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Introduction 

Up until the last fifteen to twenty years, cosmology had been 
considered as a link between astrophysics and general relativity. 
Although nuclear physics began to play a role as early as the 1940s 
when big bang nucleosynthesis 1) was first discussed as a possible 
cosmological origin of the elements, 
the microwave background radiation2 f 

.t was not until the discovery of 
that the big bang model was 

placed as the front-running cosmological model. More recently, with 
the advent of grand unified theories (GUTS) cosmology has played a" 
integral role in particle physics. Among the most important results 
due to the interplay between cosmology and particle physics are, for 
example, the cosmological limits that one sets on particle abundances, 
masses, and lifetimes which set guides for building unified models. 
On the other hand, the incorporation of GUTS into the big bang model 
led to a theory of big bang baryosynthesis 3, to explain the slight 
exce.ss of matter over antimatter. 

In the first three parts of these lectures, we have presented the 
current status GUTS and supersymmetric GUTS (global and local). In 
this final part we will try to cover the status of the big bang model 
and in particular its role in unification models. To do this, we will 
begin by reviewing the essential ingredients from general relativity 
needed to describe fully the Friedman-Robertson-Walker and De Sitter 
models. These models which include the standard big bang model will 
be discussed in some detail. In section 3 we will review the current 
status of big bang nucleosynthesis and the origin of the light ele- 
ments. This discussion will include the cosmological bounds on the 
baryon to photon ratio and limits on the number of light neutrino 
flavors. I." section 4, we will derive the limits on neutrino masses 
and lifetimes. In section 5, we arrive at the junction between GUTS 
and cosmology and will review the present status of baryon generation 
in the very early Universe. We will examine both standard and super- 
symmetric GUTS. The remaining two sections are those which link cos- 
mology and particle physics most closely. In those sections, we will 
discuss the major problems with the standard big bang model and 
describe 

f" 
detail their solution in the 

scenario.4 
inflationary Universe 

Once again, our discussion will include both supersym- 
metric and non-supersymmetric GUTS. 
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Section 1. Essentials From General Relativity 

Let us begin these lectures on cosmology by stating our main 
guiding assumptions. These assumptions are in fact so basic that they 
are really at the foundations of all modern physics. They are: 

1) The Copernican Principle: we are not privileged observers. 
On the average we do not expect the Universe to look any 
different from any other spatial position. 

2) The Relativity Principle: physical laws do not depend on 
space-time. Without such an assumption, it would, of course, be 
impossible to consider any cosmological model or any description 
of the Universe as a whole. 

These two principles taken together are commonly referred to as: 

The Cosmological Principle: the Universe is isotropic in all 
measurable properties at all times over all space. That is, the 
Universe is spatially homogeneous and isotropic. This is of 
course an extremely strong assumption which may or may not have 
been true throughout the history of the Universe. I" section 6, 
we will look more closely as to how good an assumption this 
really is. 

There are two immediate co"seq"e"ces of the Cosmological 
Principle. The first is that the only true velocity fields allowed 
are either overall expansion or contraction. Other possibilities, 
such as, rotation, shear, combined expansion and contraction are all 
contained in the anisotropic Bianchi models. 5) Though these may have 
been important initially, we will not consider them here. 
Furthermore, any expansion or contraction present must have no 
apparent center. That is to say that the relative velocity between 
any two observers most depend only on their separation 

"12 = Hr12, (1.1) 

where H is a Universal spatial constant. This (1.1) is also known as 
Hubble's Law. The second consequence of the Cosmological Principle is 
that there must exist a measure of distance which is independent of 
direction. Such a measure ndght be, for example 

d = x/H, (1.2) 

where z is the redshift (blueshift) due to the expansion (contraction) 
of an emitted signal. 

More generally, the second consequence implies that there exists 
a metric which does not depend on direction. Formally, a metric g is 
a symmetric tensor of the form 

g = g,, dx" dx" (1.3) 
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and defines the line element d 2. 
,) I )lY2. 

To each vector X, the metric 
assigns a magnitude (19 (X,X The vector X will be time-like, 
""11, or space-like depending on whether 

g (X,X) < 0 time-like 
g (X,X) = 0 null 
g (X,X) > 0 space-like. 

(1.4) 

Furthermore, the metric mst ix non-singular so that it has a" inverse 
defined by 

and 

g-1 zgwa - a 

a2 ax” 
(1.5) 

g !Jv g,), = &“A- (1.6) 

If we now apply the Cosmological Principle to the metric g we see 
that we must have 

goi = 0 

gij =0 ifj 

or 

ds2 = g dt2 + giidxidxi. (1.8) 
00 

One can further define a set of coordinates so that without loss of 
generality the homogeneous and isotropic metric will take the form 

ds2 = -dt2 + R2(t) do2, (1.9) 

where da2 is the three-space metric of constant curvature and is time- 
independent. The different three-space geometries will then be those 
of positive, negative, and zero curvature. In general, we can write 

do2 = dr2 + f2(r) (de2 + sin28 de2) (l.lOa) 

and 

sinr k = +l 
f(r) = sinhr for k = -1, (1 .lOb) 

r k=O 

where k is the curvature constant representing the sign of the 
intrinsic curvature of the space time (see below for a more formal 
definition of k). Homogeneity and isotropy guarantee that the form of 
f will be independent of 8 and $. This metric know" as the Freidmann- 
Robertson-Walker metric can be written in a more compact form, 
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2 
ds2 = -dt2 + R*(t) id' 

l-kr2 
+ r2 (de2 + sin2 ed+2)]. (1.11) 

In order to derive the equations describing the dynamical evolu- 
tion of a cosmological model with metric (l.ll), we will have to 
briefly review the necessary ingredients from general relativity. To 
begin with, the covariant derivative of a vector Xv is defined by 

DpX"= X; + TV X0= Xv 
!J "(I ;!J 

DX 
u " 

=x -r" x 
(1.12) 

=x 
UP" ""0 v;u' 

where 

” x9u = auXv and X 
V," 

= apxv (1.13) 

is the ordinary derivative and the connection (Christoffel symbol) is 
given in terms of the metric by 

r" =i[g "0 PO," + gvp,o - g"o,J gpu* (1.14) 

(Note that r' = I" is symmetric in its lower two indices.) 
the connectio?(1.14~, the Riemann curvature tensor is defined by 

Using 

Ra 
UP” = 

r” - r” + rh ra - rx ra 
W,P P",U W Pi PIJ Xv' (1.15) 

A space-time will be defined to be flat if REP,, = 0. Contracting on u 
and p we have the Ricci tensor R and on further contraction we have 
the curvature scalar R, which are'&fined by 

R = R” = ra - r” + r” rp - r” rp 
uv uuv PV,U al,” !Jv OP Pll 0v 

(1.16) 

Rc = R; = Ruvg"". (1.17) 

The curvature constant used in (l.lOb) is related to the three-space 
Ricci tensor (i,j running only from 1 to 3) which is given by (for 
maximally symmetric three spaces) 

3R 
i.i 

= 2kgij 

with a three-space curvature scalar 

(1.18) 

3Rc= 6k. (1.19) 

k is then normalized to *l,O by adjusting the scale factor R(t) in 
(1.9) and (1.11). Finally, we must define our energy-momentum tensor 

T 
uv = PgV, + (P + P) " Uy' u 

(1.20) 



-5- 

where p is the isotropic pressure, p is the total mass-energy density 
and u,, = (l,O,O,O) is the velocity vector for an isotropic fluid. 

We are now able to begin to derive the equations describing the 
evolution of the Friedmann-Robertson-Walker models. We begin with 
Einstein's equation 

G ER 1 
- 2 gL!v Rc = 

uv uv 
8nG T 

N NV - k& (1.21) 

where GN is Newton's gravitational constant and A is what is known as 
the cosmological constant. To derive the field equations we must 
first work out the set of Christoffel symbols (i,j run from 1 to 3 
only) 

r ? 
lj = ;: gij 

rij = ri 
JO 

= &R)6; 

ril = kr (l-kr*)-1 (1.22) 

r& = -(I-kr')r ; ri3 = -(l-k=%) rsin*3 
2 2 3 3 

r12 = rzl = r13 = r31 = ijr 
2 3 3 

b3 = -sine ~0~8 ; rz3 = rs2 = cot8. 

Using this, we find that the only non-vanishing Ricci coefficients are 

R; = 3;;/R 

R; = R; = R; = 12 (k/R)' + (i/R) + (2k/R2)]. 
(1.23) 

Hence the curvature scalar is 

Rc = RI = 6[(i/R)2 + (i/R) + (k/R')]. (1.24) 

Let us now examine Einstein's equation (1.21) using (1.23) and 
(1.24). If we concentrate first on the O-O term in the field 
equations we find the standard Friedmann equation 

Hz Z (i(,R)2 = !?$ _ + + 4 

and defines the Hubble parameter Y. This equation may be thought of 
as describing the total energy content of the Universe. If we just 
rewrite (1.25) as 

8vG.g 
-k = R’ - - 

3 
R2-ii, 

3 
(1.25') 



-h- 

we can interpret -k.as the total energy of the system, the kinetic 
term represented by R2, the gravitational potential energy by the term 
containing p, with an additional energy source available in A. A 
helpful analogy is the total energy of a rocket at lift-off. If the 
total energy is positive (in this case k < 0) then the initial kinetic 
energy is great enough (the initial velocity is greater than escape 
velocity) and the rocket will escape the gravitational pull of the 
earth, or, in our case, the Universe will continue to expand forever, 
i.e., the Universe is open. If on the other hand, the total energy is 
negative (k > 0), the rocket will fall back to earth, and the Universe 
will recollapse, i.e., the Universe is closed. In the third 
possibility (k = 0), the Universe corresponds to the rocket just at 
escape velocity and the Universe will expand indefinitely. This is 
know" as the critical or spatially flat Universe. 

There is one additional equation which comes from the spatial 
components in Einstein's equation (1.21). 

2&/R) + (i/R)' + (k/R2) = A - 8nGNp, (1.26) 

or substituting for R/R we have a" equation for the acceleration 

4nGN 
(i/R) = 5 - T (P +3p). (1.27) 

The final equation that we need in order to set up the class of 
homogeneous and isotropic cosmological models comes from energy 
co"servatio" 

or 

Ti-lV. 9” = T":, + r” TV’ +rv p = 0 
w VP 

(1.28) 

b = -3 (k/R) (P+P). (1.29) 

I” the remaining six sections of these lectures, we will 
concentrate on interpreting the consequences of equations (1.25), 
(1.271, and (1.29). In particular, we will search through the class 
of solutions for the set which can most closely resemble our observed 
U"iWrSi?. Given general relativity the rest should be easy. All we 
need to know is the full equation of state (p[pl) at all temperatures 
and whether or not k = +l, -1, or 0. 
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Section 2. Standard Cosmological Models 

The Friedman-Robertson-Walker metric (1.11) covers the full 
range of isotropic and homogeneous cosmological models. In these 
models, there are basically four independent quantities which need to 
be specified. They are 1) the sign of the curvature constant k; 2) 
the value of the cosmological constant A; 3) the equation of state 
P(P). The fourth quantity, as we will see below, essentially 
corresponds to a measure of total entropy. This makes, however, no 
qualitative difference between the models. 

The simplest type of space-tinr? described by (1.11) is that of 
empty space, i.e., p = p = A = 0. 4s can be seen from Eq. (1.25), 
such a space time can be either critical or open. The critical case 
(k = 0) is just that of a non-expanding Minkowski space which is used 
in special relativity, 

ds2 = -dt2 + dx2 + dy2 +dz2. (2.1) 

It is also possible to give the space-time some intrinsic curvature 
with k = -1. In this case we find [from Eq. (1.25)1 that the scale 
factor grows linearly with time 

R 0: t. (2.2) 

Although R =R = 0, there are components of Ro f 0. This space 
is open (bq defi%tion k = -1) and continues to exl!%d indefinitely. 

The more interesting class of models have either or both p f 0, 
A f 0. Before attempting to classify the full range of these models, 
let us look at two more simple examples. In each case we will take A 
=k=O. In the first case we specify the equation of state as 

P = P/3, (2.3) 

which is the equation of state of a free gas of radiation. If we use 
this equation of state in the equation for energy conservation (1.29), 
we have 

; = -4(i/R)p (2.4) 

or p = R-4 . From the Friedman" equation (1.25) we then find that 

R = t1'2. (2.5) 

Finally using both (1.25) and (1.29) we can solve for the "age" of the 
Universe by 

(b/p) = -4(8n~~p/3)~/2 (2.6) 

leading to 
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t = (3/32nGNp) 1'2 + constant. (2.7) 

This is typically referred to as a radiation-dominated Universe. 

The second useful example is described by choosing the following 
eauation of state 

p=o P f 0, (2.8) 

i.e., we have a dust-filled or matter-dominated Universe. Once again, 
energy conservation (1.29) tells us that 

; = -3(&/R) p (2.9) 

or p = R-3. From (1.25), we find the time dependence of the scale 
factor 

R= t2'3. (2.10) 

In the standard big bang model, the Universe has spent nearly all of 
its lifetime in one of these two cases. 

Let us now examine more completely the full class of the 
Friedmann-Robertson-Walker models. First let us define a quantity Q 

Q = g - BTG~P (2.11) 

we can then rewrite (1.25) as 

(k/R) = i [(A - Q)/311" (2.12) 

which immediately tells us 
of A > Q ). 

that Q < A (see below for explanation 
Furthermore, we will specify the equation of state by 

P = (Y - l)P 1<yc2 (2.13) 

and from (1.29) we know that p = R-3y . We can see the qualitative 
behavior of Q by looking at its derivative with respect to the scale 
factor R, 

dQ -6k 
24nGNyp 

z =T-+ R ' 
(2.14) 

Hence we see that for k = -1,0 Q has no extrema, begins at * (as 
R+ 0) and monotonically increases to Q = 0 as R + m. When k = +l, Q 
again begins at --. The Universe becomes curvature dominated (i.e., 
when the curvature term dominates over the energy density and constant 
terms), when Q = 0 (and A is sufficiently small). Q then has an 
extrema when dQ/dR = 0 which occurs at R0 when 

Q max = 4aGN(3y-2)~. (2.15) 
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At larger values of R, Q monotonically decreases to 0 = 0 as R + -. 
The behavior of Q (R) is schematically shown in Fig. I 

*1 

hcrit 
50 mm 

k =+l 

Fig. 1. Schematic plot of Q(R) for k = +l, 0, -1. 

Let us begin the classification of cosmological models with those 
containing matter (p # 0) and with a variety of choices for A. 
Depending on the choice of A, we arrive at a wide class of models. 
The most interesting cases are those of closed Universes. (k = +l). 

A. k = +l, A = A1 > Q,,,. 

There are two solutions in this case corresponding to the + and - 
signs of Eq. (2.12). The + solution corresponds to an expanding 
Universe. The model begins with a singularity at R = 0 and expands to 
infinity. The expansion rate (R/R) will have a minimum when Q = Q . 
As R+- the model approaches a De Sitter-type solution (see be'Co$) 
with a typical expansion rate given by 

ri/R = (A/3)"2 (A > > Q) (2.16) 

R m exp[(A/3)1'2 tl. (2.17) 
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It is interesting to note that although, we have a closed Universe 
here, it does continue to expand forever without a recallapse typical 
of most closed models. This is of course due to the presence of the 
cosmological constant suppling an additional "force" for expansion. 
The - solution to (2.12) corresponds to a contracting Universe which 
begins (t = 0) at R = m and contracts to a singularity. Both of these 
solutions would in a sense track the full curve for k = +l in Fig. 1. 

At this point, it is worthwhile to make two comments which apply 
to this solution and to those which follow. Nearly all of the sol- 
utions contain singularities in the space-time. This has been shown6) 
to be a necessity for a wide class of models which satisfy the energy 
condition 

R X'X"> 0 
PV 

for every non-space-like vector Xv. We will point out those 
which do not satisfy this condition and hence do 
singularities. The second point is that the vast majority 

solutions 
not have 
of models 

discussed do not correspond to our physical Universe. As we will 
discuss below, we know the value of A is very close to zero and hence 
Q < 0 today. We also know that the Universe is expanding, hence the 
contracting models are also not possibilities. We will point out 
those solutions which tight be candidates for describing our present 
state. 

(2.18) 

B, k = +l, A = Acrit = Q,,,. 

This case actually has five independent solutions. The first of 
these is known as the Einstein Static Universe. It corresponds to the 
non-expanding, 
is 

non-contracting solutions with Q = A always and R = R0 
constant. we see now, for the first time, that in order to 

completely describe this model, it is necessary to specify the value 
of R0 or equivalently the total energy density. Recall in this case 

k 1 -c-z 
R2 R2 0 0 

4nGNyp. 

As we will see below, this is also equivalent to specifying the total 
entropy. This solution was the original motivation for Einstein to 
introduce the cosmological constant in order to cancel-out the 
expansion of the Universe. In this model, all quantities remain 
constant with time. This model also has no singularities in either 
the past or future. 

The remaining four solutions all asymptotically approach the 
Einstein static model in either the past or the future. There are two 
sol"tio"s which begin with (very nearly) static solutions and 
depending on the sign in (2.12) either expand out towards R = m (non 
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singular) or contract in towards a singularity St R = 0. The other 
two solutions expand from a singularity or contract from R = - (non 
singular) and asymptotically approach the static Universe in the 
future. 

C. k = +l, A2 > 0 

To trace the evolution for this case, one can imagine cutting 
Fig. 1 horizontally at Q = A there are then two separate 
possibilities. The first is sue 5 that the Universe begins St a 
Singularity R (0) = 0 and expands until Q = AZ at which time I? = 0, 
the expansions halt and the Universe begins its collapse back to a 
singularity. This is more typical of what we imagine for a closed 
UIliVerSe. Once again the total entropy must be specified in order to 
determine the maximum radius the Universe takes when R = 0. For 
values of A which are very close (or equal) to zero, this model is a 
possible cazdidate for our physical .Universe. 

The second possibility for this caSe is on the right-hand side of 
Fig. 1 for Q < A2 and R > Ro. This solution is also non-singular but 
does not include A2 = 0 as a possibility. In this solution the 
Universe initially contracts from R = w until once again Q = A2 > 0 
when R = 0 and the Universe "bounces" and begins to re-expand. 
Because this solution is surely not (nor ever was) dominated by matter 
or radiation, it does not represent a possible candidate. 

D. k = +l, A = A3 < 0 

This solution is essentially identical to the first one of case 
C. It begins at a singularity and expands until Q = A3 and then col- 
lapses. Unless A3 is again very close to zero, this is not a realis- 
tic choice. 

E. k = -1, 0, A > 0 

BeCaUSe the cosmological solutions to k = -1 and k = 0 are 
qualitatively similar, we will not distinguish them here. For A > 0, 
there are again two sol"tioos corresponding to the two signs in 
(2.12). One solution is an expansion from an initial singularity to R 
= co* For A = 0, this is perhaps the most likely candidate. The 
second solution is a contraction from R = - to a Singularity St R = 0. 

F. k = -1, 0 A<0 

This case is qualitatively identical to case D. 

G. p = 0, k = +l, A > 0 

For completeness, we also present the possibilities in which 
there is no matter present. For p = 0, we have 
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Q=3k 
R2 

The behavior of Q is shown in Fig. 2. 

(2.20) 

Fig. 2. Schematic plot of Q(R) for k = +I, 0, -1, and p = 0. 

There is only one solution in this case which has the Universe 
initially contracting in from R = m until Q = A when the Universe 
bounces and begins to expand back out to R = =. For causal Universes, 
k = +l forbids the possibility that A < 0. 

Y. p = 0, k = 0, A>0 

This solution most clearly has the De Sitter exponential 
expansion. It is indeed a space with constant curvature and constant 
expansion rate 

. 
H2 = R2/R2 = A/3. (2.21) 

It may either exponentially expand to R = a or exponentially contract 
to a singularity from R = m. In this case, A = 0 corresponds to 
Minkowski space and A < 0 is again forbidden. 

I. p = 0, k = -1, any value of A 

This case is qualitatively identical to that of k = -1,0 with 
matter, cases E and F. 

J. A<Q 
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As we have indicated, Q < A is forbidden in a causal Universe. 
It does represent a class of solutions known as anti-De Sitter spaces 
and contains closed time-like paths. It will not be in the scope of 
these lectures to pursue these solutions any further. 

The above set of cosmological models covers the full range of 
homogeneous and isotropic Universes. We will now briefly review some 
properties and observables of the Universe today. It is important to 
note that because of the scaling with R there is a sequential rele- 
vance of terms in the expansion rate. As we have seen in a matter- 
dominated Universe p - Rd3, 
e R-k 

while for a radiation-dominated Universe p 
which means that at early times (small R) the expansion rate 

will be dominated by either matter or radiation. Eventually, at large 
enough R if k f 0, the curvature term will begin to dominate until 
finally the Universe is controlled by the cosmological constant if it 
exists. Each of these periods has a different time-dependent 
expansion. In particular, we know that the expansion today is not 
governed by the cosmological term and hence we will assume A = 0 until 
section 7. With that, the Hubble parameter can be expressed as 

81TGN Hz =-kc7 p. 
R2 

We can define a critical energy density p, such that p = p, for k = 0 

PC 
3~~ 

=8nG 
N 

(2.23) 

In terms of the present value of the hubble parameter 

PC = 1.88x1O-2g "'0 g CUI-~, (2.24) 

where 

ho = Ho/(100 km M;f s 
-1 

) (2.25) 
-. 

is the present value of the 
s-1. 

Hubble parameter in units of 100 km M,r 
The cosmological density parameter is then defined as the ratio 

of the present energy density to the critical density 

0 = PIP,. (2.26) 

Furthermore, the value of R will determine the sign of k. For L1 > 0 
we have k = fl, Sl=lcorrespondstok=OandSl<Otok=-1. In 
terms of n the Friedmann equation can be rewritten as 

(fi - 1) H'o = !?-. 
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It is also useful to define an additional quantity known as the 
deacceleration parameter 

qo 
E -RR/k2 (2.28) 

and from Eq. (1.27) we have 

or 

qo 0 H2 = 4nGN (I) + 3p)/3 (2.29) 

2q 0 = (3y-2)R. (2.30) 

The measurement of q. is extremely difficult and at best there is only 
a limit q. < 2 which for a matter-dominated present Universe corres- 
ponds to a < 4. To be sure a low value q. corresponding to 0 < 1 is 
also allowed indicating that as we can not even determine the sign of 
k, we are not as yet curvature dominated. 

As we have said repeatedly, the Universe is expanding. This is 
perhaps the oldest discovery of modem cosmology and involves the mea- 
surement of the cosmological redshift. (In a contracting Universe 
there would be a cosmological blue shift.) If we take again our 
example of section 1 of two observers in which a light signal is emit- 
ted by 1 and received by 2, the redshift is then defined by 

"1 - v2 
z 5 

"2 "12/C (2.31) 

for nearby observers, where vl, the emitted and observed 
frequencies corresponding to a ? are re ative between the 
observers. 

velocity v12 
For large separations, care must be taken, and distances, 

and timescales, and hence velocities must be derived by integrating 
over the mtric. Yowever, v12 is determined by the expansion by 

"12 = i 6r, (2.32) 

where 6r is the coordinate separation of the two observers. 
signals (ds2 = 0) Eq. (2.32) can be rewritten as 

For light 

“12 = (1 R6r = H6t = Hd, (2.33) 

where d is the physical separation of the two observers. Finally, we 
see that a determination of z and d will lead to a value of the Hubble 
parameter. Present limits are 

50 km M;; s 
-1 

~H&OOkmM;f s 
-1 

(2.34) 

or 

l/2 i ho 1. 1. (2.35) 
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In addition to determining the present density of the Universe or 
the density parameter by measuring qo, it is also possible by means of 
measuring mass-to-light ratios. The mass of a galaxy or gravitational 
system if in gravitational equilibrium can be computed via the virial 
theorem from measured rotational velocities. The total mass of the 
system is then compared with its absolute luminosity which is derived 
from the measured apparent luminosity. The total density P is then 

P=(t)& (2.36) 

where (M/L) is the above described mass- o-light ratio and d is the 
total luminosity density of the night sky7 F 

f = 2x108 ho Lg M;:, (2.37) 

where Le is the solar luminosity L@ = 3.9x1O33 erg s-l. we can now 
define a critical mass-to-light ratio 

(M/L), = PC/f = 1200 h,, (2.38) 

and the cosmological density parameter is given by 

fi = (MIL)/(MIL)c. (2.39) 

In principle this could give us an accurate determination of R. The 
problem is that the derived value of Cl seems to depend on what scale 
we measure (M/L). For example, 
different values8) of il 

the following four systems all give 

I) solar neighborhood 

(M/L) -2 *.=>a - (0.0016 f 0.0008)/h0 

2) central parts of galaxies 

(M/L) - (10-20) ho => R - (0.008 - 0.017) 

3) binaries and small groups of galaxies 

(M/L) - (60-180) ho => n - (0.05 - 0.15) 

4) clusters of galaxies 

(M/L) - (300-1000) ho => R - (0.25 - 0.8). 

The dependence on h of the last three mass-to-light ratios is due to 
the uncertainties in0 estimating the mass and absolute luminosities of 
distant objects. It is evident that as we look on larger and larger 
scales the value of $1 seems to be increasing. This is known as the 
missing mass problem. In particular, it seems to indicate that there 
is dark matter present in the Universe on large scales. Neutrinos 
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(and/or perhaps stable supersymmetric particles) are a popular 
candidate. Although there is no evidence for Q > 1 this alone is not 
sufficient to prove that we live in an open Universe. 

There is one additional quantity which is a measureable relic of 
the big bang, that Is, the temperature of microwave background radi- 
ation. If we take the premise that at very early times as R + 0, the 
density of radiation becomes very high corresponding to a very high 
temperature, we should see a relic of this temperature today. In 
particular, as we will see shortly, the temperature of the radiation 
falls off as 

T - l/R (2.40) 

in an adiabatically expanding Universe. The radiation would have 
remained in thermal contact with the matter just until the recombin- 
ation of free electrons and protons to make neutral hydrogen at about 
T - 4000°K. Subsequently, the radiation would have redshifted down to 
a very low temperature today. In fact, this 
was observed in 1965 by Penzias and*Wilson 

,Ijad;at;o;hi,; ezX;;e;h;; 

isotropic blackbody with a temperature of 2.7'K. 

Today, the content of the microwave background consists of 
photons. We can calculate the energy density of photons by 

% 
= i E dn 

Y Y' 
(2.41) 

where the density of states is given by 

dnY = s [e~p(~~/~)-l]-l q2dq (2.42) 

=nd gy = 2 simply counts the number of degrees of freedom for photons, 

EY = q is just the photon energy (momentum). (We are using units such 
that fi = c = kg = 1 and will do so throughout the remainder of these 
lectures.) On performing the integral in (2.41) we have that 

712 
py = i5 

T4 (2.43) 

which is the familiar blackbody result. 

In general, at very early times, at very high temperatures, other 
particle degrees of freedom join the radiation background when T - 
for each particle type i if that type is brought into therma 9 
equilibrium through interactions. In equilibrium (we will define this 

*The present range for the temperature is between 2.7 and 3°K. The 
original measurement by Penzias and Wilson was not as exact, they 
found To = 3.5f 1°K. 



-17- 

notion more precisely shortly) the energy density of a particle type i 
is given by 

and 
Pi = jEidnq. 

I. 
(2.44) 

dn gi 
=- [exp[(E - 

qi 2n* 
P,)/TI +_lj -'q2dq, (2.45) 

qi 

where again gi counts the total number of degrees of freedom for type 
i 

E% = (+ + qf)1'2. (2.46) 

pi is the chemical potential if present and +z corresponds to either 
fermi or bose statistics. 

We can also define the other thermodynamic quantities such as the 
entropy density. 

si =$ [j Eq,dnq + 5 jl"(lG )d3qi, (2.47) 

1 i 41 

“% = jexpj(E - vi)/Tjk 11 -l. (2.48) 
qi 

The free energy is just 

and 

Fi = pi - Tsi = uini- pi (2.49) 

"i = Idn 
41' 

(2.50) 

The chemical potential is generally taken for net baryon number. 
However, as we will discuss in section 3, the net baryon number 

"B- "g "B 
n= 

"Y 
- n - o(lo-lo) 

Y 
(2.51) 

is very small, and one usually neglects the chemical potential. 

At this point, it will be useful to note that the conservation of 
energy Eq. (1.29) also implies conservation of entropy. Having set u 
= 0, we can rewrite (2.49) as 

s =+ (p + p). (2.52) 

In addition, we have the thermodynamic identity 
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dF dP 
-FF=TiT=s’ (2.53) 

Equation (1.29) can also be rewritten as 

R”$ = & [R3 (p + p,]. (2.54) 

Combining these two equations, we have 

& [R3 s] = 0 

or conservation of total entropy. 

(2.55) 

We can now see how the specification of total entropy determines, 
for example, the maximum radius of a closed Universe. For a simple 
gas of photons s = (l/T) (p + p) = (4/3T) p = T3 hence we have that 

RT = constant. (2.56) 

Thus, in addition to the equation of state, we must specify the 
temperature (or total entropy) at the maximum radius, i.e., the 
constant in (2.56). 

Returning to our discussion of a free gas at high temperatures, 
it will be useful to look at the limit at which T >> 9, i.e., a 
relativistic gas. In general, the total energy density is given by 

p = (; Q+;; 9,) $ T4 E $ N (T) T”, (2.57) 

where ggcFj are the total number of boson (fermion) degrees of freedom 
and the sum runs over all boson (fermion) states with m << T. The 
factor of 7/8 is due to the difference between the fernd and bose 
integrals. Equation (2.57) defines N(T) by taking into account new 
particle degrees of freedom as the temperature is raised. 

Once again, we can compute the pressure and entropy density in 
the high temperature limit 

9 
P = p/3 = T N (T) T4 (2.58) 

s = 4/3( $ ) = 2g N (T) T3. (2.59) 

We can also rewrite Eq. (2.7) giving us a relationship between the age 
of the Universe and its temperature 

t = (90/32n3 GNN(T))1’2T-2. (2.60) 

Put into a more convenient form 

tT&V = 2.4 [N(T)]-‘I*, (2.61) 

where t is measured in seconds and TMeV in units of MeV. 
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The value of N(T) at any given temperature depends on the 
particle physics model. In the standard SU(3)xSU(Z)xU(l) model, we 
can specify N(T) up to temperatures of O(100)GeV. This is done in the 
following table. 

Table 1 

Temperature New particles 4NC'I-j 

T < me y’s + v’s 29 
me < T < m,, e* 

!Jf 
43 

mp < T < m,, 57 
m,, < T < T; n's 69 

Tc ' T ' *strange ills + ", ;, d, d + gluons 205 
*s ' T ' *charm ss 247 
m, < T < m, cc 289 
*; < T < *dottom 
mb ' T ' *top 
mt < T < s 

303 
345 
387 

* 
T, corresponds to the confinement-deconfinement transition between 
quarks and hadrons. 

4t higher temperatures, N(T) will be model dependent. 
the minimal SlJ(5) model, 

For example, in 

from W*, 
one needs to add to N(T), 6 states coming 

2, 24 for the X and Y gauge bosons, another 24 from the 
adjoint Higgs, and another 10 from the 2. 
SU(5) N(T) = 160.75. 

Hence for T > M, in minimal 
In a supersymmetric model this would at least 

double, with some changes possibly necessary in the table if the 
selectron (scalar partner of the electron) has a mass below Q. 

Much of the preceding discussion has involved the notion of a 
temperature and all of the thermodynamic quantities (2.57-2.59) depend 
on the assumption that the particle states which are counted in N(T) 
must be in thermal equilibrium. Therefore, we will define this notion 
in the context of an expanding universe. Particle states will be said 
to be in thermal equilibrium if there is a reaction rate involving 
that state which is fast on an expansion time-scale. 

If, for example, the Universe were not expanding, then given 
enough time, every particle state would come into equilibrium with 
each other. Because of the expansion of the Universe, certain rates 
might be too slow indicating, for example, in a scattering process 
that the two incoming states might never find each other to bring 
about an interaction. Depending on their rates, certain interactions 
may pass in and out of thermal equilibrium during the course of the 
Universal expansion. Quantitatively, for each particle i, we will 
require that some rate ri involving that type be larger than the 
expansion rate of the Universe or 
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ri > H 

in order to be in thermal equilibrium. 

(2.62) 

A good example of processes in equilibrium at some stage and out 
of equilibrium at others is that of neutrinos. If we consider the 
s andard 
es + e- 

neutral or charged-current interactions such as 
-V+;Or e +v - e + v, etc., very roughly the rates for 

these processes will be 

r = an v, (2.63) 

where 0 will be taken as the weak interaction cross section 

LI e.. 0 (10-2) T2/M$ (2.64) 

n is the number density of leptons 

n - T3 (2.65) 

and v their relative velocity (v .C 1). Hence the rate for these 
interactions is 

r wk - O(1O-2) T5/M$ (2.66) 

The expansion rate, on the other hand, is just 

8nGNp l/2 l/2 
H = (7) = ;;" N(T)] (-- T2 /Mp 

(2.67) 
- 1.66 N(T)1'2 T2/Mp, 

where the planck mass is defined by 

M 
P = %Y2 

= 1.22x101~ Gev. (2.68) 

Neutrinos will be in equilibrium when rwk > H or 

T > (500 e/Mp)1'3 - 1 MeV. (2.69) 

The temperature at which these rates are equal is commonly referred to 
as the decoupling or freeze-out temperature and is defined by 

I' (Td) = H(Td). (2.70) 

For temperatures T > Td, neutrinos will be in equilibrium, while for T 
< Td they will not. Basically, in terms of their interactions, the 
expansion rate is just too fast and they never "see" the rest of the 
matter in the Universe (nor themselves). Their momenta will simply 
redshift and their effective temperature (the shape of their momenta 
distribution is not changed from that of a blackbody) will simply fall 
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with T = 1/R. It is interesting to note that at very high 
temperatures neutrinos were again out of equilibrium. The interaction 
rate Eor T >> Q behaves as 

r ,& . T3, (2.71) 
T2 

where g is some gauge or Yukawa coupling then r -H when 

g"T - N1'2 T2/M 
P (2.72) 

or 

T - N-1'2 g4 Mp - 1Ol5 Ge". (2.73) 

Thus at temperature scales much hi her than the GUT scale, equilibrium 
might be a very bad approximation. 95 

4t the epoch of neutrino decoupling, T - 1 MeV, the neutrino 
"temperature" is still equal to the thermal background temperature 
which includes only photons, electrons, 
decoupling the e* 

and positrons. Soon after 
pairs begin to annihiliate (when T i me). The 

energy released, as we will see, is served to heat up the photon 
background relative to the neutrinos. Because the neutrinos are 
decoupled, their entropy must be conserved separately from the entropy 
of interacting particles. If we call T>, 
e* before annihilation, we also have TV 

the temperature of photons, 
= T> as well. The entropy 

density at T = T> is just 

= (;) (&) (q) T; (2.74) 

while at T = T<* the temperature of the photons just after 
annihilation, the entropy density is 

4 
s<=7 Ty ‘< = (;I ($1 (2) T; (2.75) 

and by conservation of entropy (‘2.55) s< = s> and 

Thus, the photon 
"e"tri"os because 
the neutrinos, and 

(T</T>j3 = 1114. (2.76) 

background is at higher temperature than the 
the annihilation energy could not be shared among 

T" = (4/11)“3 T., = 1.9"K. (2.77) 

The same type of phenomena would also occur if there are other 
neutral temperatu;~ep.k'lg) interacting particles which decoupled at higher 

A possible example of such a particle might be the 
graviton. If we assume that the decoupling temperature in this case 
is Td = Mp then the photons would have received the energy due to the 
annihilation of every other particle species relative to the 
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gravi ton. In this case s> = (4/3) (x2/30) N (M ) T3 and s = 4/3 
(n2/30) (2) T3 so that TG = (2/N(M )1'3T~. 
minimal W(5), we must have N(M ) 1 16% or 

Asp we have s&d for 
TG < 0.7"K. 

supersymmetric model N(Mp) 2 358and TG < 0.5'K. 
ln a minimal 

This concludes the review of the standard cosmological models. 
We will now build on this by tackling the questions on the origins of 
elements, the baryon asymmetry and even the homogeneity and isotropy. 
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Section 3. Big Bang Nucleosynthesis 

The two most important pieces of evide ce 
standard big bang model are the observation2 P 

in support of the 
of the 3°K microwave 

background radiation and the explanation 1) of the origin of the light 
elements and their abundances. Because of the initially high 
temperatures and densities and the large abundance of neutrons 
relative to protons, the chains of nuclear reactions similar to those 
occurring in stars might have occurred. Indeed in the simplest model 
of nucleosynthesis, one can compute the produced abundances of 
deuterium, 3He, 'He and 'Li and one finds an amazing degree of 
agreement with the observed abundances (The observations which must be 
compared with the big bang abundances must be from sources where 
little or no subsequent nucleosynthesis has taken place.) In this 
section we will look closely at the predictions of big bang 
nucleosynthesis and its cosmological consequences in terms of limits 
on particle physics. 

The temperature region of interest is one typical of nuclear 
energies, i.e., T - 1 MeV. The initial conditions for the problem 
will therefore be set at T >> 1 MeV. Once again, because the 
asymmetry between baryons and antibaryons is so small and since we do 
not expect very different asymmetries among the leptons (standard GUT 
models even predict their similarity) we will take all chemical 
potentials to be zero. One of the chief quantities of interest will 
be the neutron-to-proton ratio (n/p). At very high temperatures (T >> 
1 MeV), the weak interaction rates for the processes 

n + ", * p + e- 

+ 
n +e -p+v e 

- - 
n-p+e +u e 

(3.1) 

were all in equilibrium, i.e., rw > H. Thus we would expect that 
initially (n/p) = 1. Actually in equilibrium, the ratio is 
essentially controlled by the boltzmann factor so that 

(n/p) = exp(-Am/T), (3.2) 

where Am = mn - mP is the neutron-proton mass difference. For T 
>> Am, (n/p) 2 1. 

At tempertures T >> 1 MeV, nucleosynthesis can not begin to accur 
even though the rate for forming the first isotope, deuterium, through 

*+e -D+y (3.3) 

is sufficiently rapid. To begin with, at T 2 1 MeV deuterium is 
photodissociated because E > 2.2 MeV (the binding energy of 
deuterium; Ey = 2.7T for a '6lackbody). Furthermore, the density of 
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photons is very high n /nB - 1010. 
1 

Thus the ""set of nucleosynthesis 
will depend on the quan ity 

n-l exp[-2.2 MeV/T] (3.4) 

where 

17 s ng/ny (3.5) 

is the baryon to photon ratio. When this quantity (3.4) becomes 
< O(l), the rate for p + n + D t y finally becomes greater than the 
rate for dissociation D + y + p t n. This occurs when T - 0.1 MeV or 
when the Universe is a little over 2 min. old. 

Because nucleosynthesis begins when T < 1 MeV, the rates for 
processes which control (n/p) (3.1) as well as those which keep 
neutrinos in equilibrium are Erozen out. As we have seen, neutrinos 
are effectively at a lower temperature at T < 112 M.eVA this must be 
taken account in the expansion rate (2.67) which now has 

413 
N 

P = NY + c&f, N, 

=2+(&T) 
4/3 

. 3.;=3.36. (3.6) 

Furthermore, because the rates for processes (3.1) also freeze out (at 
T & 1 MeV), the neutron to proton ratio must be adjusted from its 
equilibrium value. When freeze out occurs, the ratio (n/p) is rela- 
tively fixed at 

(n/p) - 116. (3.7) 

This equilibrium value is adjusted by taking into account the free 
neutron decays up until the time at which nucleosynthesis begins. 
This reduces the ratio t" 

(n/p) - l/7. (3.8) 

Since virtually all the neutrons available end up in deuterium which 
gets quickly converted to 4He, we can estimate the ratio of the 4He 
nuclei formed compared with the number of protons left "ver 

X4 E (N 4He/NH) =-$ ("/P)/(l - (n/p)) 

or mire importantly the 4He mass fraction 

(3.9) 

x 
We distinguish between NP and N, = NY + (4/11) N, = 3.91 because 

of the difference in the temperature dependence of p a T4 and s a T3. 
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Y4 5 4X4/(1 + 4X4) = Z(n/p)/(l + (n/p)). (3.10) 

For (n/p) = 117, we estimate that Y+ = 0.25 which is very close to the 
observed value. 

The actual calculated value of Y,, will depend on a numerical 
calculation 
reactions.ll) 

which runs through the complete sequence of nuclear 
Once deuterium is produced by Eq. (3.3), tritium can be 

produced by 

D+D-T+p (3.11) 

which then gets converted to make 4He by 

D + T - "He + II. (3.12) 

'He has in addition several other processes which go towards its 
production 

D+D- "He + y 

3He + n - 4He + y 

3He + D - 4He + p 

3He + 3He - 4He + 2p 

T+p- 4He + y. 

Additional processes for producing T and 3He include 

n+D-T+y 

p+D- 3He + y 

(3.13) 

D+D* 3He + n. (3.14) 

The nuclear chain is temporarily halted at this point because 
there are gaps at masses A = 5 and A = 8, i.e., there are no stable 
nuclei with those masses. There is some further production, however, 
which accounts for the abundances of %i and 'Li through 

3He + 4He - 'Be/ + y 
l 'Li +e+ + Ye 

T +4He - 'Li + y 

p + 'Li - 4He + 4He, etc. (3.15) 
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Once again because of the gap at A = 8 there is very little subsequent 
nucleosynthesis in the big bang. 
of nucleosynthesis is 

A second chief factor in the ending 
that during this whole process the Universe 

continues to expand and cool. At lower temperatures it becomes expo- 
nentially difficult to overcome the Coulomb barriers in nuclear col- 
lisions. In spite of these effects, numerical calculations of the 
elemental abundance continue the chain up until Al. 

Bef re 
? 

reviewing the results of 
sisll-14 

the big bang nucleosynthe- 
calculations, it is important to realize that there are 

three adtitional parameters which have a very strong effect on the 
results. They are 1) the baryon-to-photon ratio n (3.5); 2) the 
neutron half-life ~~1~; 3) 
ticular, 

the number of light particles or, in par- 
the number of neutrino flavors NV. 

As we have seen above, the value of n controls the onset of 
nucleosynthesis (3.4). Basically what happens is that for a larger 
baryon-to-photon ratio 11 the quantity (3.4) becomes smaller thus 
allowing nucleosynthesis to begin earlier at a higher temperature. 
Remember also that a key ingredient in determining the final mass 
fraction of 'He, Ylt, was (n/p) [see Eq. (3.10)] and that the final 
value of (n/p) was determined by the time at which nucleosynthesis 
begins thus controlling the time available for free decays after 
freeze out. If nucleosynthesis begins earlier, this leaves less time 
for neutrons to decay and the value of (n/p) 
increased. 

and hence Y,, is 

The value of 17 can not be determined directly from observations. 
If we break it up and try to look individually at ,',he number density 
of baryons and photons present in the Universe today we find that 

"B = PB/mB = QBP,hB (3.16) 

= 1.13 x 10-5QBh; cm -3 , 

where PB is the 
fiB is that 

energy density in baryons, mB is the nucleon mass, 
part of a (2.26) 

is the critical energy density 
which is in the form of baryons and P, 

(2.23). The number density of photons 
is just given by 

5 
= I dny = (W3)h2) T; (3.17) 

*once again we are not considering the effects of a 
14a) 

chemi- 
**cal potential, which can also greatly vary the results. 

The baryon-to-photon ratio should not have changed since nucleosyn- 
thesis. At these energy scales, baryon number is conserved and 
there are no major processes which would have produced entropy to 
change the photon number. 
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or in more useful units 

"Y = 400 (~~j2.7)~ m-3, (3.18) 

where T is the present temperature of the microwave background radia- 
tion. # utting n back together we find 

n = 2.81 x lo-%,h2,(2.7/TJ3. (3.19) 

Thus we could determine ri if we knew RB, h , 
P 

and To. It is important 
to keep in mind however that physically it s n which is determined at 
the level of microphysics through baryon generation (see section 6) 
and not the other way around. 

If we now use the limits on h and T we can get a feeling of 
where n lies in terms 
< ho < 1 we find that 

of nB. IfOwe use02.7'=K < To < 3°K and l/2 

5.1 x 10-gnB < n 6 2.8 x 10%~. (3.20) 

Furthermore, as we saw in section 2, depending on what scale we con- 
sider as typically representing the overall density we might have QB 
in the range 0.0008 - 0.8. Thus we see that the observations leave us 
with more than three orders of magnitude uncertainty. As we will see 
shortly, however, consistency of the standard big bang nucleosynthesis 
model allows only for a factor of about 20 in 0 and only about 2-3 in 
n. 

The second parameter, r1i2, is important in that it also plays a 
role in determining the value of Y . Although we don't usually con- 
sider T 1,2 a parameter, the uncerta "ties in its measured value are f 
significant from the point of view of nucleosynthesis. After all, it 
is this quantity which will control the weak interaction rates and 
hence determine the freeze-out temperature. The common value of 

Tl I2 
= 10.6 min. is actually uncertain by about two percent and this 

is enough to affect the production of 4He. The range we will consider 
is 

10.4 min. < T~,~ c 10.8 min. 

As in the case of n, increasing r1/2 leads to a larger value of 

y4. We can see this by looking again at a comparison between the weak 
interaction rates and the expansion rate. If we parametrize the weak 
interaction rate by rwk = AT5 and the expansion rate by H = BT2 then 
the freeze-out temperature is given by Eq. (2.70) 

T; = B/A. (3.22) 

If we now increase rl, , 
decreasing the value o i? 

this corresponds to decreasing l'wk - T,T~ or 
A. 

Now if Td is larger, 
This in turn gives a higher value for Td. 

this will give a larger value of (n/p) at freeze- 
out via Eq. (3.2) and hence more 4He via Eq. (3.10). 
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The final input parameter, we said was the number of light parti- 
cles. Specifically, what we mean is the number of degrees of freedom 
corresponding to particles which are still relativistic (m << T) when 
T < O(1) MeV. In addition, we must require that these particles be 
relatively stable so that they will be present when freeze-out occurs, 
thus r > few seconds. As we hinted to above, likely candidates for 
these particles are neutrinos and thus the number of neutrino flavors 

N" becomes important. Of course any other types of 
such as photinos or axions, etc., may also be important. 

Jight particles 

The number of neutrino flavors N, will also affect the primordial 
abundance of The 
expansion 

4He and like r~ and T~,~, increasing N increases Y4. 
rate (2.67) is proportional to [NICKS. At T 1 1 MeV, 

N(T) is given by 

N(T) = 2 +++; N, (3.23) 

which takes into account the contribution of y's, e *, s, 
of neutrinos. Thus increasing NV, 

and N, flavors 
increases B in the notation of 

Eq. (3.22) and again leads to higher value of Td, with the saw effect 
of producing more 4He. 

Let us now look at the observations 15) which tells us the abun- 
dances of the light elements. I" particular, we will be interested in 
the abundances of D, 3He, 4He, and 7Li. Deuterium is the most easily 
destroyed of the light elements. It is also very difficult to produce 
in astrophysical systems where it is not further processed to form 
3He. Therefore, any of the observed D is generally assumed to be 
primordial. Furthermore because deuterium is so easily destroyed (or 
burned) we must assume that the abundance of D produced in the big 
bang is greater than the observed value or 

(D/HjBB > (D/WOBS, (3.24) 

where (D/H) is the ratio (by number) of deuterium to hydrogen. 

The abundance of deuterium is found by a number of 
include the analysis of meteoritic and solar wind d ta, 
tra from the atmospheres of the gia$ planets,17y 

16met;p:; ;;;;1 
and ultraviolet 

absorption studies on interstellar gas which indicate that D/H lies 
in the range (l-4) x 10m5 and a good lower limit to the deuterium 
abundance would be 

(D/H) > (1 - 2) x 10-5. (3.25) 

In Fig. 3, we have plotted14) the produced D/H ratio in big bang 

*For particles which interact more weakly than neutrinos, care mst be 
taken in that they may have a lower temperature if they have decoup- 
led earlier.'O) 
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nucleosynthesis as a function of 1? for N, = 3 and ~112 = 10.6 min. 
(The 4 He abundance is the most sensitive to variations in these quali- 
ties, see Fig. 5.) If we now require that (D/H) > (1 - 2) x 10-5 
from Eqs. (3.24) and (3.25), we find an upper lim?!14) to the baryon- 
to-photon ratio n 

rl < (7 - 10) x 10-10. (3.26) 

Any larger value of rl would have led to increased burning rates for D 
in the big bang with very little D left over. 

Id2 I IIIIII I I I I11111 I i 

1 3 
NV=3 

TI 
/2 

= 10.6 min 

Fig. 3. The abundances (by number relative to hydrogen) of D, 3He and 
their sum as a function of n for N, = 3 and T l/2 = 10.6 min. 
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In general, direct measurements of 3He are very difficult. Once 
again, most of the available data is derived from meteoritic and solar 
wind data.16) However, as we have said, deuterium is burned to 3He in 
the sun, hence the solar wind data actually reflects the presolar 
abundance of the sum (D + 3He)/H. The observations indicate that 

(D + 3He)/Hlpree L 4 x lo+. (3.27) 

Meteoritic datalg can give the pre-solar abundance of 3He/H where it 
is supposed that no processing of D takes place. These measurements 
indicate that 

3He/HIpree' 2 x 10-5. (3.28) 

Unlike deuterium, 3He is very difficult to destroy in its 
entirety in stellar systems. Pre-main-sequence stars are very effic- 
ient in burning deuterium to 3He via D + p + 3He + y. 3He is only 
destroyed at high temperatures (T > 7 x lo6 OK) through 3He + 3He 
+ 4He + 2p and 3He + 4He + 7Ee + y. 
lOBOK), 

At higher 
'He is burned to carbon and oxygen. 

temperatures (T > 
The point is that, in 

general, some fraction g of the initial 3He abundance will survive 
stellar processing. 
3He is 

If one takes into account the fact some of this 
redeposited in the interstellar medium (pre-solar) then in 

terms of g we have 

CD + 3He)/H/BB < (D/H)lpreO + + (3H4H)lpreB 

which can be rewritten as 

(3.29) 

(D + 3He/H)IBB < (D + 3He)/Hlpre0 + (; - 1) 3He/HlpreB (3.30) 

The value of g, however, can only be determined'o) by models of stel- 
lar evolution and in fact may differ depending on the mass of the 
star. In low mass stars (M < 8MO), g > 0.7 is not unreasonable while 
for high mass stars (8Mg < M < 100 MS), g may be =S low as l/4. Since 
an initial spectrum of stellar masses would cover all ranges, perhaps 
a lower limit to g of l/2 - l/4 would be safe. 

If we put together the presolar limits on (D + 3He)/H and 3He/H 
with the above limit on g we have an upper limit on the sum of primor- 
dial 3He + D, 

(D + 3He),HIBB < (6 - 10) x 10-5. (3.31) 

In Fig. 3, we have also displayed the behavior of the 3He/H and (D 
+ 3He)/H ratios as a function of n. 
t 3He)/HI 

Inl;ys case an upper limit on (D 
BB corresponds to a lower limit on n, 

n a (3 - 4) x 10-10 (3.32) 
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from Eq. (3.31). 
Eq. (3.26) we have 

Putting this together with the upper limit on q 

(3-4) x 10-10 < rl 6 (7 - 10) x 10-10 (3.33) 

as the range of rl consistent with the abundances of D and 3He, 

7L, - 
H 

,oiE , , , , , ;y-o , , ,,“* , , , , , , ;;“’ 

L 
‘O-‘k \ 

N, =3 
T,, = 10.6 min 

2 

A. 

Fig. 4. The abundance (by number relative to hydrogen) of 7Li as a 
function of n for N, = 3 and T~,~ = 10.6 min. 

'Li is another isotope which is in principle difficult to draw 
solid conclusions from. The main difficulty is that 7L.i is both 
easily produced as well as destroyed. 
been some measurementszl) of the 7Li ":~:~:::~e hrv::6,th:er; ":;'d 
Population II stars. Since some 7Li might have been destroyed before 
the formation 
(7Li/Wp,pII < (7WH;Bfg. 

these stars, we might expect 
(The present 

still representing the 
7Li abundance would be larger 

contribution from stellar processing.) The 
observed limit on the 7Li abundance is 
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(7Li/H)PopII < 1.5 x lo-lo. (3.34) 

In Fig. 4, we showI the calculated ratio of 7Li/H as a function of n 
for N, = 3 and T~,~ = 10.6 mi?. The upper limit Eq. (3.34) corres- 

7 
onds to bounds on II of (2 - 5) x lo-lo. The calculated rates for 
Li, however, have uncertainties which lead to uncertainties in the 

predicted abundance of 7Li by about a factor of 2. Thus the only safe 
bounds on rl from 7Li are 

10-10 < n < 7 x 10-10 (3.35) 

remarkably consistent with the bound Eq. (3.33) from D and 3He. 

This brings us to 4He which is probably the most important of the 
isotopes studied. The main reason 4He is so important is that there 
is so much of it. Next to hydrogen it is the most abundant element 
around and its abundance is quite well known. Unlike the other light 
elements which have observational uncertainties of 2 lOO%, the 4He 
abundances are measured to within a few per cent. The main problem is 
that it is also produced in stars and care must be taken in trying to 
derive the "observed" primordial abundance. 

To be sure, one can place an upper limit on the primordial abun- 
dance by Y4BB < y,+OBS (Y,, remember is the total 'He mass fraction). 
HOWeVel-, in order to use big bang nucleosynthesis to set limits on 
particle physics (e.g., N,,) a much ore 
is needed. Spectral measurementsZ~ Y 

accurate determination of YhBB 
of galactic HII regions give very 

accurate values of Y4, however, there they have been contaminated with 
by-products of stellar processing. The observations of galaxies with 
low metal abundances could in principle yield an accurate value of 
YhBB but these measurements are difficult because these galaxies are 
typically very far away. It is not possible within the scope of these 
lectures to cover completely the discussion of Y,. The best estimates 
consistent with the observations place Y,, in the 'range 

0.22 6 Y4 < 0.25. (3.36) 

If we restrict ourselves as before to N, = 3, T~/~ = 10.6 min., the 
upper limit on Y 4 implies an upper limit on n from Fig. 5 

I- < 5 .x 10-5 (3.37) 

which is once again consistent with the previous limits Eq. (3.33). 
(The lower limit on Y4 does not give an interesting bound on n.) 
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0.26 - 

T ,,2 = 10.8 min . . . . . . . . 
= 10.6 min ------- 

0.20 ~ 

lOi0 Kig 

77 

Fig. 5. The abundance (by mass) of 41k as a function of n fo= N, 
= 2,3 and 4 and for ~~~~ = 10.4 min (solid), 10.6 ndn (dashed), and 
10.8 min (dotted). 

Figure 5 actually contains significantly more information than 
just a limit on n. In Fig. 5, we see clearly the behavior of Yk with 
respect to all three parameters: r\, ~~12, and "I,. It is clear how 
Y increases with increasing values of any of the three parameters. 
I't is also immediately clear that we can set a limit 

12-14) on N, pro- 
vided that we have a lower limit to n. IJsing n > 3 x IO-lo and Y4 
< 0.25, we find that NV C 4 with the equality king at best marginal. 
This implies that at most one more generation is allowed, assuming 
that the neutrinos associated with each generation are light and 
stable. 
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great 
The strong dependence of Y,, on the three parameters requires 

precision to strengthen the limits due to nucleosynthesis. 
Strictly speaking, n > 3 .x lo-lo and T 
only if YQ 2 0.253; however, 

1,2 > 10.4 min. allows N, = 4 
we are not yet in a position to believe 

the third decimal place. 2 10.4 min., the limit Eq. (3.37) 
on 11 can be relaxed so that N < 
We can also turn the limits ar\und ‘an 

< 0.25 implies 11 < 7 x 10-l O. 
set a lower limit to the helium 

abundance by assuming n > 3 x 10-l’ and N, > 3 then we have Y,, > 0.24. 
If future observations actually yield Y,, < 0.24, one would have to 
argue that perhaps vT is heavy and unstable (the present limit is only 
mv < 250 MeV). If we only assume N 
be&mes Y j 0.22. 

a 2, then the lower limit on Y 
Any observation 0% the primordial helium abundancz 

less tha; 0.22 would indicate an inconsistency with the standard 
model. 

The importance of the success of big bang nucleosynthesis can not 
be overstressed. The abundance of the predicted elements differ by 
about nine orders of magnitude, from 7Li to ‘He. Furthermore, all of 
these predictions are consistent with the observations only for a nar- 
:“;Of~oge of the baryon-to-photon ratio (3 - 4) x 10-l~ G n < (7 - 10) 

. It is incorrect to think of this as a drawback (in the sense 
that one would be more comfortable with a large range for n). On the 
contrary, it is evidence of the predictive power of the model. 
Indeed, the Universe has only one value of n, Y4, etc. If we just 
concentrate on a central value for n, say n = 5 x 10-l 0 with N = 3 

and T1/2 
= 10.6 min., we have D/H = 3 x 1O-5, 3He/H = 1.2 x vlO-5, 

7Li/H = 1.2 x lo-lo, and Yq = 0.25, all remarkably consistent with the 
observations. 

There is still one more important consequence of the above 
limits, that is the limit on n can be converted to a limit on the 
baryon density and $. If we turn around Eq. (3.19), we have 

n B = 3.56 x 107rlh;z(T0/2.7)3, (3.38) 

and using the limits on n Eq. 
3)‘K we find a range for RB 

(3.33), ho Eq. (2.35) and To from (2.7 - 

0.01 < RB < 0.19. (3.39) 

Recall that for a closed Universe 0 > 1, thus from Eq. (‘3.39) we can 
conclude that the Universe is not closed by baryons. This does not 
exclude the possibility that other forms of matter (e.g., massive neu- 
trinos, etc.) exist in large quantities to provide for a large Q. In 
fact, if large clusters of galaxies were representative of R the limit 
from nucleosynthesis would indicate that same form of dark matter must 
exist. 

This concludes our review of big bang nucleosynthesis. We again 
stress its credibility and importance because it takes place at an 
energy scale in which we feel we understand the physics. We will not 
be able to make the same statement for the last three sections. 
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Section 4. Limits on Neutrino Masses 

In this section, we will look at a typical class of constraints 
available from cosmology: those on particle masses and lifetimes. 
Most of these limits can be extended to other types of neutral parti- 
cles, but we will take neutrinos as a canonical example. we will 
begin the discussion with stable neutrinos and then move towards the 
constraints on unstable neutrinos. 

For cosmological purposes, 
time T > 10z4 sec. 

a stable particle is one with life- 
The limits on stable neutrinos can be divided up 

into three mass regions: 1) light neutrinos, m < 1 MeV; 2) massive 
neutrinos, m > 1 MeV; and 3) very massive neuzrinos with a lepton 
asymmetry. "Let us begin with the limits on light neutrinos. Neu- 
trinos with mass less than lO+eV are still relativistic and hence, 
equivalent to zero mass neutrinos and are allowable. 
we can compute the total mass density in neutrinos by 

For mu > lo-4ev 

Pv = ypv, 

where n, is the number density of neutrinos 

(4.1) 

“” = (&J(3) T;h’, (4.2) 

where g, is the number of degrees of freedom for a massive neutrino. 
Depending on the particle physics model, there are two choices for g,. 
For rnrac mass neutrinos g, = 4 (i.e., the mass term in the Lagrangian 
is similar to that for an electron = tv). For Majorana mass neu- 
trinos, g, = 2 (the mass term is 0: vu). 
of the photon number density Eq. (3.17) 

We can put Eq. (4.2) in terms 

” v = ; (?)“,($!f = ; gvny. 
Y 

If we compare the neutrino mass density to the critical mass 
density Eq. (2.23) we can write down that part of n which is due to 
neutrinos 

Q" = P,fP, = 0.01 m,(eV)h~z(~](T0/2.7)3 (4.4) 

for neutrino masses in eV. Although the limits on R and h 
separately yield a limit S2h2 < 4 this would imply an age P 

taken 

Universe T" < 8 x IO9 yrs II 
or the 

whit is much too small. Ye regret that we 
are not able here to go into the details involving the age of the Uni- 
ver.se arguments, but consistency requires 
the following limitz4) 

that 22h2 < 1. We thus have 
on the mass of light-stable teutrinos, 

* 
A tighter limit assuming T" > 1.3 x lolo yrs givesz3) ah% < 0.25. 
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m,(eV) < 200 g;' eV. (4.5) 

Actually the limit Eq. (4.5) is additive in the sense that if more 
than one species of light neutrinos (or other types of particles at 
the same temperature) exist, the limit becomes 

I: mv(eV) < 200 g;l eV, (4.6) 
" 

i.e., the sum of all light masses rrmst Lx less than 200 g;'. Thus, 
for mrac-type neutrinos 

6 m" < 50 eV (4.7) 

while for Majorana-type neutrinos 

6 mv < 100 2V. (4.8) 

It is interesting to note that from Eq. (4.4) we see that to close the 
LJni ve rse with light neutrinos we need a total mass Zmv > 200 
h;g-1(2.7/T,,)3 which is only possible with h0 < 1. 

The limits on more massive neutrinos25-26) are qualitatively 
different and involve a numerical calculation. The difference is that 
unlike the case for light neutrinos, massive neutrinos have a chance 
to reduce their number density through annihilations. In equilibrium, 
the neutrino number density is essentially governed by the Boltzmann 
factor exp(m,/T). It is only after the rates for neutrino annihila- 
tions freeze out (rA < H) does the neutrino density become fixed. For 
light neutrinos the rates all froze out at 1 - 1 MeV. For more mas- 
sive neutrinos, freeze out will occur at a higher temperature (typi- 
cally Tf - mv/ZO) because the density of neutrinos has fallen so as to 
render no < H. 

In order to calculate the number density of neutrinos, one must 
solve the Boltzmann equation 

9 = -3Hn - <a"> ("2 - "2) 0 ' (4.9) 

where no is the equilibrium number density, H = -+/T takes into 
account the Universal expansion. <au> is the thermal average of the 
cross section 

<au> = G$f, NA/2rr, (4.10) 

where GF is the Fermi weak interaction constant and NA is the number 
of annihilation channels. Solving Eq. (4.9), one findsz6) for the 
total mass density 

P, = rn$" = (1.6 x 10-27gcm -3)[m,(GeV)]-"85 x 

gf 0.52 x NA-Oeg5(-&- , (4.11) 
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where gf 
ture 

E N(Tf) is the number of degrees of freedom at the tempera- 
at which the annihilations freeze out. 

pc we again have an expression for R, 
Dividing Eq. (4.11) by 

R, = 2.66 my-1'85(GeV), (4.12) 

where we have taken Nioeg5 (gf/2)-o'52 n 3 x 10e2 as a typical value. 
Once again, using the limit Slh$ < 1 implies 

m,, 1 1.7 GeV, (4.13) 

for each type of heavy neutrino. 

The limit Eq. (4.13) can actually be strengthened by re lizing 
that neutrinos in the GeV range (or higher) would cluster2' ", with 
galaxies, binaries, and small groups of galaxies. 
should not use the cosmological limit Oh2 

In this case, we 
< 1 but rather the limit on 

R coming from binaries and small groups'(see section 2) ah: < 0.15. 
Thus for clustering neutrinos we have 

mu 2 4.7 GeV. (4.14) 

If we consider still larger neutrino masses, although their 
annihilation rates are effective enough to reduce their number den- 
sity, if we assume that there is a slight excess of neutrinos over 
antineutrinos (or visa versa), the slight excess will remain even 
after the annihilations have ceased. In the simplest models of baryon 
generation (see the following section) we expect that a slight asym- 
metry on the order of the baryon asymmetry be produced. It would 
indeed be difficult to imagine that absolutely no asymmetry results 
since baryons and leptons are mixed in the processes which produce the 
baryon asymmetry. Thus, let us assume that 

n " - = ("" - n;)/n Y = 6n, (4.15) 

where 6 is a model-dependent factor which we will suppose is O(1). 
Independent of the annihilations, the left-over mass density will then 
be 

and 

P” =mnn 
""Y 

= rn"6rl" 
Y 

(4.16) 

R, = 3.8 x 107m,,(GeV)nh~z(T0/2.7)36. (4.17) 

Taking ii > 3 x 10-l' and nhi < 1 we have an additional upper limit 28) 
on the neutrino mass 

Zm < 88 6-l GeV, 
v" 

(4.18) 
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where we have taken a sum over all species with asymmetry 6n. As 
before, if we apply the limit due to the 
iih: < 0.15 we have the following limit 

clustering around galaxies 

m,, c 13 6-l GeV. (4.19) 

I I I I I I I I I I 

t .Q,hi>l if TV= 87) 
I I I I 

0.K 

109 

’ t- 
Supernovae 
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I I I I I I I I I I I 

lcT4 IO4 lOl2 10ZO 10Z8 
KY (set) 

O.K. 

Photon Background 
L&h;>1 - 

Fig. 6. 4strophysical constraints on the lifetimes and masses of 
neutrinos. 

We will now briefly describe the limits that one can place on 
unstable neutrinos. These limits as well as for stable neutrinos are 
all 

", 
ummarized2'.29) in Fig. 6. The limits 

30127 
on ustable neutrinos 

all assume that a significant portion of the decay products 
involve photons or charged particles. There are basically three 
ranges for lifetimes which use different arguments to rule them out. 
The first range is for'r,, between 1012 set and 1O24 sec. During this 
range neutrinos decay after the decoupling of photons during the 
recombination period of neutral hydrogen formation. Because the decay 
occurs after decoupling, the decay photons remain unthermalized and 
would show up in the UV, X- and y-ray backgrounds. Limits on the 
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observed fluxes of these backgrounds rule out neutrinos with masses up 
to about 1 TeV (see Fig. 6). Heavier neutrinos would not be suffi- 
ciently abundant to interfere with these backgrounds unless, again, 
there was some asymmetry between v and in. 

Neutrinos with intermediate lifetimes 2000 set < T < 1012 set 
decay early enough that their decay products can still be thermalized 
with the microwave background. HOWeVer, they distort the spectrum in 
that they produce too many photons for a given temperature. once 
again, for sufficiently high masses, the abundances are sufficiently 
low so as to be acceptable. 

The final lifetime range is for neutrinos with 10-3sec < T 
< 2000 sec. Neutrinos with this lifetime and a mass less than 10 MeV 
are ruled out31) by supernova energetics. During the formation of a 
neutron star or a black hole, a supernova releases a total of 1053 
ergs of which 1051 ergs is visible, the remainder being in the form of 
neutrinos. Neutrinos which decay in this range would yield supernovae 
which produce more than 10sl ergs in visible light and are hence ruled 
out. 

Once again we stress that although we have limited this discus- 
sion to neutrinos, generalizations are applicable to other particle 
types as well. We hope only to show the power of cosmological and 
astrophysical limits on particle properties. 
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Section 5. Sig Bang Baryosynthesis 

As we have seen in the first three sections of these lectures, 
the big bang model very successfully explains the expansion of the 
Universe, the existence of the cosmic background radiation, and the 
abundances of the light elements. As we will try to show in this 
section, the big bang model when combined with GUTS can explain the 
origin of the baryon asymmetry and the value of n. Up until now, we 
have simply used ri as a parameter without regard to its origin. 
Indeed, it is very strange that such a small parameter exists. On the 
other hand, it is difficult to understand why there is a" asymmetry in 
the first place, i.e., why isn't n = O? 

There is a fair amount of evidence that indeed n # 0. There is, 
to begin with, no evidence within the solar system of antimatter. In 
addition, the cosmic rays show only evidence of i;'s with no a's which 
would be necessary to definitively argue in favor of antimatter in the 
cosmic rays (p's can and are produced as secondaries in collisions). 
It has also been argued32) that if in clusters of galaxies certain 
galaxies were of one form of matter or the other, the y-ray flux pro- 
duced by pp annihilations in the cluster would exceed the limits on 
the observed y-ray flux. Furthermore, it is very difficult to imagine 
a mechanism leading to such large separations of matter and antimatter 
when one accepts that at early times they were so well mixed. 

Let us for the moment, assume that in fact n = 0. Then just as 
in the case for neutrinos (section 4) we can compute the final number 
density of nucleons left over after annihilations have frozen out. At 
very high temperatures T > I GeV, nucleons were in thermal equilibrium 
with the photon background and nN = no = 3/2nY (a factor of 2 accounts 
for neutrons and protons and the factor 314 for the difference between 
fermi and hose statistics). 
hilations 

As the temperature fell below mN, anni- 
kept the nucleon density at its equilibrium value 

312 
(n /" ) 

= (mN/g exp (-Q/T) unti 1 the annihilation rateN 'Y 
M "NmT2 

A 
fell below the expansion rate. This occurred 

at T = 20 MeV. Yowever, at this time the nucleon number density 
had already dropped to 

” I” = n-/n 
NY NY 

0 10-18, (5.1) 

which is eight orders of magnitude too small 32) aside from the problem 
of having to separate the baryons from the antibaryons. If any separ- 
ation did occur at higher temperatures (so that annihilations were as 
yet incomplete) the maximum distance scale on which separation could 
occur is the causal scale related to the age of the Universe at that 
time. At T = 20 MeV, the age of the Universe was only t = 2 ~10~~ 
sec. 4t that time, a causal region (with distance scale defined by 
Zct) could only have contained 10m5 Me which is very far from the 
galactic-mass scales which we are asking for separations to occur, 
1012 M@. 
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A final possibility might be statistical fluctuations, but in a 
region containing lOI ?I@, there are - lOa photons so that one would 
only expect statistical fluctuations to produce a" asymmetry n 
_ lp+O! Thus we are left with the problem as to the origin of a 
small non-zero value for II. We can assume that it was an initial con- 
dition to start off with and in a baryon number conserving theory it 
would remain nearly constant. [The production of entropy (photons) 
could cause it to fall.] In this case, however, we must still ask 
o"rsel"es, why is it so small? A more attractive possibility, how- 
ever, is to suppose that the baryon asymmetry was in some way gener- 
ated by the microphysics. Indeed, if one can show that a small non- 
zero value for rl developed from " = 0 (or any other value) as an 
initial condition, we could consider the question solved. In the rest 
of this section, we will look at this second possibility for genera- 
ting a "on-zero value of rl using GUTS. 33) 

There are three basic ingredients necessary 3) to generate a non- 
zercl l-l. They are 

1. baryon number violating interactions 
2. C and CP violation 
3. 3 departure from thermal equilibrium. 

The first condition is rather obvious, unless there is some mechanism 
for violating baryon number conservation, baryo" number will be con- 
served and a" initial condition such as in = 0 will remain fixed. C 
and CP violation indicate a direction for the asymmetry. That is, 
should the baryon number violating interactions produce more baryons 
than antibaryons? If C or CP were conserved, no such direction would 
exist and the "et baryon "umber would remain at zero. The Einal 
ingredient is necessary in order to insure that not all processes are 
actually occurring at the same rate. For example, in equilibrium if 
every process which produced a positive baryo" number was accompanied 
by a" equivalent process which destroyed it, again no net baryon num- 
ber would be produced. 

The first two of these ingredients are contained in GUTS, the 
third in an expanding universe where it is not uncommon that interac- 
tions come in and out of equilibrium. I" W(5), for example, as we 
have seen in the earlier contributions to these lectures, the fact 
that quarks and leptons are in the same multtplets allows for baryon 
"on-conserving interactions such as e- + d - ii + ii, etc., or decays of 
the supermassive gauge bosons X and Y such as X + e- + d, ii + u. 
Although today these interactions are very ineffective because of the 
masses of 
- 1Ol5 GeV 

the X and Y bosons, in the 
these types of 

early Universe when T > MX 
interactions should have been very 

important. 

As we have also seen in the earlier contributions, C and CP 
violation is very model dependent. I" the minimal SU(5) model, the 
magnitude of C and CP violation is too small to yield a useful value 
of rl. The C and CP violation in general comes from the interference 
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between tree level and first loop corrections. We refer the reader to 
those contributions for further details. 

As we have said, the departure from equilibrium is very common in 
the early Universe when interaction rates can not keep up with the 
expansion rate. I" fact, the simplest (and most useful) scenario for 
baryon production makes use of the fact that a single decay rate goes 
out of equilibrium. It is commonly referred to as the out of 
equilibrium decay scenario.34) The basic idea is that the gauge 
bosons X and Y (or Riggs bosons) may have a lifetime long enough to 
insure that the inverse decays have already ceased so that the baryon 
number is produced by their free decays. 

More specifically, 
boson, 

let us call X, either the gauge boson or Higgs 
which produces the baryo" asymmetry through decays. Let Q be 

its coupling to fermions. For X a gauge boson, a will be the GUT fine 
structure constant, while for X a Higgs boson, (4~ra)~'~ will be the 
Yukawa coupling to fermions. The decay rate for X will be 

i-D - a MX. (5.2) 

However decays can only begin occurring when the age of the Universe 
is longer than the X lifetime ri', i.e., when rD a H 

a MX 2 N(T+T2/Mp (5.3) 

or at a temperature 

T2 < a MXMpN(T) -112. 

Scatterings on the other hand proceed at a rate 

(5.4) 

r s - &T~/M$ (5.5) 

and are hence not effective at lower temperatures. 
therefore, 

In equilibrium, 
decays must have been effective as T fell below MX in order 

to track the equilibrium density of X's (and X’s). Thus the condition 
for equilibrium is that at T = MX, ?D > H or 

MX i a Mp(N(M,))-"' - lO"r~ GeV. (5.6) 

In this case, we would expect no net baryon asymmetry to be produced. 

For masses MX 1 1018a GeV, the lifetixe of the X bosons is longer 
than the age of the Universe when T - MX. 
occur when T < MX, however, 

I)ecays finally begin to 

photons n In, - 1 whereas 
the density of X's is still comparable to 

- (MX/T& 
the equilibrium density at T < MX is 

x exp [-MX/T] << 1. Hence, 
nx/n 

the decays are occurring J ut 
of equilibrium (inverse decays are not occurring). Yence, we have the 
possibility for producing a net asymmetry. 
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Let us now look at what happens during the decay of an X,x pair. 
If we consider the example of the X gauge boson and its decays to ii,u 
with branching ratio r and net baryon number change Ab = -Z/3 and to 
e , d with branching ratio l-r, and net baryon number change Ab 
= +1/3 2 

x --I’ u + u Abl = -Z/3 

x z e- + d Ab2 = +I/3 

A similar set of decays will occur for ii 

(5.7a) 

(5.7b) 

x -=+ u + u Ab- = +2/3 
r 

(5.&l) 
1 

x --•+ ef + a 
1-F 

Abe = -l/3 
2 

(5.8b) 

If C and CP are violated the” r#? and we can define the total net 
baryon number produced per decay of X and .? 

AB = (Abl)r + (Ab,) (1-r) + (Ab-)? + (Abe) (1-F) 
1 2 

= r - r. (5.9) 

The value of i&r will of course depend on the specific model for C and 
CP violation. 

The total baryon density that will have been produced by the X,X 
pair [provided Eq. (5.6) is not satisfied] is 

“B = (AB)“~ (5.10) 

and since we also have nX = “x = n 
Y’ 

“B = (bB)ny. (5.11) 

Although the net baryon number is conserved during the subsequent 
evolution of the Universe, the photon number density is not. A mare 
useful quantity just after baryon generation is the baryon-to-specific 
entropy ratio, nB/s. The entropy density, recall from Eq. (2.59) is 

s = G N(T)T3 (5.12) 

and can be related to the photon number density Eq. (3.17) by 

s=& y’ N(T)” (5.13) 
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At T < MX - lOI GeV, we expect N(T) 2 O(100) so that s - O(100) nY. 
Thus the baryon-to-entropy ratio we would expect to produce in the 
out-of-equilibrium decay scenario would be 

ngf5 m lO+(AB). (5.14) 

The value of nB/s that we are looking for rrmst be related to the 
limits on rl (Eq. 3.33) found in our discussion of nucleosynthesis. 
From the time of nucleosynthesis to the present, the contribution to N 
is due only to photons and the cooler neutrinos, N, = 3.91 [see foot- 
note related to Eq. (3.5)1 and hence 

s = 7.04 n Y’ (5.15) 

Thus, n in the range (3-10)~10-~~ corresponds to a value of nB/s 
in the range (4.3-14)~10-~~. 
duction, Eq. 

Comparing this with the expected pro- 
(5.14) gives us a lot of hope that GUTS may provide us 

with a viable mechanism for generating a small (but not too small) 
value for 0. 

Although we can be encouraged by the above scenario, we must 
still show that given a GUT, after the full set of Boltzmann equations 
have been integrated, an acceptable and definite value of n emerges. 
In particular, most GUTS do satisfy Eq. (5.6), for a = l/41 and 

MX - 1015 GeV decays will be occurring at T - M but in at best 
partial equilibrium. Thus the estimate, Eq. (5.f4) is not a good 
onr3. We will now outline what needs to be done in order to calculate 
in general the baryon-to-photon ratio in a GUT, in terms of the C and 
CP violating parameter AB. 

solvi~~3;y have just said, a full solution to this problem requires 
a set of Boltzmann equations. In Eq. (4.9) we wrote down 

the Boltzmann equation for annihilations. Were we will be more inter- 
ested in equations governing decays 

% = -3Hnx - rD(“X - “x 2, 
(5.16) 

where nxo is the equilibrium number density of X's. In general, we 
can define the number of particles of type i in a phase-space element 
dVdl$ as 

dNi = uap,%i(p;,x;)dVdI$, (5.17) 

where u, is the velocity four-vector, 
and 

Ni is the phase-space density, 

dKi 
1 

= - gid3pi lpp 
(2n)3 

is the momentum element for i with gi degrees of freedom. The number 
density of type i is just 
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“. 
1 = i "ap>idfli =2$ J NipZdp. 1 (5.19) 

which reduces to Eqs. (2.45) and (3.17) for 

Ni = [~xP[(P~ - ui)/T] -t 11-l. (5.20) 

If there were no interactions which could change the number of i's, 
then the density would change as 

dni/dt = -3Hn. 1 

simply due to the expansion of the Universe. 

(5.21) 

When we add interactions, we have that 

dn. 
1 = -3Hni + E I dIlidILj...dnedfla.,. dt t?lil: : . 

-NiNj . . . (l*N,)(l*N,),..W(pipj..+ pQph..)], 
(5.22) 

where the factors (LtNi) are the stimulated emission and exclusion 
factors for bosons and fermions. The invariant transition rate is 

w = (s/2”) (5.23) 

where s is a statistical term containing (m!)-l for each set of m 
identical incoming or outgoing particles and n is the total number of 
particles in the 
PKOCeSS. 

process.~ is the invariant amplitude for the 

For practical purposes, one generally uses only Maxwell-Boltzmann 
statistics so that all factors (lfNi) are neglected. We now have a 
prescription of how to calculate the number densities of each particle 
type i which involves a change in baryon number. We must also include 
all interactions which carry a change in baryon number such as decays, 
annihilations, and scat&rings. In the simplest case where we only 
consider decays and inverse decays we can reduce Eq. (5.22) and take 
X's as an example 

dn 
+ = -3Hnx + I dlIxd"i dIl; 

1 
[N; N- W(;,;, + X) 

2 I?? 

-NxW(X + ; + ; ,] 
1 2 
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+ i dnxdfledndlNeNdW(e + d + X) 

- NxW(X + e + d)j. (5.24) 

In Fig. 7, we look at the t pica1 
complete numerical integration35 3 

results which one finds after a 

particular resluts 
of the Boltzmann equations. These 

are for an SU(5) model, but their behavior is 
generic for mnst any GUT. What is plotted is the time development of 
the baryon-to-entropy ratio nB/s normalized tn the net baryon number 
produced by pair decay AB. 
al to t1/2. 

The horizontal scale, M,/T, is proportion- 
The three curves correspond to different choices for the 

mass of the boson X. In curve 1, we have chosen, a mass which we 
expect to satisfy the out-of-equilibrium condition s = 3 x 101*a and 
we indeed find that the maximum 
nB/s * 10-2A.(B) as we expected (5.14). 

asymmetry has been generated 
This in itself confirms the 

original idea. 

I I I I I I 

16’ 

id2 

i- 

1C3 

,” -$ 1cT4 ./ 
cn 

1Ci5 

I 

lP- 

1G7 
\ 

I I 

Iti3 1(y2 10’ 1 10 lo* lo3 

Mx/T 
Figure 7. The time evolution of the baryon asymmetry in units of (AB) 
for 1) M, = 3~10~~ a; 2) s = 3x1017 a; 3) s = 3x1016 
scatterings remain very effective. 

a; and 4) if 
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The good news that we find from Fig. 7 is that even for lower 
masses, an asymmetry is still produced. I" curve 2, we have chosen 

M* = 3~10'~~~ and we find still a substantial asymmetry nB/s - lo-' 
CAB). What is happening is that at T - Mx, inverse decays are still 
effective in trying to restore equilibrium. Eventually, they too 
freeze out and any X's and X's still present, decay freely to produce 
a net baryon number. If we continue to lower the mass as in curve 3, 

Mx = 3~1016u, scatterings begin to play a role in driving things 
further towards equilibrium. Again, when they freeze out the remain- 
ing X,ii pairs decay leaving an asymmetry. If scatterings become 
dominant, however, the resulting asymmetry in the standard model will 
become exponentially small with decreasing M, as shown in the dashed 
curve. In Fig. 8, we have plotted the final asymmetry which is pro- 
duced as a function of K = ~x~O~~CC/% where K is defined by 

K 5 rD/HITzM . (5.25) 
x 

Depending on whether or not X is gauge or Higgs boson, the resulting 
final asymmetry can be approximated-by- 

-I 

rig/s = 2~10-~(AB)/[l + (3K)"'l 

for Higgs bosons, and 

"B/s = 8~10-~(AB)/[l + (16~)~*~1 

for gauge bosons. 

(5.26) 

(5.27) 

The above approximations assume that only one type of boson car- 
ries baryon-number violating interactions. In general, there may be 
several in which case the baryon asymmetry generated by a heavy boson 
may be wiped out (totally or partially) by lighter ones. The degree 
of damping can be approximated as 36) 

(",/S) initial =P[-O(K)1 (5.28) 

for Higgs bosons and 

(",/S) initial ex~L-5.5Kl (5.29) 

for gauge bosons. The resulting asymmetry is then computed (using the 
lightest boson which violates baryon number) by damping any prior 
asymmetries by Eq. (5.28) or Eq. (5.29) and adding to that the asym- 
metry generated by Eq. (5.26) or Eq. (5.27). 

As supersymmetric theories are becoming ever more important (and 
popular) it will be worthwhile looking at what happens to the baryon 
asymmetry in a supersymmetric GUT. The largest effect due to the 
increased number of particles is that scattering6 may become mnre 
important and make it harder to go out of equilibrium. In addition, 
the GUT coupling may be larger and the existen e of dimension 5 opera- 
tors all increase the effects of scatterings.37 ', 
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Figure 8. The final baryon asymmetry as a function of K = 3~10~’ a/Mx 
in units of CAB). The dashed curve as.sumes effective scatterings. 

It is also very common in supersymmetric theories to have light 
Higgs bosons (MH - lolo G~V) which violate bary0Il number. For a 
proper choice of couplings to the diff rent 

7 does not rule out such light Higgses.38 
generations, proton decay 

Even in a non supersymmetric 
GUT, such a light Higgs boson would yield an asymmetry nB/s - 4~10~~ 
CAB) which is probably too low to explain the baryon-to-photon ratio 
n. In a supersymmetric theory this number would be many orders of 
magnitude smaller. 4s we will show, however, this does not pose a 
serious constraint on supersymmetric theories. 

Before addressing the baryon asymmetry directly, it will be use- 
ful to first address some general cosmological problems which might be 
encountered in a supersymmetric GUT.3g) To begin with, let us con- 
sider global supersymmetry. At zero temperature, supersymmetric GUTS 
may have several degenerate minima [e.g., SU(5), SU(3)NJ(2)x U(l), 
SU(4)xU(l), etc.] all with zero vacuum energy density. This degen- 
eracy will however be broken at finite temperature, and we must now 
ask which minima is preferred. 

The standard picture for a phase transition in the early 
Universe, e.g., W(5) + su(3)wJ(2)xu(1) would have a single minima at 
temperatures greater than some critical 
Below T, 

temperature T,. 
other minima develop with lower vacuum energy density. If 
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there is a barrier between the minima, the transition will in general 
be of first order. If there is no barrier and the symmetric high 
temperature minimum disappears at Tc, the transition is second 
order. There is, however, no degeneracy. Ftgures 9a and 9b show 
schematically the possible behavior of the scalar potential as a 
function of a scalar field Z. 

In Figure 10, we see schematically the behavior of the scalar 
potential in a supersymmetric GUT, the important finite temperature 
corrections are just 

V,(Z) = V(C) + C1X2T2 - C2T4, (5.30) 

where V(X) is the tree-level potential, Cl is derived 
and C2 [= (n2/90) N(T)] simply counts 

from V, 
degrees of freedom. The Z2T2 is 

an expansion only relevant near the origin [for Z>>T it is cut off by 
exp(-Z/T)] and is not all that important here in distinguishing the 
minima. The value of C2, however, will be different in the different 
minima depending on how many light particle states there are in each 
".3C""'II. This term will break the degeneracy. Unfortunately, it does 
so in the wrong way. 
SU(3)xW(2)~(1) or SU(4)xU(:n). 

SU(5) C2 is larger than C2 in either 
Thus, it appears that at any temper- 

ature the SU(5) symmetric state would always be the lowest minimum, 
and a phase transition would be impossible. 

The above picture is somewhat relieved when one realizes that 
there is some scale AS such that SU(5) becomes strong, i.e., %UT - 1. 
Thus it is incorrect to think of SU(5) containing large numbers of 
(nearly) massless particles at T < A . 
in SU(5) could become smaller than5C 

Instead, as T drops to As, cz 

case, the vacuum energy density in2 
in the other minima. In this 
the symmetric phase would be 

greater than those in the broken phases and hence a phase transition 
would become possible. If we now look at a simple example of a 
supersymmetric model, consider the most general (renormalizable) 
superpotential for the adjoint Z, 

f(Z) =+mTR(E*) +$ TR(X3). (5.31) 
L 

Ill global supersymmetry the 
(neglecting D terms) will be 

scalar potential for Eq. (5.31) 

AE* - $A TR(Z2)12. (5.32) 

density of the broken p ase is lower 
there is a barrier40 Y of height 

V(E) = TRlmZ + 

Now although the vacuum energy 
than in the symmetric /~ n phase, 
O(m~/A‘). The phase transition will complete itself only if the 
probability of tunneling per unit volume p, becomes greater than H". 

- 1016 GZV and h - 1, the tunneling probably is 

-B p.M4. , x (5.33) 
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V(X) T>Tc 

VE:) T>Tc T=Tc 

Figure 9. a) Schematic view of the scalar potential for a first-order 
phase transition. b) Schematic view of the scalar potential for a 
second-order phase transition. 
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where the action B is 

B * 0.04(Mx/T)g, (5.34) 

and 
c lo-iao52 

T - A5 (when the transition first becomes possible) p 
and c rtainly in this case no transition occurs. 

ble solution4' 7 
One possi- 

and A - 51% 

(although not very attractive is to set m - m, 
- 10-14. In this case the barrier would be lower than 

the non-perturbative effects due to A5 - log-1O1O Geb. This type of 
problem (small couplings) seems to have a possible solution in local 
supersymmetry through the use of non-renormalizable interactions. We 
will not here go into this solution but only refer the reader to some 
recent proposals. 43) 

V(C) 

Fig. 10. 

c 

/ / T>T, 

Schematic view of the scalar potential in a supersymmetric 
theory. The dashed curves correspond to the effects of finite temper- 
ature. The arrow indicates that the SU(5) ndnimum is expected to move 
up as T approaches As. 

Let us now return to the 
models. Consider the 

prob em baryosynthesis in supersymmetric 
3 addition42*43 to the superpotential Eq. (5.31) 

f = alHZH + ~,YHH + a3uY2 + a4y3, (5.35) 

where H and H are in 5 and 5 representations, and Y is an SU(5) 
singlet. ln order to keep the mass of the triplet in H and H light 
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[mH - O(lO'") GeV] we will need al - a 
i? 

- 10-6, and we can allow a, 
-+3,-l. I" this case, Y "ill also ave a mass of O(lOlO) Gev 
" - lOlo GeV. It is the H and A which "ill eventually be responsible 
for producing the baryon asymmetry. 

Regardless of the exact details of SU(5) (perturbative or non- 
perturbative) the singlets Y "ill be unaffected. Their decay "ill be 
governed by the term linear in Y 

4a2a3~YHH. (5.36) 

So long as "i > 2mH. Eq. (5.36) leads to a decay Y + H,A with a rate 

rY - +$.I. (5.37) 

Once again, the decays "ill only begin to occur when Ty 2 H or 

TD < a2a3(~Mp)1'2 - 10' GeV. (5.38) 

At TD, however, ny ... n 
H's are out of equil~b~i~dum her”,“,’ ,“,” ,” nH10”811Y~a n”~~’ ~~~~~~~~~~~~~~ 

equilibrium]. Their subsequent decays "ill then 3 -J pro UC an asymmetry 

rig/s - (AB) 2 - lo-*(AB) (5.39) 

or very close to the original out-of-equilibrium decay esti$Iate. In 
Eq. (5.39) AB is the net baryon number produced by an H, H (8,H*) 
decay and the factor Tg/m~ is due to the entropy produced by the 
decay. Thus we see that the original worries about baryon generation 
in supersymmetric models were unfounded. 

Before closing this section, we would like to look at two 
problems which result from combining GUTS and cosmolo y. 

T 
The first 

problem concerns the abundance of magnetic monop01es.~~ GUTS predict 
the existence if magnetic monopoles. The monopoles "ill be pro- 
duced45) whenever any simple group [such as SU(5)l is broken down to a 
gauge group which contains a U(1) factor [such as SU(3)xSU(Z)NJ(l)l. 
The mass of such a monopole would be 

Mm - MGf% - 1016 GeV. (5.40) 

The basic reason monopoles are produced is that in the breaking of 
SU(5) the adjoint can not align itself over all space. On scales 
larger than the horizon, for example, there is no reason to expect the 
direction of the Higgs field to be aligned. Because of this random- 
ness, topological knots are expected to occur and these are the mag- 
netic monopoles. We can then estimate that the minimum number of 
monopoles produced would be one per horizon volume or causally con- 
nected region at the time of the SU(5) phase transition tc 
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% - (2t,)--3. 

The tim tc is related to Tc through (2.60) 

(5.41) 

tc = 0.3Mp N(Tc)-l" Tc-' (5.42) 

so that the monopole-to-photo" ratio is 

“,I” Y - (10Tc/Mp)3. (5.43) 

Just as in the case of neutrinos, we can look at the limits on 
the abundance of magnetic monopoles due to the overall density of the 
Universe. The mass density of monopoles will be 

%I = M,,,nm (5.44) 

and the fraction of critical density in monopoles can be expressed as 

i? h2 = 9.5x104 y,(W) nm (~rn-~). m 0 (5.45) 

Thus for M m - 1016 GeV and 12h; < 1 we have that 

nm/ny < o(lo-25). (5.46) 

The predicted density, however, from (5.43) for T, - MG - 1015 &" 
yields 

(“,/“,) - 10-g. (5.47) 

Hence, we see that standard GUTS and cosmology have a monopole 
problem. There are basically two solutions to this problem. If 
instead of T, - MG, the SU( 5) phase transition were supercooled 46) and 
T, < lOlo GeV the number of monopoles might be acceptable. Recall the 

'types of supersymmetric GUTS described 
property, Tc - AL5 - log - lOi0 Gev. 

above have exactly this 
Thus they might not overproduc 

mo"opoles. The second solution involves the inflationary Universe4 e 
scenario and will be discussed in section 7. 

The final problem we would like to discuss in relation to 
particle theory is only a problem in locally supersymmetric theories. 
This problem involves the overproduction of entropy through gravitino 
decay.47) At very early times we expect that gravitinos were as 
abundant as photons. Gravitinos, however, only couple gravitationally 
and hence are decoupled from the thermal background until very late 
times when they decay. Their decay rate will be the gravitational 
rate 

r3/2 - 62 I$, (5.46) 

where m - 100 GeV is the gravitino mass. Because of their early 
decoupl?~/g2, gravitinos will be at a lower temperature the" the photons 
when they decay so that their total mass density will be 



-54- 

%/2 - m3,2 "y/N(Mp). (5.49) 

When gravitinos decay, the Universe will be matter dominated (this 
depends of course on the gravitino mass) and the expansion rate is 
given by 

H - m:;; T3'2/Mp N(Mp)l12 (5.50) 

so gravitinos decay when r3,2 -H or 

TD - m;;; q2'3 N(Mp)1'3. (5.51) 

After the decay products of the gravitinos thermalize, they will 
have reheated the Universe to a temperature 

TA - cm3,2 T;/N (Mp))l" - m;;;/M;". 

In addition, the entropy increase of the Universe will 

(T*/Toj3 - (Mp/m3,2 )1/2/~(~p). 

be 

(5.52) 

(5.53) 

If we put some numbers into these equations, we find that for m 
- 100 Gev, gravitinos decay at TU - 10 eV, i.e., after nut ,'z- 2 
synthesis. The entropy increase is 0(106) which presents problems for 
both big bang nucleosynthesis as well as big bang baryosynthesis. In 
the next two sections, we will look at other cosmological problems and 
their resolution [as well as a solution to the gravitino problem 48)] 

in the inflationarv Universe scenario. 
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Section 6. Cosmological Problems 

In the previous five sections, we have outlined the standard big 
bang cosmological model from the GUT epoch at t - 10ms5 set to the 
time of recombination at about t - lo5 yrs. The model in its sim- 
plicity is amazingly successful. Independent of any particle physics 
model, it does, however, have sane problems of its own which we would 
like to address in this section. They are 1) the horizon problem; 2) 
the small scale inhomogenei ty; 3) the curvature or flatness problem; 
4) the rotation problem; and 5) the cosmological cmsta t. 

43 
All but 

the last of these problems may be resolved by inflation as we will 
discuss in the next section. 

The horizon volume or causally connected volume today, is just 
related to the age of the Universe V0 = ti. The microwave background 
radiation with temperature T0 - 3°K has been decoupled from itself 
since the epoch of recombination at Td - 104”Y. The horizon volume at 
that time was Vd = t$. NNOW the present horizon volume scaled back to 
the period of decoupling will be Vb = V,(T /Tdj3 and the ratio of this 
volume to the horizon volume at decoupling PS 

v ;/Vd - (vo/vd) (T&j3 
(6.1) 

- (tO/tdj3 (T0/~d)3 - 105, 

where we have used td - 3x101~ set and t - 5x1017 sec. The ratio 
(6.1) corresponds to the number of regions’that were causally discon- 
nected at recombination which grew into our present visible Universe. 

The microwave background radiation appears to be highly isotrop- 
ic. I” fact, the limits on the anisotropy put 

AT/T < 10-4. (6.2) 

This means that on large scales, the Universe must be very isotropic 
and homogeneous, (any inhomogeneities would also produce fluctuations 
in the microwave background). The horizon problem, therefore, is the 
lack of an explanation as to why lo5 causally disconnected regions at 
td all had the same temperature to within one part in lo”! 

Although it appears that the Universe is extremely isotropic and 
homogeneous (in fact the standard model assumes complete isotropy and 
homogeneity) it is very inhomogeneous on small scales. In other 
words, there are planets, stars, galaxies, clusters, etc. On small 
scales, therefore, there are large density perturbations. The problem 
is to understand how such density perturbations were formed (remember 
that on large scales we must have &p/p - 6T/T - 10m4) and how on small 
scales these perturbations grew to 6p/p - O(1). 

The curvature problem (also known as the flatness or oldness 
problem) stems from the fact that although the Universe is very old, 
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we still do not know whether it is open or closed. Recall that 
because of the scale dependence in the Friedman Eq. (1.251, the 
expansion rate will always be matter- or radiation-dominated early (p 
- R-3, R-") and curvature-dominated later (k/R'). Neglecting the cos- 
mological constant, 
H20i.n Eq. (2.27) 

the curvature term was expressed in terms of R and 

k/R2 = (0 - 1) "'0. (6.3) 

If we now use the limits n < 4 and H < 100 km s-I M 
< l/2 necessary when R > 1 to be'consistent wit l?= 

-I (the limit h 
the age of th,o 

Universe will make no difference here) we can form a dimensionless 
constant 

1; = k/R2T2 = (a - 1) H2,/T2 < 3H2,/T2, 

< 2x10-5*, 
(6.4) 

where we *have used T > 2.7'K. 
k is absolutely constant (R 

In an adiabatically expanding 
Universe, - T-~) and thus the limit (6.4) 
represents an initial condition which must be imposed so that the 
Universe will have lived this long looking still so flat. 

A more natural initial condition might have been i - O(1). In 
this case the Universe would have become curvature dominated at T 
- 10-1 M For k = +I, 
Even forP;; as small as 

this would signify the onset of recollapse. 
O(lO- 40) the Universe would have becone cur- 

vature dominated when T - 
only o(lo-2) sec. 

10 MeV or when the age of the Universe was 
Thus not only is (5.4) a very tight constraint, 

it must also be strictly obeyed. Of course, it is also possible that 
k Z 0 and the Universe is actually spatially flat. 

Similar to the curvature problem is the rotation problem,4g) 
i.e., why isn't the Universe rotating? By rotation we mean an 
anisotropy in the Universe to which is associated a preferred 
direction and angular momentum. The strongest limits on the rotation 
are due to its poss ble effects on the microwave background radiation 
and one finds 5 that50 

w 5 10-21 s-1, (6.5) 

where w is the associated angular velocity of the Universe. w will 
scale with the expansion and the scaling depends on the equation of 
state 

,,, ,.. R3Y-5, (6.6) 

where y was defined in (2.13). Thus for a matter-dominated Universe 
(Y = 1) 
- R-l. 

w . Rw2 and for a radiation-dominated Universe (Y = 4131, w 
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We can now scale back w to the planck time and see what kind of 
initial condition is imposed by (6.5). The limit (5.5) can be scaled 
back to the epoch of recombination (when we expect the change over 
from radiation) to matter domination by 

to 4/3 Od < 10-7-1 s-1 ($ - o(lo-'4) s-1 (6.7) 
d 

at recombination. 4t earlier times, w scales back to the planck time 
as 

td l/2 
wp < O(lO--'4) s-1 (,I - O(10'4) s-1. (4.8) 

P 
We can again form a dimensionless constant which at the planck time 
was 

w ^ 
w = $ <- 2x10-29. (6.9) 

P 

Because a rotation term would enter into the field equations as w2, 
the limit (6.9) is amazingly similar to (6.4). Once again we would 
expect that initially w - O(1). 

The final problem we would like to discuss is that of the cos- 
mological constant. As we said in section 2, the Universal expansion 
is not dominated by the cosmological constant. This can be put in the 
form of a limit on A and when put in dimensionless form reads 

A/M; < 10-121. (6.10) 

As we will see in the following section, the cosmological constant 
might not really have been constant throughout the entire evolution of 
the Universe. If we associate vacuum energy densities of the various 
phases the Universe passed through as an effective cosmological con- 
sta"t,A we would expect a wide variety of values. 

(E&/*Mp)" +., 10-12. 
The GUT epoch would 

have h - While at N(2) breaking, we would get a 
contribution A -. (G/M )4 

% 
- 10-68. Now all of the phase transitions 

which are accompanied y a change in vacuum energy density all con- 
spired to give such a low value for A today is not at all understood. 
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Section 7. The Inflationary Universe 

In all of the problems that were discussed in the previous sec- 
tion (except for the cosmological constant) it was assumed that the 
Universe has always been expanding adiabatically. During a phase 
transition, however, this is not necessarily the case. If we go back 
to Fig. 9a, and we suppose that because of the barrier separating the 
two minimum, the phase transition was a supercooled first-order 
transition. If in addition, the transition takes place at Tc such 
that T4 < V 
releasedc. I?' 

the energy stored in the form of vacuum energy will be 
released fast enough, it will produce radiation at a 

temperature T; - VO. In this reheating process entropy has been 
created and 

(RTjf - (TR&) (RT)~ (7.1) 

provided that T, is not too low. Thus we see that during a phase 
transition the relation RT, - cqstant need not hold true and thus our 
"dimensionless constantsn w and k may actually not have been constant. 

The inflationary Universe scenario, 4, is based on just such a 
situation. If during some phase transition, the value of RT changed 
by a factor of O(102g) the first, 
logical problems would 'be solved. 

third, and fourth of our cosmo- 
The isotropy would in a sense be 

generated by the immense expansion; one small causal region could get 
blown up and hence our entire visible Universe would have been*at one 
time in thermal contact. In addition, the parameters k and w could 
have started out O(1) and have been driven small by the expansion. 

If, in an extreme case, a barrier as in Fig. 9a caused a lot of 
supercooling such that TE << VO, the dynamics of the expansion would 
have greatly changed. In the example of Fig. 9a the energy density of 
the symmetric vacuum, VO, acts as a cosmological constant with 

A = SIT v /!4* 0 P' (7.2) 

If the Universe is trapped inside the false vacuum with 2 = 0, 
eventually the energy density due, to say, radiation will fall below 
the vacuum energy density, p << VO. When this happens, the expansion 
rate will be dominated by the constant V0 and we will get the De 
Sitter-type expansion (2.16), (2.17) 

where 

R- expWt1, (7.3) 

* 
We now refer temperature at which the transition 
actually takes 

to Tc as the 
place rather than when it is at first physically 

possible. 
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Hz = At3 = 8n V,/3M;. 

The cosmological problems could be solved if 

(7.4) 

HT 2 65, (7.5) 

where T is the duration of the phase transition and the vacuum energy 
density was converted to radiation so that the reheated temperature is 
found by 

$ N(TR) T"R = VO. (7.6) 

If such a barrier persists down to low temperatures, the phase 
transition must proceed via the formation of bubbles of the broke 
phase. The bubble formation rate per unit volume is given by"l 'j 
(5.33) 

p - A~Y-~, (7.7) 

where Al/l* is generally taken to be the overall mass scale in the 
problem (A - T" or A - M4) and B is tunneling action. The transition 
will take place in such a way so as to minimize the action. There are 
in general several possible forms for B of which the form yielding the 
lowest value will be realized. One possibility 51) is the Einstein 
action 

B = -4a 1 d4x J-g (Rc - 2h), (7.8) 

where g = det g,,v and R, = RP is the curvature scalar. 
Y 52) 

4nother pos- 
sible action would be the Co eman-De Luccia bounce action for the 
formation of a bubble including gravitational effects. The phase 
transition will be completed if bubbles form fast enough or p > H4. 
More specifically, the fraction o 
not occurred can be expressed as46 f 

space in which the transition has 

f(t) = exp[-j; dt' p(t) R3(t) V (t,t')l, 

where 

V(t,t') =%I,;, dt"/R(t")13. 

The transition is finished at time T when f(T) a 0. 

(7.9a) 

(7.9b) 

The scenario just described is the original idea of Guth 4, for 
cosmological inflatio?. In this scenario, the Universe would undergo 
a phase transition, say SU(5) + SU(3)xSU(Z)xU(l) in which the poten- 
tial resembled that in Fig. 99. The Universe would then get hung up 
in the SU(5) phase down to a very low temperature (and may, therefore, 
solve the monopole problea). After completion of the phase tran- 
sition, the Universe would reheat to 
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TR - ~,/[N(TR)I~‘~- (7.10) 

Baryon generation would then follow so long as TR was not too low. 

It is now k own 
for inflation.53P 

that there is a problem with Cuth's original idea 
It turns out that the requirement that the Universe 

supercool for a long enough time (Hr > 65) is not compatible with f(T) 
+ 0, i.e., the phase transition does not finish. In order to have a 
long infationary time scale, a large barrier was necessary so as to be 
sure that the action for tunneling was also large. It is necessary in 
this scheme that the initial probability for tunneling be very small. 
The problem is that under these conditions the tunneling probability 
"ever catches up with the expansion rate, which is exponential at this 
point. As a whole, the Universe remains in the De Sitter state trap- 
ped in the symmetric SU(5) vacuum with only a few isolated bubbles 
containing the true SU(3)xSU(Z)xU(l) vacuum. Not only is the result- 
ing Universe very inhomogeneous, but each bubble remains empty as all 
of the energy is stored in the bubble walls and is only released 
through collisions which in this case do not occur. 

U"iveT;~54gOlution to this problem is called the new inflationary 
and its basic and simple idea is this: tunnel first and 

inflate later. To realize this type of inflation, one must have a 
long flat scalar potential. If one can argue (e.g., by thermal 
effects) that at early times or high tempertures the Universe was in 
the symmetric phase L = 0 and then at some lower temperature T < < Tc 
a bubble is formed. The supercooling may be due to either a barrier 
as in the previous case or a suppression of thermal fluctations so 
that the field Z rests near the origin. In the case of a barrier, 
once a bubble is formed, if the potential is very long and flat at 
values of E past the barrier, the potential energy density 
(approximately constant) will again act like a cosmological 
constant. If a single bubble were to expand by 29 orders of 
magnitude, the phase transition need not be completed as in the 
previous case. The entire visible Universe would be contained within 
one bubble. The bubble would be filled in this case not by bubble 
collisions, but by dissipation of the kinetic energy of the scalar 
field as it finally reaches its global minimum. A generic example of 
such a potential is show" in Fig. 11. 

Popular examples of flat potentials considered for inflation have 
been the Coleman-Weinberg 55) potentials which are derived by taking 
first-order radiative corrections to the tree potential. If scalar 
self couplings are small enough, the tree potential can be neglected 
and we can concentrate on the corrections. In general, we can write 
the C-W potential as 

$2 V(e) = A$+ (In Y - l/2) + D$2 + l/2 A v4, (7.11) 
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where 4 is some scalar field [it may be the adjoint in the case of 
SlJ(5) or any other scalar field which is appropriate]. The $' 
coupling A is given by 

A= 1 

64 n2 v4 
[zBgBMf; - ~&$I, 

is the number of boson (fermion) helicity states of mass 
expression (7.12) takes into account all possible first- 

the relative minus signifies that it is a fermion 
loop correction rather than one due to bosons. The effective mass' is 
given by 

D = l/Z@!; + CT.* + bR, -3 J. < @>), (7.13) 

where M 
finite 

o is a possible bare mass term, cT2 is a gauge group dependent 
temperature 

scalar curvature R, 
correction, bR, is a possible coupling to the 
and the final term is an effect of @ fluctua- 

tions in curved spa~e~~*~~), - X/4 is the m4 self coupling. 

Fig. 11. Typical shape of a scalar potential needed for the new 
inflationary scenario. 

In standard SU(5) the potential (7.11) is determined. The X and 
Y gauge bosom dominate the loop diagram and we have gB = 36, M$, = i+ 
= 25/8 g2 v2, where g is the W(5) gauge coupling, g2/4n = l/41, and v 
is the vacuum expectation value for the adjoint. In this case 

A = 5625 2 - 5x10-2. 
10241~2 

(7.14) 
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The constant c = (75/8) g2 is valid for 0 < 0 < T < v. In order for 
inflation to occur during SU(5 

3 
Coleman-Weinberg breaking the 

tunneling action must be large.58 If not for a barrier in this 
model, thermal fluctuations would drive the transition too early 
resulting in insufficient inflation. 

To determine whether or not inflation actually occurs in this 
model, let us first look at the time scale for the field + to go from 
its initial post barrier position to its global minimum at < $ > 
= V. The roll-over time scale is determined by the equation-of-motion 
for $ 

. . 
$ + (3~ + r) $ + av/a+ = 0, (7.15) 

where I' is the rate of interactions of the .$ field, and controls 
particle creation. The r term is only relevant when r 111. Initially 
r must be small for inflation to occur and we will neglect it for the 
time beinn. Initiallv Q will also be small so that the roll-over 

I~, I 

time scale can be derived from 

3~5 + (av/a+) = 0 

7-1 = ?I$ - (a2v/a@ )/3~. 

For $ < < v the roll-over time scale is 

T - 3H/2D. 

In the case of the Coleman-Weinberg potential (7.11) we have 

8TV 0 4uAv4 H2=-= - 
3~~ 3~2 

P P 

and the condition HT > 65 translates into an upper limit on D 

D < (4'n/130) Av4/M;. 

For v w lOI GeV we find that 

D < O(101g)GeV2. 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

(7.21) 

This is the first drawback on the new inflationary scenario with 
Coleman-Weinberg type SU(5) breaking. The limit (7.21) implies that 
each mass term in D must be fine-tuned down to O(lOg) GeV. This is, 
however, technically unnatural as scalar mass will tend to get radi- 
ative corrections to their mass of 0(1015) GeV. 

A fine-tuned mass term as in (7.21) will also make it very 
difficult for the Universe to remain in the symmetric state down to 
low temperatures. If we look, for example, at the action given by 
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(7.8), this can be rewritten in the formsI) 
B = (3M;/8) [l/V0 - l/v11 

- (398) LO, - V,)/Vo21, VI - v. < < VO’ (7.22) 

where V0 
maxi mum 

= l/2 Av4 and V1 is the value of the potential at the local 

"1 = V0 + D2/4A l"(4v2A/D). (7.23) 

Thus the action is 

B = 3M~D2/8A3v*l"(4v2A/D). (7.24) 

For SU(5) and D satisfying (7.21), we find B - O(lO-') << 1 and hence 
does not at all prevent a transition from occurring. In order to make 
B large we would need A < O(10m4) corresponding to D < O(1016)GeV2 and 
hence mass terms fine-tuned down to O(lOB)GeV. Unfortunately, A is 
not adjustable in SU(5) so that it is not clear that q will be con- 
strained "ear the origin long enough so that inflation will actually 
occur.5g) 

This model however appears to be a good one in the se".se that so 
many things go wrong it gives one a list of things to watch for. In 
addition to those we just rrentioned, it was also pointed out that dur- 
ing inflation scalar field fluctuations 57) 

sition unless x < 5x10-3. 
would drive the phase tran- 

e4 coupling for $ - 
In the present case, however, the effective 

H is about two orders of magnitude larger. 

The most serious blow to Coleman-Weinberg type inflation comes 
from the density perturbations which are produced during ther roll- 
over.6 O) The isotropy of the microwave background radiation tells us 
that ="Y perturbations produced on large SCdeS 

< O(lO-+). 

must have 6PlP 
Tdeally, what one would want from inflation is what is 

know" as the Harrison-Zeldovich61) spectrum of density fluctuations. 
They are also known as scale independent perturbations which are the 
type most desired for the purposes of galaxy formation. 

must be O(10-4). 
Their magni- 

tude, however, Any perturbations stronger than this 
would produce visible anisotropies in the microwave background radia- 
tion while weaker perturbations would not have had enough time to grow 
during the present period of matter domination (since decoupling). 

The initial spectrum of perturbations can be classified by their 
magnitude on a given length scale 

(%) Qinitial - l/!v3" - l/M", (7.25) 

where M is the mass contained within the volume i3. Perturbations on 
scales larger than the horizon grow in magnitude. Inside the horizon 
they oscillate until further growth is possible when the Universe 
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becomes matter dominated. Perturbations on larger scales have a 
longer time to grow and for n = 213 it turns out that as each scale i 
enters the horizon, the magnitude of the perturbations are equal. 
This is what is meant by scale-independent perturbations. In ad- 
dition, for n > 213, perturbations are too strong and tend to "close 
UP" and form individual Friedmann "Universes," i.e., they will be 
described by an independent rretric. For n < 2/3, the perturbations 
are too weak to form galaxies. Therefore, the n = 2/3 spectrum is the 
one preferred for galaxy formation. 

4s it turns out, phase transitions, such as the SIJ(5) transition 
described above, produce 62) very nearly the n = 213 spectrum which is 
desired. The perturbations are formed because the field $ does not 
roll down to its global minimum homogeneously. There will, in 
general, be a time spread over which certain regions roll down faster 
or slower than others. The density perturbations have been calculated 
in terms of this time spread 60) 

9 = 242 H 6r, (7.26) 
P 

where &p/p is the magnitude of the perturbation as it enters the 
horizon. The time spread AT has been estimated to give 

AT = Q/?, (7.27) 

where the scalar fluctuations are taken in a De Sitter space to be 

6+ = ~14~~~~ (7.28) 

and $ is found from the homogeneous equation of motion (neglecting i) 

3~4 = -(av/aq) (7.29) 

at t = -In (Hk-l)/H where k is the wave number of the perturbation. 

If we now go back to the Coleman-Weinberg potential (7.11), we 
can compute the magnitude of density perturbations that one finds. 
Equation (7.29) becomes 

3H$ = -8A(ln H/v) $3 (7.30) 

for $ e H, where we have used the fact that D << Hz. For SU(5), the 
solution to (7.30) is 

4 sl J3/8h Hz ln-3'2 (Hk-l), (7.31) 

where 

h = -8 A In H/v. (7.32) 

From Eqs. !7.26), (7.27), (7.28), and (7.31) the final magnitude of 
the density perturbations becomes 
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&P/P - (4h/3n3)"' l"3'2 (Hk-l). (7.33) 

we see, therefore, that although it is not completely scale indepen- 
dent, the logarithmic variations are not enough to disturb its useful- 
ness for galaxy formation. If we now take k on galactic or horizon 
scales today we find 

&P/P - 50 (7.34) 

i.e., about 5 orders of magnitude too large. Had this number turned 
out to be O(10b4), inflation would have solved the cosmological prob- 
lem of small scale perturbations as well as the others. 

Clearly the list of problems with the Coleman-Weinberg SU(5) 
inflationary model is long enough. Before moving to the brighter 
possibilities we note that it has also been shown63) that under 
reasonable circumstances, the above model does not even break to 
SU(3)xSLI(2)xU(l), but rather SU(4)xU(l). Not only do we have a small 
lumpy Universe, but we're in the wrong vacuum as well. 

In the remainder of these lectures, we will consider the effects 
of supersymmetry on cosmological inflation. Let us recall one of the 
most powerful tools that supersymmetry puts in our hand, namely, the 
non-renormalization theorems. 64) In the previous contribution, we saw 
how these theorems led to the stability of gauge hierarchy, that is, 
if we set the mass scale for a scalar field at, say, m 
non-supersymmetric model would have corrections 6m2 - e 

- 10' GeV, a 
1015 GeV)2 so 

that 

"2 -mz, + A”2 - (10'5 GeV)2, (7.35) 

whereas in a supersymmetric model 

6m2 = 0. (7.36) 

Because we know that the Universe is not exactly supersymmetric (there 
are no charged scalars with mass 0.511 MeV) there will be some radia- 
tive corrections 

6"2 - E M$ (7.37) 

where M, is the scale of supersymmetry breaking and E is some coupling 
constant. In locally supersymmetric models 

E - m3,2/Mp - 10-16, (7.38) 

and hence the smallest corrections are typically 

6m2 
- “Z/2 

(7.39) 
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where we have used the relation 

T/2 - M$/Mp. (7.40) 

Thus for m3,2 < \, the stability of the gauge hierarchy is guaran- 
teed. 

&cause of the cancellations in radiative corrections, one might 
expect that supersymmetry would have a big effect on our previous dis- 
cussion involving Coleman-Weinberg potentials. 59,651 If we go back to 
(7.12), in an exactly supersymmetric model, for every MB,gB there is a 

MF = MB and gF = gB so that A E 0, i.e., there is no Coleman-Weinberg 
potential. In broken supersymmetry, we might have some splitting 
between the bose and fermion states 

M$ - M; - EM; (7.41) 

so that 

A = “,~~~~+ [ti$ - I$ = s4[M; - E$]M; 

g B (7.42) 
I 

32x2,” 
M; M’, E 

and in SU(5) if we take M$ = (25/a) g2v2, gB = 24 

A - (75/32x2) g2 (M2/v2) E. s (7.43) 

The most serious constraint on A came from the magnitude of density 
fluctuations A < O(10-14). This translates to 

M2 E < 0(10’7) GeV’. s (7.44) 

For E - 10-16 this requires M, < 0(1016) GeV which is not at all a 
serious constraint. 

The above exercise is of course not a model, but only gives one 
an idea that supersymmetry might be very important for inflation. For 
interesting models, we must have M, - 101 o GeV so that 
lo2 GeV. In addition, m;i/,ti,n”!/,“,Ld if we want to consider GUTS or in 
that epoch we can in fact neglect the effects of supersymmetry break- 
ing because M, << M, and thus work in the context of exact supersym- 
metry. Therefore, in the following, we will be able to confidently 
neglect radiative corrections and work entirely at the tree level. 

The scalar potential in supersymmetric models, recall, is derived 
from a superpotential f by 

v = ;I af/a+i12 (7.45) 
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for globally supersymmetric models66) and 

v = e +bii”/M2;@ 

i a+. 
+ $;f/M2j2 - 31fi2] 

1 
(7.46) 

in ndnimal N = 1 local super-symmetry. 67) In Eqs. (7.45) and (7.46) 
"t? are summing over all chin1 supermultiplets 
2.4~10~~ GeV. 

and M = Mp/&3n 0 
Near the origin these potentials can be expanded so 

that they can always be put in the form 

V($i) = 6 + y'$ - 8$3 t cd+ + . . . (7.47) 

where we have left open the possibility for including non-renormali- 
zable term in V as these will frequently appear in the supergravity 
models given by (7.46). So long as we restrict ourselves to scales 
< < Mp our theory will still be well defined. 

To begin with, let us consider $ to be a chin1 supermultiplet 
g=uge singlet and that $ picks up a vacuum expectation value <O/$10> 
= u. In the following we will no longer restrict ourselves to !J w MX 
i.e., $ and inflation need not be related to GUTS. 4s we will see 
shortly, for u > > MX, inflation is easier to achieve. The basic 
properties of V(+) must include that at $ = i-1, the potential have a 
minimum so that (aV/a$)l = 

$ 
= 0 and (a2v/a42)1 = > 0 and we will 

want the vacuum energy ensrty at the minimum t o v%nish so that we 
have no cosmological constant. This requires V(u) = 0 as well. At 
the origin on the other hand, we want a flat potential with positive 
energy density 6 > 0. 

As in the ca?.e of the Coleman-Weinberg potential, we will imagine 
that initially the field $ is near the origin. we will not yet 
specify whether this is due to finite temperature effects or not. We 
will demand, however, that fluctuations do not drive the field away 
from the origin at T > H. The Hubble parameter, when T < H, i.e., 
when the Universe beco$s dominated by the vacuum energy de&ity 6 is 
given by 

H2 = q 6/M; = (l/3) 6/M2. (7.48) 

If we scale the parameters as 

6 = &'t, y = b2, 6 = ;v ^ 17.49)* 
we can show the constraints on the dimensionless parameter 6, Y and 8 
in terms of p. 

Depending pn the couplings, the potential may or may not have a 
barrier. <or*y > 0 and 6 > 0 there will be a barrier with a*maximum 
=t q1 - (W/36) u. Without a doubt, the strongest constraint on the 

*For constraints on the scalar potential for inflation see Ref. 68. 
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parameters comes from the density perturbations. The starting point 
of the calculation should be taken to 0, - H or in the case of a bar- 
rier, the larger of I$,, - H or $ 
we are at q = 0. If at 9 , 

- 29, 
av?a$ 

assuming again that initially 
is dominated by the quartic term, 

the density fluctuations wil @l be very similar to those in (7.33) 

60/p I: (16c1/3n~)~'~ ln3" (Hk-l). (7.50) 

If, on the other hand, it is the cubic term dominating we then have 69) 

&p/p 1: (2~~j-l'~ (B/H) ln* (Hk-I). (7.51) 

In this case (which is probably the most interesting physically) the 
constraint 6pfp - 10e4 becomes 

i * 0(10-7) (u/M) :l'*. (7.52) 

In addition, the long roll-over time scale gives a constraint on the 
value of Y in terms of d and v 

j < 0(10-2) (U/M)' ^6. (7.53) 

We can now see the benefit of keeping $ independent of GUTS. If 
$ was taken to be-the adjoizt and we related )J - MX we find that 6 
- lo-lo 61/Z and y < 1O-g 6. Although this type of fine tuning is 
allowable in supersymmetric theories, it again represents an unnatural 
set of parameters which must be imposed PII the mo+l. If instead we 
let Ll - M we have i? - 10e7 61'2 and y < lo-* 6, which is a con- 
siderable improvement. This situation, i.e., where the scalar driving 
inflation picks up a v cuum expectation value $ - u > > MX is called 
primordial inflation.657 

At this point, it is worth noting two points in which inflation 
is facilitated by primordial supersymmetric inflation. If we go back 
to Fig. 11, there are at least two obvious ways in which we can make 
the scalar potential flatter. One way is to decrease the value of V 
(leaving v fixed) and the second is to increase the value of v 
(leaving V fixed) or, of course, both. As we saw in the exercise with 
the Coleman-Weinberg potential, supersymmetry can accomplish the first 
while the second is defined to be primordial inflation. As v ap- 
proaches Mp, we must start to worry if first-order gravitational (FOG) 
effects do not come in and change the picture. One possibility, how- 
ever, is that these effects will be incorporated if one works in the 
framework of supergravity. The overall hope in this case is that if 
all quantum gravitational effects are contained in extended N = 8 
supergravity, perhaps the physics at, or below, the planck scale are 
correctly understood in an N = 1 supergravity. We will make this 
assumption to close our discussion on inflation. 

In o der 
gravity, 7 h 

to construct a model for inflation in N = 1 super- 
let us start with the most general superpotential for a 

single scalar field $ which we will now call the inflaton 
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single scalar field 4 which we will now call the inflaton 

f1 = ll?(Z " * ($"+l + A), (7.54) 

where m is an as yet undetermined mass scale. The scalar potential is 
determined by (7.46) and can be put in the form (7.47). Note that for 
a certain range of parameters (A* > 4 A X ) we can restrict our 
attention to the real axis. We kin the"' ma e % the identifications 
between the couplings hi and a, B,y,d 

Q =( Gl 
2 t ; xf t A$ +; A& t ; AlAI+ 2 A&,,) m6lM6 (7.55a) 

-6 = 2(X0$ t AlA2 + hoh1/2)m6/M5 (7.55b) 

y = 2X0x2 m6/M4 (7.55c) 

6 = ("'0 -3h;/4) M6/M2, (7.55d) 

where we have used X1 = 2X in order to cancel the linear term at the 
origin. 

I" the spirit of primordial inflation, we will take u = M. We 
will the" require that supersymmetry remain unbroken at $ = in. One 
reason as we said earlier is that radiative corrections can be 
neglected in this case. More importantly, however, is that if super- 
symmetry were broken at 4 = u by f (7.54), the gravitino would pick up 

y"s;s 33&z - m3fM2. Although we have not said what the value of m 

higrarchy, 
will see shortly m - 10m2M. To preserve the gauge 

we would need m < 10-5M, this however would "ever reheat 
the Universe so as to produce a baryon asymmetry or large enough 
density perturbations. Thus demanding exact supersymmetry at $ = u 
implies that 

f@(u) = 1% + $*f/M2j1g=u = 0. (7.56) 

I" addition to preserving supersymmetry we must also cancel the cosmo- 
logical constant from Eqs. (7.56) and (7.46) this requires 

f(U) = 0. (7.57) 

These two conditions reduce to two constraints on the superpotential f 
(7.54) 

,*+x=0 (7.58a) 

z An = 9. 
” 

(7.58b) 

The final constraint on f comes from the fact that $ = !J must also be 
a minimull. It is not difficult to show that any point which preserves 
supersymmetry and cancels the cosmological constant is a minimum so 
long as 
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a2flaq2 + 0 

a trivial constraint to satisfy. 

(7.59) 

Let us now look at the simplest form of f which satisfies these 
constraints 

71)] 
[we will neglect any temperature corrections on this 

potential 

f = m3(h t ho@ + $12 Q2) 

and the constraints yield 

(7.60) 

A = h1/2 = -x0/2. (7.61) 

If we choose X = 1 then h =Zandh =2. The mass scale m is fixed 
from the magnitude of the !iensity per:urbations (7.52) 

.i 2 -(m/M)6 AoA1 - 0(10-7):"2 
(7.62) 

=0(10-'7) (m/M)3 (Ao2 - 3i2)l'= 

m3 - O(lO-*)M3. (7.63) 

The condition for a long roll-over time scale is now automatically 
satisfied because p = 0 and at $ - H, a2V/a$= - -6BH and 3H2/6BH - 
H/26 - l/18/3 (n~/M)~j >> 65. 

Let us now close this discussion by looking at what happens to 
the Universe, in a more-or-less chronological sequence. 72) If there 
is a region in the Universe in which 4 is near the origin, this region 
will inflate (regions in which $ is not near the origin do not and 
will hence be overshadowed by those which do inflate). As $ ap- 
proaches its minimum at <$> = M it will begin to oscillate until the 
decay rate of $ 

'D Q 
- m3lM2 (7.64) 

becomes comparable to the expansion rate of the Universe which is 
governed by non-relativistic matter. When the 9's decay the Universe 
will reheat to a temperature 

TR - m~12'M112~ (7.65) 

In the case described above, the mass of the inflaton is given by 

In3 m3A1 
1 (nA,) = - - 2~10-~M 

M2 (7.66) 
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- 5x1010 Gev 

and hence the reheat temperature is TR - 2.8~1O-~'M - 7x106GeV. 
Although this may seem rather low for generating a baryon number, it 
turns out that an acceptable number will still arise. The inflaton 
will decay via gravitational interactions which are found in the cross 
terms of the scalar potential such as 

rn$ a2 $ Y H ii (7.67a) 

me a4 + Y3 (7.67b) 

etc., where we have included the superpotential (5.35). If we suppose 
that the branching ratio for 0 into Y or H, I? (or anything which leads 
to H, Fi) is O(l/lO) then the total baryon-to-entropy ratio produced 
will be 

"B/S - O(l/lO) (TR/mH)AB 

- o(lo-4)AB (7.68) 

which is still a sufficient baryon excess. 

Looking back on our goals in this section, we have seen that of 
the five problems listed in section 6 we have been able to solve four 
of them by inflation. The horizon, curvature, and rotation problems 
were all solved similarly by the exponential increase in R. The small 
scale inhomogeneities are also supplied by inflation in that density 
perturbations 6p/p - 0(10-4) can be generated. We are left however 
with the problem of the cosmological constant which is tuned by hand 
to be zero today. 

In section 5, we saw two additional problems arise due to GUTS 
and supersymmetry. The monopole problem can also be solved by 
inflation. During the inflationary period, we expect SU(5) to break, 
the density of monopoles will then be exponentially suppressed and the 
proble disappears. 
V7,y.J 

The gravitino problem disappears in much the same 
The initial abundance of gravitinos is exponentially 

suppressed; however, during the reheating they may be reproduced. 
Typically the abundance relative to photons is just TR/M and is at an 
acceptable level if TR < 0(1012)GeV, clearly satisfied in the above 
example. 

As we have see" through these lectures, cosmology has come a long 
way in the past twenty years. In the four series of lectures in this 
volume, we have tried to bring the reader more-or-less up-to-date in 
GUTS, supersymmetry, and cosmology. Our hope, of course, is that the 
reader can now digest it and expand upon it. 
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