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ABSTRACT 

The effective action for the scalar propagator is 

studied in supersymmetric chiral gauge theories. The form 

of the scalar potential ensures the stability of the 

supersymmetric ground state, even for large values of the 

coupling constant. It is found however, that the gluino 

condensation tends to destabilize the system. This may 

signal dynamical supersymmetry breaking. 
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The small mass behaviour of strongly interacting 

supersymmetric gauge theories with matter remains a puzzling 

aspect of supersymmetric dynamics. It is by now widely 

believed that fOC masses large compared to the scale of 

strong interactions the number of supersymmetric ground 

states equals the valile of Witten's index [ll. This result 

is manifest within the effective lagrangian approach [21. 

The effective lagrangian approach also reveals another 

feature of the ground states; as masses decrease, 

super symme tr ic vacua correspond to larger values of some 

natural order parameters ( like multiscalar condensates ), 

leading in the zero-mass limiting case to models without a 

ground state. Many arguments ranging from current algebra 

t31 through complementarity [41 to instanton calculations 

[5] have confirmed this scenario. Yet none of the above 

techniques say anything about the possibility of dynamical 

supersymmetry breaking in chiral theories. The present 

paper is devoted to the search for a solution to the vacuum 

problem in genuinely massless supersymmetric chiral gauge 

theories. 

We will follow closely the formalism of Cornwall et al. 

I61, which has proven to be quite successful when applied to 

an analogous problem in chiral dynamics [7]. Since this 

formalisa does not insure the positive-definitness of the 

vacuum energy, its application to supersymmetric models is 



somewhat suspect. wevertheless we hope that our work will 

give at least some hint about the infrared behavior of 

supersymmetric theories. 

We will consider an arbitrary massless supersymmetric 

SU (NJ gauge theory with gluons A, gluinos X and matter 

belonging to chiral supermultiplets with scalars $I and 

fermions Y in complex representations. If chiral symmetry 

is unbroken, the generation of masses for scalars implies 

dynamical supersymmetry breaking. Let us consider the 

effective action for the scalar propagator following the 

formalism of Cornwall et al. [6,7,81. We choose to work in 

the Wess-Zumino-Landau gauge, J.A=O, in which the composite 

operator +(x)$*(y) coincides in lowest order in perturbation 

theory with a gauge invariant operator [81. Landau gauge 

has another remarkable virtue in the context of 

supersymmetry: radiative corrections do not induce mass 

terms for the scalar fields ( at least to one loop ), 

therefore they do not break supersymmetry explicitly. 

Assuming unbroken gauge symmetry, ~Ol~lO~=O , the 

effective action derived in 161 for the scalar propagator 

S(x,y) is given by 

r(s) = ;r~%5-’ c ;TYS (D-l- S-‘) + r, (1) 

where 

Db-y) L -i p& &+(x-Y) 1-; 
P 

(2) 
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denotes the free scalar propagator and r2 represents the sum 

of all 2PI diagrams with sc.alar propagators set to S(x,y). 

For clarity we consider $ in the fundamental representation 

and suppress gauge indices. It is very difficult to solve 

the extremum condition Sr/JaS:O for S exactly. Therefore we 

shall make the following ansatz 

5 h-y) = -gg$ ~+(x-y) (, + 2) 1 c I 
? 

(3) 

where the factor 2 represents corrections t0 the 

renormalised self-energy. We shall use the Hartree-Fock 

approximation. By expanding the effective action around 

z-0 we get to the O(g') order 

r--a f!Lq 7-y + 
1 [ 

(+-22) s + r, 1 (4) 
where I-, is given now by the sum of two-loop diagrams of 

Fig.1. Straightforward calculation gives 

+ cj’&$ & d’ z(k) 

i 

c (pl 

W')' (zTj4 [(l+z)k2j2 [(~+z)~z]' 

+ N’-i d-J d2 z(k) Z(P) 

-9 -5 

(k+p)*(ktp)’ 

(2n)“ Cm)’ [(l+Z)k']z [(1+z,p=]' (I+ 
4~"- k-p)%-$ 

(k-p)’ I 

(5) 



The second term comes from the diagram (la) with a 

four-scalar interaction and 1 inserted on top and bottom 

lines. The third term comes from the one-gluon exchange 

diagram (lb) with similar z insertions. It is convenient to 

continue the effective action to the Euclidean space. After 

performing angular integrations one gets 

- m$ r, = I$$ z’(k) + $2 [F 9 x(k)&) / -3 [ -[$>$]j 

(6) 

where the irrelevant effects of self-energy corrections have 

been ignored by setting 2 = 0. 

The supersymmetric ground state at X=0 turns out to be 

more stable than the analogous chirally-symmetric one in the 

effective action for the helicity nonconserving part of a 

quark propagator in QCO [71. The destabilizing attractive 

gauge force appears to be compensated by the 'repulsive 

four-scalar interaction which may be regarded as an exchange 

of an auxiliary component of the vector supermultiplet. As 

a consequence, the supersymmetric ground state remains 

stable even for values of the coupling constant g2N" 'TT-57' 
considerably larger than the critical value,% , found for 

the case of chiral symmetry breaking in @ID 171. 



Until now we disregarded the effects of a possible 

gluino condensation, <ol XXIO>f 0 . .I simple calculation 

shows that this condensation should occur for 41N 
4n- 

25 . 

It is not clear whether this sort of analysis is applicable 

in a supersymmetric theory, since for the values of the 

coupling constant large enough to trigger the XX 

condensation the effective potential becomes negative Fl . We 

do not attempt to resolve here any problems related to the 

positivity property of supersymmetric effective potentials. 

Even in non-supersymmetric models one encounters similar 

problems: for instance in a free theory the effective 

potential is unbounded from below. 

We want to point out that the gluino condensation 

destabilizes our effective action. From the diagram (lc) 

with two subsequent helicity flips A(p) on the gluino line 

we get 

-&TN r,(L) = - g2 Ng+[$ $ ‘i(k)j [I - tq& “I] 

(7) 

Clearly, this contribution destroys the stationary point at 

x=0, unless A = 0. We see that gluino condensation may 

generate masses for scalars by enforcing a nonvanishing 

value of z(O) at the minimum of the effective potential. 

FIIt may be that some nonperturbative effects are 
to induce <OlXliO)#O [91. 

necessary 



6 

Since in a chiral theory there are no other two-particle 

gauge singlet channels for fermions and the nonsinglet 

channels are always less attractive, we expect matter 

fermions to remain massless at the energy scale of gluino 

condensation. Thus we conclude that supersymmetry breaks 

dynamically at the scale of gluino condensation. 

Let us illustrate with a simple example. Consider the 

SU(5) model with one chiral matter supermultiplet in the 

5 + E representation. We expect the gluino condensation to 

take place at an energy scale considerably higher than the 

confinement scale. This in turn would generate masses for 

matter scalars, breaking supersymmetry. The gluino 

condensate breaks also one of two non-anomalous U(1) 

symmetries, producing a Goldstone boson. At lower energies 

the model would look like a conventional SU(5) chiral model 

with massless fermions coupled to the goldstino field 

X6’“FpLy and the Goldstone boson. The model then' evolves 

into the infrared in a way described in the classic paper of 

Dimopoulos et al. [lOI. Similar conclusions, although on 

diffezent grounds, have been recently reached by Affleck et 

al. [Ill. 

I am grateful to E. Eichten and S. Love for useful 

comments. 
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Fiq.l.Two-loop contributions to the effective action. 


