
Summary 

~~~~~ resUlt~ POP then process gg+ggg a=* compared 
vlth those Obtained "sing the "leadIng pole 
.3pprOxlm&iO"". Regions OP phase apace where the 
apprOximati0” breaks down are discussed. A SPeCLe1C 
example re1eunt for background estimates to w bclS0” 
production 19 presented. It 19 CO”Cl”de* that in ttl1s 
l”St&“Ce the leading pole approximation may 
unr~erestimate the standard QCD background by more than 
a l-actor OP two in certain ki"ematlC region.3 OP 
physical interest. 

nest OP the pert"rb=ti"e QCD calculation3 
encountered in the literature are based on the leading 
logarithm approxlmatio". I" the descr‘ptlo" or 
1"cl"sIYe processes POP example. large lQg=r‘thmS. 
resulting prom g1uon bremsstrahl""g. counteract the 
logarithmic decreaze in the running coupling and 
necessitate an a11 orders summation OP at least the 
leading ter!ns. A systematic procedure alSo exists ror 
the incluslo" OP subleading term3. HOVWBP. it is 
opten OP ,nterest to Study the Str"Ct"re OP complete 
events, rather than just inclusive part‘cle 
dlStl-ib"tiO"S. For this purpose HO"b car10 
simulation programs have bee" constructed by a number 
OP auttlor3. These programs are opten based on what is 
called the "leading ""~~tS~""'~~~~~~~t;~"(L~~~, t;; 
this approximation, 
Pour-vectors OP Plnal state particles. the results of 
the leadIng 1ogaPtthmiC approximation POP inclusive 
dlStriD"tio"S are obtained. 

The leading pole approximation Pm- a *+n process 
1s obtained by combining me cro.55 section expression 
ior the r.cn-1) pE-0CeZ.S u‘th tile appropriate 
Altarelll-Parisi' splitting Pulctlo" and dividing by 
the invariant mass squared (M') of the lim which 
blW"CheS. I" certain regions OP pha.¶e 9p=c= a Single 
pole Will dominate an* the resulting expression 
ck,sely approximates the exact result. BecauSe the 
approxlmatio" ‘"volveS only probabllitieS It can be 
inserted in Monte car10 programS ‘" an Iterative way. 

Several groups 1” haYe Obtai”CZd exact 
expressions POP the 2rj procSSses encauntered in QCD. 
Especially "OteYorthy are the results or ref. (3) 
where compact exprassions ha"= bee" obtained. TheSS 
expres,iona can then be compared with the results 
Obtained using the LPI. 43 a speciric example. u* 
Shall consider gg.ggg. ThS ki"=m=tiCS for this C=S= 
Ca" be conveniently discussed using the coordinate 
syStem presented in Ref.(Z). The "otati?" tO be "SSd 
PC+ the POW-“ectorS IS P, l PZ+P, l PI + Pi, ="d = 

1. .&lSO, it is cO""e"ie"t to introduce 
,,%3+ Pdiriablea x,, 

t Ad 
x.. an* x, where, in the 

parton-parton center-0P-mass system, x 
The COOPdl"ate Syste,? IS de*,"& aS th 6 

- 2 E/G. 
partO"-PartO" 

center-or-mass Prame with the z =xiS normal to the 
plans containing the thrS= Pinal State quanta. The x 
axi., I., chose" to lfe along the diRXti0" Of PI. 
Particles 1 and 2 the" are antlparallel along = 
direction SpeciPk~d by appropriate polar and azlmuthal 
angles. A compact way OP discussL”g 2.3 processes’is 
to employ a Symmetric Dalltz plot ulth thS axe= 
labelled by x,. x.. and x,. The symmetric final St=tS 
and the requirement that X, f x, + X, - 2 yields a 
plot In the Porm OP a" equ‘lateral triangle. For the 
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process cons‘dered here there is a Six-Pold symmetry 
in such a plot. 
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FIG 1. Dalitz plot POP gg*ggg Por the case where 
the in‘t‘al. State gl"O"S a,% orthogonal LO the Pl="S 
containing the thPee Pl"a1 State gl"O"S. The c"r"eS 
are contours along which the ratio R. defined I" the 
text. IS CONta"t. 

Wa are interested in the rat10 R of the 
approximate to the exact expresslo" Par the pr0ceSS 
gg+ggg. I" Ftg. (1, Y= Shop ContOWS 0P CO"St="t R 0" 
a Dal‘tz plot as described I" the preceedlng 
paraW'a@l. Here we have Chose" tha c=S= where the 
initial stats gluons are orthogonal to the plan= 
containing the Pinal State gluow. Near the edges OP 
the plot one OP the gg invariant m=SS=S beCOmeS Small 
and the leading pole approximatlo" gives a" =dequ=tS 
approximation to the exact result. This IS easily 
seen by “oticlg that x - (1-s /Gi;;,, where ‘,j. and k 
ar* distinct and edua1 t&.4. or 5. *s one rno”es 
away Prom the edges oP the Dalitz plot, the ratio R 
‘,eP,"ed abo"e varies both abo"e and below One. It IS 
conceivable that on average thS approximatlo" might 
work very well. TO tat this YB decided to perPorm a 
realistic calculation such as one might ado with the 
Monte Carlo simulation programs. we considered the 
example OP holding the mass oP .i pair OP gluons Plxed 
(s.,.H') and the" looking at ~1tS tWlS"~rSe mOM"t"am 
distribution. The r=plditiSS OP both the gg SyStem 
(4+5) and the recolllng glum (3) have bee" Pixed at 
zero. This calculation SlmulateS a portion OP the QCD 
jet background vhlch would be S"COlmt=r=d when looking 
Pm- hadronic dec=yS oP the Y into tU0 jets. The 
quantity oP interest her= is d~/dydy'dp dM' where H IS 
the m=SS OP the gg pair produced with r pldlty Y' ="d H 
tra”avers* q o*ent”m PT. and y 1s the rapidity OP the 
reco11ing g1uon. We have calculated thiS quantity at 
fS-40 Te" "s‘"g the exact matrix =l=me"t ="d =lSO 
using the lead‘ng pole approxlmatio" Which h=S the 
PWlB 

j13/2 - IT2 )2Pgg(=)/S45 + D (i&5) . ('I 

I 



The exact results Por the 2+3 and 2-2 subprocesses can 
be Pound In Refs. (3) and (4). respectively, and the 
Splitting PunCtlO" P (21 can be Pound I",RSP. (1). 
The variable z has beefigchosen as 

z - b,4’s24vs,2 (2) 

but any other definltio" which had thS SmS S-,+0 
limit vould be acceptable. This ambiguity I" the 
definition of z is always present in the LPI. A 
compari~on OP the exact results with those given by 
Sqs. (1) and (2) smws that the corrections to the LPA 
are 0(1//s.,). The ratio oP the approximate to the 
exact results, R, is sham in Fig. (2) Por H-82 and 
500 Cev/c'. For tne case OP the leading pole 
approximation we have retained only the pole tSrms in 
M's i.e., we have not included pole terms 
corresponding to initial state brSmsstrShlung. 
TherePore, this comparison follows the same algorithm 
as is used In ISAJET, one 0P the more widely used 
nonte Carlo simulation programs. To eliminate regions 
where two OP the gluons become parallel or one OP them 
becomes sort I" the overall hadron-hadron 
center-0P-mass system. a number of cuts have been 
imposed. These cuts,require that each of the final 
state gluons have a momentum greater than 10 &Y/c in 
the hadron-hadro" center-of-mass system and that each 
glue" be 0.5 radians away Prom the others and Prom the 
beam-beam axis. These requirements are typical of the 
cuts that would be used in a real experiment. 
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FIG 2. The ratio R OP the leading pole and exact 
results for the calculation discussed in the text. 
Curves Por two values oP M SPS shorn. 

The results for t"e ratio R shown in 'Fig..(Z) 
indicate that at suPPicie"t1,' high p the leading pole 
approximation is indeed very good. Tn this region OP 
phase space the pole in M' dominates because the gg 
invariant mass is the smallest OP the possible 

at fixed p 
true answer s underestimated by a Pactor of two or 
more. 

The preceeding discussion has shown LhSt there 
are kinematic regions in which the leading pole 
approximation breaks down and that a Pactor OP two or 
more diPPere"ce In comparison with the exact reSultS 
is not ""COmmO". The Monte Carlo programs as 
currently Pormulated may provide a usePu1 means for 

obtaining estimates aP qualltStiYe Features 0P event 
structures. However, dhen one Is searching *or 
precise quantitative features the above lesson must be 
remembered. As a general rule, it would seem 
advisable to include in the Monte Carlo programs SS 
much OP the exact results SS SrS knam. thereby 
minimizing the use oP approximation wherevw possible. 
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