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ABSTRACT 

I shall discuss the applicability of a hydrodynamic description of 
high energy hadronic collisions. I shall review the results of recent 
computations of the mean free paths of quarks and gluons in a 
quark-gluon plasma, and the corresponding results for viscous 
coefficients. These quantities are employed to evaluate the limits to 
the application of perfect fluid hydrodynamics as a description of the 
time evolution of matter produced in various hadronic collisions. 
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In very high energy hadronic collisions, matter is produced 
at very high energy densities. There are two schools of thought 
concerning the formation of this matter. The oldest school of 
thought is due to Landau and Fermi, and assumes that the initial 
state of the matter in a head on high energy collison consists 
of two overlapping pancakes at rest in the center of mass frame. 
The thickness of these pancakes is taken as R/y where R is the 
rest frame hadron radius and y is the center of mass Lorentz y 
factor of the hadrons. This initial condition arises when the 
two Lorentz contracted hadrons, with width R/y, stop in the 
center of mass frame. In this picture, the initial energy 
density grows as y*, and tremendous energy densities are 
achieved in ultra-relativistic collisions. 

The other school of thought accepts the validity of the 
Landau-Fermi picture for sufficently low energy collisions, but 
at very high energies conjectures that the hadrons pass through 
one another!'-*) This is plausible since very high energy 
hadronic probes should punch through a finite amount of hadronic 
matter. This second school of thought then further assumes that 
matter is formed in the region between the two hadrons after the 
two hadrons have passed through one another. The forming matter 
has longitudinal momentum, and it is assumed that in the rest 
frame of the formed matter, the formation takes place in a 
characteristic time scale ~~ - 1 Fm/c. Due to Lorentz time 
dilation of the formation process, the matter with the smallest 
longitudinal momentum forms first in the center of mass frame. 
The matter therefore forms sequentially in the region between 
the two hadrons, and forms first at x = 0. The faster matter 
forms at a later time, and if it travels as a free particle 
during the time it is forming, forms at a time of t - p"/mi 
where m - 200 Mev = 1 Fm-i 

0 
corresponding to a distance of x - t 

from the collison point. The matter therefore forms in an 
inside- outside cascade. 

The theoretical underpinnings of the inside-outside cascade 
description of hadronic collisions are in all field theoretical 



models of collison processes. In electromagnetic cascades, the 
Landau-Pomeranchuk-Migdal effect which predicts the lenghtening 
of the longitudinal development of ultra-relativistic 
electromagnetic showers is a consequence of inside-outside 
cascading. For this process, the cascade development is 
lengthened since the formation of electron-positron pairs and 
photons is strongly time dilated for particles with large 
momentum along the longitudinal cascade axis. If these 
particles do not form during the time an electron or photon 
traverses several nuclei as it penetrates a material, the 
cascade will not multiply at each collision with a nucleus, as 
it ordinarily would. The inside-outside cascade also properly 
describes matter formation when relativistic hadron pairs are 
formed in collisions described by the exactly solvable two 
dimensional massless Schwinger model. 

In most of the remainder of this lecture, I shall assume the 
validity of the inside-outside cascade picture of the collision 
process. I shall also attempt to point out general results 
which apply for either description, and many of the conclusions 
which I draw are easily generalized to the Fermi-Landau picture. 
It is of course important to allow heresies in the inside- 
outside cascade picture, which has been described by P. 
Carruthers as The New Orthodoxy. (3) In particular, fluctuations 
in ordinary collisions may arise where hadrons, or some part of 
the hadrons, form in a much smaller volume than is appropriate 
for average hadron collisions. The matter might in this 
circumstance be better described by a Landau-Fermi picture. In 
average collisions, however, data from hadron-nucleus collisions 
and the theoretical considerations mentioned above seem to make 
a compelling case for an inside-outside cascade description. 

The forming matter in a hadronic collision may in 
appropriate circumstances, which we shall attempt to outline in 
the remainder of this talk, form the initial conditions for 
perfect fluid hydrodynamic equations!4-5) The hydrodynamic 
equations for a perfect fluid are extremely simple. Their 
solution describes the time evolution of the energy density, 



pressure and fluid velocity of matter given only the initial 
conditions and an equation of state which functionally relates 
the energy density and the pressure. (I shall ignore baryon 
number currents in my analysis, since this is applicable for 
most of the matter produced in an ultra-relativistic nuclear 
collisions. My conclusions do not strongly rely on this 
assumption, but the hydrodynamic equations are slightly more 
complicated, and the matter formation in the fragmentation 
region of the nuclei, where most of the baryon number current 
flows, is more involved.) The stress-energy tensor for a perfect 
fluid is written as 

T !J" = {p+P]uW"-PgUv (1) 

where up is the fluid four velocity vector, p is the energy 
density, and P is the pressure. The equation of motion for the 
fluid is conservation of energy-momentum, 

a T'" = 0 
u (2) 

These four equations, an equation of state which relates energy 
density to pressure, and u* = 1 are sufficient to solve for the 

six components of u, P, and P given conditions at some time. As 
a consequence of the perfect fluid form for the stress-energy 
tensor, the entropy current is conserved, 

aUs, = 0 (3) 

where the entropy four current is taken as 

S’ = suU = {P+P}/T UU (4) 

This fact follows directly from the form of the stress-energy 
tensor, and dotting uu into the conservation equation, Eq. 2. 

The situation is much complicated if the fluid dynamics is 
not perfect, and involves viscous flow. New parameters enter 



the hydrodynamic equations, the coefficients of shear and bulk 
viscosity, and the form of the equations are more involved. The 
viscous coefficients are difficult to estimate in QCD, but I 
shall soon review what is known of them. If these viscous 
corrections to the hydrodynamic equations are sufficiently 
large, then the approximation which reduces the hydrodynamic 
equations to local equations with the standard form of the 
viscous corrections to the perfect fluid hydrodynamic equations 
may itself breakdown, and the correct hydrodynamic equations may 
involve many more parameters. The point is that for our 
purposes, the viscous hydrodynamic equations are only reliable 
if the corrections arising from non-zero viscosity are small. 

Another reason besides mathematical simplicity for wishing 
to apply hydrodynamics only for perfect fluids is that for a 
perfect fluid, the entropy is conserved. Entropy conservation 
relates particle multiplicities at early time to that at later 
times. If the expansion is isentropic, a window penetrates 
through the haze of hadronic interactions which allows us to 
reconstruct particle distributions at early times from those 
observed in the final state of the collision. 

The stress-energy tensor, allowing for the effects of 
viscous flow is 

T"" = T;" + AT"' (5) 

where To is the stress-energy tensor for a perfect fluid, as 
given by Eq. 1, and AT is the correction which allows for 
entropy production, that is, for viscous flow. The most genera 
form for AT may be extracted in an expansion in powers of 
gradiants of the energy density and fluid velocity vector times 
a characteristic scattering length. This characteristic 
scattering length is the mean free path for dilute systems such 
as gasses. This procedure for evaluating AT is discussed in 
Refs. 6-7, and I. shall not repeat the derivation here. The 
result is 



AT !J" : ~{glJ~-u~u”}V-u + ~{vYl"+v u -u~u~}v*u} (6) 

The derivative operator V is a derivative orthogonal to the 
direction of fluid flow, 

vp = aU-uUu.a (7) 

The coefficients of shear and bulk viscosity are n and 5. For 
the zero baryon number density fluids which I consider, the heat 
conductivity is zero. This expression is only valid to first 
order in an expansion where spatial gradiants are weak, and if 
they are not, Eq. 6 is simply incorrect. For systems with 
sharp discontinuities, AT is more complicated and for practical 
purposes may not be computable. Put another way, when viscous 
corrections to the hydrodynamic equations become of the same 
order as the contribution associated with a perfect fluid, the 
framework of conventional viscous fluid hydrodynamics falls 
apart, and for practical purposes, we may say that 
hydrodyanamics is no longer applicable for a description of the 
dynamics. This means only that perfect fluid dynamics is 
inapplicable even when supplemented with viscous corrections. 
The full stress-energy tensor is of course conserved, but the 
form of this equation expressed in terms of p, P, and u is 
extremely complicated and in general non-local. 

The criteria for the applicability of hydrodynamics may also 
be understood in terms of entropy generation. Unlike the case 
for perfect fluid hydrodynamics, entropy is produced in 
hydrodynamic expansion. The divergence of the entropy four 
current is 

a-s = c/T {v-u12 + n/2T {vUuv+V"u~+ ;{gUy-u"uy}V*u}2 (8) 

This quantity measures the rate of entropy production per unit 
time or length in the system. If we let the characteristic 
time scale for expansion in the system be T, which may also 
be thought of as a characteristic length scale for spatial 



gradiants, the criteria for small entropy generation is 

expansion - 9 >> 2 'collisions - ' TC 

Before further investigating the validity of hydrodynamics 
for ultra-relativistic nuclear collisions, and considering in 
detail the form of the coefficients of shear and bulk viscosity, 
I shall review some of the crucial features of the inside- 
outside cascade model of ultra-relativistic nuclear collisions 
and aspects of the perfect fluid hydrodynamic description of 
these collisions which are relevant for determining the self- 
consistency of the analysis. In the initial collision, two 
Lorentz contracted pancakes of valence nuclear matter pass 
through one another. The transverse radius of these pancakes is 
the rest frame nuclear radius. I consider collisions of equal A 
nuclei at zero impact parameter for simplicity. Although the 
valence quarks of the nuclei are Lorentz contracted into a 
longitudinal distance scale of R/y where R is the nuclear radius 
and y is the center of mass lorentz y factor, the low 
longitudinal momentum sea quark and gluon nuclear degrees of 
freedom do not become arbitrarily Lorentz contracted and give 
the nuclei a limiting thickness of TV. For times shorter than ~~ 
in the rest frame of materializing sea quarks and gluons, the 
effects of interactions are assumed to be small. The sea quarks 
and gluons therefore have a velocity of 

v = x/t (10) 

since they are free particles. They 'form', that is, the 
effects of their interactions become important at a proper time 
of 

'I = {tLx2) l/2 
= To (11) 

The matter is formed in an inside-outside cascade since in the 
center of mass frame values of constant T with v = x/t 



correspond to slow particles forming first and fast particles 
forming last. 

Convenient variables to analyze the cascade development and 
hydrodynamic evolution of the system are the proper time 'I and 
the rapidity 

For the free particles which act as initial conditions for the 
hydrodynamic equations, the space-time rapidity is also equal to 
the momentum space rapidity, since by Eq. 10, the space-time 
rapidity of Eq. 12 becomes 

(13) 

Notice that as a consequence of Eq. 10 for v, the matter 
forms with a large longitudinal momentum gradiant. At equal 
times, the matter farthest from the origin is moving most 
rapidly away from the origin. The matter is therefore expanding 
longitudinally as a consequence of the initial conditions. 
There is no transverse expansion initially, since the average 
transverse velocity is zero. After a time that a sound wave may 
penetrate from the surface inwards, transverse rarefraction of 
the matter begins. This is only important at late times for 
much of the matter if the nuclear size is large enough. For 
large nuclei, transverse rarefraction plays a role secondary to 
longitudinal expansion for cooling the hot matter formed in the 
collision. 

A basic assumption of the inside-outside cascade description 
of nucleus-nucleus collisions is that the energy density of the 
matter measured in a local comoving frame is a constant p. which 
is approximately independent of the rapidity y. This assumption 
is justified by the slow variation of the central rapidity 
distributions of mesons produced in hadron-hadron collisions. 
Although this assumption is not essential to the basic framework 
of the inside-outside cascade description, and may be relaxed, 



we shall adopt it here as a semi-quantitatively good conceptual 
simplification. 

The initial energy density is easily estimated since (‘1,8-9) 

1 - 2 <mt> $j IT0 1 dN <mt> 
PO nR = .R2 ay 'To To 

In this equation, $ is the initial rapidity density, and should 
be of the order of A-A 'I3 times the rap' idity density appropriate 
for pp collisions. It is also approximately the value measured 
for the final state of the collision, although, depending upon 
how isentropic the hydrodynamic is, it may acquire some T 
dependence and be slightly modified in the final state. The 
transverse mass is the value appropriate for the initial 
conditions, and probably decreases as a consequence of 
hydrodynamic expansion. As a consequence of the uncertainty 
principle, AEAt > 1, the transverse mass and formation time ~~ 
are constrained, 

mt > 11~~ (15) 

The energy density is therefore of the order of 

1 dN 
PO--- I ' ,,~2 dy Tf ;2 

0 

For values of the rapidity density consistent with the results 
of the JACEE cosmic ray experiments, 

PO - 5 Gev/Fm3 , ~~ - 1 Fm (17) 

PO - 500 Gev/Fmj, 7. - .l Fm (18) 
Such a range of values is consistent with what is known of pp 
and pA data. Also, the value of ~~ may be dependent upon A, 
decreasing as A increases, as is the case in string models of 
the collision!14) 

As the matter evolves from ~~ to later proper times, the 
standard theoretical analysis consists of applying perfect fluid 



hydrodynamic equations to evolve the matter from initial 
conditions to a final configuration which then freezes out to 
form final state rapidity distributions. The solution, ignoring 
transverse rarefraction is 

y = Y ('9) 

that is, the space-time rapidity equals the fluid rapidity, 

and 

2 
T = To {T~/T]'~ (20) 

where vs is the fluid sound velocity which is taken to be 
constant. The energy density is 

I+$ 
P = PO {To/T] (21) 

The entropy four current is conserved during the expansion, so 
that s - so/?. 

For systems of finite transverse extent, the I+1 dimensional 
solutions of the hydrodynamic equations are inadequate. There 
is transverse rarefraction which generates a transverse 
expansion.("-'I) This transverse rarefraction arises as matter 
escapes into the vacuum in the transverse direction. If the 
system has a large transverse size, then the dominant expansion 
is by I+1 dimensional longitudinal expansion, and the equations 
presented above describe the time evolution of the bulk of the 
matter distribution. This follows since in the initial state, 
the matter is not expanding in the transverse direction. Before 
matter a finite distance from the transverse surface may begin 
expnanding, a time which is greater than the time it takes a 
sound wave to travel this distance must elapse. For large 
nuclei, this time is large for matter not near the surface, and 
the most of the matter has cooled by longitudinal expansion 
before the transverse rarefraction is significant. For small 
nuclei and hadrons, the transverse rarefraction must certainly 



be more important. The transverse rarefraction may distort 
transverse momentum distributions, and the amount of this 
distortion may probe hydrodynamic behaviour and the equation of 
state of hadronic matter, as has been emphasized by Shuryak and 
by van Hove. (12-13) In some circumstances there may be sidewise 
splashing, and collective transverse flow, as has been suggested 

(14-15) at Bevelac energies. 
Since transverse expansion provides a small correction to 

longitudinal expansion in many circumstances, and since the 
dynamics of l+l dimensional longitudinal expansion is 
conceptually simple, I shall ignore transverse expansion in the 
rest of this talk. I shall nevertheless discuss a criteria on 
the transverse size of the system which should be satisfied in 
order that a perfect fluid hydrodynamic expansion be valid. 

The question which I shall attempt to address in the 
remainder of this paper is to what degree a perfect fluid 
hydrodynamical description provides a valid approximate 
description of the matter evolving after the nuclear collision. 
To begin this discussion it is useful to introduce a mean free 
path for quarks and gluons in hadronic matter. This length 
scale characterizes the surface thickness of the matter, and 
charatcerizes the length scale which must be compared to the 
length scale of gradiants in the matter distribution. If the 
surface thickness is small compared to the spatial size of the 
system, and if the mean free path is short compared to the scale 
sizes over which the matter distribution varies appreciably, 
then it is plausible that the perfect fluid hydrodynamic 
description is correct. Of course, it is possible that the 
naive considerations of mean free paths, which are rigorously 
valid for weakly interacting fluids, may be misleading when 
applied to hadronic matter where non-perturbative effects may be 
important. We shall therefore later more carefully formulate 
the issue of the applicability of perfect fluid hydrodynamics in 
terms of magnitudes of viscous coefficients. These coefficients 
may in principle be computed using the fluctuation-dissipation 
theorem and are defined outside the domain of weak coupling 



expansions. 
The simplest estimate of the mean free paths uses the quark- 

parton additive cross-section model of hadronic interactions. 
The basic assumption of this extremely naive picture is that the 
quark-hadron cross section is l/3 that of hadron-hadron, 

Qh ” 4 ‘Jhh - 13 mb (22) 

This cross section will be treated as a constant and independent 
of the energy density of the matter through which the quark 
propagates. This assumption is in contradiction with the 
properties of quark interactions at very high energy densities 
when perturbative QCD may be used. We are assuming that the 
energy densities are sufficiently low that the effects of the 
matter do not significantly alter the basic two body quark 
interactions. We shall soon present perturbative QCD estimates. 

The mean free path is 

A 
mfp 

- l/on (23) 

where n is the number density of hadrons. At ordinary nuclear 
matter energy densities, X 
density scales as T4 

mfp 
- 5 Fm. Assuming that the energy 

as it would for either an ideal gas of 
pions or a quark-gluon plasma, then n - p 3/k . The mean free 
free path is therefore 

A - .5 Fm , P - l-2 Gev/Fm3 (24) 

A - .Ol Fm, p - 200 Gev/Fm3 (25) 

For either of these two energy densities, the mean free path is 
extremely small compared to the nuclear radius, and effects of 
transverse surface area are quite small for nuclei of reasonable 
size. In the last case, even for protons, the surface effects 
would be small. Also the effects of longitudinal expansion seem 
controllable in the first case, h - ~~ , and quite small in the 



second case A << TV, and viscous corrections to perfect fluid 
hydrodynamics seem manageable. 

These additive quark model estimates must surely be modified 
for high energy densities where perturbative QCD adequately 
describes the dynamics. At these high energy densities, the 
quark and gluon cross sections become small, and approach zero 

as 0 -a ,' h2, where CL s is the QCD interaction strength and q is 
some typical energy scale, q - T. The mean free path is 

A - l/(a;T) (26) 

At large temperatures, as - l/in(T) and A - ln2T/T. 
Two groups have independently computed the mean free paths 

of quarks and gluons in a quark-gluon plasma, along the lines 
previously advocated by Shuryak!'7-1g) These different 
computations differ in the way that small angle scatterings are 
treated, where high order perturbative, and possibly non- 
perturbative, corrections are evaluated. Also, the value of the 
strong interaction coupling constant which is used in this 
evaluation is somewhat ambiguous since it is not precisely clear 
at what momentum scale the coupling constant is to be evaluated, 
that is, should the momentum scale be T or IOT. Finally, at the 
temperatures for which we shall apply their results, the effects 
of higher order perturbative corrections due to inelastic 
scattering should be important. The lowest order results only 
evaluate the effect of elastic scattering, and these higher 
order corrections should reduce the mean free path and increase 
the total cross section. Given these intrinsic ambiguities, it 
is impossible to draw any precise conclusion. What I shall do 
is give a range of values which spna the results of Hosoya and 
Kajantie, and of Danielowicz and Gyulassy and allow for some 
measure of the uncertainty in un-computed contributions. (17-18) I 

find for all values of energy density in the range of p - l-1000 

Gev/Fmj 

xk3 - l/20 - l/2 Fm, xq - l/5 - 2 Fm (27) 



The gluon mean free path is Ag and that of the quark is Xq in 
this equation. The variation in mean free path as the energy 
density varies over this wide interval is at most a factor of 2 
in my estimates. The mean free path may therefore be 
effectively be regarded as a constant as the energy density 
varies over this wide range. The gluon mean free path is about 
a factor of three smaller than that of the quark as a 
consequence of the larger color charge of the gluon, which 
forces it to interact more strongly than the quarks. 

For the mean free paths of Eq. 27, the surface to volume 
ratio should be small for large nuclei such as Uranium. For 
hadrons, the situation is much more difficult to resolve. There 
may be large surface effects for quarks in a plasma under 
the most pessimistic scenario, or moderate corrections due to 
finite hadron radius might be required under optomistic 
scenarios. For gluons, there might be large corrections due to 
finite hadron size under the most pessimistic scenario, or there 
might be only small effects under optomistic ones. The bottom 
line is that for large nuclei, the effects of finite nuclear 
size should be manageably small, but the situation is entirely 
unclear in hadron interactions. If the effects of finite size 
are large, a simple analysis using perfect fluid hydrodynamics 
is difficult to justify. 

To what extent longitudinal expansion is modified by viscous 
expansion is resolved by using the condition that the rate of 
entropy production due to viscous terms be small compared to the 
change in the entropy density due to expansion. This criteria 
may be formulated precisely in terms of viscous coefficeints, 
but we shall here formulate the problem semi-quantitatively and 
qualitatively in terms of mean free paths. The change in the 
entropy due to expansion is given by the perfect fluid 
hydrodynamic equations as 

ds/d-r q -S/T (28) 



The change in the entropy density due to entropy productions is 

ds/d-r = S/T~ (29) 

where ~~ is the collision time. The criteria that perfect fluid 
hydrodynamics be valid is therfore simply 

TC/T << 1 (30) 

Since the collision time is roughly independent of energy 
density, and therefore of T, after some time T, the system 
always is capable of expanding to a good approximation as a 
perfect fluid. This is because as a consequence of the 
similarity solutions of the hydrodynamic equations, at later 
times the system is expanding more slowly. 

The collision times given by Eq. 27 show that for proper 
times T > l/5-2 Fm, the quarks may expand isentropically, and 
the gluons for times T > l/20-1/2 Fm for the gluons. These 
numbers are not inconsistent with the assumption that after 
matter forms at a proper time ~~ - 1/10-l Fm, the matter quickly 
thermalizes and expands to a fair approximation as a perfect 
fluid. At the earliest times, there is the greatest entropy 
production, and as time evolves, the system behaves more and 
more as a perfect fluid. To resolve this problem more 
precisely, it would be nice to have a non-perturbative estimate 
of the viscous coefficients. 

The perturbative estimates of collision times have been used 
to estimate the coefficients of shear and bulk viscosity. 
Hosoya and Kajantie find (17) 

c:o (31) 

.2 
n = 

aglna 
T3 (32) 

S 

The evaluation of Danielowicz and Gyulassy gives a result which 
(18) is a factor of three larger. The hydrodynamic equations may 



be used to estimate the total amount of entropy production 

'final - 'initial{' + TC”Ol (32) 

This equation illustrates the increasing effects of entropy 
production at increasingly early proper times. 

At very early times there is entropy production due to a 

variety of effects, and it would be extremely valuable to have 
a controlled theoretical analysis of the pre-equilibrium 
quark-gluon plasma. It would seem that such an analysis iS 

tractable since at early times the energy density is high and 
the effects of interactions are weak. Such an analysis would 
be required to rigorously derive the inside-outside cascade 
within QCD. The initial conditions for the hydrodynamic 
equations would follow from knowledge of the initial state 
nuclear wavefunctions, about which little is presently known. 
A spectrum of fluctuations could be derived, and the parameter 
~~ could be computed. The magnitude and importance of coherent 
phenomenon could be deduced. 

Another possible place where perfect fluid hydrodynamics 
might break down is when the quark-gluon plasma expands through 

(20-21) a first order phase transition, or if the quark-gluon 
plasma must be produced from hadronic matter by undergoing a 

(22) first order phase transition. In either of these possible 
scenarios, large scale density fluctuations might be produced, 
and a global hydrodynamic description might break down. The 
system might break apart into droplets of matter which might 
slowly burn, or explosively detonate the plasma. The 
possibility that the system might break up into slowly burning 
droplets has been proposed by van Hove, and would occur if the 

(20) plasma spinodally decomposed. If the plasma could supercool, 
(21) then explosive detonation droplets might form. If these large 

scale density fluctuations were not too strong, the matter might 
recombine in the hadron phase, and a viscous expansion would 
smooth out the density fluctuations. There would be some 

entropy production, but the final matter distribution might be 



considerably smoothed out. If the density fluctuations were too 
severe, the plasma might break apart into isolated droplets each 
of which might be treated hydrodynamically. 

Finally, if the plasma does survive a confinement- 
deconfinement or chiral phase transition, then at some low 
energy density the system freezes out into non-interacting 
hadrons. This freeze out may be treated by standard methods, 
and the final state distributions of particles may be computed. 

Acknowledgements: I wish to thank the organizers of this 
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open forum in which these issues were discussed. 
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Comments for the Round Table Discussion on Mean Free Paths 

Larry McLerran 
Theoretical Physics Department 

Fermilab P. 0. Box 500 
Batavia Il. 60510 

I would just like to repeat the comment which I made in my 
talk that the reason that we would like typical scattering 
lengths to be small compared to the length scales associated 
with spatial and temporal variations, and with the spatial sizes 
of systems, is that it is difficult to construct a local fluid 
dynamics even supplementd by viscous corrections unless this is 
true. If it is true, then perfect fluid dynamics, supplemented 
by viscous corrections should provide an adequate description of 
the dynamics. 

The actual criterion that viscous corrections to perfect 
fluid dynamics be small is a criterion which is more general than 
that of small scattering times. Although these criteria are the 
same for diffuse fluids, they are not necessarily true for 
strongly interacting fluids. These viscous corrections may be 
evaluated non-perturbatively by the fluctuation dissipation 
theorem. For a high energy density quark-gluon plasma, the 
interactions are weak, and the criteria are the same. It is 
also, in my opinion, implausible that the length scale associated 
with viscous coeeficients and that associated with a mean free 
path would be significantly different except in exceptional 
circumstances where there are radically different scales in the 
physical system being analyzed. I don't see how there could be 
such scales in a quark-gluon plasma at energy densities not near 
that of a second order or higher phase transition. 


