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ABSTRACT

Magnetic monopoles may catalyze baryon number violation
due to weak 't Hooft anomaly, even 1if the boundary
conditions at the monopole core conserve baryon number. We
show, by analyzing a simple toy model, that this effect is
unsuppressed by any power of the monopole size, weak
symmetry breaking scale, or coupling constant, provided the
radius of the monopole core is smaller than Egz/mwz, E being
the energy of the external fermions, g the coupling constant
of the SU(Z)weak group, and m, the SU(2)weak breaking scale.
It is argued that this is a general feature of all monopoles
(not necessarily 't Hooft-Polyakov monopoles). Possible
suppression factors due to the presence of higher generation

fermions are discussed.
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I. INTRODUCTION

Rubakov[l] and Callan[2) have ©proposed that grand
unification monopoles may catalyze baryon number violation
at the strong interaction rate. In the original model of
Rubakov and Callan, where we ignore the SUCZ)"’“k gauge
fields, the origin of baryon number violation 1is the
presence of the baryon number violating gauge field
configuration inside the monopole corel2,3]. A simple
explanation of this phenomenon may be obtained by studying
the conservation laws of the full four dimensional field
theory[4]. In the case of the lowest charge SU(5}) monpole,
interacting with one generation of massless fermions, the
conservation of electric charge, color 1isospin, color
hypercharge, and the charge associated with the anomaly free
glohal phase transformation of the fermions, uniquely
determines the final state for a given initial state[4].
For example, for an initial state of the form ulL+d3R' the
unigue final state is ugL+e§. Thus, baryon number violating
processes are forced on us by the conservation laws of the
system. 1In the case of more than one generation of massless
fermions, 1if we ignore the off-diagonal gauge interactions
other than those in the SU(2) subgroup in which the monopole
is embedded, the conservation laws still uniquely determine
the final state for a given initial state, and force us to

baryon number violating processes,



All the discussion so far uses the structure of the
underlying grand unification gauge group. A close
examination of the conserved charges shows that the
conservation of these charges automatically guarantees the
conservation of the weak hypercharge[3,5]. It was pointed
out by Goldhaber[6] and Schellekens[7] that we can turn the
argument around, and demand the conservation of the color
isospin, color hypercharge, electromagnetic charge and the
weak hypercharge, to deduce that monopoles catalyze baryon
number violation with a cross-section unsuppressed by any
power of the monopole size. This may seem surprising at
first, since the argument does not involve the underlying
structure of the grand unified theory. But the point 1is

0 field, which is

that in the presence of the weak 2
responsible for the conservation of the weak hypercharge,
the baryon number becomes anomalous([8]. This gives a new
source of baryvon number violation in the monopole fermion
scattering. The possibility of monopole induced baryon
number violation through weak anomaly was first noted by
Wilczek [9]. The importance of imposing the conservation of
weak hypercharge in the monopole fermion interaction was
first pointed out by Grossman et. al.{10].

This analysis, however, assumes that weak interaction
symmetry is unbroken. One would naively expect that due to
the spontaneous breakdown of the weak SU(2) symmetry, any

effect caused Dby the 8U(2) anomaly should be suppressed by

some power of E/mw (if not exp(-mw/E)), where E is the



energy of the external particles and m, is the scale of the

weak symmetry breaking. In this paper we shall show that

this 1is not the case, even in the case of broken SU(2)weak,

monopole induced baryon number violation due to weak anomaly

is not suppressed by any power of E/mw, provided the radius

of the monopole core is smaller than gZE/mwz, g being the

gauge coupling constant. We also show that there is a

subtlety involved in applying the conservation of the ZO

charge to predict baryon number violation[6,7}. One may

argue that for a monopole radius small compared to mw'l, we

0 field to be effectively massless, and

may assume the 2
hence the Coulomb energy associated with this gqauge field
will force the conservation of the 20 charge carried by the
fermions, and consequently enforce baryon number
non-conservation. However, the fermion fields are not the

0 charge, the higgs field also

-1

only fields that carry the Z

carries ZO charge. In the region r<<mw the higgs field is

effectively massless, and the ZO charge may be transfered

from the fermion field to the higgs field, which is then

absorbed by the vacuum at a scale of order mw"l. Thus the ZO

charge carried by the fermions need not be conserved
separately, and the conservation laws no longer force us to

baryen number violation. This 1is precisely what happens

when the monopole radius Ly is small compared to mw—l, but
large compared to ng/mwz. The baryon number is conserved in

0

the scattering, whereas the Z- charge is transfered to the

vacuum through the higgs field, if the boundary condition on



the fields at ry are baryon number conserving.

We illustrate our result with the help of a simple toy
model, which we introduce in Sec.II. 1In Sec.III we study
the dynamics of this mcdel and show that a charge 83,
which is conserved by the boundary c¢onditions, but is
anomalous due to the presence of a gauge interaction, 1is
violated in the monopole fermion interaction at the strong
interaction rate, even if the gauge field, responsible for
its wviolation, acquires a large mass m, by higgs mechanism.
We first give a heuristic argument which shows why the
violation of S3 need not be suppressed by any power of m,.
We then bosonize the theory, and derive the effective
Lagrangian of the system in the presence of the
spontaneocusly broken gauge interactions (Egq. (3.21) of the
text). The effective Lagrangian in the case where the gauge
symmetry is spontaneously broken is very different from that
in the case of unbroken gauge interactions, even at a

distance r<<mw_l from the monopole core. However, we find

that for a monopole radius Ly small compared to gZE/mwz, the
scattering of external solitons (which represent fermions)
from the monopole core conservesthe charge Sb associated
with the gauge symmetry, but violates the anomalous charge
S3, as 1in the case of unbroken gauge symmetry. We also
check the consistency of our result with all the
conservation laws. In Sec.IV, we calculate 83 violating

condensates in our model, and show that they are indeed

unsuppressed by any power of m, - We also point out a



subtlety involved in the calculation of such condensates for
finite monopole radius. We summarize our results in Sec.V,
and discuss possible suppression factors that may be present
in the baryvon number violating processes due to higher
generation fermions. 1In appendix A we give the details of
the bosonization procedure which gives us the effective
Lagrangian in our model. In appendix B, we derive some
results which are used in Sec.III to derive an upper bound

on certain terms in the effective Hamiltonian.



IT. THE MODEL

We shall illustrate our result with the help of a
simple toy model, which we shall introduce in this section.
Let us consider an SU(2) monopole interacting with two Dirac

b1y Yoy
Callan[2], in the J=0 partial wave, the system is described

Vit a4
doublet of fermions, and . As was shown by

by an effective two dimensional bosonized field theory with

four fields ¢i' Q.

i (i=1,2) and their conjugate momenta Il

i.l‘
P., with the Hamiltonian,
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£y being the radius of the monopole core.

We may express the various components of the fermion
fields wi+’ ¢i+ in terms of the boson fields. But more
important for us is the expression for various fermionic
charges in terms of the fields ¢i' Qi‘ These have been given
in appendix A. The conserved charges of the system are{3],
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where the conservation of S, is guaranteed only in the r,*0
limit, in which case we obtain the dynamical boundary

condition

¢1+¢2+Q1+Q2=0 at r=ry (?'9)

by requiring the finiteness of energy.

We shall now introduce an extra gauge interaction in
the theory, which makes the charge 53 anomalous. This may
be done by coupling the new gauge field bu to the fermionic

current,
$T) = S W Y = W YW - Ve YR F YT

25)

This gauge interaction may be assumed to be coming from a
bigger gauge group in which the monopole SU(2) subgroup is
embedded. 'The charge S3 is thus the analog of baryon number
in the case of a grand unification monopole where the baryon
number 1is c¢onserved by the boundary condition at the
monopole core, but 1s violated due to anomaly. Such

monopoles have been discussed by Dawson and Schellekens[1ll].



We shall study the viclation of 53 in the monopole-~-fermion
interaction when the new gauge symmetry 1is broken by the
higgs mechanism,

There is one apparent gqualitative difference between

the charge S3 in the present model, and the haryon number in
the real world. The charge S3 is c¢hiral, and the gauge
field b, which makes 1t anomalous, couples to the vector
current. In the real world, the baryon number is

vector-like, whereas the ZO

field, responsible for the
anomaly in the baryon number, couples to the chiral current.
This, however, is only an apparent difference. To see this,

let us define new fermion fields in the present model,

7~

Fin = %1ﬂR + wéil-

(!
S IEI JEPCVRN) (‘?(’)

LIUZrL = WZ’ZR + W”U-

where L and R denote positive and negative helicities
respectively. The charge 53, expressed iIn terms of the new
fermionic fields, 1is vector-like, whereas the current J¥,
expressed in terms o©f these new fields, become chiral.
Hence there 1is no basic qualitative difference between the
case analyzed here, and the physical case.

In our discussion so far, we have concentrated on the
grand unification monopoles only. We shall argue in Sec.V
that our conclusion is valid alsc for monopoles which do not
originate from grand unified theories, e.g. Kaluza-Klein

monopoles{l2]. FPFor these monopoles the boundary conditions
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at the core nave been arqued to be baryon number
conserving[1l3], and hence weak anomaly is the only source of
baryon number violation.

If the gauge symmetry associated with the field b is
unbroken, we may choose to work in the b0=0 gauge. The part
of the Lagrangian involving the b field, and its coupling to

the fermionic fields is then given by,

Sr L{T‘r“l’h (""L}L [ .’l;. b:ﬁ; -ES b,‘i_ (q;i‘f‘ ,ﬁ!_\ Y %f - K{"’j‘b 5"22-Y "H,],

P R ) qfﬁ:l*éb)] @37)

which, when expressed in terms of the two dimensional boson

field theory, becomes,

(s [ ema’ by +

[N

2 b, (& +q, - f}*”ég)] QZS)
T

M

br may how be eliminated by using the equations of motion,

giving a term in the effective Hamiltonian of the form,

< > Z
2 : - )

’5 _ (. §5.-* "‘j:‘z""' (:\1_ &,
B A

A (?-53)
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This new interaction gives us a new dynamical boundary

condition,

Ké:’ 1 I:i\‘ - 1:}:?_ ('\(?) =< (-Lk K o <&"O)
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giving rise to a new conserved charge,

Sy o= CASK g Y T T Y e Y e e YT

-/

= L (dy ¢ § +& - & -«

—

N

1o
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On the other hand, S3 fails to commute with the new
term (2.9), and is no longer conserved. This is the effect
of anomaly. The conservation laws of Sl, S4s S and 5,
uniquely determine the final state for a given initial
state, and in some of the processes, {e.g.
YipptVoyr"V1art¥osr) r S3 is necessarily violated.

We now want to study a model, 1in which the gauge
symmetry associated with the field b is spontaneocusly broken
at a scale m,. We take m, to be large compared to the
external energies, but small compared to the inverse size of

the monopole. In order to do so, we introduce a higgs field

x, with coupling in the Lagrangian,

".1

-~

(0 v 1T (opx | - A (o= ] CHEY

where,

X = (T ‘g b ) X (&-13)
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X acquires a vev of magnitude a, thus breaking the U(1)
symmetry associated with the b field. Defining shiftad

fields,

X = a+(T, +103) /N2 (2.14)

the Lagrangian involving the b and y fields become,

2 - - b
$ (3] + My~ b b = My by 97

! bar - e Coboe nde ZLLt Ltic fesavns
Lo FRY e b (3. Cube K
PN - 'y

(2.15)

™, = Jj?,ﬁ‘a— (2-16)

The cubic terms involve higher powers of the coupling
constant, and we shall ignore them in the rest of our
discussion. The truncated Lagrangian is still 1invariant
i +

under the gauge transformation bu-a-bu auA, 02+02+mwn, hence
we bhelieve this is a consistent approximation.

We choose to work in the gauge 80b0+mw02=0. Formally,
we add a gauge fixing term —02/2 to the Lagrangian, where,

)

-1 L, 3 . R
C = N P (Fae oy )4 XT3 b (2.17)

R =i
and take the limit a+0. In principle, we also need to add
the ghost term, but we ignore it here, since it couples only
to the oy field. In the approximation where we neglect all

the cubic c¢ouplings, 9y decouples from the rest of the

fields.
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We now restrict all the f£fields to the J=0 partial wave
(J denotes the total angular momentum), and bosonize the
fermiconic part of the Lagrangian. A detailed prescription
for bosonization has been given in appendix A, hence here we
just sketch the derivation. We express the fermionic
current (Jg}f in terms of the boson fields, using Egs. (A.8),

and define the field % as,

P - (b +aQ, - F- )/ -15)

We may then express (2,15) in terms of the fields Gl' Tns bu
and ¢. Of these, 0, decouples from the rest of the
Lagrangian. 0, may be eliminated easily by using the

equations of motion, which, in the @+0 limit hecomes,

-

T = - rh;’ el + O (x) (2.19)

The part of the Lagrangian, 1involving the Ffields by

br(=(r)ibi) and ¢ is then given by,

where prime and dot denote derivatives with respect r and t
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respectively. The terms involving (bo)2 and (bo')2 come
from the (3u02)(3u°2) term, after substituting the value of
g, from (2.19).

In the next section, we shall study the scattering of ¢
solitons in the model whose dynamics is described by the
Lagrangian (2.20). The dynamics of the other three linearly

independent combinations of ¢1, ¢2, Q; and Q, are not
affected by the b field coupling, and is identical to the
original model3. 1In the original model, an incident ¢
soliton of the form shown in Pig.l{a) would scatter into a
soliton of the form shown in Fig.l(b). This scattering
conserves the S3 charge, but violates the Sb charge. When
we introduce a massless b field, we get an extra term (2.9)
in the Hamiltonian, which forces an incident soliton of the
form Fig.l{a) to scatter into a soliton of the form
Fig.l(c). This conserves the Sb charge, and violateg the S3
charge. The question we want to study in the next section
is which of the two states shown in Fig.l(b) and Fig.l(c)
represent the correct £final state for an initial state of

the form Fig.l{(a), when the gauge symmetry associated with

the b field is spontaneously broken.
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IIT. MONOPOLE-FERMION INTERACTION
A. A heuristic argument

In this subsection we shall give an heuristic argument

about why the viclation of the charge S3 in this model need

not be suppressed by any power of m . If J3Ll is the current

associated with the charge S3,

—_ - — . 3.1
TR = 3 (T T Sy = Ty W) =
T1=1T v

then the anomaly eguation for J3u is,

(7,.4; J;P\ pead i

z
]
N
m
T
v
C‘
™
T
o
v
g &

(3-2)

a
=

where Fcnj is the

00 magnetic field of the monopole.

Substituting the value of the magnetic field, and using the

spherical symmetry of JH and bv' we get,

Be T = - b ol @-5)
2 i

Integrating over space, we get,

-

%s=qﬁ&j¢3% CAa)+ 23 be (Ro)-
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The boundary conditions ensure that J vanishes.

3r]r=r0
1f we also assume that b0|r=r0=0' then the only source of S,
violation is the last term in Eg.{(3.4). If E be the energy
of the external soliton, then the scattering time is of
order E"l, since this is the width of the soliton. Hence,

in order to produce a change in 53 of order unity, we must

have,

)

E# S =3 (‘L"_ z E <3~5)
A ’
We shall now show that there exists field configurations

satisfying (3.5) and with finite action, provided,

4. < g /my (3¢ )

s

To see this, 1let us consider a field configuration, for

which,

by ¥ C 3t (x<-2) (3-7)

1

for r<<E ~, The total action for such a field configquration

for a time of order E-L1 is of order,

-1 2oL X + 3
&,

(z-2)

the major contribution to the action coming from the mwzbubu

term. The finiteness of the action then requires,

cd S o B LT e (3-9)
~
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The left hand side of (3.5), on the other hand, is of order,

j, F_: 3/2 . _‘ o I,Hw—l (\3. iO)

using the constraint (3.9). As a result, the inequality
{3.5) may be satisfied if (3.6) is satisfied, and the charge
S3 is vicolated by order unity in the monopole fermion
scattering, without any suppression factor.

If bo(ro) does not vanish, then Eq. (3.4) tells us that
we have a new source of 83 violation. But the contribution
to é3, coming from the last term of (3.4) is independent of
any boundary conditions, and hence we may expect that the
violation of S3 in the monopole-fermion scattering may take
place at the strong interaction rate for any boundary
condition on bO' so long as (3.6) is satisfied.

The same conclusion may be obtained by considering the
conservation of the S,, charge. As we have discussed, if we
demand the conservation of the charge Sb=f d3x (Jbo)f, then
the violation of S3 is a necessary consequence of the
conservation laws. However, the higgs field also couples to
the gauge field, and, in general, we expect the sum of the b
charge carried by the fermionic fields and the higgs field
to be conserved, not each of them separately. Outside the
core, there are no interactions which c¢an transfer the b
charge from the fermionic field to the higgs field, and vice
versa. Thus, if, for some reason, the b charge carried by

the higgs field 1is prevented to flow into or out of the
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monopole core, the b charge carried by the fermion and the
higgs fields are conserved separately. To see when this
happens, let us note that in a time of order £"1, the total

’

flow of Db charge carried by the ¥y field into the monopole

. 2 -1
core is of order r (Jbr)XE , where,

Fa

. ooty -
(\J;,r ) = 4 E /(_1- A X - &;“‘.‘Pk_ \J A ; K”z )

~§Z a d.on + 2 e b + {ZLLC\.AEOJ'\LL tevyms (3-”)

is the contribution of the y field to the radial current of
b charge.

Let, during the monopole-fermion scattering, 7, be of
order DrB, D and 3 being constants with RB<-{(1/2)}. Then the

finiteness of the I(Brcz)2 dr dt term of the action for a

time of order E T requires that,

}9
v 2 . d 2|5+' -
~ D23 g (A < (G 12)
Thus,
> N !'31»!
E7'{ AT Za dy 733, ~ DB e TMuw
g E—
™ i
S A (3-13)
po E
from (3.12). Hence the contribution from the 0, term in
(3.11) to [rz(Jbr)XE‘l]r=r is small if the right hand side

0
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of (3.13) 1is small, 1i.e. if the c¢condition (3.6) 1is
satisfied.

Similarly, assuming a form (3.7) for br' we see that,

)

- o 2 -rnw'.; P <X
E ' (\ /V)ZV_ -’-.:_f; A b"'z_) 2 ~ ‘%,—E-— ~ ’q?c)
B (3.14)

from the inequality (3.9). This is again small if (3.6) is
satisfied.
Thus we see that if the constraint (3.6) is satisfied,

1 is small, and so, as argued hefore, the b

2 -
then r (Jbr)XE
charge carried by the fermion field must be conserved
separately. The conservation of the Sb charge then forces

us to 53 viclating processes.

B. Monopeole-soliton scattering

In this section we shall study the monopole-soliton
scattering in the model introduced in Sec.II. We start with
the Lagrangian (2.20). The part of the Lagrangian,

quadratic in ba, may be written as,

2

S Ci A Ak [ (13_:];{1( 'E bu (_ TY\N.:_. + do-“} bu

z -~ 2 Eed ) 2z - l]
Fs T b, (L TH AT A by T B (mu T B

(3.15)
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after doing some integration by parts in the time variable.

I1f we take the Fourier transform in the time variable, the

ahove expression is proportional to (mwz-wz). Since the

energy E of the external fermions is small compared to m.s
and we expect only modes of frequency £ E to be relevant in
the calculation of the Green’'s function involving such
2 2 2

+80 by m in (3.15).

external guarks, we may replace mw w

We shall show the self-consistency of this approximation in

Sec.IV. Hence the effective action may be approximated as,

;= 2,z 2 2, 2
S do Ak L 2imAas 3 by, -mu " by - b, + My .

-

13 ot )+ 2R b by ) y
bl 3O+ é"k.@ S qT) w2 (o B P \)J 6316)

NTT

The equations of motion are given by,

.. B _ 24 ;. (§.t7)
+ ™M, T by T —=—_,
b, W = YT TR
) (gt Gbe ) 23 \{'
-b, - - L= (A )t —
b, i\/‘lw bc + R 2 a&( 2, HTHJ—F‘T 1{g (3 187)

G - ¢ x -2 oy b, (3-19)

One of the nice features of the gauge we have choosen is
that the equations of motion of bO and br decouple from each
other. We may now, in principle, solve the equations (3.17)

and {(3.18) for br and b0 in terms of ¢, and substitute in
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{(3.16) %o get the effective action in terms of the field &.

Eg. (3.9) may be easily solved if we ignore modes of

frequency much larger than E. 1In that case, the br term on

the left hand side of the eguation may be neglected, and we

get,

b . 2.5 ¢ 3.20)

Let us, for the time being, freeze the bo field, and

study the effect of the br field on the equations of motion

of 4. Substituting (3.20) in (3.16), we get the effective

Lagrangian as a function of ¢,

Sda U+ 9% it g° ) -1(@?] (3-27)

e z a2
j]‘,h'\“, 7T

2 term compared to the m 2br2

where we have neglected the %r w

term. The corresponding Hamiltonian is given by,

H o= ,gzo(.?;, [ L (1+ _F )" P% 4 (@)] G=22)
z o agEy €

where,

P = (i'% —jiiT”- ) (? QB':V

,.l_j_.? mw-;..x’z_L
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is the momentum conjugate to ¢$. If E is the energy of the
external particle, conservation of total energy implies

that,

-

_ 2 (¢wn]T S E (3-2Y)

™, T

Hence, if,

Fro WK gé’ E/ ™M - @-25)

eq. {3.24}) 1implies that &(ro) is small compared to E. Hence
¢(r0) cannot change appreciably during the scattering, and

we get a dynamical boundary condition,

(P(‘zaj = Constant @26)

This boundary condition has the same effect as the
effective boundary condition (2.10}). n the
monopole-soliton scattering, for an incoming soliton of the
form Fig.l(a), the final state has the form of Fig.l{c).
Hence the charge Sb is conserved in the monopole-fermion
scattering, whereas the charge 53 is necessarily violated.

Next, we shall consider the effect of the bo field. We
again neglect the BOZ term compared to the mwzb; term. The
solution to (3.18) may then be written as,

s = - _F S Ce (&, A ] < R Az’ (3-2‘7)

O —
TN
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where G(r,r') 1s the Green’s function satisfying the
equation,

C oy 2 » N &
2 C'y}" S C T )) + My, L‘h’-(“’(,"z,l::',— (A &'
—~ DL 5
@ z2g)
subject to the boundary condition,

Sl A, AT a6 A e 00 (3 29)

and a boundary condition at Lo» which will be discussed

shortly.

Before proceeding further, we shall express the various
currents, that are relevant for our discussion, in terms of
the fields br' bO and &%. The Ffirst of these is the
contribution Ffrom the Higgs scalar ¥ to the gauge invariant

current that couples to bu:

@l = 2o X) G0 X =218 b X X

j— —— . 2 ) . - ) . . _
= - 2 A UPW “j_" + "38 N br-m + 7 UhCLOTLk‘HL; ké\r“*‘h.‘)

(5 30)

When expressed in the gauge 80b0+mw02=0, {3.30) reduces to,

herd

(J—bﬁ«)x = L ¢ d*‘“i;,_,*tmkjb‘*“) (-3.31)

<1
.J
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The fermionic current that couples to the b field, denoted

by (Jb”)f, is given by,

{‘Tboﬁf = Z({if/ T .ia
(-32)
(Jlréif ”;T#J/ ARG &
where,
{ -.—?— o T A
Foal, = Z Ui UL s (3 33)

The current J3“, associated with the charge 53, is given by,

l

T e z2q /im0

k (3-3Y)
Jy, = —ZCPI/(QTT\J"T? "412)

"z

Also important 1is the anomaly free current 33“, which is
obtained by adding to J3u a gauge non-invariant current Jau

involving the gauge fields,

ji - 35 . Ja - (;".35 |

i

To o= S bh/( Tyt
v b /( 2@2) (3-36)
T Y - TY %
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We may verify the relation 3u33“=0 by using Eqg. {(3.19)} and
(3.34)-(3.36). The same result is obtained from the anomaly
equation {3.3).

The boundary condition on the field bo is determined by
the internal dynamics of the monopole core. Since the
purpose of this paper is to show that the charge S3 is
violated under the most stringent conditions, we shall try
to minimize the non-conservation of 83 due to boundary
effects. Such a choice of boundary condition is given by
b0=0, since this sets the second term on the right hand side
of (3.4) to be zero. The first term J3r(r0)f¢'(r0)/4ﬂr02 is
already zero due to the boundary condition of ¢. The only
source of violation of the S3 charge is then the last term
of (3.4).

With the boundary condition b0=0, the Green’s function
G(r,r') is given by,
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Total contribution to the action from the terms,

S ‘>(1‘T \" iJo:‘P "\wzb,ﬂ: +(bl )Z ) + _..:..::('- f3- ’\;‘J :‘; i e :,&
Q§-9§9)

in (3.16) may then be written as,

_\jqﬂ_’f’_@l < "4 Y\W = 1_‘-%-‘-' + \b:" ] j Ck,:‘% fk‘k b-(fO)

with by given by (3.38). In deriving (3.40), we have
neglected the 502 term compared to the mw2b02 term. Since
the expression for bo involves only the spatial derivatives
of ¢, but no time derivatives, the corresponding

contribution to the effective Hamiltonian involving the ¢

field is given by,

S'_:*-i]--’."i L‘_ ( 73\\,@5 l’)a--' +U‘):.I.}“’)
- ) . B A L *
= S0 gL A e o) S e AR e e ) CB v l)
217 - e

We have shown in appendix A that the contribution €from
these terms 1is negligible compared to the energy of the
external soliton, so long as E 1is small compared to mw.
Hence we 40 not =2xpect these terms to affect the dynamics of
the system. The full effective Hamiltonian of the system is

then given by the effective Hamiltonian (3.22), obtained by

integrating the br field. As we have already seen, for
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r0<<92E/mw2, the scattering process conserves the Sb charge,
and violate the 83 charge. In the real world, this means

that 1in the monopole fermion interaction, the ZO

charge
carried by the fermions is conserved, whereas the baryon
number is violated.

In the regiocn,

s . s B%E (3-42)
I 7 h‘\,‘:“

the contribution from the term in the Hamiltonian,

((geq=7mema 20 dr (3-43)

coming from br integration, is small compared to E even 1if
&wE at r=rg,. Hence the effect of this term is small, and we
may expect the scattering to be identical to the free field
case. An incoming soliton of the form of Fig.l(a) will be
scattered back as Fig.l(b). This process conserves the S3
charge and viclates the Sb charge coupled to the gauge field

b.

C. On the conservation of the Sb charge

The above result is somewhat surprising, since, for
r0<<mw‘l, we expect an effective Coulomb energy barrier for

depositing any Sb charge inside the monopole core, and hence
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it is expected to be conserved in the scattering. This

puzzle, however, disappears, when we consider the fact that

fermions are not the only fields that couple to the b field,

the higgs field also couples to the b field. Thus the total

conserved current 1is the sum of (Jbu}E and (Jbu)X in
Egs. (3.31) and (3.32) respectively, but not each of them

individually. To see that the total b charge is indeed

conserved in the scattering, let us note that,

k‘Tb »’i\l frbe . J-h sl TN E

(3-44)

using Eg.{(3.17). The condition for finiteness of the term,

Cok’ T e o 345 )
in the effective Hamiltonian (3.41l) implies that,
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from (3.2%). Hence (Jbr)total vanishes at r=rg for £y
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Thus the total charge coupled to the b field is conserved in
the monopole fermion interaction. However, neither rz(Jbr)f
nor rz(Jbr)X vanishes separately at r=r0 for
ng/mw2<<rD<<mw”1, and hence the charge Sb=f4wr2(Jb0}f dr
may not be conserved during the scattering.,

At this point let us note that we c¢ould choose the

boundary condition on Dy in such a way that (J,.)y vanishes

at Ly This is achieved if,

= _.L A—-' L 2 (“-/ < -3 'o 23@ =
(Ton) x %( e b, + M, bs) g (- 9%b +m2) o
at  F= ke = v &)
or,
bbf (}z:o) : Zé—- CP(;IO) (3.{_’3)

YT A,°

With this new boundary condition, the solution for b0

in terms of ¢ may be obtained by adding to (3.38) the

solution of the homogeneous equation:

-2 LP(K) e Mmwt - @-50)

QTF\T?F Pl

(t+m,, &)

Finiteness o©f the term (3.45) in the Hamiltonian will then
imply,

Pcr.) < (Exr. /1 & (3-51)

and hence the Sb charge is conserved in the monopole-fermion
interaction, while the 8, charge is necessarily violated,

even if the monopole radius lies in the region (3.42).
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IV. CALCULATION OF 83 VIOLATING COWDENSATES:

In this section we shall calculate S, violating
condensates in the model described by the Lagrangian (3.21).
There are several purposes for doing this calculation, which
are as follows:

i) We want to show that S5 violating condensates are indeed
unsuppressed by any power of m,.

ii) We want to show that the modes of oscillations of ¢ with
frequency much larger than the external energy E do not give
a significant c¢entribution to the fermionic Green’s
function, hence this calculation is at least a
self-consistent one,

iii) There are some subtleties involved in calculating the
S, violating condensates for a finite monopole radius, which
we shall illustrate below.

During this calculation we shall follow the convention
of Ref.14. Instead of calculating Green’s functions
involving the external physical £fermions, we shall, for
simplicity, calculate a condensate involving solitons in the
field ¢, thus ignoring the degrees of freedom corresponding
to the three other linear combinations of @l, ¢,, Q; and Q,.
This may be done without any loss of generality, since these
other degrees of freedom do not carry any S3 charge, and
hence are irrelevant in the discussion of 53 violation.

The creation operators for the ingoing and the outgoing

solitons, shown in Fig.l(a) and (c) are given by([1§],
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where N denotes normal ordering with respect to the mass yu,

. . L . .
and ¢ is a constant of order unity. We are interested in

computing the Green's function,

t e 3
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This may be calculated by using the following identities,
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where Ao(x,y) is a two point Wightman function for a free
scalar field of mass u, satisfyving the boundary condition
¢'(r0)=0, and A(xX,vy) is the two point Wightman function for
the field ¢ 1in the Lagrangian (3.21). They are given by,

regpectively,

A,k 2 e) = § _d« { Cos ol ] Coy oA, )
CATRVIRLINT
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63' U o tpmt We-e ) (8'7 I
L p , —rw -t
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where fw(r) is the solution of the equation,

(2o L2 S
O ‘fuw(:! + e Ck =3 ’ ;j’_J (#) = (4- @3)
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with the boundary condition,
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and the normalization,
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The solution to Eg. (4.9) may be written as,
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Boundary condition (4.10) gives,
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in the r0+0 limit. Thus, for,

(4-16)

2 -
- =

C,l_)(('-) ) /'/ mw

a(w) 1s much larger than b(w). Hence we may set HD(w) to be

determines afw) to be

zero, The normalization condition
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if (4.16) is satisfied. WNote that for of

eXxternal energies, (4.16)

the
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17)

order of the

is identical to the

constraint (3.25) derived Ffrom purely classical analysis.

Using Egs. (4.4)-(4.6), we may express (4.3) as,
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The above expression may be evaluated by using Egs. (4.7) .,
(4.8) and (4.17), in the r0+0 limit. The final expression
is an integral over w, the integrand being a finite function
of w, r and r'. Thus any divergence in the exponent must
appear from the w integral. Although the individual terms
have logarithmic divergence from the large o region, all
such divergences cancel when we sum over all the
terms. For example, the ultravioclet divergence in
Alr,t,r,t) is cancelled by that of Ao(r,t,r,t). The integral
then receives contribution only from the region mgr'l,r"l.
There 1is also some infrared divergences in the integral
coming from the Ao(r,t,r,t) and AO(r',t',r',t') terms, which
are regulated by u. The net divergent contribution in the

exponent is then given by,

g
> T

“

O 1 (4 v9)

which, when exponentiated, cancels the explicit factor of u
outside the exponential. Thus the final result is finite,

and 1s unsuppressed by any power of m,. This analysis also
shows that the significant contribution to the condensate
comes only from the modes of oscillation with frequency of
order r*l or r'_l, i.e. of the order of the energies of the
external particles, which is taken to be much less than m,e
Hence this approximation is a self-consistent approximation.

Next we shall demonstrate the subtlety involved in

calculating Green's function for finite rye As can be seen
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from Eq. (4.15), if for fixed r,, we consider the modes with
frequency m<<mw2r0/gz, then b(w) is much larger than a(w).
Hence we may set a{w) to be zero, and b{w) to be /2w, using

the normalization condition (4.11), and get,

. S T
g NG [ ST >/viu1) (SRS

£ )
fovy G << k“u2'7°/r32 (?.ZO)

As w+0, vi{w}+1l/2 and fm(r} approaches 2coswr. Thus the term,

has an infrared divergence from the region w<<mw2r0/g2. As a
result, the Green’'s function (4.3}, given by expression
{(4.18) wvanishes identically.

The origin ¢f this divergences may he understood as

follows. The effective Lagrangian (3.21) has a conserved
charge,
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~

which 1is not conserved. 53 denotes the total gauge
non-invariant c¢onserved charge IJ30 d3x, as can be verified
by using Egs. {3.34)-(3.36), and (3.20). By computing the
commutator of .~ and ¥, with S5 and S35, we see that

win(r,t) carries one unit of 83 and 53 charge, whereas
wout(r,t) carries -1 unit of 83 and 53 charge in the limit
gz/mw2r2<<l. Thus the Green’s function (4.3}, besides
violating 53, also wviolates 53 charge. Since §3 is a
conserved charge, the Green's function vanishes identically.

In order to gain an insight into the problem, we look
back into the classical scattering of the soliton from the
core. There, an incoming soliton of the form Fig.l(a)
scatters back into a soliton of the form Fig.1l(c). This
apparently violates both 83 and §3 charge. But actually,
the scattered soliton leaves behind a $ field of small
amplitude, so that the total §3 charge is conserved in the
scattering process. To see how this may bhe achieved, let us
consider a field configuration near the core with &ch(Er)a
{a<d), where E is the energy of the scattered scoliton. For

such a configuration,

s XK= -
S -5 :} . X 3 (L, o ({J
=y,
A EER = o L —
53 " E N 7, ~ T,L__’_LE}’_ en (b - O ) &Lf ?O)
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whereas the total energy stored in the field is of order,
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Thus, for r0<<g2E/mw2, there exist classical field

configurations around the monopole core, which carry a net

83 charge of order unity, but negligible S3 charge and
negligible energy. As a result, in the monopole-soliton
scattering the S3 charge is violated, wheresas the §3 charge
is exactly conserved.

Thus, we see that in order Lo get a non-zero value of
the 53 violating Green’s function, we must somehow include
these soft modes in the final state. The situation is
analogous to the case of four dimentional quantum
electrodynamics, where the S-matrix elements involving
charged particles in the initial and the final state wvanish
identically due to the exponentiation of the infra-red
divergences. One way to get rid of the infra-red
divergences is to sum over scoft photon emissions in the
final statell8]. However, there is another way of removing
infra-red divergences in QFED, using coherent state

formalism[17]. This Fformalism 1is better suited for our

purpose. Instead of working with the operators win and wout
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defined 1in Egs. (4.1) and (4.2) respectively, we construct

~

s U, !
operators W, and bout as,

~ . L j oo | e "IIL . Y, oo
Yocew = T e (4-27)
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where the function g(s) satisfies,
R TRy - 29)
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which may be satisfied by taking g{s) to be peaked at small
value of s, and small for qsmw/g. We must mention at this
point that the choice of ¢in and wout are not unigque. For

example, we could have choosen win to be win' and replaced

g(s) by 2g{(s) in the definition of The operators

out”’

win(r,t) and V¥ (r,t) create fermion fields at the point

out

r, together with a coherent ¢ field, given by,
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where + and - corresponds ho win and V¢ respectively.

out

Egs. (4.29) and (4.30) then tells us that the total S, charge

carried by . and

in are zero, whereas the total S3

out

charge carried by ¥. and ¥

in out are the same as those carried

by win and wout regpectively. This may be easily verified

by calculating the commutators of 53 and §3 with $in and
$out' g(s) must be choosen in such a way that the total
energy stored in the ¢ field for the field configquration
given in (4.31) is small compared to E.

We may now easily demonstrate that the Green's function
~ + P
<ol Woue (8°¢) ¥, (A t)[0O> (4.32)

is free from any infrared divergence, and is finite. For
example, the infrared divergent term A(r,t,r',t) 1in the

exponent is now replaced by,
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We shall now study the infrared and ultravioclet
divergences of this integral,. First, note that for

w@mwzro/gz, we may replace fm(r), £ {(r'}) and fw(s) in (4.33)

W

by 2, if,

o= - g 2 .

270 L > m P ) /s (434
and the contribution to g(s) from the region SZ(mwer/gz}_l
can be neglected. Then the integrand is proportional to,

B . st :

PRI G B R S g (- 35)

nsing Eg.(4.29). 1In the region mwzro/g2<<m<r“l, 'L, the

integrand may be written as,

PN R S ST B WP § (%) {_L"; ("7' 3(}

and we get a finite contribution to the integral (4.33), as

can be seen by using Eg.(4.29), and by assuming that the

r'l, pel is

contribution to g(s) from the region s>
negligible. Hence (4.33) does not have any infra-red
divergence.

Next we have to show that the contribution to (4.33)

1 r"l

from the region of integration w>>r —, is negligible.

Tor this, we focus our attention on the integral,

X

(e F jm 9(s) £, 51 A% %3 (4.37)
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We shall now show that it is possible to choose g({s) so that
contribution to the above integral from the region
m>>r'l -1

! is negligible. One such choice for g(s) is,

g( 51 = -~ D'._, ‘._‘_’.".‘,"’o.i.ﬁ &_(J o /- . Uf 3?)

where N is a normalization constant of order unity, and 84
is some length small compared to g/mw. g(s) given in (4.38)
satisfies equations (4.29) and (4.30) approximately. The
term (s—ro)z/s2 in g{s) guarantees that g{(s) and 1its
derivative vanishes at L=r,. This 1is choosen to avoid
spurious divergences in the w integral from sharp cut-offs
of g{(s) at the boundary.

We shall first consider the region E<<w<<m /9. In this

region fw(s) is of order ws, and hence,

- wt

TEL s yes de o~ s, (4. 39)

Thus the contribution to (4.37) from this region of w

integration is of order,

LRSI §—

Fev s, << % m -y 0)

In the region w>>mw/g: fw(s) may be shown to be

proportional to,
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for s<<mw"lg. Here 6H(w) is a phase angle to be determined

from the boundary condition at Lge Using (4.38) and (4.41)

we may show that,

and hence the contribution to (4.,37) from this region of

integration is of order,;
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Similarly, one can also show that the contribution to
the integral Ffrom the region wwmw/g is also small. It may
be easily seen that the contribution to the integral (4.33)
from the cross terms is also negligible from the w>>E

region. Hence the integral (4.33) is both, ultraviolet, and
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infrared finite. Besides showing the finiteness of the
Green’s function {4.32), this analysis again proves the
self-consistency o©of the model, since the final result is
insensitive to the high frequency modes.

FPinally, we shall comment on the case,

2 -9 .
CF T ol A, <Ny Q'W’)
Myt
Here 1:_1 is of the order of the energy of the external

soliton., In this case, in the region r"1<<m<<(mw2r0/g2),

fw(s) in (4.33) may bhe replaced by 2, assuming the form
{(4.38B) for g(s). Eu(r)' on the other hand, may be
approximated by 2coswr. Thus the contribution to (4.33) from

this region may be written as,
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One may easily check that this contribution appears
with a negative sign in the exponent, hence in the region
(4.44), S3 viglating condensates are suppressed by powers of
gz/{mwzror) o (ng/mw2r0), as expected Erom the classical

analysis.
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V. SUMMARY AND DISCUSSIONS

The lesson that we 1learn from the analysis of the
previous sections is that for small enough monopole radius,
the gauge charge Sb in our model 1is conserved in the
monopole fermion interaction, whereas the anomalous charge
S3 is necessarily violated. When extrapolated to the case
of the real world, this means that in the monopole fermion
scattering the weak hypercharge is conserved, and the baryon
number 1is violated. For those monopoles, whose magnetic
charge coincides with the lowest charge SU(5) monopole, the
baryon number violation 1is a necessary consequence of the
conservation of the weak hypercharge. We however expect
the phenomenon of anomaly induced baryon number violation to
be present for more general class of monopoles. In the
presence of any magnetic monopole, whose magnetic field has
an electromagnetic component, the baryon number becomes
anomalous through a triangle diagram with one vertex coupled

to the magnetic field of the monopole, one vertex to the

weak 70 field, and the third vertex to the baryon number
current, Thus around these monopoles, we expect the
presence of baryon number violating condensates,

unsuppressed by any power of mw_l, rgr Or coupling constant.
Although our model was based on ‘'t Hooft-Polyakov
monopoles, the results are sensitive to the internal

structure of the monopole core only through the boundary

condition on the fields at the core radius. We have choosen
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the most pessimistic boundary condition from the point of
view of the non-conservation of the charge 83, since the
boundary conditions ensure that all contribution to é3 from
the boundary terms vanish. Thus we may expect the baryon
number viclation due to weak anomaly to be a general effect,
even for non-grand-unified monopoles {e.g. Kaluza-Klein
monopeles{l2]), so long as the internal dynamics of the
monopole core may be summarized by boundary conditions on
the fields at the core radius g, and ry is small compared

2 -1
to (mw/b aweak) :

such that outside the radius r

Here ry is defined to be a length scale
0 the monopole magnetic field
coincides with that of a pure Dirac monopole with
appropriate magnetic charge. This effect 1is particularly
interesting for Kaluza-Klein monopoles, since it has been
argued recently[13] that such monopoles do not catalyze
baryon number violation due to boundary conditionst.

In the presence of more than one generation of massless
fermions, we still get baryon number violating condensates
that are not suppressed by any power of weak scale, coupling
constant, or the monopole radius. But the precise nature of

the condensates will depend on the effective boundary
conditions on the €fermionic fields. In some cases, the
condensates may carry more than one unit of baryon number,
and hence may not contribute to the proton decay amplitude,
although they may contribute to the decay of heavy nuclei,.
This happens if, for example, the houndary conditions

conserve the baryon number carried by each generation
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seperately, then the difference between the baryon number
carried by particles of generation i and that of generation
j is anomaly free, and will be conserved. Also in this case
the baryon number violating condensates necessarily involve
heavy quarksﬁ, which may affect the potentiality of such
condensates to catalyze nucleon decay, possibly through a
mixing angle suppression(7], or even by some power of L if
the heavy gquarks appear as Iintermediate states in the
scattering, and eventually decay to light quarks through W
boson exchange[6]. These suppression factors, however, come
from purely kinematic reasons, {for example, if all the
quarks and leptons were light enough for the proton to decay
into them, such suppression factors would be absent), and
does not affect the main conclusion of the paper, that there
exists baryon number violating condensates around the
monopecle up to the strong interaction length scale,
unsuppressed by any power of the coupling constant, monopole
radius, or weak scale.

I wish to thank S. Das, A, S. Goldhaber and

A, N. Schellekens for many useful discussions during various

stages of this work.
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APPENDIX A

In this appendix we shall give the details of the
bosonization procedure for our model. As can be seen from
Egs. {2.5), (2.15) and (2.19) of the text, and the
restriction of the fields to J=0 partial wave, the effective

action of the fermion-gauge field-higgs system is given by,
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where we have omitted the dl field, since it decouples from
the rest of the fields. Also, for simplicity, we have
ignored the unbroken gauge interaction responsible for the
Coulomb term in (2,1}, this may be treated in the same way
as in Ref.2. We now define locally gauge invariant fermion

fields following Ref. 14,
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where £=+1 for %,, and ¥, and £=-1 for v,, and ¢2+15. In

terms o©of these fields, the fermionic part of the Lagrangian

density may be written as,

= ¢ ‘ o - + "——u "/‘ I"“N - 1
ey oo LRV S k7‘ ~ o4 i o
+ Yy
. . _ i . \ — S, ——
‘j’ ~ 'F‘; *-"‘ bl‘. LL‘Z ! (' \}L i~ L lf’N [ Al 'fj' N \J"’ VN .
To i / T
" . Y o ~ L g
- N~ J [oNS + oy ey Fvry ) (’;'3)

Let us denote the part of the Lagrangian

(A.3)

density given in
by Lf(wN, b), and the rest of the Lagrangian density

in (A.l), which involves the b fields only, by Lg(b). A

Green'’s function involving the fields wN is then given by,

oo 22 ;
. o 1 ;_; N hlll IR - e h)i L/Tr% \‘L?l ¢!
ot I“]‘N ’] (_:/ - .

(a-4)

where f£(y ) denotes the product of the ¥y and $N fields

whose vev is of interest. {A.4) may be written as,

i

oo e Ly e ] YTt do -k
LN " S St

|
£

@-s)

where,

o, — . — . ?..f-(j(‘f’...,O} '17_;'@:(_{_?3_ AL
ey = Ly 1 (G £y e |
A-¢)
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i.e. G{b) is the Green’s functicon involving the y fields
with the Lagrangian L;F'In calculating G{(b), we must take
the fields b to be a fixed background field.

In order to calculate G{(b), we first find the
Hamiltonian of the fermionic system described by the

Lagrangian Lf, for a fixed background field h,. This |is

given by,

Vo, (UEIN YY) Sa P
=

H:jgﬁ?z':('kﬁ [i
J

&

SEHS by A b ) e Y T T e T

o

- o YT Fee 4 Faew Y Yan)

n
T

fyee + Tunt. (A'?)

We may now bosonize the above Hamiltonian exactly as in
Ref. 2. We introduce four boson fields %1, %5, 29, Qp. In
the interaction picture, each of the fields wN may be

expressed as a function of these boson fields and their time

Q.

o . i

derivatives, which we write as wN(¢i, Q. i

ir ) N The

various fermionic currents are given by,

k{/NLT v “H;L_r = c}'i’ ,f(g,—;\:"ﬁ ;cz)

— . P
N VI A 'f/r‘ww = - C\& /{WHVTT E )

) . 3
- N ey ; (= b
kf.ﬂN ot ¥ ¥ o x}‘; / {Lr T, TR }

Ly

s ¢ T T o
! 1! w Ly {
N /&

= PRS- T . =
Y e g M 3 Faeldy =
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T
3
= Fuer AVEYEYT = - F (e T
Z—— e (;‘\’t)k YR YT W T 0 R T T AT ) (R~3)
L

The effective boson Hamiltonian in the 1interaction

picture 1s the sum of a free Hamiltonian and an interaction
Hamiltonian, which we write as (Hfree)IP and (Hint.)IP

respectively. These are given by,

(Hj' fre a2 } 1P = :':!3: —g (L:{ Z--'; ( ::l + (i,k_ . 4” \j-’_\! l. + C\«' l" ) (A :3 ]
" W T Y IR UL PRE TEPRCUEE ARr 3 VN
K}T"JH"{- ) Ty = =X S ISR L L b 5 ."71 e '{f B I AN G A ,

@.IO)

The boundary conditions on the boson fields are given

by Eq.(2.2). Let Hi and P; be the momenta conjugate to ¢i

and Qi in the interaction picture. Equations of motion
give,
’ e ¥ = < -
m.oo= &, R (A-11)

Let U be the unitary operator which takes various
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operators from the interaction picture to the Heisenberg

picture. TIf the subscript H denotes

Heisenberg picture, we have,

- :_]‘-/TL_ [ ﬁ"_ H U K.\Ac;k‘ - )
-1 - [ |
U TT& N = -TTLH' Voo
Thus,
iH ‘H K'(}{}IF .
0 ';"- -_—1 - ] 2
T om S T L P F
- “ 1
.
- 3
NI R

The b fields remain unchanged under

this

since they are just ¢ number functions.

this picture is given by,

Covh T, Py v )

= {\ﬁj/‘N Cv\H . i—D;\H' -‘-ﬁh}f] L\{J‘H')

R -

- AH o, L

since the equations of motion give,

F o= (), T 7 T,

A

operators

in

the

< CLJ‘L (__ i, + S fDu.L""l{"(JL—J‘L}t ) ¢ 3’”1 ""Q—"** —'kf;"‘ - @ZH

(n-13)

transformation,

The field ¢N in

Q;.lq)
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We may now go from the Hamiltonian to the Lagrangian
picture. Dropping the subscript'H from the fields, we get

the Lagrangian density as,

2

.-.3/;5 CFEon b)) T [+ = ¢ N SR S &,

_— it A~ A e

. - ] U
T VR R e P

the b field still being treated as a classsical background
Field, In deriving (A.16), we have done an integration by

varts. The Green’s function G(b) is then given by,

3 )
4 *(,T 1 J‘:J C\L. o) La;‘l g\k

e

Geo) = Sl Ra ¢
x § (e B, T, 8
o)

Substituting (A.17} in Eg. {(A.5), we see that the vacuum

expectation value of the operator product f(wN) is-given by,

Setb] fd | UAe ] @ep (1) doe Co P s
CEw B G Fo ) (o)

where,



Loy Cboorg, Gol=s U L L e e )T oy T by
B VS T S e S P N BRI A AV § VR B
— . &7
U U ER
- [
+ ——% < i")_" + 2 )~ F,oF N, T 372’. Tt S Q&- i))
N

This is the effective Lagrangian involving the boson fields

i Y and the fields br’ bD' This, together with Eg. (2.18},

gives us the effective Lagrangian (2.20).
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APPENDIX B

In this appendix we shall estimate a bound on the
contribution to the effective Hamiltonian from the bo field.

The net contribution to the effective Hamiltonian is given

by,
. - . o 3 .
O P YA g T s Qg.r]
LS Hes T e T F el
where,
. o R ' Crng LA
) ST f - e P
b, = - | L« 3 - o © o n) s
M TS S DN 5, S
™ - - i - - } (:‘3 - VI ( F’(f' T }
) _ oy TP U b N ) 6 o L I]
+ {Qﬁ e 3 —— T A4 ) A
T rd

& )

Since ¢'(r') vanishes at the origin due to the boundary
conditions, it is reasonable to assume that ¢4'(r') does not

blow up anywhere, and is hence bounded from above by a term

4 -1

F
of order E. Then, for L5 L I b0 is of order,

’:% E A w T \lh Km -«J—l/'-\{? } (Ej )
My O

For rgmw_l, by is of order,
JE ()’ &4
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Thus the contribution to the term f 21 mw2b02 dr is of

order,

Yy , Vo,
. T et (0 da
(’_“ Yy oy ‘Zj“ Y T oA { ™, /‘a ) CL..TZ, + D 3 {‘:: S —
It T L T T
B LT
2., B.S
[ } ‘E f*/ (AN . @ )

C andpbeing two constants of order unity.

Next, we must estimate the

. . /
contribution from the b0
term. From EgQ. (B.2) we get,
] ey (A ,,‘
b = - 2 ~;£H b L'-”“N <
) -2 2T Iong w
5 e U3 ) Lo LA y )
¥ § &’ - = e QQ' (A) ({n“
T P
. < Yy, (0 e :
mend el |l T g da ]
rmy e + < v 3!
® ¢)
For r<m l, we have,
. TR B/
5 “ <\: 3-E Y, by Y, //*"Z ) ( ]
:) n\q T

b <45/ 0mn <) &7 )
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We see from (B.7) and (B.B8) that the contribution from the

2 2

term | 27r dr is of order Ez/mw. Thus we sSee that

(by")
the net contribution from (B.l} is of order Ez/mw, which is
small compared to the energy E o0of the external soliton.
Thus we may neglect these terms while discussing the
dynamics of the system.

This may also be seen in the following way. Let fm(r)
be the mode of frequency w for the 4 field. Then, with the
Hamiltonian for the ¢ field given by the sum of (3.22) and

{3.41}), the equation for fm(r) is given by,

: =l . ;
w® e ISR SN I S @ )
Ty & N T

with bO given by,

o~

- _i:_‘— i\ (F_t_ D , —'3_ ’ J ‘—5'1" u'; L /2_/_' I L{\'}(_ / (B AC )
Thus,
; P N . o
K. (i) =~— ) & hH’-—-‘.'—J'---',—J.,_) Lo(R) + b (%) (B‘”J
‘ 5 TR TS yiT

using the boundary conditions on bo(r) and fw(r) at Lqe Let

“lecr<<w™l. 1n this region

us now choose r in the region m,
bo(r) may be set to zero up to correction terms of order

l/mw. Let us define c=f (rg). We then get, from (B.11) ,

'le. Yo w ¢ (‘_S? C /'i'fﬂw/? "w";' (8- ‘2)
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For r>>mw_l, fw(r) reduces to a linear combination of
sinwr and coswr, since the contribution from the bo' term,
as well as the {mcg,-/’wm"\,]_-)2f‘Ij term drops out from Eqg. (B.9 ).

Proper normalization then demands that,

- - . 2 . :
l wa ( ,‘L"_‘y l oo 7 Ij‘_‘ L-F( ! I ol L’ @ 13)
£ (s8) reduces tozsinws for s>»m -1 if,
] W
: o . L=
| eas j""\_. 4_.,[)"’\"»’ I oo -""i}’ o 7 m, R Oy
(&-14)
whereas it reduces tozZcosws 1if,
_ . . . o -1
| o )l - Ve S0 4o | o< ko W
(8-15)
First, let us consider the region,
WL i My e/ T B¢
Then, from (B.l2), we see that
£7 ¢ LW & 17)
o () <~ o \

Em(r), on the other hand, is of order ¢, since Ew(ro) ig of
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order c. Hence the inequality (B.1l5) is satisfied, and

fw(s) reduces toacosws for s>>mw“l.

On the other hand, in the region,

QO e TV, e /cuj ) \B ! 5’)

{(B.12) gives,
IFo () P W @_‘g)

fw(r), on the other hand, is bounded by the maximum of ¢ or
rfw'(r), hoth of which are smaller than w_lfw'(r) for

1

r<<m . Hence in this case fm{s) reduces to 2sinus. It 1is

clear that for mwﬂzmwzro/gz, fm(s) reduces to a linear
combination of sinws and cosuws.

These forms of £,(s) are identical to the ones obtained
in Sec.IV from the Hamiltonian (3,22}, Hence we may
conclude that the Hamiltonian (3.22) is a good approximation
to the full Hamiltonian, and the contribhution froﬁ the part
of the Hamiltonian given in (3.41l) may be ignored, so long

as our calculation involves only modes of frequency small

compared to m, e



60

FOOTNQTES
FlAs was pointed out in Ref.l4, these operators create
fermion fields at point r, and an equal and opposite Sb
charge at the monopole core. This may be avoided by taking
the integrals in the exponential in (A.2) from =« to r,
instead of from Ly to r. But so long as Green’s function
under consideration involves products of operators at equal
times, and the total 8, charge carried by all the operators
in the product is zero, the choice (A.2) for wN gives the
same result as the case when we take the integrals from e to
FzIn the case of a KXaluza-Klein monopole, the Dirac
equations do not allow the fermions to reach the monopole
core. However, it has been argued by Nelson that this
peculiar feature is due to the presence o¢of a long range
Brans-Dicke scalar field, which, presumably, is cut off at
some length scale due to quantum effects. Beyond this
radius, we recover the usual monopole-fermion dynamics., All
our analysis may then be reproduced, taking the monopole
radius fg to be the scale at which the long range scalar
field is cut off.
F3This identification 1is correct up to a normalization
factor, which cancels at the end.
F4

This condition is satisfied, for example, by the modes of

frequency £ E for the effective Hamiltonian (3.22) of the

texct.
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FIGURE CAPTIONS

Fig.l. (a) An incoming ¢ soliton.
{b) The outgoing ¢ soliton when S3 is conserved.

fc) The outgoing ¢ soliton when Sb is conserved.
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