; = - rn;’ c’:, hL. + C ( A ) @. 19) 

The part of the Lagrangian, involving the fields b0, 
,. 

hr(=(r)rbl) and 4 is then given by, 

jAd ,? [ 2T-+L 5 LA; - :z &= + (0; 1’ .- ,‘~nw” L,’ + I%, ’ b;’ 

A. 

+ v7,w-J(gJ? n,;‘&)‘J + .+ cc+‘- ,p”) 

- c? < bL: <c 4. h.. $7) ] 
u5 

e-20) 

where prime and dot denote derivatives with respect r and t 
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respectively. The terms involving [b'O)* and ('bog come 

from the (apu2) (apu2) term, after substituting the value of 

u2 from (2.19). 

In the next section, we shall study the scattering of C$ 

solitons in the model whose dynamics is described by the 

Lagrangian (2.20). The dynamics of the other three linearly 

independent combinations of olr 02, Ql and Q2 are not 

affected by the b field coupling, and is identical to the 

original mode13. 'In th'e original model, an incident e 

soliton of the form shown in Fig.l(a) would scatter into a 

soliton of the form shown in Fig.l(b). This scattering 

conserves the S 3 charge, but violates the Sb charge. When 

we introduce a massless b field, we get an extra term (2.9) 

in the Hamiltonian, which forces an incident soliton of the 

form Fig.l(a) to scatter into a soliton of the form 

Fig.l(c). This conserves the Sb charge, and violatesthe S3 

charge. The question we want to study in the next section 

is which of the two states shown in Fig.l(b) and Fig.l(c) 

represent the correct final state for an initial state of 

the form Fig.l(a), when the gauge symmetry associated with 

the b field is spontaneously broken. 
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III. MONOPOLE-FERMION INTERACTION 

A. A heuristic argument 

In this subsection we shall give an heuristic argument 

about why the violation of the charge S3 in this model need 

not be suppressed by any power of mw. If J3' is the current 

associated with the charge S3, 

J ic = L ( ‘i-;,( Yb‘xS y, - ;>[ YbYS $4,) 
W 

,3 
T=T, jr 

then the anomaly equation for J3u is, 

where FcnJ is 
pa the magnetic field of the monopole. 

Substituting the value of the magnetic field, and using the 

spherical symmetry of Ju and by, we get, 

a, .J3 + z - &z ( bZ c L>:, ) 
, 

Integrating over space, we get, 

+3) 

d4%lrlT&&;q .~~ik 3 
(A,)+ ;3 b, CL)-- $3” 6, 84. 

0 
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The boundary conditions ensure that .J 3rjr=rO vanishes. 

If we also assume that bOlrzr 
0 

=0, then the only source of S3 

violation is the last term in Eq.(3.4). If E be the energy 

of the external soliton, then the scattering time is of 

order E -1 , since this is the width of the soliton. Hence, 

in order to produce a change in S3 of order unity, we must 

have, 

We shall now show that there exists field configurations 

satisfying (3.5) and with finite action, provided, 

.&, 5 ,gF/m;,z (3.6: I 

To see this, let us consider a field configuration, for 

which, 

L,% ,y <.; ;$,” (H c-g (.3-‘7) 

for -1 r<<E . The total action for such a field configuration 

for a time of order E-l is of order, 

the major contribution to the action coming from the mw2bPbu 

term. The finiteness of the action then requires, 

c; 2 z( L :x $ g 'i <> 
-.? -2 

m, j3-9) 
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The left hand side of (3.5), on the other hand, is of order, 

‘LX + I 
‘J c (: ,‘(, ,( i- E -i/r I -- 52 ,, ~, ,,~ - 1 (3. IO) 

using the constraint (3.9). As a result, the inequality 

(3.5) may be satisfied if (3.6) is satisfied, and the charge 

s3 is violated by order unity in the monopole fermion 

scattering, without any suppression factor. 

If bo(ro) does not vanish, then Eq.(3.4) tells us that 

we have a new source of S3 violation. But the contribution 

to S3' coming from the last term of (3.4) is independent of 

any boundary conditions, and hence we may expect that the 

violation of S3 in the monopole-fermion scattering may take 

place at the strong interaction rate for any boundary 

condition on b o, so long as (3.6) is satisfied. 

The same conclusion may be obtained by considering the 

conservation of the Sb charge. As we have discussed, if we 

demand the conservation of the charge Sb=i d3x (Jbolf, then 

the violation of S3 is a necessary consequence of the 

conservation laws. However, the higgs field also couples to 

the gauge field, and, in general, we expect the sum of the b 

charge carried by the fermionic fields and the higgs field 

to be conserved, not each of them separately. Outside the 

core, there are no interactions which can transfer the b 

charge from the fermionic field to the higgs field, and vice 

versa. Thus, if, for some reason, the b charge carried by 

the higgs field is prevented to flow into or out of the 



18 

monopole core, the b charge carried by the fermion and the 

higgs fields are conserved separately. To see when this 

happens, let us note that in a time of order E-l, the total 

flow of b charge carried by the x field into the monopole 

core is of order r2(Jbr)xE-1, where, 

;J,, ) .~ / ,<+ “I’:,, x - (;i& 1: J + = i ‘< .& ; \~2+ j r- n 

7 
z \iz 17, J,:c 5: + 2 ,‘3 a- b.1. + 7 ChLd*~C-kLC +eyn-J5 (3. II) 

is the contribution of the x field to the radial current of 

b charge. 

Let, during the monopole-fermion scattering, q2 be of 

order Dr , a D and 3 being constants with R<-(l/2). Then the 

finiteness of the l(ara2)* dr dt term of the action for a 

time of order E -1 requires that, 

Thus, 

E“ f .A2 iTa 
_ IpI 

d, r;$ );< rv D/S >"I, mw 0 23-E 

(3.12) 

from (3.12). Hence the contribution from the u 2 term in 

(3.11) to [r2(Jbr)XE-11r=r is small if the right hand side 
0 
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of (3.13) is small, i.e. if the condition (3.6) is 

satisfied. 

Similarly, assuming a form (3.7) for br, we see that, 

E-’ < .Q L’ ,~’ &: b,) 1% N 2g c- ,$<.’ +y 
Y 

< ,%hw /l” 
- s”T 

(3. I 4) 

from the inequality (3.9). This is again small if (3.6) is 

satisfied. 

Thus we see that if the constraint (3.6) is satisfied, 

then 2 
r (JbrjXE 

-1 is small, and so, as argued before, the b 

charge carried by the fermion field must be conserved 

separately. The conservation of the Sb charge then forces 

us to s3 violating processes. 

8. Monopole-soliton scattering 

In this section we shall study the monopole-soliton 

scattering in the model introduced in Sec.11. We start with 

the Lagrangian (2.20). The part of the Lagrangian, 

quadratic in b,,, may be written as, 

5 CL A c-U [ $+z f b, ( n-l;- t dI b, 

+ ym -2 bv ( jn, ,' & 2,: i ) c, z b. + rqyy2 bj (i-n, 
w i c zoz ) bJ 

0 

(3.15) 
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after doing some integration by parts in the time variable. 

If we take the Fourier transform in the time variable, the 

above expression is proportional to (mw2-w*). Since the 

energy E of the external fermions is small compared to mw, 

and we expect only modes of frequency 2 E to be relevant in 

the calculation of the Green's function involving such 

external quarks, we may replace mw2+a0 * by m * in " (3.15). 

We shall show the self-consistency of this approximation in 

Sec.IV. Hence the effective action may be approximated as, 

_i il.-& ,& [ .zir,t$’ i b,’ - I)>, ’ I?+” - &,,’ + )7\* ’ b,.L 

+ (k,, )Z 3 + + (~ +2- yq + 3 < b., ‘f? ’ c b, $7 (3.i6) 
4 ~Tl- 

The equations of motion are given by, 

-&, + x-13, ’ b, = 2 ,% 
y i-r “7% k” 

+ 

-.d, - ry 4 ’ b, + & & (“’ $’ ) -= 

+ ~_ y: ;’ :- - g <. L i + b,,’ ) 

(3.17 ) 

z _ 
-+zf’ 

$;;qn .7 (3.IV) 

One of the nice features of the gauge we have choosen is 

that the equations of motion of b. and br decouple from each 

other. We may now, in principle, solve the equations (3.17) 

and (3.18) for br and b. in terms of $, and substitute in 
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(3.16) to get the effective action in terms of the field 3. 

Eq.(3.9) may be easily solved if we ignore modes of 
. . 

frequency much larger than E. In that case, the br term on 

the left hand side of the equation may be neglected, and we 

get, 

Let us, for the time being, freeze the b. field, and 

study the effect of the br field on the equations of motion 

of $. Substituting (3.20) in (3.16), we get ~the effective 

Lagrangian as a function of 4, 

_i d.3 c + +" c 1 tii'~~2kz) -+w2f (3 XT) 

where we have neglected the br2 term compared to the mw *b * r 

term. The corresponding Hamiltonian is given by, 

:; H = i ;i, JJL [ + ( I t *zzN;ni 1-I p z ++ (w’3 (3-=) 

where, 

P= (, .,- + i ) + 
~rr’h- -1 

(3. 23 ) 
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is the momentum conjugate to 0. 'If E is the energy of the 

external particle, conservation of total energy implies 

that, 

q2’ (<+$;)) 2 5 E &?q) 
M, .1. i L 

Hence, if, 

hc <cc: <cf E/ Yn,.’ @-25) 

. 
eq. (3.24) implies that l$(r,) is small compared to E. Hence 

$(ro) cannot change appreciably during the scattering, and 

we get a dynamical boundary condition, 

q(;Ta] ‘7 CCinS t o.I\~k (3-26) 

This boundary condition has the same effect as the 

effective boundary condition (2.10). In the 

monopole-soliton scattering, for an incoming soliton of the 

form Fig.l(a), the final state has the form of Fig.l(c). 

Hence the charge Sb is conserved in the monopole-fermion 

scattering, whereas the charge S3 is necessarily violated. 

Next, we shall consider the effect of the b o field. We 

again neglect the *b,* term compared to the mw *bZ term o . The 

solution to (3.18) may then be written as, 

i ct(,-~+;, ci;:(.$‘J tCi’ g 
bc: = - 7T;T 

(3.27) 



23 

where G(r,r') is the Green's function satisfying the 

equation, 

.+ 
;2& (’ -ii -1. Gi.;, ,ji:,) + )-&T & (Ti, +‘J _ + >;(&-,?‘I 

.~ z ‘i : 

subject to the boundary condition, 

G ( ;:< :; ,’ ) - 1.: CL-5 ,‘, --e Go (3 29) 

and a boundary condition at ro, which will be discussed 

shortly. 

Before proceeding further, we shall express the various 

currents, that are relevant for our discussion, in terms of 

the fields br, b. and 4. The first of these is the 

contribution from the Higgs scalar x to the gauge invariant 

current that couples to b : 
!J 

(Ib,), = i ), Xf =q& x - 2 ia b, x+.x j 

1=- t/-T ii ;:+ :s;, + ‘2 &j h+ + y K&;l.(lLi~\c~ 4eTws 

(3-x-g 

When expressed in the gauge 3obo+mwc2=0, (3.30) reduces to, 

CT; ) *- z ;& ( ‘3” b,: + ‘I-n, 2 hb‘ ,I C-3. 3 7) 
, 
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The fermionic current that couples to the b field, denoted 

by (Jb’.l) E, is given by, 

where, 

(J, pi ) i. = .$ t,C j k (Jb .i if 
L-I 

(3.33) 

The current J3u, associated with the charge S3, is given by, 

Je3” ._ 2 +/(4yQiy y> 

; 
(3-34) 

JAi .= - 7<F)'/(47& .J 

Also important is the anomaly free current i3p, which is 
obtained by adding to J3u a gauge non-invariant current Jai' 
involving the gauge fields, 

iF3 k T ,J3 t- t J, r-c 

.I,,' z 4 b, /q 7-h ') 

J& i, : -- 
yj h, /( 7-T??) i 
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We may verify the relation aw?3u= 0 by using Eq.(3.19) and 

(3.34)-(3.36). The same result is obtained from the anomaly 

equation (3.3). 

The boundary condition on the field b. is determined by 

the internal dynamics of the monopole core. Since the 

purpose of this paper is to show that the charge S3 is 

violated under the most stringent conditions, we shall try 

to minimize the non-conservation of s3 due to boundary 

effects. Such a choice of boundary condition is given by 

bo=O, since this sets the second term on the right hand side 

of (3.4) to be zero. The first term J3,(rO)SeV(r0)/4~ro2 is 

already zero due to the boundary condition of 4. The only 

source of violation of the S3 charge is then the last term 

of (3.4). 

With the boundary condition bo=O, the Green's function 

G(r,r') is given by, 

I 
c o (,~-?,, GS-mWiv;“) < gd’-i.1 e-mwd?4j 

,hu ( Y 25-1 

+ Lg(,$‘- ,i) e 
- rrx,c 3’.r,“J f (_~ -c 

-ns,(;i-hj 3 ~,‘5:'j 

Thus, 
my ( 9, ‘- 3, , ~-m,(l)‘-ho) 

Ia_, = - - 2 

, he 
~I c c-b-,i .+-.5-J 5 - 

2.T u-i+- _' m, "r 3 ~ L( 

, -e q '(8 JJ< 

.* 

+ {~G 
2% w ( ii ,?I ci ) b,i&-,$,*, \ ~(. e-‘“d+;.~i 

_ <y q’ (“hiI &!.I 
i t’ 
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Total contribution to the action from the terms, 

J j 44 
* 4 9 L ti \ - i,,- + 171, 2 tl.>2 +(tg )’ 1 + (J i;~~ ,p’ < ,.( i‘ J& 

u-rr 

in (3.16) may then be written as, 

I 
4 7T /( 

-_i :2 
- : -1 Y, w ‘- mi-- ~’ k.~,i~ ,I -+ \L,’ I2 j 4. :c AA @MO) 

with b. given by (3.38). In deriving (3.40), we have 

neglected the '2 
bO term compared to the mw2b02 term. Since 

the expression for b. involves only the spatial derivatives 

of @, but no time derivatives, the corresponding 

contribution to the effective Hamiltonian involving the $ 

field is given by, 

J’z-ii ._.- J .{.‘; < i),,I’&’ +(t,y;) 

= &; j’ y;( i,, ~. ;:y (; ( :;, ,.‘<’ ) q’ 2t) ‘q : I.5 ) (3.41) 

;;y i .,:- 

We have shown in appendix A that the contribution from 

these terms is negligible compared to the energy of the 

external soliton, so long as E is small compared to 
mW’ 

Hence we do not expect these terms to affect the dynamics of 

the system. The full effective Hamiltonian of the system is 

then given by the effective Hamiltonian (3.22), obtained by 

integrating the br field. As we have already seen, for 
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r0<<g2E/mw2, the scattering process conserves the Sb charge, 

and violate the S3 charge. In the real world, this means 

that in the monopole fermion interaction, the 2 0 charge 

carried by the fermions is conserved, whereas the baryon 

number is violated. 

In the region, 

-3-n ; ’ ,> Z(, .X7 -rY 
3-n,- 

(3 42) 

the contribution from the term in the Hamiltonian, 

.1 

$ i (i 2 //’ K 2 )h, .’ ,~i” ) L, (343) 

coming from br integration, is small compared to E even if 

i*E at r=ro. Hence the effect of this term is small, and we 

may expect the scattering to be identical to the free field 

case. An incoming soliton of the form of Fig.l(a) will be 

scattered back as Fig.l(b). This process conserves the s3 

charge and violates the Sb charge coupled to the gauge field 

b. 

C. On the conservation of the Sb charge 

The above result is somewhat surprising, since, for 
-1 ro<<mw , we expect an effective Coulomb energy barrier for 

depositing any Sb charge inside the monopole core, and hence 
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it is expected to be conserved in the scattering. This 

puzzle, however, disappears, when we consider the fact that 

fermions are not the only fields that couple to the b field, 

the higgs field also couples to the h field. Thus the total 

conserved current is the sum of u 
(Jb )f and (Jb 

u 
jX in 

Eqs.(3.31) and (3.32) respectively, but not each of them 

individually. To see that the total b charge is indeed 

conserved in the scattering, let us note that, 

jJ,,+)+;e~ . . = :3;;.,;,< t \T,,.;; 

-7 4 ;- 2, .7 -t ‘\I::.( - ,Cji i ‘/ _ -- -i ,.., . pi c ; ‘.i + ‘L 
9.7 ; T 

1 ‘: 1 .1- ,. 

(3.44) 

using Eq.(3.17). The condition for finiteness of the term, 

7 c ,k~: _> \-~ ! ,.-;ri‘ ;‘- ;i.L p,s) 

in the effecti ve Hamiltonian (3.41) implies that, 

(& ,;') /c: ~~; < ,‘)L-Ye Q-46) 

Similarly Eq.(3.20) gives, 

pc c b ‘< ) j & ., ~,‘, ~ = -> ‘in_ ((7 (,C,j ‘Li. __ ,v E 
‘r-v < T I~h = ih, ,‘EJ< ._ L (3.47) 

u 

from (3.24). Hence (Jbr)total vanishes at r=ro for r. <<E-1 . 
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Thus the total charge coupled to the b Eield is conserved in 

the monopole fermion interaction. However, 2 neither r (Jbr)f 
. 

nor r‘ (Jbr) x vanishes separately at r=r 0 for 

g2E/mw2"rO<<m -I, and hence 
W 

the charge Sb=J4rr2(Jbo)f dr 

may not be conserved during the scattering. 

At this point Let us note that we could choose the 

boundary condition on b o in such a way that (Jbr)X vanishes 

at r 0' This is achieved if, 

QbJx = - $ (- 3, b> +m,‘i+) 

b,’ (A.,) = zg TC4-j 

4?Tci a,* 
@IPi 

With this new boundary condition, the solution for bO 

in terms of e may be obtained by adding to (3.38) the 

solution of the homogeneous equation: 

- 2 $&;(&I 

‘tTrxi-5 

-g-k (, + m, q’ 

3r 

(3.5-O) 

Finiteness of the term (3.45) in the Hamiltonian will then 

imply, 

cpCL9) 2 EEq, 1% (34 

and hence the S b charge is conserved in the monopole-fermion 

interaction, while the S 3 charge is necessarily violated, 

even if the monopole radius lies in the region (3.42). 
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IV. CALCULATION OF S3 VIOLATING CONDENSATES: 

In this section we shall calculate s3 violating 

condensates in the model described by the Lagrangian (3.21). 

There are several purposes for doing this calculation, which 

are as follows: 

i) We want to show that S3 violating condensates are indeed 

unsuppressed by any power of mw. 

ii) We want to show that the modes of oscillations of $ with 

frequency much larger than the external energy E do not give 

a significant contribution to the Eermionic Green's 

function, hence this calculation is at least a 

self-consistent one. 

iii) There are some subtleties involved in calculating the 

S3 violating condensates for a finite monopole radius, which 

we shall ilLustrate below. 

During this calculation we shall follow the convention 

of Ref.14. Instead of calculating Green's functions 

involving the external physical fermions, we shall, for 

simplicity, calculate a condensate involving solitons in the 

field 4, thus ignoring the degrees of freedom corresponding 

to the three other linear combinations of al, Q2, pl and Q2. 

This may be done without any loss of generality, since these 

other degrees of freedom do not carry any S3 charge, and 

hence are irrelevant in the discussion of S3 violation. 

The creation operators for the ingoing and the outgoing 

solitons, shown in Fig.l(a) and (c) are given bye 1.51, 



31 

I<:, (a:+; = \,;hc - I\, 1 e 
j\'r; @f?:tl ~+j ?<( i,~T) ..q 6.1 1 

., -7 _~ NJ 

yo, (;i,~r~ j = JZ IQ, 1 c; 
- i ,y (.Pi :‘<;.< 1 . . ..p., \.“Z 1 I \A+$. (4.;_7) 

where N,, denotes normal ordering with respect to the mass v, 
FI and c is a constant of order unity. We are interested in 

computing the Green's function, 

< 0 I y,t c -i’,~tj y’Lfi i;i,r) I c: > (4-31 

This may be calculated by using the following identities, 

r-l, ( cc’ 
cj 3(r) :c(<~j ,tzx 

) 

L 3 ,7(X, vex\ .l”x yz L<i,‘X A’;;( Ll-i*j A. (X>Y,bl J-(Y) 
T e e 

CWI 

R i: AIS ;- c A, 13 1 
e? <'_ = i : (rr - 

(4-s) 

if [A, Bl is a c number. 

<‘G / c 
1 iJi.Kl qc*i dix I c) 

I i (y<~/ x 
,-,- 2 

c<‘~; j-(x) A (*,>j J SC,l J 

T c (4.6) 
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where A,,(x,y) is a two point Wightman function for a free 

scalar field of mass p, satisfying the boundary condition 

@' (ro)=O, and A(x,y) is the two point Wightman function for 

the field C$ in the Lagrangian (3.21). They are given by, 

respectively, 

n,i f7, 4, i',+i) _ " J ti G 4 cm ,-(?Idl,) cc5 ~s(n'-F/~J 
4~iT, ti"+kz 

,$< - i vzq it-t! I h-7 I 

A ( “I / t. in ‘, in ; ) = ;; ~~,i Td (, ,;, , flj ,, ,:: / , <.;- ’ c ({ -t ” 
‘i rT CL (ps, 

where fw(r) is the solution of the equation, 

6, $, (2 I 
&;ri. + Lzc 

(I c 
‘; ? 

) 3-e ( ;‘i ) = i_ 

$ Kg,, ,? cc? 

with the boundary condition, 

2% ~$,, ,, ;:‘! , - i Q..i “1 :: .-’ - 

and the normalization, 

;I= (I t 
53 2 

i ) 
fu (.?, f,,(h) &, 7 ~~rr'c:;(c-i-ti') (4.11) 

,‘r\ n : r' ,+z 



s-ui IL fLd i 3 ) f+ ( ‘2 ’ ) _ <? T c ( 7 ;:( ’ 

33 

)(I+ 8 
L 

fn,' ri‘3 
,i' 

The solution to Eq.(4.9) may be written as, 

*;(;$) z ,;zL .I; &.(o, .~y,w,(iu~~) + h(C”J y,,,, wjj 

6.13) 

where, 

‘i’ (~ LEA, , z <! A$ _ L;- :j L ~, 

1, z lhw‘ 
h-i4 ) 

Boundary condition (4.10) gives, 

(,L 0 z - 
2 ni jh4 I.‘?, yt. 15) 

in the rO+o limit. Thus, for, 

&& MM,? .), >> , 
(4-d 

a(w) is much larger than b(w). tIence we may set b(w) to be 

zero. The normalization condition determines a(w) to be 
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J-5 , and hence, for r"ro, 

+: ; ~:! , .z ,:; .rT L: = J,,,, ( i-2 + j (4.17) 

if (4.16) is satisfied. Note that for iti of the order of the 

external energies, (4.16) is identical to the 

constraint (3.25) derived from purely classical analysis. 

Using Eqs.(4.4)-(4.61, we may express (4.3) as, 

/A c> - 
‘2 r 

A i +, .t-, 3 it j - A o i i , + , ‘i ~-k ) 

+ J ‘+&S (y C.,~ 3 ( .2> t. pi / t- “) - L4 A, (.:;t-,.l,~~i!IJ(t;,~ 

.‘i cc5; ( 2,; n i ,<; + ,<, 4’ j _ c;,, A- ( 21,+, ,!s, G ii I) I *- +/ 

“:+ :.Yt, ( h c,s,t, .,5:~t;) - A. 

+ A ( :;r ‘, t. , : k, ) - A ,- ; ; i 4 ‘1, :, -c ) 

- ,J L f C-* /J [ .‘,,b, ,+‘, tz) - C’& A., L.‘A,i~, :c ;,*:I jr tr t’ 

-:,;(~,‘cL;, ( 2,; [I <,‘:‘,,& ..i’).(‘J - Jc,, A‘( 3,‘;t, ,” 5’i’i)le.t’ > 

1, i 
q.^i<,j .,c<J <..?~ c;<,, ( A(A,,?, .s’;tij - A. ~,~~,~, if, TV’)) 

,” 

4 2 A ( -, / 7. 8 : [ I ; _ 2’ j” ;yti. <‘.,~, A :~.?:i-, 5::i’i I,,- t 
,)” 

+2 J ‘ks <i{ L\ !- .A, t i ‘.+‘)jt~:t. 
i, 

- C~ ’ >- *:.ic, pA ’ ~;+ c“, : a ( ,/5, t ,, ‘I: i i ! j t t , 51 (4. L 3) 
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The above expression may be evaluated by using Eqs.(4.7) , 

(4.8) and (4.17), in the ro*O limit. The final expression 

is an integral over 0, the integrand being a finite function 

of ir), r and r'. Thus any divergence in the exponent must 

appear from the w integral. Although the individual terms 

have logarithmic divergence from the large id region, all 

such divergences cancel when we sum over all the 

terms. For example, the ultraviolet divergence in 

A(r,t,r,t) is cancelled by that of AO(r,t,r,t). The integral 

then receives contribution only from the region '9 5 r -l,,,-1 . 

There is also some infrared divergences in the integral 

coming from the Ao(r,t,r,t) and AO(r',t',r',t') terms, which 

are regulated by u. The net divergent contribution in the 

exponent is then given by, 

‘yc + Lq /A-’ ) 

which, when exponentiated, cancels the explicit factor of u 

outside the exponential. Thus the final result is finite, 

and is unsuppressed by any power of mw. This analysis also 

shows that the significant contribution to the condensate 

comes only from the modes of oscillation with frequency of 

order r -1 or r'- 1 , i.e. of the order of the energies of the 

external particles, which is taken to be much less than mw. 

Hence this approximation is a self-consistent approximation. 

Next we shall demonstrate the subtl.ety involved in 

calculating Green's function for finite ro. AS can be seen 
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from Eq.(4.15), if for fixed K~, we consider the modes with 

frequency ifl<<rn 2 
w2ro/4 ' then b(w) is much larger than a(w). 

Hence we may set a(w) to be zero, and b(w) to be Jzii, 

the normalization condition (4.11), and get, 

$- ( ,;c ) ‘Y \r .Tn L,; :< y.di,i ( L.1 -c j 

$0 3’ 
c (< i-,?,,2 .I, / $ 

using 

(4.20) 

As ~0, u(w)+1/2 and fw(r) approaches 2coswc. Thus the term, 

n 
.s 

(~ 5 ) t ,5 ', t ; : .j - 
J Lj 

,;‘- ( 'i j !'a ( ,', ' 

QiTti 

has an infrared divergence from the region w<<m w2ro/g2. As a 

result, the Green's function (4.3), given by expression 

(4.18) vanishes identically. 

The origin of this divergences may be understood as 

follows. The effective Lagrangian (3.21) has a conserved 

charge, 

5, = 
2,,J I< ( + /‘j’, ,( j C&,+Yl Lb2 

rTT- i7lw” ‘-! 

as opposed to the charge 

,_ .@ 
:;; =~ (, ,y: (, .< ~? 1 ,iy;, 

I” 

&-22) 
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which is not conserved. s3 denotes the total gauge 

non-invariant conserved charge ,f;,' d3x, as can be verified 

by using Eqs.(3.34)-(3.36), and (3.20). By computing the 

commutator of Jlin and $out ryith S3 and S3, we see that 

ain(r,t) carries one unit of S3 and S3 charge, whereas 

JI out(r,t) carries -1 unit of S3 and S3 charge in the limit 

g2/mw2r2<<l. Thus the Green's function (4.3), besides 

violating S3, also violates S3 charge. Since s 3 is a 

conserved charge, the Green's function vanishes identically. 

In order to gain an insight into the problem, we look 

back into the classical scattering of the soliton from the 

core. There, an incoming soliton of the form Fig.l(a) 

scatters back into a soliton of the form Fig.l(c). This 

apparently violates both S3 and S3 charge. But actually, 

the scattered soliton leaves behind a & field of small 

amplitude, so that the total S 3 charge is conserved in the 

scattering process. To see how this may be achieved, Set us 

consider a field configuration near the core with iscE(Er)" 

(a<d), where E is the energy of the scattered soliton. For 

such a configuration, 

- - 5:; Iv .c+- *- 1 5, 
,Trt r‘lj w ‘? 

I 1 E *~ + ’ ,J< p 

53. _ E~\+’ ;r,X+.‘N Tr? “!** ;~, 

;:I-; 
-’ (;‘; - L~$) 

(4. 2 4) 

~4.3) 
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whereas the total energy stored in the Eield is of order, 

(< I + ‘j j .‘1 F i&24 t 1’ e -; &, )i ! 
_, yqw’- ni :‘ 

cy’ f i+L,<,,+;L “( -! + & -‘( 3 
N /-’ i (F 2425 .( i_ ~- ~-- -- 

-72% ~, IX,: rr- 2 ~.\ ~2 

b^ 2. 
n .< ,y>, J -’ .z, I < :-,r - ‘A.5 ) 

,lv -7 
:I 

(4-26 ) 

Thus, for r(yg2z/mw2, there exist classical field 

configurations around the monopole core, which carry a net 

s 3 charge of order unity, but negligible S3 charge and 

negligible energy. As a result, in the monopole-soliton 

scattering the S3 charge is violated, whereas the S 3 charge 

is exactly conserved. 

Thus, we see that in order to get a non-zero value of 

the s3 violating Green's function, we must somehow include 

these soft modes in the final state. The situation is 

analogous to the case of four dimentionai quantum 

electrodynamics, where the S-matrix elements involving 

charged particles in the initial and the final state vanish 

identically due to the exponentiation of the infra-red 

divergences. One way to get rid of the infra-red 

divergences is to sum over soft photon emissions in the 

final staterIb]. Mowever, there is another way of removing 

infra-red divergences in QED, using coherent state 

formalism[l71. This formalism is better suited for our 

purpose. Instead of working with the operators jrin and bout 
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defined in Eqs. (4.1) and (4.2) respectively, we construct 

operators $in and l$out as, 

,i .j, j i y (., I .,i.,, 
r / 8/,) ,' (4- 27) 

<I 
- ,~ ” 5: ‘. , + i’ it i T ; TV 1; = : ~., :, , 7 

‘,G’ >! ‘: ( 1, ; L; 
il , Y-c i i ‘L 6. 4 

where the function g(sl satisfies, 

.z.’ ‘,y :; ,_I-_. = 1 

.>,) ‘;-;. c 5 I ( ’ + ,-&& ) -’ <I,5 .= i. 

0 u 

(Lf.Z’>) 

&30) 

which may be satisfied by taking g(s) to be peaked at small 

value of s, and small for sLm,/g. We must mention at this 

point that the choice of Qin and aout are not Iunique. For 

example, we could have choosen Gin to be 4~~,, and replaced 

g(s) by 2g(s) in the definition of i out* The operators 

Gin(rrt) and JI out(r,t) create fermion fields at the point 

r, together with a coherent $I field, given by, 

t - ‘: ; ~>I (! + 
I_ ;y ~ .,;~ )-’ 

.;;- i)l;& > 
(4.JI) 
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where + and - corresponds to Qin and Jlout respectively. 

Eqs.(4.29) and (4.30) then tells us that the total S3 charge 

carried by 'Iin and I!Jout are zero, whereas the total S3 

charge carried by $in and Qout are the same as those carried 

bY fin and Jlout respectively. This may be easily verified 

by calculating the commutators of S3 and S3 with iin and 

j; out- g(s) must be choosen in such a way that the total 

energy stored in the $ field for the field configuration 

given in (4.31) is small compared to E. 

We may now easily demonstrate that the Green's function 

LOI iLi (2’,t) x, iA,+) 1 o> 

is free from any infrared divergence, and is finite. For 

example, the infrared divergent term A(r,t,r',t) in the 

exponent is now replaced by, 

('xd,5 j-",l,i Q &, i- : i +<y(.$) ,f !' .;<.,J~:.,, + -;( :.:I 1 A (n,+>d:+ 
T, .I" 

x 1’ .fu l...i’J 4,’ =,yj l.5 j yL (4) d-4 3 (4.33) 
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We shall now study the infrared and ultraviolet 

divergences of this integral. First, note that for 

dmw2r0/g2, we may replace fU(r) , flti(r') and f,ti(s) in (4.33) 

by 2, if, 

,$ -’ ; *<‘)-’ 7, ;mh/ = 22; ) &’ (4-34) 

and the contribution to g(s) from the region q,t(m 2 -1 
w2ro/4 ) 

can be neglected. Then the integrand is proportional to, 

.‘c; _) .; ,- 
,c, 7 ,,. ;. i >.’ ) 1~5 ,~ .‘. ) : c. :. 3 .Y 0 (4.35) 

using Eq.(4.29). In the region mw2r0/g2<QKr -1 , r'-l, the 

integrand may he written as, 

2 i ,‘< i? ‘2 + ~’ $. -: ;~ a 1 CL .I: 11 ( ,c~ 1 ct.5 (4 .xj 
.; 

and we get a finite contribution to the integral (4.33), as 

can be seen by using Eq.(4.29), and by assuming that the 

contribution to g(s) from the region sL:r -l, ,,-l is 

negligible. Hence (4.33) does not have any infra-red 

divergence. 

Next we have to show that the contribution to (4.33) 

from the -1 region of integration w>>r , r'- 1 is negligible. 

For this, we focus our attention on the integral, 

(4.37) 
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We shall now show that it is possible to choose g(s) so that 

contribution to the above integral from the region 

w>>r -l,r,-1 IS negligible. One such choice for g(s) is, 

2( s i = _ ti I_;:-+- ., pc ‘,~~-..,j(/- 3:: 
(4.38) 

,3 

where N is a normalization constant of order unity, and SO 

is some length small compared to g,/mw. g(s) given in (4.39) 

satisfies equations (4.29) and (4.30) approximately. The 

term (s-r0)2/s2 in g(s) guarantees that g(s) and its 

derivative vanishes at I-=r 0' This is choosen to avoid 

spurious divergences in the w integral from sharp cut-offs 

of g(s) at the boundary. 

We shall First consider the region E<<w<<mw/g. In this 

region fU(s) is of order US, and hence, 

*f- . 
-: .T, (5) ?(CSi CiA N LJT5, 

Thus the contribution to (4.37) from this 

integration is of order, 

1 ‘I&, j- 

4’; = \ i.. (ii2 N x,+2 .;,f/y’ (<, 
E 

f !’ ,’ 5;. << ,~$i?)l, 

In the region ffi> mw/gr fu(s) may be 

proportional to, 

(4.33) 

region of w 

cr. 4 0) 

shown to be 
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i\q.w) 

for s<<mw . -lg Here 9(w) is a phase angle to be determined 

from the boundary condition at ro. Using (4.38) and (4.41) 

we may show that, 

j- f* i 3 i ,;j L ,.5 j ..,i 

5 1, -- j i-w ‘3’2 
L 

‘,_ ~c; h. I 
-- 

-2 <..I 3 

and hence the contribution to (4.37) from this region of 

integration is of order, 

~-2 
‘n 3 ‘157 3 < c & rh,, ,I .: v <; ( , 

IW -,‘3 
@'i3) 

:j Z c~c: ,> 
i .a. il /: j 2 

Similarly, one can also show that the contribution to 

the integral from the region wsmw/g is also small. It may 

be easily seen that the contribution to the integral (4.33) 

from the cross terms is also negligible from the w>>E 

region. Hence the integral (4.33) is both, ultraviolet, and 
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infrared finite. Besides showing the finiteness of the 

Green's function (4.321, this analysis again proves the 

self-consistency of the model, since the Einal result is 

insensitive to the high frequency modes. 

Finally, we shall comment on the case, 

~-4 i 
-4 

<: < 
-7 
-j ,, <: c J-n, 

7 .> 
s-n, - -2 

+-y4j 

Here r -' is of the order of the energy of the external 

soliton. In this case, in the region r -l<<w<< (m 2 w r0/g2) t 

f,(s) in (4.33) may be replaced by 2, assuming the form 

(4.38) for g(s). fw(r), on the other hand, may be 

approximated by 2coswr. Thus the contribution to (4.33) from 

this region may be written as, 

\“l* L/.$!/ 

5: &L -’ ( < <-;s i,~; .:t i ) c CLZ G ‘I ‘- , ) 

.A ‘Q ‘F L.: 

2 

.‘L’ .L 
’ , h, .t o ILL 

-‘r 

li.3, ( 

,J L i 

One may easily check that this contribution appears 

with a negative sign in the exponent, hence in the region 

(4.44), S3 violating condensates are suppressed by powers of 

g2/(mw2ror) fl (g2E/mw2ro), as expected from the classical 

analysis. 
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V. SUMMARY AND DISCUSSIONS 

The lesson that we learn from the analysis of the 

previous sections is that Ear small enough monopole radius, 

the gauge charge Sb in our model is conserved in the 

monopole fermion interaction, whereas the anomalous charge 

S3 is necessarily violated. When extrapolated to the case 

of the real world, this means that in the monopole fermion 

scattering the weak hypercharge is conserved, and the baryon 

number is violated. For those monopoles, whose magnetic 

charge coincides with the lowest charge SU(5) monopole, the 

baryon number violation is a necessary consequence of the 

conservation of the weak hypercharge. We however expect 

the phenomenon of anomaly induced baryon number violation to 

be present for more general class of monopoles. In the 

presence of any magnetic monopole, whose magnetic field has 

an electromagnetic component, the baryon number becomes 

anomalous through a triangle diagram with one vertex coupled 

to the magnetic field of the monopole, one vertex to the 

weak z" field, and the third vertex to the baryon number 

current. Thus around these monopoles, we expect the 

presence of baryon number violating condensates, 

unsuppressed by any power of mw -1 , ro, or coupling constant. 

Although our model was based on 't Hooft-Polyakov 

monopoles, the results are sensitive to the internal 

structure of the monopole core only through the boundary 

condition on the fields at the core radius. We have choosen 
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the most pessimistic boundary condition from the point of 

view of the non-conservation of the charge S3, since the 

boundary conditions ensure that all contribution to s3 from 

the boundary terms vanish. Thus we may expect the baryon 

number violation due to weak anomaly to be a general effect, 

even for non-grand-unified monopoles (e.g. Kaluza-Klein 

monopoles[l21), so long as the internal dynamics of the 

monopole core may be summarized by boundary conditions on 

the fields at the core radius ro, and r. is small compared 

to (mw2b aweak)-'. Here r o is defined to be a length scale 

such that outside the radius r o, the monopole magnetic field 

coincides with that of a pure Dirac monopole with 

appropriate magnetic charge. This effect is particularly 

interesting for Kaluza-Klein monopoles, since it has been 

argued recently[l31 that such monopoles do not catalyze 

baryon number violation due to boundary conditionsF2. 

In the presence of more than one generation of massless 

fermions, we stil.l get baryon number violating condensates 

that are not suppressed by any power of weak scale, coupling 

constant, or the monopole radius. But the precise nature of 

the condensates will depend on the effective boundary 

conditions on the fermionic fields. In some cases, the 

condensates may carry more than one unit of baryon number, 

and hence may not contribute to the proton decay amplitude, 

although they may contribute to the decay of heavy nuclei. 

This happens if, for example, the boundary conditions 

conserve the baryon number carried by each generation 
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seperately, then the difference between the baryon number 

carried by particles of generation i and that of generation 

j is anomaly free, and will be conserved, Also in this case 

the baryon number violating condensates necessarily involve 

heavy quarks6, which may affect the potentiality of such 

condensates to catalyze nucleon decay, possibly through a 

mixing angle suppression[71, or even by some power of mw, if 

the heavy quarks appear as intermediate states in the 

scattering, and eventually decay to light quarks through W 

boson exchange[61. These suppression factors, however, come 

from purely kinematic reasons, (for example, if all the 

quarks and leptons were light enough for the proton to decay 

into them, such suppression factors would be absent), and 

does not affect the main conclusion of the paper, that there 

exists baryon number violating condensates around the 

monopole up to the strong interaction length scale, 

unsuppressed by any power of the coupling constant, monopole 

radius, or weak scale. 

I wish to thank S. Das, A. S. Goldhaber and 

A. N. Schellekens for many useful discussions during various 

stages of this work. 
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APPENDIX A 

In this appendix we shall give the details of the 

bosonization procedure for our model. As can be seen from 

Eqs. (2.5), (2.15) and (2.19) of the text, and the 

restriction of the fields to J=O partial wave, the effective 

action of the fermion-gauge field-higgs system is given by, 

_i 1;‘T FIT s(;>c .I& I $ .j :“--1 - 2 17; - + ,t:;’ ;” - my ~7 !:+-7 

~. 
-1 ‘.k, ;,- 

- I 
+ 1Y1 ,~ 1 b., + ‘-(~l$., 

_ ; ( ; i !, .- 
- r,-1, ,n k, ; 

+:‘-’ J. i; ,;, 
.‘I -/ ” :- 1 j -’ ? 

-~ - + ‘.; i /-,: < “;* fi .1 iIt. - ‘! ,‘( J- ,’ ~’ :‘g,+ - ‘+‘Zt I ~1 ‘t t G:,; of” vr+ 1 

- !~> IT, I “‘p :\ v’ ,.., 
- - .I i. 

‘9 .- ,fh* L ’ 4, P c vi* - -3 .+ y;*jj 

where we have omitted the 'Jl field, since it decouples from 

the rest of the fields. Also, for simplicity, we have 

ignored the unbroken gauge interaction responsible for the 

Coulomb term in (2.11, this may be treated in the same way 

as in Ref.2. We now define locally gauge invariant fermion 

fields following Ref. 14, 

..: 
i h,, ~ 7.' t ) 2:s:~ 

!i' 
N ,- _.j i- ) c i : 

,. -F;i ~~ 
k/I ; 5< x 1 (A. ‘2) 
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where 5=+1 for lpl+ and $,, and 5=-l for $1, and $2+15. Tn 

terms of these fields, the fermionic part of the Lagrangian 

density may be written as, 

2 J?r c x.,, <$ ~~,~,?\ ; ~- 1 + r-,” , 4: :; N ~ ) 

-t I(_ , < I-, + i, 
-7’; 

h2, <,L2 ! ! &(f ‘raw ‘i- N ,p - F,u,+ 1 i’m,+ 

- 
- .,i. N ~, -~ J’- )~ a”2y f qy.+ ac- ,-i,N,ld ) (53) 

Let us denote the part of the Lagrangian density given in 

(A.3) by LfNN, b), and the rest of the Lagrangian density 

in (A.l), which involves the b fields only, by Lg(W. A 

Green's function involving the fields a, is then given by, 

$ [<< i, j iL:- :‘,~ j [;;;.~ .I; ] 5’. ( ,,,~ _i <rJ ?Li ~:i ‘.~ ,%’ 
L.? L hJ e ,A.;. j ‘i,.. *~I.( 4Tr~?2zd4 ck 

N 

where f($, .) denotes the product of the $, and $, fields 

whose vev is of interest. (A.4) may be written as, 

J CL< ;i c~: ’ .i ‘&j CbJ '9eT.2' CL, .~i.k Gel,! 

k- 5.) 

where, 

<Lib) = .,, Lip; 1 [&J&j $(I+/) e 
i(~ij i ‘/‘*, Dj +s~;+‘~Cr, A.k 

(Ad) 
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1.0. G(b) is the Green's function involving the J, fields 
73 with the Lagrangian Cf. Tn calculating G(b), we must take 

the fields b to be a fixed background field. 

Sn order to calculate G(b), we first find the 

Hamiltonian of the fermionic system described by the 

Lagrangian Lf, for a fixed background field b. This is 

given by, 

)+sj4TT,$q$ [2 TN) <-&I~ r<) 2i %; 
j TI 

- ,q i$ :h -+ !>., ) (: F,, $. y L V-N ,q - u-:, ,+ 2“ ‘;*A 1 * 
I_ 

- TN ;~ f yNi2+ 4 v’;;& Y’ y/N’+ ) 

z Hire< + J~-I In+. Ca.7) 

We may now bosonize the above Hamiltonian exac.tly as in 

Ref.2. We introduce Eour hoson fields Q1, 02, Q~, G2. In 

the interaction picture, each of the fields $N may be 

expressed as a function of these boson fields and their time 

derivatives, which we write as ~,(~i, Qi, pi, bi). The 

various fermionic currents are given by, 

Y N ~ r y‘~ ‘f" - <j5' 
Nl~f - _ / c CI T ,Ti iz J 

- 
qAN ,,& Y’ - ,t/, &. = - c<: /j$sT iiT ‘(< ‘I 

. 
TwiT y- :!.-’ ‘fati,.,, = qj-_ i (4i-r~.~T?>‘l 

c iv in ;. ,L ye 5 ‘, 1; 
t. 

I~NCj = 
, ((. sir -& -, 2~ j 

G?\^> ~’ 
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f --v c,i‘ (~C/ 1’; ),:: ‘i,;kL,r - - ,Jr, /(4Tir% :z- 1 
R-I 
1 

Rz y?,, \,; )” Y’: +;yc* 1 4. ; (+/I,ii ;.I) 
c 

- CjTL’ / (5 ii ,,i;.%L 1 

z TNLj (A)k 1; .)‘- yNc* = - 

The effectlvh 

Q;' ,' (? 7i .~=I? .c' ) (A-8) 
4-1 

boson Hamiltonian in the interaction 

picture is the sum of a free Hamiltonian and an interaction 

Hamiltonian, which we write as (H free)IP and (Hint.)IP 
respectively. These are given by, 

(Hj:,c,I I,,, = +A ‘t-L 6 (& “+ cTi.’ + $‘,I.‘+~ i?-“‘) 
.I. ..~ (A. 3 ) 

-, 

(x, r,i~ ) ri, 3 -,-g J‘;( ii c ( Lt. .I ,I 1&L L .ii i ] .bli ! (.I ,ccl’ 7 c*,‘- q’- t?J iv?? 
,., 

The boundary conditions on the boson fields are given 

by Eq.(2.2). Let !Ii and Pi be the momenta conjugate to ai 

and Qi in the interaction picture. Equations of motion 

give, 

Let U be the unitary operator which takes various 



52 

operators from the interaction picture to the Yeisenberg 

picture. rf the subscript H denotes operators in the 
Heisenberg picture, we have, 

0 --i-‘, (-; -’ _ +, 
A ri 

L ‘& L -’ = (2, ,, 

ti ITA c -’ = F<~ it (J ;>‘I_-‘- i’. @. I?) 

Thus, 

:h \ ; 
r( L (H ; ,Tr' CL ' 

x 
.~ $ ;cj ;~iJ:~ ~>+ ( T., “: + f: ,, z t .pi, ,(.’ .& c;‘; ;-: ) 

. _ , .:o 

- \$ i’;bL c (,;, + Ji;,,ii’,t, ‘c;(‘) i il;;. A &,, -q; - dd 

‘1. 81 i 

(A. 13) 

The b fields remain unchanged under this transformation, 

since they are just c number functions. The field $, in 

this picture is given by, 

L’ +; < T, , p, , :J, & , ) :A -’ 

T ‘.pfl C Ti-,. , i’&*, cG,,, , cTi,kf 1 

‘- ij/; (_ q, li , gj,,~ H , .t;, H , 6;‘ t! i 

since the equations of motion give, 

L&l, = ;1 (k( / il / r-n ,, 7 rr, H ‘c& ox : ,c+t ) ,( / 2 7, ~ <;H 

(A. 15) 
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We may now go from the Hamiltonian to the Lagrangian 

picture. Dropping the subscript H from the fields, we get 

the Lagrangian density as, 

g,,: (,I +; ,/; , j, ) z [ $ -2 ( jy + &’ - .y; ” - ,f j 

c iJ ,: I,~~,( & h ~ I in q + Cl’, - -1 j i\( ) (p. 16) 
VTT 

the b field stilL being treated as a classsical background 

field. In deriving (A.16), we have done an integration by 

parts. The Green's function G(b) is then given by, 

J I, ‘,J lb‘ ctt 
G(b) r_i .” (;k, $?; ] [& ;“i, ,; i-‘ 2 i tT ‘~. F, i’ 

x f( :;kJ c @,<~ ) &, , <Pi, cl) 

Substituting (A-17) in Eq.(A.5), we see that the vacuum 

expectation value of the operator product f(QN) is -given by, 

where, 
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& ~:i <: j.; :; (c, . ; _ l/Z '~ i &- . ~I')>,,~ + +l li - I‘n, .' &, : 
.~' 

+ rl?, I:3 c / ‘I -1 ,,_~ - - ( ;h j ” - >n>, - ‘I i,,;>,; 1 .‘ 1 

+ + 7 <. $T>&:-‘ + cc&~- - ,~. i :: -’ 1 7.; - c\; j 
/ 

in/ + a (~ i> j -, O-i ) ; $q + &I, - fj-;, c:, ) (&.I?? 
ATE- 

This is the effective Lagrangian involving the hoson fields 

'it Qi and the Eiel.ds b,, b0. This, together with Eq.(2.18), 

gives us the effective Lagrangian (2.20). 
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APPENDIX 3 

In this appendix we shall estimate a bound on the 

contribution to the effective Hamiltonian from the b. field. 

The net contribution to the effective Hamiltonian is given 

by, 

2 5 j-(b;: 1’ + iI\, ’ lx:,: 5 i 7 ,J z .L, (13 i ) 

where, 

5 lr\+,( /'. ! -ihw(i'-%.) 
. 

h; =- =j I L <.:- 
#h,,, ( --~~ ~, ,, / / :_L - c-. 

.i ~__-- 9 ' ( A ' ) do: 
i-77 ;n _> Ihd ,-( ;I 

. ..I 
+ (gq h. 11, ( 2) :i ., , ._ Lhi ,. .Y ’ ., ) 

- (r 
) 1 e- lhti :t.,; ’ ‘i , r ;~ ‘1 &J-J 

,i 2 

Since e'(r') vanishes at the origin due to the boundary 

conditions, it is reasonable to assume that $'(r') does not 

blow up anywhere, and is hence bounded from above by a term 

of order E. F4 Then , for rLmw -1 , b. is of order, 

2 f - 3T\ ,“, ‘i .;,~, jlh.y/$ ) 
17, .I 7, 

For rzmw -1 , b. is of order, 

(13~3 ) 
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Thus the contribution to the term J 2nr2 mw2b02 dr is of 

order, 

n.; 

.<’ -cl?, _ ’ Efj:j -(’ 

.‘I i 

c:,,,l(m,‘/:i) A.-,, + 3 .$$ J + 
#‘.,,~I 7 w 

,?., &i: ih.,, Q?.S) 

C andDbeing two constants of order unity. 

Next, we must estimate the contribution Erom the b'O 

term. From Eq. (8.2) we get, 

b: = _ .Ir_ - 2L &- [-~ 
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For r<m -1 
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h,.,’ c. ,I?? ‘a-n, L.‘.q ( m, .i ,,. ) , .q 
\,i ‘1. 

For r>m -1 
"W ' 

2~ 
b;' ,< ~t~/~mw ,-c ,i 

(8.7) 

Q3.2 ) 
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We see from (B.7) and (B.8) that the contribution from the 

term J 2nr 2 (boV2 dr is of order E2/mw. Thus we see that 

the net contribution from (B.l) is of order E2/mw, which is 

small compared to the energy E of the external soliton. 

Thus we may neglect these terms while discussing the 

dynamics of the system. 

This may also be seen in the following way. Let f,(r) 

be the mode of frequency w for the $ field. Then, with the 

Hamiltonian for the e field given by the sum of (3.22) 

(3.41), the equation for f,,(r) is given by, 

w2 <. , + ‘~‘. ,I 1 yu \k) + ;.&” ( ‘<) 1 ~z I c, . 
TX mw 1 2: 

with b. given by, 

,. --J :> - a. 1 k 
: .:;i 47+ ,J 

; 1‘; -~: ) i.d.’ ; /<.’ , ~t.g<’ 

and 

jT3.10) 

Thus, 

:. 
g,;‘;;,)=- j LJr;.l+ 

1% _ 
L&-J~~(h) + ~$ b.(T) (B.llj 

. : 

using the boundary conditions on ho(r) and fUl(r) at ro. Let 

US now choose r in the region mw -1 -1 ccr<<w . In this region 

ho(r) may be set to zero up to correction terms of order 

l/mw. Let us define c=fU(ro). We then get, Erom (B.ll) , 

f,’ b,‘r) 4 ,d; ;$ c ‘/Y-r,,- ,,; (i3. ‘2) 
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For t->,mw -1 , f<:,(r) reduces to a linear combination of 

sinwr and cosur, since the contribution from the bO' term, 

as well as the (!tig/nmwr)2ftl, term drops out from Eq.(B.9 ). 

Proper normalization then demands that, 

, ~fr; i ,IL,) , .? +. : <- - I 13 L; i ( .7, ! I 7_ =- 4 @13) 

f,(S) reduces tO2SinwS for S>>mw -' if , 

, ~) -s:<L ~ /) 1 <; 1 j-L,iL :c J I +! 9: r,-,,I .~i< .L -: ; d-’ 

(6-14) 

whereas it reduces tozcosws if, 

-a 
I 3‘2 ’ c ..- ) 1 .-,. < 1 Gj 4-i 9~ j I $i i: rn,Y ’ cc talc .:: / c&l 

(8- 15) 

First, let us consider the region, 

m (< 7.1 m, 2 rco ,f ye 2 
i4 (8.16) 

Then, from (3.12), we see that 

1 fL; ; -‘:) / <c j:' LJ (B .17) 

fu(r), on the other hand, is of order c, since fw(r ) is of 0 
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order c. Hence the inequality (B.15) is satisfied, and 

fW(s) reduces tozcosws for s>>mw-'. 

On the other hand, in the region, 

&) .,>,~P 1~1~’ 1-r +) : ,f, /;;r 

(B.12) gives, 

I*;;yl/ 7:7 i ~' iA> F-19) 

fu(r), on the other hand, is bounded by the maximum of c or 

rf ' (r) , both of which are smaller w than ti-LfW* (r) for 

-1 rccw . Hence in this case fU(s) reduces to zsinws. It is 

clear that for wsa2m 2- w y)h2~ fw(S) reduces to a linear 

combination of sintis and cosws. 

These forms of f,,,(s) are identical to the ones obtained 

in Sec.IV from the Hamiltonian (3.22). Hence we may 

conclude that the Hamiltonian (3.22) is a good approximation 

to the full Hamiltonian, and the contribution from the part 

of the Hamiltonian given in (3.41) may be ignored, so long 

as our calculation involves only modes of frequency small 

compared to mw. 
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FOOTNOTES 

FlAs was pointed out in Ref.14, these operators create 

fermion fields at point r, and an equal and opposite 'b 
charge at the monopole core. This may be avoided by taking 

the integrals in the exponential in (A. 2) from - to r, 

instead of from ro to r. But so long as Green's function 

under consideration involves products of operators at equal 

times, and the total Sb charge carried by all the operators 

in the product is zero, the choice (A.21 for $N gives the 

same result as the case when we take the integrals from m to 

r. 

F2Itl the case of a Kaluza-Klein monopole, the Dirac 

equations do not allow the fermions to reach the monopole 

core. However, it has been argued by Nelson that this 

peculiar feature is due to the presence of a long range 

Brans-Dicke scalar field, which, presumably, is cut off at 

some length scale due to quantum effects. Beyond this 

radius, we recover the usual monopole-fermion dynamics. All 

our analysis may then be reproduced, taking the monopole 

radius r. to be the scale at which the long range scalar 

field is cut off. 
F3 This identification is correct up to a normalization 

factor, which cancels at the end. 

F4This condition is satisfied, for example, by the modes of 

frequency 6 E for the effective Hamiltonian (3.22) of the 

text. 
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FIGURE CAPTIONS 

Fig.1. (a) An incoming 6 soliton. 

(b) The outgoing I$ soliton when S3 is conserved. 

(c) The outgoing $ soliton when Sb is conserved. 
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