
-371-

53 MHz DIGITAL PROCESSOR FOR REAL TIME CALCULATION
OF BEAM ORBIT CORRECTIONS IN THE FERMILAB TEVATRON

Marvin Johnson*and Louis Rolih
Fermi Nat ional Accelerator Laboratoryt

P. O. Box 500
Batavia, Illinois 60510

Abstract

We have built a pioel ined processor which takes the measu~ed

~osition and intensity of each radio frequency bucket, computes
neviation from the desired orbit and then computes the voltaqe to
be applied to a fast kicker to correct the or~it. The device also
computes the average positions of the beam and the fractional
part of the betatron tune . All computations are done in real time
at a 53 MHz rate.

Betatron oscillations in the Tevatron ring are a primary
limitation on the intensity of the Fermilab accelerator. These
oscillations are caused bv magnetic fields from eddy currents
induced in the stainless steel bore tube by the passage of
particle bunches themselves. This is commonly referred to as the
resistive wall affect.

To combat this affect, we have built a device which measures
the beam position of each particle bunch, calculates the amount
of displacement, and then provides a kick in the opposite
direction. All the calculations are done wit~ a pipelined
processor using Motorola 10K and 10KH integrated circuits. Since
the separation between bunches is onlv 18.9 ns, the digital
processor part of this system was designed to run with a clock
period of 17 ns. The boards are all hand wired using insulation
displacement prototype boards from Robinson-Nugent Co. The system
had to be compatible with the Fermilab control system so it is
packaged in CAMAC. The design makes heavy use of pipelining to
achieve these clock speeds.

*Presented by Marvin Johnson.

tOperated by Universities Research Associat ion, Inc., under
contract with the United States Department of Energy.

-372-

A block diagram of this device is shown in Fig. 1. A four
foot long, two plate detector measures either the horizontal or
vertical beam displacement. The signals from the two plates (A
and B) are summed to give the total intensity (A+B) and
subtracted to give the displacement (A-B). This is done by
passive power solitters, inverters and combiners. The signal is
then integrated over the length of a bunch (2 ns.) and digitized
by a flash analog to digital converter (ADC). The ADC consists of
four 6 bit ADC~s (Analog devices SOlOs) stacked to give ± seven
bits of resolution .

This system needs a position resolution of approximately ±64
and a total intensity variation of 20. This gives a total dynamic
range of ±1200 which is much greater than our B bit system can
provide . We solved this problem by using 2 sets of ADCs. The
first set has an additional analoq gain of 10. When the first set
overflows, the input to the rest of the system is automatically
switched to the second set. This gives an overall dynamic range
of ±1 2BO.

The effect of intensity variations is removed by dividing
the (A-B) signal by (A+A). This is done digitally by using PROMs
to find the 10q(A-B) and -log (A+B) . These signals are added and
another set of PROMs is used to exponentiate the sum. Base 2
logarithms are used. We ohtained a maximum error of 3 per cent
with B bit log tables and B bit exponential tables. Going to 9
hit log tables increases the accuracy to about 1 .S per cent.

Although the use of logarithms allows fast computation, they
have significant draw backs. The log of zero is not defined. The
log of a negative number is complex. Even though (A-B) is in
principle alwavs less than or equal to (A+B), our system has some
noise in it so we must take care of the case where (A-B) is
greater than (A+B) also. Each of these problems can be solved
rather easily but when taken together they add circuit
complexity. Because of this and the availability of fast, 16K
static RAMs, we are designing a boarn that simply uses a 14 bit
wide table look up. Negative numbers are ohtained by using PROMs
to convert the 8 bit quotient to twos complement.

Since the particles travel at the speed of light, the
results of the calculation must be delayed until the particles
come oack around again. This delay is about 21 ms. We achieved
this delay by using RAMs to imolement a long shift register. A
s~raiqht forward shift reg ister cannot be implemented at these
frequencies since this would require both a read and a write to
the same memory chip in one 19 ns. cycle. To solve this problem,
we divided the memories into two parts - an even one and an odd
one. Each memory is lK long by 12 bits wide. An 11 bit counter is
used to determine the memory address to read. The write address
then determines the delay. It is computed by adding the delay
(set in switches) to the counter address. That is, if the delay

-373-

is 600 clock steps and the counter is set to 1, the current
result is written to address 601 and the delayed result is reac
from address 1. Six hundred steps later, the delayed result woul ,
be read from address 601 and the current data would be written tc
address 1201. In order to avoid the memory conflict mentionec
earlier, t h e delay address is forced to be odd always. Thus, if
one is reading from an odd address, one is always writing to ar
even address and vice versa. This means that the delay increment
is 2 cloc~ steps, hut this is not important to us.

The delayed quotient is then fed into a module that compute~

the damping voltage that is to be applied to the given . bunch.
This module subtracts the average position of the beam and ther
uses a look-up memory to determine the amplitude of the kick.
During the acceleration cycle the beam energy and the magnetic
fields do not track precisely. Thus the average beam positior
varies throughout the cycle. To correct for this, a module
(descrihed below) calculates the average position of the bunche!
in the preceeding turn. This is subtracted from the present buncl
pos ition before the data is sent to the loo~ up memory.

The look UP memory is 12 bits wide and the position is onl~

8 bits wide. This gives 16 different operations that can be
applied to a given bunch. Which one of the 16 to apply to a giver
bunch is determined by a function select module . There is one ~

bit function code for each of the 1113 bunches in the machine.
Eight of the sixteen functions can be gated by an external clock.
An exam~le of a special function is the set-up for protol
anti-proton collisions. One would select normal damping on 1
bunch and anti damping on all the others. This would remove all
but one bunch from the machine.

The output of the lookup memory is then fed to a high spee<
Digital to Analoq Converter(DAC) and then to a power amplifier

The average pos ition of the beam is determined by summinc
selected bunches and dividing by the number of hunches. Since thl
number of bunches is not crucial, they are restricted to a powe l
of 2 so that the division is just a shift. Bunches are agair
selected by a memory and are accumulated by a recursive adder,
i.e., the output of the adder is connected (via a latch register]
to its input. A new average posit ion is output at the end oj
every turn. 8ecause of the speed limitations of fast adders, thi !
board skips every other bunch.

We hope to use the damper for continuous tune measurement l
of the machine. One of the 16 functions will be ~rogrammed tc
anti-damp a bunch if the position amplitude is small and to damt
if the amplitude is large. This will then excite betatrol
oscillations of roughly constant amplitude. This function will bE
selected for only one bunch in the machine so that we don't caUSE
the entire beam to blow up. In principle, the position of thi l

-373-

is 600 clock steps and the counter is set to 1, the current
result is written to address 601 and the delayed result is read
from address 1. Six hundred steps later, the delayed result would
be read from address 601 and the current data would be written to
address 1201. In order to avoid the memory conflict mentioned
earlier, the delay address is forced to be odd always. Thus, if
one is reading from an odd address, one is always writing to an
even address and vice versa. This means that the delay increment
is 2 clock steps, but this is not important to us.

The delayed quotient is then fed into a module that computes
the damping voltage that is to be applied to the given bunch.
This module subtracts the average position of the beam and then
uses a look-up memory to determine the amplitude of the kick.
During the acceleration cycle the beam energy and the magnetic
fields do not track precisely. Thus the average beam position
varies throughout the cycle. To correct for this, a module
(described below) calculates the average position of the bunches
in the preceeding turn. This is subtracted from the present bunch
position before the data is sent to the look up memory.

The look UP memory is 12 bits wide and the position is only
8 bits wide. This gives 16 different operations that can be
applied to a given bunch. Which one of the 16 to apply to a given
bunch is aetermined by a function select module. There is one 4
bit function code for each of the 1113 bunches in the machine.
Eight of the sixteen functions can be gated by an external clock.
An example of a special function is the set-up for proton
anti-proton collisions. One would select normal damping on 1
bunch and anti damping on all the others. This would remove all
but one bunch from the machine.

The output of the lookup memory is then fed to a high speed
Digital to Analog Converter(DAC) and then to a power amplifier

The average position of the beam is determined by summing
selected bunches and dividing by the number of bunches. Since the
number of bunches is not crucial, they are restricted to a power
of 2 so that the division is just a shift. Bunches are again
selected by a memory and are accumulated by a recursive adder,
i.e., the output of the adder is connected (via a latch register)
to its input. A new average position is output at the end of
every turn. Because of the speed limitations of fast adders, this
board skips every other bunch.

We hope to use the damper for continuous tune measurements
of the machine. One of the 16 functions will be programmed to
anti-damp a bunch if the position amplitude is small and to damp
if the amplitude is large. This will then excite betatron
oscillations of roughly constant amplitude. This function will be
selected for only one bunch in the machine so that we don't cause
the entire beam to blow up. In principle, the position of this

-374-

one bunch neens to be Fourier analyzed to obtain the betatron
frequency. However, the betetron frequency is a singl~ frequency
so all that is requir~d is to count zero crossings. We are
designing a module to do this. The module~s input will be the
bunch position corrected for the average offset.

Finally, a large diagnostic memory has been built which will
record the position of the last 64K bunches. This can be all the
bunches for approximately 58 turns or 1 bunch for 64K turns or
any combination in between. The memory is constructed from 16K
static rams interleaved 4 ways. This will be quite important for
machine studies and for finding problems in the machine.

Since this processor cannot test itself, we developed a
computer assisted test setup using a 60 MHz. random number
generator. This system has 16 input bits of 65000 different
states. We also wanted to test the affect of the previous state
on the present state. This gives 65000 squared different states
which is about 4 hill ion.

The random number generator is a Tausworthe[l] generator
based on Mersenne primes. We used the trinomial generator
x**31+x**13+1 which can be shown to have a period of 2**31[2].
This generator passes all first order Chi-square tests for
randomness but fails second order tests (pairs of numbers are not
random). This problem could be solved with more hardware but
first order randomness is adequate for testing .

Next, one needs to know how long to run so that every
interval of a given size has been tested at least once. With
random numbers this becomes a statistical question. For a small
fraction of the total interval the distibution of uniform random
numbers follows a Poisson distribution. Thus the probability of
having no number in the interval is just exp(-m) where m is the
average number that should occur in the interval. Therefore, to
find the necessary running time, one selects the minimum size of
the interval to probe and the probability of testing each
interval of this size at least once. The natural logarithim of
this probability gives the average number of tests for this
interval.

[l]Tausworthe,R.C. "Random Numbers Generated by
Recurrence Modulo Two,"Math. Compo 19(1965) ,201-209.

Linear

~ [2]Bright,H.S.
Sequences from a
Application to
4 (1979) ,357-370.

and Enison,R.L.,"Quasi-Random Number
Long-Period TLP Generator with Remarks on

Cryptography," Computing Surveys,ll,

Hi a .AX U:

i
I

I

I

I
I
!
!,
!
I
I
I
I
I

!
I
I

~
.'''.

D· ..I.'<:'OIll "
nu.. ~ _ _,

j

" OWl . I••IL
CO ••IIII.

Fig. 1. Block diagram of the beam damper system for the Tevatron. .

1I••'ZOIl '''L ,.." .

	Image 0001
	Image 0002
	Image 0003
	Image 0004
	Image 0005
	Image 0006

