
0 Fermi National Accelerator Laboratory 

FERMILAB-Conf-84164 
2380.000 

SOFTWARE FOR EVENT ORIENTED PROCESSING ON MULTIPROCESSOR SYSTEMS* 

M. Fischler, H. Areti, J. Biel, S. Bracker, 
G. Case, I. Gaines, D. Husby, and T. Nash 

August 1984 

* 
Presented at the Symposium on Recent Developments in Computing, PrOCeSSOr, 
and Software Research for High-Energy Physics, Guanajuato, Mexico, May 8-11, 
1984 

3 Opwatad by Unlvsrsities Research Association Inc. under contract with the United States Department of Energy 



SOFTWARE FOR EVENT ORIENTED PROCESSING ON MDLTIPROCESSOR SYSTEMS 

H. Fiachler, H. Areti, J. Biel, S. Bracker, G. Case, 
I. Gaines, D. Husby, and T. Nash 

Advanced Computer Program 
Fermi National Accelerator Laboratory 

Batavia, Illinois 60510 

ABSTRACT 

Computing intensive problems that require the 
processing of numerous essentially independent events are 
natural customers for large scale multi-microprocessor 
systems. This paper describes the software required to 
support users with such problems in a multiprocessor 
environment. It is based on experience with and development 
work aimed at processing very large amounts of high energy 
physics data. 

Introduction 

We describe here the support and system software that has been 
developed by the Fermilab Advanced Computer Program (ACP) for users 
with event oriented problems to be run on ACP multiprocessor 
computers.1 Supporting a system of over one hundred individual 
processors requires a set of efficient, flexible, and simple routines 
that control the movement of data within the system. To meet these 
requirements, the routines must be designed with particular types of 
applications in mind. Specifically, the software described here 
supports event oriented applications where the problem is naturally 
divided into a process requiring a single intelligence (such as 
reading tapes, forming statistics, etc.), and a process done once for 
each of many hundreds of events, which uses moat of the CPU time. In 
high energy physics event reconstruction, the second process is the 
actual reconstruction procedure, which does no I/O and which takes at 
least 99% of the CPU time in moat cases. 

We are dealing here with a software structure in which a host 
program feeds events down to a node program, which is replicated on 
many node processors. The user must provide the information as to how 
the particular program is to be split into a part to be run on the 
host and a part for the node. However, the user does not have to 
explicitly control the detailed logic of data transmission such as 
deciding which node is finished and should receive the next event. 
Rather, a set of FORTRAN callable subroutines is provided which are 
simple to learn to use and which handle the transmission of events to 
and from the nodes. FORTRAN was chosen because of the strong 
commitment to FORTRAN in the physics community and the large 
collection of existing FORTRAN code. 



-2- 

The concepts described here apply to any problem which is 
separable into many subproblems requiring little intercommunication. 
These include many lattice gauge theory applications, high dimensional 
integrals, tracking of particle trajectories through proposed 
accelerators, as well as problems outside physics such as animation 
and even (surprisingly) finite. element calculations. ' The system 
architecture that is natural for such. problems is a host computer 
attached to the I/O devices and to a bus on which many node processors 
reside. 

ACP Support Software - 

The ACP Support Software allows three modes for transmitting data 
between host and nodes: Constant Broadcast Mode, in which data, such 
as calibration constants, calculated by the host is loaded into all 
the nodes; Event Processing Mode, in which individual event data is 
loaded by the host into a single node, and the results collected by 
the host from the nodes as they finish; and Statistics Collection 
Mode, in which the host retrieves and accumulates results from all the 
nodes. 

A typical program will have the flow shown in Figure 1. 

Figure 1 

PROGRAM FLOW 
------- ---- 

Set up constants 

r 

Read in an event 

Process the event in the node, 
updating statistics and 
histograms 

I Output results to tape 

I Determine if finished 

Output statistics and 
histograms and terminate 

TRANSMISSION ROUTINE 
__---------- ------- 

BROADCAST 

SENDEVENT 

GETEVENT. 

ALLDONE 

SDMNODE 



-3- 

The transmission routines shown in the figure have the following 
functions: 

BROADCAST 

SENDEVENT 

GETKVENT 

ALLDONE 

SUMNODE 

Broadcasts constants to all nodes 

Sends the event to a node 

Retrieves the result from a node 

Will see if all the nodes are finished 

Collects and accumulates statistics 
from all nodes 

In Figure 2, on the following page, is an example that 
illustrates how a program is modified to take advantage of the 
routines provided. Note that about a dozen statements have been added 
to a program which is typically many thousands of steps long. 

The user support routines have been gathered into three layers of 
increasing complexity. This way a user needs to be familiar with only 
the simplest possible set of routines. A set of Layer 1 routines, 
including those referred to in Figure 1 will satisfy the needs of many 
users with programs having basic and simple requirements. Other users 
may need somewhat more flexibility. Layer 2 routines allow more 
choices for the programmer (and have, therefore, somewhat longer 
descriptions to absorb). The Layer 2 routines that correspond to the 
Layer 1 routines listed above are: 

GBROADCAST Generalized broadcast for inhomogeneous arrays. 

SENDBLOCK Allows multiple block transmiaaiona to nodes 
of one or more classes. 

GETBLOCK Retrieves multiple blocks of data from nodes of 
one or more classes. 

CBECKNODE Examines the complete status of nodes. 

GSUMNODE Generalized collection of inhomogeneous data with 
variable accumulation rules. 

For example, if it is necessary to transmit multiple blocks of data 
for each event, calls to the Layer 2 routine SENDBLOCK replaces the 
single call to SENDEVENT. Particularly sophisticated users will be 
able to use Layer 3 routines for direct control of the traffic on the 
global bus, without having to write their own device drivers or system 
calls. 

Documentation is provided in a complete and extensive "Software 
User's Guide." 3 A sample of a Layer 1 subroutine description from 
this guide appears in Figure 3. 



-‘- 

Figure 2 

Illustration of Modifications Required in User Program Running in Host 

7 
C 

a 
9 
10 
11 

12 

ORIGINAL CODE 
-------- ---- 

COMMON/RAW/DAT(20000) 
CObR4ON/ANSWER/RESULTS(lOOOO) 
COMMON/CdLIB/Cl(lOO), C2(100) 
COMMON/STATS/HIST(lO000) 
INTEGER DAT, RESULTS 

INPUT, SETUP, CONSTANTS 

. . . 

. . . 

. . . 

EVENT LOOP START 

. 
16 10 CONTINUE 
17 
la CALL BEADEVENT 
19 IF (ENIXFTAPE) co To 20 
20 

C PROCESS EVENT 
21 CALL PROCESS 

22 
23 
24 

2 CALLWRITEEVmT 

C EVENT LOOP END 
27 Co TO 10 
28 20 CONTINUE 

C OUTPUT HISTOGRAMS, ETC. 
29 
30 CALL HISTDO 

;: ::: 

C 

C 

C 

C 

10 

C 

C 

20 

C 

MODIFIED CODE 
-------- ---- 

COMMON/RAW/DAT(20000) 
COMMON/ANSWER/RESULTS(1OOOO) 
COMt4ON/CALIB/C1(100), C2(100) 
COMMON/STATS/HIST(l0000) 
INTEGER DAT, RESULTS 
LOGICAL LASTEVENT, SEND-DONE, 

ALLWNE, GET-DONE 
INCLUDE 'CACP~ACPUSER.INC' 
INPUT, SETUP, CONSTANTS 
CALL ACPINIT 
. . . 
. . . 
. . . 
BROADCAST,CONSTANTS TO NODES 
CALL BROADCAST (3, Cl, 200, REAL-'+) 
INITIALIZE NODE STATUS VARIABLES 
SEND-DONE = .TRUE. 
GET DONE = .FALSE. 
LASTEVENT = .FALSE. 

EVENT LOOP START 
. 
. 
. 
CONTINUE 
IF(.NOT.IASTEVENT.AND.SEND-DONEITHEN 

CALL READEVENT 
IF(ENKlFTAPE)LASTEVENT:.TRUE. 

ENDIF 

PROCESS EVENT 
IF(.NOT.WLSTEVENT) 

CALL SENDEVENT(DAT,20000,SEND_DONE) 
IF(LASTEVENT)THEN 

IF(ALLDONE(NODE))GO TO.20 
ENDIF 
CALL GETEVENT(RESULTS,10000,GET~DONE) 
IF(GET-DONEICALL WRITEEVENT 

EVENT LOOP END 
GG TO 10 
CONTINUE 

OUTPUT HISTOGRAMS, ETC. 
CALL SUMNODE(4, HIST, 10000, REAL-h) 
CALL HISTDO 
. . . 
. . . 
. . . 
END 



-5- 

Figure 3 

SENDEVENT SENDEVENT 

SENDEVENT passes a block of data to the first available node and starts 
that node running. SENDEVENT passes data~to block number 1. The data will be 
passed, unconverted, as 32 bit binary words. (At user option a global parameter 
can be set at compile time to cause the routine to pass down data as unconverted 
16 bit binary words.) 

CALL SENDEVENT (ARRAY, LENGTH, SEND-DONE) is equivalent to the following Layer 2 
call: 

CALL SENDBLOCK(ARRAY,LENGTH,block_number=l,ANY_NODE,ALL_CLASSES,GO). 

SENDEVENT (ARRAY, LENGTH, SEND-DONE) 

Arguments: 
Input only: ARRAY, LENGTH 
Input/result: --- 
Result only: SEND-DONE 

Return Variables: RETURN-STATUS 

Layer 1 

ARRAY: 

The first word in an array or block of data available to the calling 
program on which the subroutine will act. This must be the first variable in 
the common block to be passed to the node. 

LENGTH: 

In standard usage, this is an integer scalar with the number of 32 bit 
words of data to be transmitted. Note that a double precision variable is two 
32 bit pieces of data, and that a pair of 16 bit integers is a single 32 bit 
piece. LENGTH is an integer greater than zero, except in GETEVENT and GETBLOCK 
where LENGTH.LE.0 signifies variable length transmission. 

SEND-DONE: 

This is a logical variable, returned as .TR[IE. if an available finished 
node was found, and as .FALSE. otherwise. This must be declared a LOGICAL 
variable in the host program. 

The following are return variables available in COMMON/ACPUSER/: 

RETURN-STATUS: 

An integer vsriable that is returned to indicate the status of the 
subroutine's activity. For details see the section entitled, "Reserved Name 
Parameters and Return Status Variables." 



-6- 

Error Handling 

Error handling for a multiprocessor can and should be more 
sophisticated than on a uniprocesaor. Upon detecting an error, the ACP 
support system provides a description of the error and where it occurred. 
It also makes available, at user option, a memory dump of the faulting 
node. A third output is needed in multiprocessing environments which is 
not needed in uniprocessor computers. Since each node processes a 
different sequence of events, it is necessary to maintain a history file 
of which events a processor has done previously. This is made available 
when an error .is detected so that a diagnosis can be made on the 
development system using utilities that automatically reproduce the errant 
node's history. The support software on a production multiprocessor Only 
provides information about an error. Analysis of why the error occurred 
is done on a separate development system (described below) since time on 
the many-node production system is likely to be at a premium. 

The user can specify one of the following levels of action to be 
taken on detection of an error: ignore the error; print a warning, but 
continue running; kill the node statistics, but continue running; excise 
the offending node from the system for the remainder of the run; or abort 
the run immediately. 

Error detection falls in five categories: hardware failures detected 
by automatic bua, node, and hardware diagnostics; node software errors 
(divide by zero, etc.); node time out; user defined exceptions; 
verification exceptions. The last one is available only in a system with 
multiple nodes, and is a new type of error detection which can be very 
heipful. The same event is sent to two nodes and the results compared; 
we call this "verification.n Verification enables the system to catch rare 
software "time bombs," where a logic error in the program running one 
event causes some area to become invalid, but the invalid area is not used 
until many events later. Verification will also catch infrequent 
non-fatal (soft) hardware errors, and enable the studying of soft error 
rates. This can be inconvenient to do on uniprocessor systems. 

The Development System 

The development system is available for writing and testing new 
programs as well as for analysis of errors detected in the production 
environment. This system will consist of a host and a few samples of each 
type of node that exist on production systems. The host, a commercial 
super-mini (VAX or similar), has compilers, a symbolic interactive 
debugger, file handling, editing, and all the other features of such a 
computer. The nodes have a node compiler and a node symbolic debugger, 
when available; otherwise, a cross-compiler for the node is supported on 
the host. (The production nodes have only a stripped-down "operating 
system" called the Tight Loop Monitor, which waits for the host to tell 
them an event is ready to be run and jumps to a program which had been 
downloaded over the global bus.) 

Additional software is provided on the development system to support 
error analysis. This includes a convenient way to work through the node 
memory dump available when errors occur, a facility for reconstructing a 



-7- 

particular sequence of events from the history file to duplicate the 
conditions under which errors had occurred, and support for I/O directly 
from the node. 

There is also a set of quick and simple automatic procedures for 
users to compile and link the node programs forming node executable images 
and download node programs under the control of the host FORTRAN program. 
These are available for use in both the development and production 
systems. They allow the uaer to select options both at compile and run 
time concerning how the system is to behave when handling errors, passing 
data to nodes, etc. 

In conclusion, Fermilab's ACP has developed, in addition to the 
hardware, user friendly software for using its multiprocessor systems. 
The same software concepts can be employed over a broad range of problems, 
and with various implementations of the hardware architecture. 

1. 

2. 

3. 

References 

I. Gaines, et al. wFermilab's Advanced Computer Program," 
Proceedings, this conference, FERMILAB-Conf-84/63. Thomas Nash, et 
al. "Fermilab's Advanced Computer Reseach and Development Program," 
Proceedings, Three Day In-Depth Review on the Impact of Specialized 
Processors in Elementary Particle Physics," Padova, 1983, p. 227. 
Yari Areti, et al. "ACP Modular Processing System: Design 
Specifications," Rev. April 2, 1984, FN-402. See also Reference 3. 

John A. .Swanson, talk at Forefronta of Computing Conference, NBS, 
Gaitheraberg, Maryland, June 25-27, 1984. 

Advanced Computer Program, "ACP Software User's Guide for Event 
Oriented Processing,D Rev. June 18, 1984, FN-403. 


