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THE ORIGIN OF COSMOLOGICAL DENSITY FLUCTUATIONS 

8. J. CARR 

Queen Mary College, University of London, England 
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, U.S.A. 

The density fluctuations required to explain the large-scale cosmological 
structure may have arisen spontaneously as a result of a phase transition in 
the early Universe. There are several ways in which such fluctuations may 
have been produced, and they could have a variety of spectra, so one should 
not necessarily expect all features of the large-scale structure to derive 
from a simple power law spectrum. Some features may even result from 
astrophysical amplification mechanisms rather than gravitational 
instability. 

1 . INTRODUCTION 

Although the Universe is well described on large scales by the isotropic, 

homogeneous Friedman” model, the existence of galaxies and clusters implies 

that it must have contained density fluctuations at early times. A key issue 

in cosmology is to understand the origin of these fluctuations. One approach 

to the problem is to assume that the Universe started out chaotic, with large 

inhomogeneities and anisotropies on all scales: and that dissipative processes 

at early times, such as particle production effects2 or neutrino 3 viscosity, 

reduced it to nearly Friedman” form. In this picture the galactic scale 

inhomogeneities would be regarded as the small residual imprint of the initial 

chaos. Unfortunately, it now seems unlikely that this approach can work. It 

is difficult to smooth out a chaotic Universe anyway’ and, even if it were 

possible, the dissipation involved would tend to produce far more entropy than 

is observed in the 3K background radiation! This conclusion might be avoided by 

invoking an inflationary phase, but in this case the initial chaos would be 

irrelevant. 

Most cosmologists therefore now subscribe to the view that the early 

Universe was quiescent, the deviations from Friedman” behaviour always being 



small. In this case, the inhomogeneities required for galaxies must either be 

primordial, in the sense that they are fed into the initial conditions of the 

Universe, or they must arise spontaneously at some finite time after the Big 

Bang. The latter possibility is obviously more appealing since, if one has to 

conclude that the inhomogeneities exist from the beginning, one is not really 

explaining anything. However, until a few years agO cosmologists were very 

pessimistic about the possibility of spontaneous fluctuations6 This pessimism 

was prompted by two facts: (1) in the standard Big Bang picture fluctuations 

cannot grow between entering the horizon and decoupling because of the effects 

of the 3K background; and (2) fluctuations cannot grow before entering the 

horizon (in a sense to be defined more precisely later) on account of 

causality! Thus galactic-scale fluctuations must be of order 10 -3 even at their 

inception, which is uncomfortably large. 

In fact, this pessimism is not really warranted. Point (1) can be 

alleviated by invoking cosmological models which are matter-dominated for a 

period before decoupling8 (since this allows an extra amplification factor of 

lo-103); and point (2) takes on a different perspective if the Universe goes 

through an inflationary phase’ (since the domain of causal interaction is much 

increased). In consequence, pessimism has waned in recent years and several 

schemes can now be entertained for the spontaneous generat ion of 

inhomogeneities. All of these depend on statistical fluctuations arising at 

some sort of cosmological phase transition. One possibility is that a phase 

transition may have endowed the Universe with graininess. In this case, there 

could be fluctuations associated with randomness in the grain distribution, 

although one needs fairly exotic grains to produce galaxies. Rather similar 

fluctuations could arise if strings were produced at a spontaneously broken 

symmetry epoch. Another possibility is that spontaneous fluctuations may have 

arisen through the non-adiabatic amplification of quantum fluctuations in any 

matter field present; this may occur whenever the Universe’s equation of state 
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ceases to be radiation-like and is particularly interesting if the Universe 

undergoes an inflationary phase (corresponding to a vacuum equation of state). 

Finally, it is possible that quantum gravity effects at the Planck time induce 

fluctuations. Although our understanding of quantum gravity effects is very 

rudimentary, one certainly cannot exclude this suggestion. 

These possibilities for the origin of cosmological density fluctuations are 

summarized in the table below. The emphasis of this paper will be primarily on 

the spontaneous fluctuation scenarios. I will first assess what initial 

fluctuations might be required to explain the observed cosmological structure 

and I will then discuss what sorts of spontaneous fluctuations the Universe 

might be able to provide. Finally, I will emphasize the possibility that the 

observed cosmological structure may not entirely reflect the initial density 

fluctuations but may in part derive from astrophysical effects triggered by 

objects much smaller than galaxies. This could considerably reduce the 

amplitude required for the initial fluctuations. 

~Cosmological structureI 

Density Fluctuations 

Init ial Chaos Initial Quiescence 

[Spontaneous I 1 Primord iall 

I Metric Quantum Matter String I Grail-l 1 
Fluctuations Fluctuations Fluctuations Fluctuations 
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2. WHAT FLUCTUATIONS ARE REQUIRED? 

The Universe not only exhibits structure on the scale of galaxies. 

Observations indicate that the galaxies are themselves clustered and a clue as 

to the nature of the fluctuations required may be gleaned from the galaxy 

correlation function. On scales up to 20h-‘Mpc this has the form 10 

c(r) = (k? Y = 1.8, r. = IOh-‘Mpn (2.1) 

where h is the Hubble constant in units of 50 km/s/Mpc; it then drops off more 

steeply. On the assumption that the clustering results from gravitational 

instability alone, one can in principle infer the form of the fluctuations 

necessary to explain eqn (2.1). In order to do this, the evolution of the 

fluctuations must be traced through three distinct phases: (1) the period prior 

to their entering the particle horizon; (2) the period between their entering 

the horizon and decoupling; and (3) the period after decoupling. Before 

discussing these phases, however, it must be stressed that eqn (2.1) may not 

tell the whole story. The 3-dimensional redshift surveys indicate that c(r) 

falls off more slowly above 4h-‘Mpc”‘12 and this may reflect the presence of 

another source of fluctuations!3 There is also evidence that the Universe 

contains giant voids and filaments on scales up to 100 Mpc 14-16 and these may 

owe their origin to yet a third effect. It may therefore be naive to assume 

that any simple form for the initial fluctuations can explain all the features 

of the large-scale cosmological structure. It is not even obvious that all the 

features are gravitational in origin. 

2.1 The evolution of fluctuations after decoupling 

The baryons thermally and dynamically decouple from the 3K background 

radiation 13 -l/2 when the ionization drops at td = 10 R s; here R is the total 

density of the Universe in units of the critical density. So long as they are 

non-linear, all fluctuations should grow like (1+x)-’ between td and the 

free-expansion epoch (l+z=n-‘). If the decoupling fluctuations extend down to 

scales smaller than galaxies and have a simple power law form, 

~9)~ = (:j” (2.2) 
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with E > 0, this means that ever larger bound structures should form through 

17 hierarchical clustering. In this case there is a simple relation between 8 and 

Y:18 

Y = 66 (5 < l), Afi- 
y - 1+35 

(5>‘) . (2.3) 

Eqn (2.1 ) then requires l/3 < 6 < l/2 and 105MS < Ml < lOaMa, the precise 

values depending on . n19 If the decoupling fluctuations do not extend down to 

galactic scales, the determination of S(r) is less straightforward since 

galaxies can only form via fragmentation2’ and structure on scales below the 

initial cut-off has to build up through non-linear effects. In this case. the 

form of C,(r) evolves uith time and numerical simulations are required in order 

to match it with eqn (2.1) at the present epoch. 

2.2 The evolution of fluctuations before decoupling 

Fluctuations on a baryon scale M enter the horizon at a time 
_ : 

tH = 108(M/1012M j3@s. Q This exceeds the time te = 1010n-2s at which the 

Universe becomes matter-dominated if M is larger than Me = ,015R-2M Q. Since the 

radiation Jeans mass peaks at this value, scales above Me grow continuously. 

On the other hand, fluctuations with M < Me may be inhibited by a variety of 

effects. Their evolution depends on whether they are isothermal or adiabatic 
^. 

and on whether the dark matter which dominates the Universe’s densityL’ 

consists of baryons, neutrinos or axions. 

Baryon-dominated Universe. In this case, any isothermal fluctuations which 

are subject to the drag of the 3K background will be unable to grow until td on 

scales below Me. This, in particular, applies to baryonic fluctuations. The 

fact that thermal and dynamical decoupling occurs only gradually at td also 

results in the elimination of baryonic fluctuations on scales less than the 

baryon Jeans mass: Mb = ,o6,-1/2M 22,23 
Q' 

If the isothermal fluctuations are not 

dynamically coupled to the 3K background, they will still be unable to grow 

before te 24 but they will not be damped below Mb. On the other hand, the 

baryons themselves will be unaffected on scales below Mb until a time td(Mb/M ) 
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after decoupling due to the baryonic pressure. If the fluctuation3 are 

adiabatic, they will not be able to grow between the time they become smaller 

than the radiation Jean3 length (which is of order tH before te) and 

decoupling. Instead they will appear a3 acoustical waves. These waves will be 

damped on scales below M3 = ,013n-5/4 Mg by photon diffusion. 25 Their amplitude 

will also be reduced on scales below Me by a factor of (te/td) l/6 . The final 

amplitude will then determine the size of the baryonic fluctuations set up 

after decoupling. Note that it is sometimes claimed that the baryonic 

fluctuations with M < Me will exceed the original adiabatic fluctuations by a 

factor (M/M,) 
-l/3 26 due to kinematic effects. However, it now Seems likely that 

this boosting is just an artifact of assuming that decoupling occurs 

instantaneously” A serious problem in the adiabatic scenario is that it is 

difficult to match eqn (2.1) without producing excessive anlsotropies in the 3K 

background radiation. 

Neutrino-dominated Universe. If the neutrino has a non-zero rest mass mv, 

then the density of the neutrinos [Q = (my/lOZev)l would exceed the baryon 

density for m > 10eV. 28,29 This has a crucial effect on the evolution of 

density fluctuations after tH. 30-32 Any adiabatic fluctuations will be erased 

by neutrino free-streaming on scales less than Mv = ,015n-2M o. The photon and 

baryon fluctuations will also be erased on scales below M3, but the latter will 

be reestablished when the baryons fall into the neutrino potential wells at 

decoupling. Thus one expects the first objects to bind to be cluster-scale 

pancake3 with neutrino halos. One advantage of this scenario is that It 

reduces the anisotropies expected in the 3K background radiation. Another 

advantage is that the large mass-scale associated with Mv might be relevant to 

explaining giant voids?3 However, a serious problem is that it is difficult to 

34 make galaxies early enough. The growth of isothermal fluctuations will also be 

inhibited by the neutrinos: once they enter the horizon, they will not be able 

to grow until they become larger than the neutrino Jeans length. Since the 
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neutrino Jeans mass falls of a3 (l+z) , 312 this reduces the fluctuations by a 

factor of (M/Mv)2’3 below M”. In addition, if the isothermal component is 

dynamically coupled to the 3K background, all fluctuations will be frozen until 

td- Nevertheless, providing the neutrinos are massive enough to cluster, 35 

isothermal fluctuations could still lead to bound systems surrounded by dark 

halos. 

Axion-dominated Universe. Some of the problem3 associated with the neutrino 

picture can be alleviated by supposing that the Universe is dominated by a 

particle whose ma33 is much larger than 1OeV (thus reducing the free-streaming 

scale) and which decouples at an earlier time (so that the density is not too 

large). Candidates for such a particle might be the gravitino,36*37 the 

right-handed neutrino,38 the photino,3g’40 or the sneutrino.41*42 However, a 

currently more popular solution is to invoke a “cold” particle like the axion 

which is not subject to free-streaming at all. 43-48 In this case. axionic 

fluctuations (which we will regard a3 adiabatic for present purposes) are never 

erased but they cannot grow after tH until the axions dominate the density at 

te’ 
Although bound clouds of axions could form down to very small scales, 

baryons would be affected on scales below Mb only when the baryonic Jean3 ma33 

has fallen sufficiently. The situation is therefore very similar to the 23 

isothermal scenario in a baryon-dominated Universe. Note that the implied 3K 

anisotropy is consistent with observation provided R > 0.2. 49,50 If the 

fluctuations are isothermal, the situation is similar except that they cannot 

grow until td if they are subject to radiation drag and the axions fall into 

the baryon potential wells rather than vice-versa. 

In all these scenarios, the baryonic fluctuation3 at decoupling are simply 

related to the total fluctuations at the horizon epoch, as indicated in Figure 

1. The main difference is that one has a different lower cut-off in the scale 

of the surviving fluctuations, but the spectral shape is also affected. Note 

that, for isothermal fluctuations, one must distinguish between the fluctuation 
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in the total density and the fluctuation in the baryon density. For surviving 

scales which enter the horizon before t 
e’ 

-l/2 -l/3 

(Z>, = (3, Gy = W,(~) . (2.4) 

Thus the fluctuations in the total density at the horizon epoch are smaller 

than the baryonic fluctuations at decoupling by a factor of (M/Me)1’3.51 If the 

isothermal fluctuations are decoupled from the 3K background, baryons can 

eventually clump even on scales below M b’ 
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FIGURE 1 

This shows the relationship between the fluctuations at decoupling and the 
horizon epoch for a Universe dominated by baryons, neutrinos or axions. The 
solid lines apply for adiabatic fluctuations; the broken (dotted) lines =PPlY 
for isothermal fluctuations which are dynamically coupled (uncoupled) with the 
3K background. 

2.3 The growth of fluctuations before the horizon epoch 

Before entering the horizon, fluctuations are not subject to any of the 

causal dissipative effects discussed above, but their evolution is tricky 

because of the problem of gauge ambiguity. Changing the gauge corresponds to 

changing the identification between points in the perturbed spacetime and 

points in the unperturbed background. Since the perturbation in some quantity 

depends upon how one makes this identification, the gauge ambiguity can add 

spurious (non-physical) contributions to the perturbation6 What one must do 
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therefore is to refer only to gauge-invariant quantities which can be 

constructed directly from the metric and stress-energy tensor. Another problem 

is that there iS no unique constant time hypersurface on scales larger than the 

horizon. However, some of the gauge-invariant quantities have a natural 

interpretation with respect to specific hypersurfaces. In particular, Bardeen7 

defines a gauge-invariant quantity cm which measures the amplitude of the 

density fluctuation relative to the “comoving” hypersurface. i.e. the 

hypersurface which is everywhere orthogonal to the matter flow lines. This is 

the description of the density fluctuations we will adopt for the purposes of 

the present discussion. 

For primordial fluctuations, one can show that E m just grows as T’. Here T 

is conformal time, with respect to which the background metric is 

ds2 = acTI [dT2 - dx2], a (l. T2/(3P2) 
(2.5) 

for an equation of state p=(T-1)~. With respect to synchronous time t, the 

metric is 

ds2 = dt2 - a(tj2dx2 

and em grows as t(2-4’3r)’ 

a oz t2’3r (2.6) 

; this corresponds to the usual growth law on scales 

smaller than the horizon. The situation is more complicated for spontaneous 

fluctuations because energy conservation requires that these can only arise via 

a stress perturbation n. If the stress perturbation turns on at some initial 

time t o, Bardeen shows that the associated value of cm evolves as7 

E m 
=x2 x 

4 
(r-1) (3r-2) y-l 

(3rf2) 'J(Y) dy. 
0 

(2.7) 

Here x=kT measures the scale of the perturbation relative to the horizon size. 

The x2 term in eqn (2.7) just corresponds to the r2 growth associated with 

primordial perturbations. The integral term starts off as zero but, after an 

expansion time, is always of order the value of the current stress 

perturbation. This leads to two important features. Firstly, although a 
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genuine density perturbation does develop after an expansion time, it is 

initially smaller than sm by a factor of (M/MH) 2/3 ; secondly, at the horizon 

epoch (x=1 ), em can be no larger than the stress perturbation at any preceding 

epoch. It is in this sense that the fluctuations cannot grow before entering 

the horizon: a common mistake is to assume that the initial density 

perturbation is of order n and that it still grows like ~~ before entering the 

horizon?2 We note that this conclusion pertains even if the Universe undergoes 

an inflationary phase 53 . In this case, the value of sm on re-entering the 

horizon is still no more than the original stress perturbation, even though the 

scale of the original fluctuation is much enhanced. 

Equation (2.7) is relevant to the issue of whether one expects the 

fluctuations at tH to be adiabatic or isothermal. In the spontaneous 

fluctuation scenario, there are no curvature fluctuations at to and so (in this 

sense) the fluctuations are isothermal. However, Bardeen’s analysis shows that 

adiabatic fluctuations inevitably develop and aCtUally have comparable 

amplitude at the horizon epoch. Indeed, if the original stress perturbation 

has turned off by then, it is only the adiabatic fluctuations which survive. 

It is thus impossible to end up with pure isothermal fluctuations. 

3. WHAT FLUCTUATIONS CAN WE EXPECT? 

We will now review the various scenarios which have been proposed for the 

origin of cosmological density fluctuations. In all of these the density 

fluctuation (interpreted as em) which develops after an expansion time can be 

expressed as 

(3.1) 

where MO is the horizon mass at the time to when the stress perturbation turns 

on. Eqn (2.7) implies that the horizon epoch fluctuation exceeds (6p/p)o by a 

factor (M/Mo)2’3, independent of the preceding equation of state. Fluctuations 

with c=2/3 are particularly interesting since their amplitude on entering the 
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horizon is scale-independent. Various people have argued that such “constant 

curvature” fluctuations are best suited to explaining the cosmological 

structure54’55 because otherwise one would produce too many black holes (or 

even 56 close the Universe) on sufficiently large or small scales. However, this 

conclusion applies only if the fluctuations extend to arbitrarily large or 

small scales, which need not be the case. There is no problem, for example, in 

producing galaxies with u>2/3 fluctuations if the spectrum extends down to a 

mass-scale which is no smaller than 10 -3/(a-213) times a galactic mass. 

3.1 Quantum gravity effects 

Harrison5’ has suggested that quantum fluctuations in the metric at the 

Planck time, t = 10 
P 

-43s, will naturally endow the Universe with 

scale-invariant fluctuations with E an arbitrary constant between 0 and 1. He 

begins by considering the Feynman propagator 

<f>If,> H - Z exp (iSH) (3.2) 

where the f’s are field configurations over some spatial hypersurface and the 

summation is over all possible fields, classical or otherwise. The action due 

to gravity alone is 

‘H - (l/Ap)2 j R’ II J-g d4x (3.3) 

and the variation due to field fluctuations is 

6SH - (l/Ap)2 ( 6(RpnG) d4x (3.4) 

where A 
P 

is the Planck length (10-33cm). Corresponding to metric fluctuations 

6g on a scale L, 6(Rpu&) will have terms of the form Lm2(6g) and L-2(6g)2. 

Harrison takes the d’x integral in eqn (3.4) to be of order L4, which implies 

dSH - (L/Ap)2 X CO(W + O(6d21 . (3.5) 

The significant contribution to the Feynman propagator corresponds to 

=H * n/2, which gives 

(6g) - (Ap/L)2. (3.6) 

Finally, he argues that the density fluctuation will have the same form as bg; 

this leads to eqn (3.1) with a=2/3. 
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57 Harrison’s argument is not very convincing. The first worrisome point is 

that eqn (3.3) neglects the matter contribution to the action. If one included 

this contribution, the Einstein equations would guarantee that the order (6g) 

term in eqn (3.5) disappears and this would give 

(6g) - CAP/L) . (3.7) 

50 This indeed is the form for 6g originally suggested by Wheeler. Of course, one 

might argue that Einstein’s equations no longer apply at the Planck time but 

the physics is very unclear. The second problem is that Harrison does not 

specify what measure of density fluctuation he is identifying with 6g. 

Bardeen’s analysis shows that this identification applies only if one uses the 

gauge-invariant quantity E 
g 

which describes the fluctuations relative to the 

zero-shear hypersurface. The quantity em is smaller than eg by a factor 

(L/Ap)2. Thus the fluctuations which Harrison claims to predict are not 

constant curvature at all: eqns (3.6) and (3.7) would imply a-413 and a-l, 

respectively. Unfortunately, since ~4, such fluctuations would be completely 

negligible on a galactic scale. 

One way to regain constant curvature fluctuations would be to add a term in 

the action which is quadratic in R. Metric fluctuations 6g would then 

correspond to terms of the form L 
-4 (6g)* in eqn (3.4). This would give 6g 

independent of L, as required. The addition of a quadratic term in the action 

59 is not implausible because of renormalization effects. Nevertheless, lacking a 

complete theory of quantum gravity, it is not clear that Harrison’s approach to 

the problem of metric fluctuations is the correct one. 

3.2 Quantum matter effects 

Several authors60-6q have invoked quantum fluctuations in the matter (rather 

than the metric) to induce spontaneous density fluctuations. To study this 

effect, one must first construct two gauge-invariant canonically conjugate 

scalars with which to describe irrotational matter perturbations in a Friedmann 

background.+j’ ‘62 One such scalar corresponds to the perturbation in the 

velocity potential 0. It can be written as 
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(3.8) 

where a dot denotes d/dt, w is the specific enthalpy of the fluid and A is 

related to the trace of the metric perturbation. The other scalar is 

associated with the density perturbation and can be written as 

G= &.P-J arqdt. (3.9) 

Here r specifies the equation of state of the fluid and 

a = (;)($y2, B = (!p) 1’2. (3.10) 

The evolution of q satisfies 

q” + 2(a’/cr) q’-B2Aq = 0 (3.11) 

where a dash denotes d/dT. It can be shown that eqn (3.11) is conformally 

invariant only if a”=O, which corresponds to an equation of state p=p/3. 

Providing this condition does not pertain, fluctuations can be amplified purely 

classically in the period before they enter the horizon and this gives rise to 

the possibility of spontaneous phonon production. 

The form of the fluctuations produced depends on how the equation of state 

deviates from p=p/3. By applying the appropriate canonical quantization 

condition, one can show that the resultant horizon-epoch fluctuations are of 

the form6’ ‘62 

(6P/PJH = [jko,B I2 k3dk]1’2 
kH k 

where ‘k is the amplification factor,determined by eqn (3.11), and the limits 

in the integral are wave-numbers corresponding to the initial and current 

horizon size. The fluctuations are maximized if the Universe starts off in a 

Ht deSitter phase with a - e , corresponding to an equation of state p=-p, before 

entering its p-p/3 phase. In this case the horizon epoch fluctuations are 

given by63 

(%), lli H [/;, %] 1’2, (3.13) 

so we get constant curvature fluctuations with an amplitude depending only on 

H. On the other hand, if the Universe starts off and ends with p=p/3, and only 

goes through an intermediate phase with p&p/3, we get 64 

(%), ‘L “[i” Ck+l)ar]l’2 

(7, 
(3.14) 
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This corresponds to fluctuations with a-516, steepening to a=1 at small scales. 

These fluctuations are cut off before they reach unity and so can can be of 

order 10m3 on a galactic scale without making too many black holes on smaller 

scales. Note that the values of a in these cases are only “effective” values 

since the fluctuations do not really attain the relevant amplitude until they 

enter the horizon. 

3.3 Inflation effects 

In the original inflation scenario, the Universe undergoes an exponential 

expansion phase as a result of getting trapped in a false vacuum state when 

spontaneous symmetry breaking occurs at the GUT epoch? This can be ensured 

providing there is a potential barrier separating the symmetric and 

non-symmetric state of the Higgs field e. Unfortunately, this scheme fails 

because the formation rate for the bubbles of broken symmetry is never large 

enough for the Universe to get out of the exponential expansion phase. 65 In the 

“new” inflationary scenario, the form of the potential is chosen to be very 

flat near the origin, so that @ rolls down to its new minimum only very slowly. 

This means that a single bubble of broken symmetry can grow large enough to 

contain the entire visible Universe. 66-68 When $ reaches its minimum, the 

Universe will be reheated by the dissipation of the field’s kinetic energy, so 

this scheme retains the advantages of the original scenario (in that it solves 

the flatness problem, the horizon problem, and the monopole problem) without 

its disadvantage. 

In standard SU(5) one expects the scalar potential to have the 

Coleman-Weinberg form 69 

V(a) = A4” [ln($*/v2) - (l/2)] + De2 + (1/2)Av4 (3.15) 

where A=0.05, D is an effective mass term, and v is the value of @ at the 

minimum. The evolution of e is then determined by the equations 

; + 3H4 + I-6 + (X/L&$) = 0, H2 = (8r/3Mp2) CV+(1/2);2+prl. (3.16) 

The @ term is negligible initially and the f$ term (which is related to 
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particle ereat ion) only becomes important at reheating, so the time for the 

Universe to roll down to the new minimum is 

a2v 3H 
r=3H/w= =. (3.17) 

This process will produce density fluctuations because the field will not roll 

down the potential homogeneously. 70-75 Some regions will roll down faster or 

slower than others because of quantum fluctuations in 4. The time-spread is 

(3.18) 

and the associated horizon-epoch fluctuations are 
3 

(~P/P)~ = 2/?-H hr = ;;3,2/z . (3.19) 

(This spectrum applies both when the fluctuations go outside the horizon in the 

deSitter phase and when they re-enter it in the Freidmann phase.) If the 

potential is given by eqn (3.151, the fluctuations can be shown to have the 

nearly scale-invariant form 

1 l/2 
(~P/P)~ = -$f$ In(!) 

312 
(lx+) . (3.20) 

On a galactic akale this is :bout 50, which is much too large to be consistent 

with observation. 

One way round this problem is to invoke supersymmetry effects.In a broken 

supersymmetry theory, the mass splitting between boson and fermion states 

reduces the coefficient A in eqn (3.15) and hence the amplitude of the 

fluctuations.76’77 The amplitude will be of order 10m3 (as required) providing 

the supersymmetry scale is around 10 10 GeV. On the other hand, if the inflation 

occurs at the GUT epoch, it turns out that the roll-over time can be long 

enough to be interesting only with very fine tuning of the parameters. This 

unnaturalness can be avoided if the inflation is presumed to occur before the 

GUT epoch (perhaps even near the Planck time). Such a “primordial” inflation 

scheme might in principle be able to produce scale-invariant fluctuations with 

the required amplitude. On the other hand, it may have difficulty ensuring 

enough reheating at the end of the inflation phase 78 and it does not eliminate 

the monopole problem. 
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3.4 Other spontaneously broken symmetry-effects 

Various effects at a spontaneously broken symmetry epoch could induce 

fluctuations even without inflation. For example, Press 79 has suggested that 

fluctuations of the form 

(3.21) 

could arise at the GUT phase transition (To = 1015GeV) as a result of 

statistical gradients in the phase angle which prescribes the rotation of the 

vacuum state in its group space. One may regard such fluctuations are arising 

from patchiness in the conversion of the vacuum energy into thermal energy at 

the phase transition. However, there is a serious problem with this scenario: 

if both thermal energy and vacuum energy gravitate in the same way, the 

patchiness introduced would only represent a fluctuation in the stress tensor 

and not the energy density itself. In this case, eqn (2.7) suggests that o 

would be 413 rather than 2/3. Another criticism is that phase gradients of 

80 this kind are usually compensated by gauge fields. 

A more plausible way in which fluctuations could arise at a spontaneously 

broken symmetry epoch would be through the formation of domains. 81 ,82 The field 

will always tend towards uniformity if it is possible to go between states in 

neighbouring regions by a continuous transition in the group space. However, 

this possibility is precluded if the field contains trapped singularities of 

some kind. Depending on their dimensionality, these singularities correspond 

to either domain walls or strings or monopoles. The first case is excluded 

because it would produce unacceptably large anisotropies in the 3K background 

radiation;83 the last case is excluded because the mass density associated with 

the monopoles would exceed that permitted by observations of the cosmological 

deceleration parameter unless inflation were invoked. 84,85 We therefore focus 

on strings. 

Several types of fluctuations could be generated by strings. The strings 

will have mass per unit length p - To2 and an equivalent tension. As they 
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enter the horizon, this tension will tend to straighten them out and 

Zeldovich” has suggested that the dissipation involved Will generate 

horizon-scale fluctuations whose amplitude is of order the ratio of the string 

density to the total density. This ratio is just cu - (To/~p)2, SO one gets 

fluctuations of the form prescribed by eon (3.21). 

The physics behind this suggestion is rather vague but a more specific 

possibility arises if the strings form closed loops (either because they start 

off that way or because they generate loops through self-intersection). 86-92 

One would expect the formation of roughly one loop per horizon volume at each 

epoch, so the associated horizon-scale density fluctuation would just be of 

order the loop mass over the horizon mass, which is again given by eon (3.21). 

Since the loop perturbations are isothermal and uncoupled to the background 

radiation, the resultant fluctuations in the baryon density at decoupling will 

be as indicated by the dotted lines in Figure 1. 80 However, loops of initial 

size R also have the property that they will decay through gravitational 

radiation on a timescale R/Gu. This means that only strings larger than (Gu12Me 

in a baryon-dominated Universe or (Gu)2Mv in a neutrino-dominated Universe will 

survive long enough to induce fluctuations in the rest of the matter. In both 

cases the lower cut-off in the resultant fluctuations will be at a mass of 

order 10gM @. In an axion-dominated Universe, there will be no such cut-off 

because the axions are affected by the strings even when the Universe is 

radiation-dominated, but the baryons themselves will still be unable to clump 

on scales below Mb. In all three cases the resultant fluctuations might be 

consistent with eqn (2.1) but only if Gu - 10 -6 
-10-5 , so the strings have to 

form at the GUT epoch. 

3.6 Axionic fluctuations 

The possibility that axions could dominate the density of the Universe 

arises because the axion developes a mass ma due to QCD instanton effects at a 

temperature T, - 1GeV. The associated density is 

Pa = 3(~)maT3<F~> (3.22) 
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where f - 1012GeV is the scale at which the Peccei-Quinn symmetry is broken 126 
a 

and the last term is the mean-square value of the Peccei-Quinn angle. Since T 

is determined by the radiation density, this means that any adiabatic 

fluctuations would necessarily induce axionic fluctuations of the same form at 

the horizon epoch: 93 

($q 7 + cy, . (3.231 

This conclusion applies even if the Universe undergoes an inflationary phase at 

f a. However, in this case extra horizon-scale fluctuations of the form 45 

P& (&>- 10%;’ 
P = 

(3.241 

arise due to the inflation itself. These fluctuations are associated with 

quantum variations in e a and are too small to be interesting unless the 

94 Universe is within a domain where aa is smaller than average. 

A more exotic way of generating density fluctuations in the axion scenario 

invokes a combination of strings and domain walls 95 . The strings are produced 

at the Peccei-Quinn symmetry-breaking and then become attached to walls at the 

QCD phase transition. These walls will decay through gravitational radiation 

at around 10’s, just when they are beginning to dominate the density, and this 

means that one generates fluctuations of order unity on the mass-scale of the 

horizon at that time. This could result in the formation of 106Mo black holes. 

3.6 Grain fluctuations 

At a certain level the Universe is bound to develop graininess, in 

particular, whenever it undergoes a phase transition. In the most natural 

situation the grains would have a mass of order the temperature of the phase 

transition, though in this case the associated fluctuations would be too small 

to be interesting?6 However, in more exotic situations one could envisage 

grains which are as large as the particle horizon at the phase transition. For 

example, in the Guth inflationary scenario, one could produce black hole grains 

of 103g through the collisions of bubbles of broken symmetry. 97,98 A similar 
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effect at the Weinberg-Salam epoch could produce black hole grains of mass 

10-5Mg. At the quark-hadron phase transition, the effects of colour-screening 

could generate density fluctuations large enough to produce black holes with 

-3 99 mass up to 10 Mg,. These effects all require 1st order phase transitions. 

Since 10m5 s is the latest time at which one could expect a phase transition 

in a hot Universe, one might presume that one could never get grains forming 

later than this. However, this conclusion could fail in less conventional 

cosmological models. In a cold Universe, for example, grains of mass 

10 -6 -lo-‘Me could form during the pion-nucleon phase transition at 10 -4s100,101 

and the spontaneous shattering of metallic hydrogen at 1 s could produce 

fragments of 10 -a Mg. 102,103 In the axionic wall-string scenario of Sec. 3.5, 

one 4 95 could form black hole grains of 106Mo at around 10 s. One could even 

conceive of situations in which the grains would be larger than the usual 

particle horizon size at formation. For example, with sufficiently fine 

tuning, bubbles of broken symmetry might arise at an inflationary epoch which 

are larger than the horizon size but smaller than the present Universe: these 

bubbles could then serve as grains. 96,104 In a cold Universe, a sufficiently 

6 slow quark-hadron phase transition could produce baryon clumps of 10 M9 before 

105 the Universe is reheated by the associated radiation production. 

Whenever the Universe developes graininess like this, one would expect the 

spontaneous generation of statistical density fluctuations: if the fraction of 

the Universe which goes into grains is f, and the grain mass is M,, the number 

of grains forming in regions of volume V would on average be N=f,V/M, with a 

statistical fluctuation AN=-. Since the grains form out of the 

background radiation, this does not in itself produce a fluctuation in the 

total density. For each region with a fi excess of grains must have a 

corresponding deficit in its radiation content. The grain effect merely 

corresponds to a pressure perturbation6 

(%), = N-1’2f, (l++f,) -‘. (3.25) 
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However, as indicated by the discussion in Sec. 2.3, one expects this to lead 

to a genuine density perturbation 

(CL>, I (Al>, (EJ’3 h N-7/6(!+)2’3f* (3.26) 

after an expansion time. Thus the effective value of CL is 716. One might 

think that such fluctuations would not arise if the entire Universe went into 

the grains since AN=0 if f,-1. However, even in this case, fluctuations arise 

because non-linear effects will endow the grains with peculiar velocities. One 

can show that the consequent displacements will generate fluctuations after an 

expansion time of exactly the same form as given by eqn (3.26).106*107 This 

result applies even on scales larger than the horizon, providing one measures 

96 the density fluctuations with respect to the comoving hypersurface. 

If the grains persist indefinitely, eqn (3.26) implies that there will be 

both adiabatic and isothermal fluctuations at decoupling of the form 

(%), = 10%0n)(&., )1’2(1$J’2f:/2 (3.27) 

where we have normalized M to the characteristic mass of a galaxy, fe is the 

fraction of the Universe’s mass in grains at te, and the factor of 100 is 

present only if the grains are uncoupled to the background radiation. If the 

grains disappear at some stage, eqn (3.271 still pertains except that fe must 

be replaced by the value which pertains when they last exist and the 

fluctuations will be purely adiabatic.The fact that one gets “white noise” 

fluctuations is consistent with the observed galaxy correlation function. la On 

the other hand, we see that galactic-scale fluctuations can have an amplitude 

of 10-3 (as required) only if M, > 106Mo, so one needs rather exotic grains 

unless one invokes the sorts of amplification processes discussed in Sec. 4. 

In a cold Universe, even grains as small as lo-‘M Q could generate 

galactic-scale fluctuations of 10 -3 , but the fluctuations on larger scales 

would fall off as M -716 , which is too steep to explain the correlation 

function.g6 
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4. GENERATING GALAXIES VIA ASTROPHYSICAL AMPLIFICATION 

As emphasized in the Introduction, the present cosmological structure need 

not directly reflect the initial density fluctuations if the first scales to 

bind are smaller than galaxies. This is because astrophysical activity 

associated with pregalactic objects could itself generate large-scale 

structure.108’123 Figure 1 shows that one expects pregalactic objects to form 

unless the fluctuations are adiabatic and the Universe is dominated by 

neutrinos or baryons. We now discuss several scenarios for such astrophysical 

activity. 

4.1 Peculiar velocity effects 

In this scenario’08 the first pregalactic objects are born with large 

peculiar velocities; this might occur, for example, if the objects form black 

holes and collapse non-axisymmetrically. This generates m fluctuations on 

scales up to the distance the objects can traverse in a cosmological time. If 

the objects have a mass Ml and form at a redshift z, with peculiar velocity V,, 

the corresponding mass-scale is 

M2 = 1012 (z/IO~)-~'~ (V /10-2c)3 M 
1 0 * (4.1) 

Fluctuations below this scale are erased by “free-streaming”, while those 

produced on scales above M2 go like N -716 rather than N-1’2 for the reasons 

indicated in Sec. 3.6. Thus the second generation of objects to form have the 

mass M2 and bind at a redshift 

(4.2) 

In order to have galactic scales or larger bind by the present epoch, we 

require 
112 

v, > 3000(S) km s -l, M 1 > lo6 (4.3) 

We note that the fluctuations on scales above M2 fall off too steeply to be 

consistent with the galaxy correlation function, so this affect alone could not 

explain the observed large-scale structure. Perhaps the most interesting 
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feature of the velocity effect is that the pregalactic objects only cluster on 

sufficiently large scales. 

4.2 Statistical clustering effects 

If the first pregalactic objects form in the radiation-dominated era (which 

probably requires that they be strings or black holes), then one expect /W 

pressure perturbations to arise on all scales providing the probability of 

objects forming in different regions is uncorrelated. 52,109,125 This is just a 

variant of the grain fluctuation scenario and, if the objects dominate the 

density, one expects the fluctuations at decoupling to have the form 

(%,, = 10-2($&gJ-1’2(&-)1’2fil (4.4) 

where 
n1 

and M 1 are the density and mass of the objects. Thus galaxies can 

bind by now providing Ml > 104nl -2M Q. Since one has M -l/2 fluctuations, this 

might also explain the galaxy correlation function. We stress that the 

StStiStical clustering effect does not work for objects which form when the 

Universe is matter-dominated because one needs the objects to initially have a 

different equation of state from the background. We also note that the effect 

is distinct from the “statistical bootstrap” scheme, in which fi fluctuations 

are continually generated even after decoupling; 127 such a scheme now seems 

implausible. 18,128 

4.3 The seed effect 

If the first objects to form are sufficiently large, they could bind 

galactic scales merely by their gravitational Coulomb effect. This is because 

each object induces an effective density fluctuation Ml/M on a surrounding 

region of mass M. Thus one can bind galaxies by today providing M, = lOgMa. 

Such pregalactic objects might arise fairly naturally in the string scenario, 

where (as discussed in Sec. 3.4) the smallest surviving loops at decoupling 

have a mass of the required size. 86 Giant black holes might also serve as the 

necessary seeds 108-l 11 (Such holes might even be generated by loopsg2). Since 

there is evidence that large black holes reside in at least some galactic 
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nuclei (e.g. to power quasar3 112,113 and explain certain dynamical 

observatio”s”4’1’5), it is attractive to suggest that these same holes might 

alao produce the galaxies. A natural consequence of the seed scenario is that 

galaxies should have a density profile which scales as r -9/4 
; this is fairly 

close to the r -2 profile inferred for the dark halo distribution. 116 
One can 

also predict a galaxy correlation function. If the seeds have a discrete mass 

spectrum, the effective decoupling fluctuations on scales larger than galaxies 

should go as M -1 , which is probably too steep. However, if the seeds have a 

mass spectrum which falls off as M -Y , the decoupling fluctuations should have 

the form 108 

(6~1~)~ 0: M-*, 6 = (5). (4.5) 

If the seeds are primordial black holes or loops, one expects Y = 2.5. 56 This 

implies 5=1/3, which would be consistent with eq” (2.1). 

4.4 The explosion scenario 

Stars in the mass range 10-105M10 can release explosive energy with a” 

efficiency E = 10 -4 at the termination of nuclear burning. Thus the first 

stars (or clusters of stars) could generate shockfronts which sweep up shells 

of gas.l17-12’ The maas of these shells 

objects by a large factor: in the Compton 

could exceed the mass of the original 

cooling era (010) this factor is 120 

(4.6) 

30 even a single explosive phase could amplify the scale of structure from 

106M@ to lO"M 
8' Furthermore, it 13 possible that the shells would fragment 

into more exploding stars, in which case one could initiate a bootstrap process 

in which the shells grow ever larger. In this “Hierarchical Explosion Scheme” 

the shell mass would tend to a” asymptotic limit 121 

Mm = 52.5H, = 102Czl-4.3(e,lo-4)1.5~ 
Q (4.7) 

providing the shells do not overlap first. After z=lO, radiative cooling 

dominates and the shells would fragment into galactic-size objects rather than 

stars. Thus the end result of this picture might well be clusters of 
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galaxies. 122 One might even generate giant voids: the final shell radius could 

be as large as Gtimes the horizon size, which would just about be enough to 

explain Bootes. 121 Of course, this scheme works only if the fraction of the 

Universe in the initial seeds is very tiny; otherwise the shells would overlap 

too soon. It should also be stressed that invoking explosion3 to generate 

large-scale structure is very extravagant energetically. A somewhat less 

extravagant scheme would be to invoke the UV fronts produced by the stars in 

their main-sequence phase.’ 23*1 24 

This (by no means comprehensive) discussion illustrates that there are a 

variety of ways in which pregalactic objects could superpose new fluctuations 

on the onea that originally existed at decoupling. If the objects form at 

redshift z,, Figure 2 illustrate3 what value of M, is required to generate 

galaxies: the lower boundaries are specified by eqn (4.2) with z2=1 in the 

recoil scenario, by eqn (4.4) with (6p/~)~=lO-~ and R=O.l in the clustering 

scenario, and by eqn (4.7) with M=1012MN in the explosion scenario. For 

example, the 106Mg objects which one would expect to bind first in many 

situations would suffice providing they formed in the period z>103 or 10<2<70. 

Even the grain effect can produce such objects if the grain ma33 exceeds 1 MC. 

In fact, providing the grains are uncoupled to the 3K background, the first 

objects could be somewhat smaller than 106EI @, so even the sort of black holes 

which might form at the quark-hadron phase transition could serve as the 

necessary grains. 125 
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FIGURE 2 

The shaded region shows the ma33 and redshift range in which pregalactic 
objects can generate galaxies by the various types of astrophysical activity 
discussed in the text. 

6 .~ CONCLUSIONS 

In this talk I have emphasized the possibility that the density fluctuations 

required to explain the present cosmological structure may have arisen 

spontaneously at a phase transition in the early Universe. If one accepts this 

point of view, various consequences follow. 

Firstly, it is clear that spontaneous fluctuations could have many different 

forma, 30 one should not necessarily expect the large-scale structure to 

originate from any single effect. The largest scale features (such as the 

giant voids and filaments) and the galaxy correlation function may well derive 

from completely different mechanisms. This is gratifying since it appears to 

be remarkably difficult to explain everything with a simple power law spectrum 

of fluctuations. Nor is it obvious that all features of the large-scale 

structure have to be gravitational in origin. 
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Secondly, it may be wrong to put too much emphasis on fluctuations with 

u=2/3 (as moat of the numerical simulations do). One can argue for the 

existence of fluctuations with a-1/3, l/2, 516, 1 or 7/b, all of which 

reproduce at least some feature of the large-scale structure. Admittedly, 

u=2/3 fluctuations (such as arise in the inflationary scenario) are cleanest, 

in the sense that they avoid the complications of pregalactic objects forming, 

but the mechanisms for producing them all involve ultraspeculative physics and 

only aeema to work with rather contrived parameters. 

Thirdly, it is possible that part of the large-scale structure derives from 

relatively late phase transitions (like the quark-hadron transition), which 

are likely to be understood well before the more exotic phase transitions upon 

which cosmologists tend to focus at present. Admittedly, the schemes which 

invoke late phase transitions may have to be supplemented with astrophysical 

amplification mechanisms and these might be regarded as no leas exotic than the 

physics of the very early Universe. Nevertheless, in my opinion at least, they 

should be taken just as seriously. 
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