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Summar

Exact results for the process gg+geg are compared
with theae obtalned using the "leading pole
approximation™, Regions of phase space where the
approximation breaks dcwn are discussed. A specifle
example relevant for background estimates to W Ddeson
production is presented. It is concluded that in this
inatance the leading pole approximation may
underestimate the standard QCD background by more than
a factor of two In certain kinematic regions of
physical interest.

Moat of the perturbative QCD calculations
encountered in the literature are based on the leading
logarithm approximaticn. In the description of
inclusive processes for example, large logarithms,
resulting from gluon bremsstrahlung, counterack the
logarithmic decrease in the running coupling and
necessitate an all orders summation of at least the
leading terma, A systematic procedure also exists for
‘the inclusion of subleading terma., However, it |is

often of interest to satudy the structure of complete
eventa, rather than Just incluaive particle
distributions. For this purposa Monte Carlo

almulation programs have been constructed by a number
of authors. These programs are often based on what ls
called the "leading pole approximation" (LPA). In
this approximation, after integraticn over the
four-vectors of filnal state particles, the results of
the leading logarithmic approximation for inclusive
distributions are obtained.

The leading pcle approximation for a 2+n proceas
1a obtained by combining the cross sectlon expression
for the 2+(n-1) proceas with the appropriate
Altarelli-Parisi' splitting function and dividing by
the Lnvariant masas squared (M?) of the line which
branches. In certain regions of phase space a single
pole will dominate and the resulting expression
closely approximates the exact result, Because the
approximation involves only probabilities it can be
inserted in Monte Carle programs in an iterative way.

Several groups '* have obtained exact
expressions for the 2+3 processes encountered in QCD.
Especially noteworthy are the results of ref. (3}
where compact expressions have been obtained. These
expressions can then be compared with the results
obtained using the LPA. As a specific example, we

shall consider gg+ggg. The kinematics for thias case

can be conveniently discussed using the coordinate
system presented in Ref.{2}. The notation to be used
for the four~vectors 18 p, + p:*P, * DPa * P, and 3

= (p, + p,)?. Also, 1t is convenient ta introduce tﬁg
scaléd Jariables Xy, X., and x4 where, in the
parton-parton center-of-maas system, X, = 2 E /VS,z.
The coordinate system is defined as th& parten=parton
center-of-mass frame with the z axis normal to the
plane containing the three final state quanta. The x
axis is chosen to 1lle along the direction of p,.
Particles 1 and 2 then are antlparallel along a
direction specified by appropriate pelar and azimuthal
angles. A compact way of discusalng 2+3 processes®ls
to employ a symmetric Dalitz plot with the axes
labelled by X4, X., and x5. The symmetri¢ final state
and the requirement that X, + X, *+ X; = 2 ylelds a
plot 1n the form of an equilateral triangle. For the

proceas consldered here there is a six-fold symmetry
in such a plot.

FIG 1.
the initial state gluons are crthogonal to the plane
containing the three final state gluons. The curves
are c¢ontours along which the ratio R, defined Ln the
text, is constant.

Dalitz plot for gg+ggg for the case where

We are Interested in the ratic R of the
approximate to the exact expression for the process
gg+ggg. In Fig. (1) we show contours of constant R on
a Dalitz plot as desceribed (n the preceeding
paragraph. Here we have chosen the case where the
initial state gluons are orthogonal to the plane
contathing the final state gluons. Near the edges of
the plot one of the gg lnvariant masses becomes amall
and the leading pole approximation gives an adequate
approximation to the exact result. This is eaaily
seen by noting that x, = (1-5J /57z), where [,}, and k
are distinet and equal to 5.“, or 5. AS one moves
away from the edges of the Dalitz plot, the ratlo R
defined above varies both above and below one. It is
concelvable that on average the approximation might
work very well. To test this we decided to perform a
realistic calculation such as one might 'do with the
Monte - Carlo simulation programs, We considered the
example of holding the mass of a pair of glucns fixed
(a,g=M3) . and then looking at its transverse momentum
diatribution. The rapidities of both the gg system
(4+5) and the recolling giuon (3) have been fixed at
zera, This calculation simulates a portion of the QCD
jet background which would be encountered when looking
for hadronic decays of the W {into two jets, The
quantity of interest here is dg/dycy'dp, dM?* where M is
the mass of the gg pair produced with rzpldlty y' and
transverse mementum p., and y iIs the rapldity of the
recolling gluon. We have calculated this quantity at
/S=40 TeV using the exact matrix element and also
using the leading pole approximation which has the
form

2 2 1
’iT3| = ITZ I PSB(Z)/5"5 +0 (7§H5) . L)
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The exact results for the 2-+31 and 2+2 subprocesses can
pe found in Refs. {(3) and (4), respectively, and the

splitting function P__(z) can be found in Ref. (1).
The variable z haa beeR”chosen as

z = (3,785,078, ()
but any other definition which had the same 3,4+0

limit would be acceptable. This ambiguity 1in the
definition of 2z 1a always present in the LPA, A
comparison of the exact results with those given by
eqs. (1) and (2} shows that the correctlons to the LPA
are 0(1/¥s,,). The ratic of the approximate to the
exact results, R, is shown Iin Fig. (2) for M=82 and
500 Gev/c?!. For the case of the leading pole

approximation we have retained only the pole terms in
M2, i.e., we have not included pole terms
corresponding  to initial state bremsatrahlung.

Therefore, this comparison fellows the same algorithm
as is wused in ISAJET, one of the mcre widely used
Monte Carle simulaticn programs., To eliminate regions
where two of the glucns become parallel or cne of them
becomesa soft in the overall hadron-hadron
center-of-mass system, a number of cuta have been
imposed. These cuts require that each of the final
state gluons have a momentum greater than 10 Ge¥/¢ in
the hadron-hadron center—of-mass system and that each
gluon be 0.5 radians away from the others and from the
beam-beam axis. These requirements are typical of the
cuts that would be used in a real experiment.
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FIG 2. The ratlo R of the leading pole and exact
results for the calculation discussed In the text.

Curves for two values of M are shown.

The results for the ratio ® shown
indicate that at sufficlently high p, the leading pole
approximation is indeed very good. {n this region of
phase space the pole in M? dominates because the gg
invariant mass is the smalleat of the possidle
invariant asub-energlea s,,. However, as one goea to
lower values of p,.. at flxeéJM or to higher values of M
at fixed p the approximation becomes worse and the
true answer Is underestimated by a factor of two or
more,

The preceeding discussicon has shown that there
are kinematic regichs in which the leading pole
approximation breaks down and that a factor of two or
more difference 1in comparison with the exact results
is net uncommon. The Monte Carlo programs as
currently formulated mway provide a useful means for

in - Fig. (2)

obtalning estimates of qualitative features of event
structures. However, «hen one {8 searching for
precise quantitative features the above lesson must be

remembered. As a general rule, it would seem
advisable to include |{n the Monte Carlo programa as
much of the exact results as are known, thereby

minimizing the use of approximation wherever possible.
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