b

& Memaratad ki

Fermi National Accelerator Laboratory

FERMILAB Conf-84/59-A
June 1984

COSMOLOGY AND GUTS*

Keith A. QOlive

Astrophysics Theory Group
Fermi National Accelerator Laboratory
Batavia, Illinois 60510 U.S.A.

* To be published in Grand Unification With and Without
Supersymmetry and Cosmological Implications, by C. Kounnas,
A. Masiero, D. V. Nanopoulos and K. A. Olive; International

School for Advanced Studies Lecture Series No. 2. Trieste,
Italy, Summer 1983. World Scientific Publishing Co.,
Singapore,

Halbirareidime Daanncs L A mimdia T a S T



COSMOLOGY AND GUTS
Keith A. Olive

Astrophysics Theory Group
Ferml National Accelerator Laboratory
Batavia, Illinois 60510 U.S.A.

Introduction

Up until the last fifteen to twenty years, cosmology had been
considered as a link between astrophysics and general relativity.
Although nuclear physics began to play a role as early as the 1940s
when big bang nucleosynthesisl) was first discussed as a possible
cosmological origin of the elements, %t was not until the discovery of
the microwave background radiation? that the big bang model was
placed as the front-running cosmelogical model. More recently, with
the advent of grand unified theories (GUTs) cosmology has played an
integral role in particle physics, Among the most important results
due to the interplay between cosmology and particle physics are, for
example, the cosmological limits that one sets on particle abundances,
masses, and lifetimes which set guldes for building unified models.
On the other hand, the incorporation of GUTs into the big bang model
led to a theory of big bang baryosynthesis®’ to explain the slight
excess of matter over antimatter.

In the first three parts of these lectures, we have presented the
current status GUTs and supersymmetric GUTs (global and local). In
this final part we will try to cover the status of the big bang model
and in particular its role in unification models. To do this, we will
begin by reviewing the essential ingredients from general relativity
needed to describe fully the Friedmann—Robertson-Walker and De Sitter
models. These models which include the standard big bang model will
be discussed in some detail. In section 3 we will review the current
status of big bang nucleosynthesis and the origin of the light ele-
ments. This discussion will include the cosmological bounds on the
baryon to photon ratio and limits on the number of 1light neutrino
flavors., In section 4, we will derive the limits on neutrino masses
and lifetimes. In section 5, we arrive at the junction between GUTs
and cosmology and will review the present status of baryon generation
in the very early Unlverse. We will examine both standard and super-
symmetric GUTs. The remaining twe sections are those which link cos-—
mology and particle physics most closely. In those sections, we will
discuss the major problems with the standard big bang model and
describe %n detail their solution in the inflationary Universe
scenario." Once again, our discussion will include both supersym—
metric and non—-supersymmetric GUTs,



Section 1., Essentials From General Relativity

Let us begin these lectures on cosmology by stating our main
guiding assumptions. These assumptions are in fact so basic that they
are really at the foundations of all modern physics. They are:

1) The Copernican Principle: we are not privileged observers.
On the average we do not expect the Universe to look any
different from any other spatial position.

2) The Relativity Principle: physical laws do not depend on
space—-time. Without such an assumption, it would, of course, be
impossible to consider any cosmological model or any description
of the Universe as a whole.

These two principles taken together are commonly referred to as:

The Cosmelogical Principle: the Unlverse is isotropic in all
measurable properties at all times over all space. That is, the
Universe 1s spatially homogeneous and isotropic. This 1s of

course an extremely strong assumption which may or may not have
been true throughout the history of the Universe. In section 6,
we will 1look more closely as to how good an assumption this
really is,

There are two I1mmediate consequences of the Cosmological
Principle. The first is that the only true velocity fields allowed

are either overall expansion or contraction. Other possibilities,
such as, rotation, shear, combined expansion and contraction are all
contained in the anisotropic Bianchi models.? Though these may have

been important initially, we will oot consider them here.
Furthermore, any expansion or contraction present must have no
apparent center. That is to say that the relative velocity between
any two observers most depend only on their separation

(1l.1)

Vig = BTy
where H {5 a Universal spatial constant. This (l.1) is also known as
Hubble's Law. The second consequence of the Cosmological Principle is
that there must exist a measure of distance which is independent of
direction. Such a measure might be, for example

d = zc/H, (1.2)

where z is the redshift (blueshift) due to the expansion (contraction)
of an emitted signal.

More generally, the second ceonsequence implies that there exists

a metric which does not depend on direction. Formally, a metric g is
a symmetric tensor of the form

g = gy dxM dx’ (1.3)



and defines the line element ds2. To each wvector X, the metric
assigns a magnitude (g (X,X)|)1 2, The vector X will be time-like,
null, or space=-like depending on whether

g ( <0 time-like
g (X,X) = 0 null {(1.4)
g ( >

0 space-like.

Furthermore, the metric must be non-singular so that it has an inverse
defined by

gl = ghV 9 .39 (1.5)
and
gt = s¥. (1.6)

If we now apply the Cosmoleogical Principle to the metric g we see
that we must have

Boi = 0
° (1.7)
gij = 0 1?&j
or
2 - 2 iq.1
ds¢ = g dt + gy dxdx . (1.8)
oo

One can further define a set of coordinates so that without loss of
generality the homogeneous and isotropic metric will take the form

ds? = -dt? + RZ2(t) do?, (1.9)
where do? is the three—-space metric of constant curvature and is time-

independent. The different three-space geometries will then be those
of positive, negative, and zero curvature. In general, we can write

do? = dr? + £2(r) (d®2 + sin?8 d¢?) (1.10a)
and
sinr k = +1
f{r) = sinhr for k = -1, (1 .10b)
r k=20

where k 1s the curvature constant representing the sign of the
intrinsic curvature of the space time (see below for a more formal
definition of k). Homogeneity and isotropy guarantee that the form of
f will be independent of 8 and . This metric known as the Freidmann-
Robertson-Walker metric can be written in a more compact form,
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95 4 12 (462 + sin? 6de?)|. (1.11)

ds? = -dt? + R%(t) |
1-kr?

In order to derive the equations describing the dynamical evolu-
tion of a cosmological model with metric (1.11), we will have to
briefly review the necessary ingredients from general relativity. To
begin with, the covariant derivative of a vector X' is defined by

D X = X, be X0 = ”p
H 5 ; (1.12)
DX =X -T X =X ,
v V, pv o Vi M
where
v A"
X = 3 X" and X =3 X 1.13
U u v, i TR ( )

is the ordinary derivative and the connection (Christoffel symbol) is
given in terms of the metric by

B 1 - PH
rvo 2 {gpc,u * Evp, 0 gvo,p} g . (1.14)
{(Note that F”d = Puv is symmetric in its Iower two indices.) Using
the connection (1.143, the Riemann curvature tensor is defined by
o] o a A g A o}
R =T -T + T r - | A |
upv Vi, p PH, V Vi pA PU AV (1.15)

A space—time will be defined to be flat if Rgpv = 0. Contracting on &
and p we have the Ricei tensor R ,, and on further contraction we have
the curvature scalar R, which are defined by

R =1r? =71° -1 +17% P .19 pf (1.16)
uv ugy KV, O TU, Vv Hv - op pu OV
- RY =R gV
R, = R = R g"" (1.17)

The curvature constant used in (l1.10b) is related to the three—space
Ricei temsor (i,j running only from 1 to 3) which is given by (for
maximally symmetric three spaces)

3 =
Rij 2kgij (1.18)

with a three—space curvature scalar
3Rc= 6k (1.19)

k is then normalized to £1,0 by adjusting the scale factor R(t) in
(1.9) and (l.11). Finally, we must define our energy-momentum tensor

T = pg (1.20)

+ +
. (p + p) u, u

HV v?



where p is the isotropic pressure, p is the total mass—energy density
and uy = (1,0,0,0) is the veloecity vector for an isotropic fluid.

We are now able to begin to derive the equations describing the
evolution of the Friedmann-Robertson-Walker models. We begin with
Einstein's equation

= 1 '
z -1 = - .2
Guv Ruv 2 Buv RC SHGNTuv Aguv, (} 1)
where Gy is Newton's gravitational constant and A is what is known as
the cosmological constant. To derive the field equations we must
first work out the set of Christoffel symbols (i,j run from 1 to 3
only)

o _R
Ti4 =R 8ij
ri, =ri = @mrél

oj = Fjo = (R/R)E;
rl, = ke (1-kr2)7l (1.22)
1 2 1 2 2
oz = =(1l-kr )r ; I'33 = -(l-kr ) rsin 8
2 2 3 3
'y =T33 =T13 =T33 = lUr

2 3 3
33 = ~sin® cos® ; Ty3 = 32 = coté.

Using this, we find that the only non-vanishing Ricei coefficients are

0 -
Rp = 3R/R
. .- (1,23)
R% = RZ = Rg = |2 (R/R)Z + (R/R) + (2k/R%)].
Hence the curvature scalar is
R, = RS = 6{(R/R)Z + (R/R) + (k/RZ)], (1.24)

Let us now examine Einstein's equation (1.21) using {(1.23) and
(1.24), If we concentrate first on the 0-0 term in the field
equations we find the standard Friedmann equation

2 . 2 81Gyp
o= (/) = = -+ 4 (1.25)

and defines the Hubble parameter H., This equation may be thought of
as describing the total energy content of the Universe. If we just
rewrite (1.25) as

811G p
N RZ
3 RZ - f%;-, (1.25")

-k = RZ -




we can interpret -k as the total energy of the system, the kinetic
term represented by RZ, the gravitational potential energy by the term
contalning p, with an additional energy source available in A. A
helpful analogy is the total energy of a rocket at lift—off. If the
total energy is positive (in this case k < 0) then the initial kinetic
energy 1is great enough (the initial velocity is greater than escape
velocity) and the rocket will escape the gravitational pull of the
earth, or, in our case, the Universe will continue to expand forever,
i.e., the Universe is open. TIf on the other hand, the total energy is
negative (k > 0), the rocket will fall back to earth, and the Universe
will recollapse, 1i.e., the Universe is closed. In the third
possibility (k = 0), the Universe corresponds to the rocket just at
escape velocity and the Universe will expand indefinitely. This is
known as the critlcal or spatially flat Universe.

There is one additional equation which comes from the spatial
components in Einstein's equation (1.21).
. - 2
2(R/R) + (R/R) + (k/R?) = A - 8mGyp, (1.26)

or substituting for R/R we have an equation for the acceleration

TIGN

(R/R) =-%-- (o +3p). (1.27)

The final equation that we need in order to set up the class of
homogeneous and isotropic cosmological models comes from energy
conservation

™V = ¢y 4 TP oY P = g (1.28)
v v vp vp

or

o = =3 (R/R) (p+p). (1.29)

In the remaining six sections of these lectures, we will
concentrate on interpreting the consequences of equations (1.23),
(1.27), and (1.29). 1In particular, we will search through the class
of solutions for the set which can most closely resemble our observed
Universe. Given general relativity the rest should be easy. All we
need to know is the full equation of state (p[p]) at all temperatures
and whether or not k = +1, -1, or 0.



Section 2. Standard Cosmological Models

The Friedmann-Robertson-Walker metric <{(l.11) covers the full
range of isotropic and homogeneous cosmological modelse. In these
models, there are basically four independent quantities which need to
be specified. They are 1) the sign of the curvature conmstant k; 2)
the value of the cosmological constant A; 3) the equation of state
plp). The fourth quantity, as we will see below, essentially
corresponds to a measure of total entropy. This makes, however, no
qualitative difference between the models.

The simplest type of space-time described by (l.11) is that of
empty space, i.e., p = p = A = 0. As can be seen from Eq. {(l1.25),
such a space time can be either critical or open. The critical case
(k = 0) is just that of a non-expanding Minkowski space which is used
in special relativity,

ds? = -dt? + dx? + dy? +dz2, (2.1)
It is also possible to give the space-time some intrinsic curvature

with k¥ = -1. In this case we find [from Eq. (1.25)] that the scale
factor grows linearly with time

R« r, (2.2)
Although RC = R,y = 0, there are components of Roupv # 0. This space
is open (by definition k = -1) and continues to expand indefinitely.

The more interesting class of models have either or both p # 0,
A # 0. Before attempting to classify the full range of these models,
let us look at two more simple examples. In each case we will take A
=k =0, In the first case we specify the equation of state as

p = p/3, (2.3)
which is the equation of state of a free gas of radiation. If we use

this equation of state in the equation for energy conservation (1.29),
we have

o = ~4(R/R)p (2.4)
or p = R™" . From the Friedmann equation (1.25) we then find that
R = t1/2, (2.5)

Finally using both (1.25) and (1.29) we can solve for the “age” of the
Universe by

(p/9) = —4(8TGyp/3)1/2 (2.6)

leading to



£ = (3/32nGyp) 1/2 + constant. (2.7)
This is typically referred to as a radiation—dominated Universe.

The second useful example is described by choosing the following
equation of state

p=0 p#¥0, (2.8)

i.e., we have a dust-filled or matter-dominated Universe. Once again,
energy conservation (1.29) tells us that

p = -3(R/R) o (2.9)

or p = R™3, From (1.25), we find the time dependence of the scale
factor

R « t2/3, (2.10)

In the standard big bang model, the Universe has spent nearly all of
its lifetime in one of these two cases.

Let us now examine more completely the full class of the
Friedmann-Robertson-Walker models. First let us define a quantity Q

3k
Q ='§"2_- SIGND (2-11)
we can then rewrite (1.25) as
(R/R) =t [(A - Q)/311/2 (2.12)

which immediately tells us that Q < A (see below for explanation
of A > Q ). Furthermore, we will specify the equation of state by

p=(y - Do 1< y«<2 (2.13)
and from (1.29) we know that p = R"3Y . We can see the qualitative

behavior of @ by looking at 1ts derivative with respect to the scale
factor R,

247G _yp
dQ -6k N
—_— o= + . 2.14
dR R3 R ( )
Hence we see that for k = -1,0 Q has no extrema, begins at — (as

R+ 0) and monotonically increases to Q = 0 as R + », When k = +1, Q
again begins at -w», The Universe becomes curvature dominared (i.e.,
when the curvature term dominates over the energy density and constant
terms), when Q = 0 (and A is sufficiently small). Q then has an
extrema when dQ/dR = 0 which occurs at R0 when

Qax = 471G (3v=2)p. (2.15)



At larger wvalues of R, Q monotonically decreases to @ = 0 as R + w,
The behavior of Q {R) is schematically shown in Fig. 1

Q
.A]'- ]
=+
Acrit | K
=Q max
Azh_—

Fig. 1. Schematic plot of Q(R) for k = +1, 0, -1.

Let uns begin the classification of cosmological models with those
containing matter (p # 0) and with a wvariety of choices for A.
Depending on the cholce of A, we arrive at a wide class of models.

The most interesting cases are those of closed Universes. (k = +1)}.

A k = +1, & = A > Qpaye

There are two solutions in this case corresponding to the + and -
signs of Eq. (2.12). The + sclution corresponds to an expanding
Universe. The model begins with a singularity at R = 0 and expands to

infinity. The expansion rate (R/R) will have a minimum when Q= Qax®
As R + = the model approaches a De Sitter-type solutien (see below)

wiith a typical expansion rate given by
R/R = (/)2 (A>>Q (2.16)
or

R ~ exp[(A/3)1/2 ¢]. (2.17)



-10-

It is 1interesting to note that although, we have a closed Universe
here, it deoes continue to expand forever without a recollapse typical
of most closed models. This is of course due to the presence of the
cosmological constant suppling an additional "“force" for expansion.
The - solution to (2.12) corresponds to a contracting Universe which
begins (t = 0) at R = «» and contracts to a singularity. Both of these
solutions would in a sense track the full curve for k = +1 in Fig. 1.

At this point, it is worthwhile to make two comments which apply
to this solution and to those which follow. Nearly all of the sol-
utions contain singularities in the space~time. This has been shown®
to be a necessity for a wide class of models which satisfy the energy
condition

H,V
Rqu X» 0 (2.18)

for every non-space-like vector XM. We will point out those solutions
which do not satisfy thig condition and hence do not have
singularities. The second point is that the wvast majority of models
discussed do not correspond to our physical Universe. As we will
discuss below, we know the value of A is very close to zero and hence
Q0 < @ today. We also know that the Universe is expanding, hence the
contracting models are also not possibilities. We will point out
those solutions which might be candidates for describlng our present
state.

By k=4, A=A rie = Qax’

This case actually has five independent solutions. The first of
these is known as the Einstein Static Universe. It corresponds to the
non—expanding, non—-contracting solutions with Q = A always and R = R0
is constant. We see now, for the first time, that in order to
completely describe this model, it is necessary to specify the value

of RO or equivalently the total energy density. Recall in this case

1
o2
R

k

R% 4nGNyp. (2,19)

As we will see below, this is also equivalent to specifying the total
entropy. This solution was the original motivation for Einstein to
introduce the cosmoleogical constant in order to cancel—-out the
expansion of the Universe. In this model, all quantities remain
constant with time. This model also has no singularities in either

the past or future.

The remaining four solutions =211 asymptotically approach the
Einstein static model in either the past or the future. There are two
solutions which begin with {very nearly) static solutions and
depending on the sign in (2.12) either expand out towards R = = (non
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singular) or contract in towards a singularity at R = 0. The other
two solutions expand from a singularity or contract from R = = (non
singular) and asymptotically approach the static Universe in the
future.

To trace the evolution for this case, one can imagine cutting
Fig. I  horizontally at ¢ = A , there are then two separate
possibilities. The first is sué% that the Universe begins at a
singularity R (0) = 0 and expands until Q = A2 at which time R = 0,
the expansions halt and the Universe begins its collapse back to a
singularity. This is more typical of what we imagine for a closed
Universe. Once again the total entropy must be specified in order to
determine the maximum radius the Universe takes when R = 0. For
values of A, which are very close (or equal) to zero, this model is a
possible candidate for our physical Universe.

The second possibility for this case is on the right-hand side of
Fig. 1 for Q@ < A2 and R > RU' This solution is alse non-singular but

does mnot 1nclude A, = 0 as a possibility. In this solution the
Universe initially contracts from R = « until once again QG = A, > O
when R = 0 and the Universe “bounces” and begins to re—expand.

Because this solution 1s surely not (nor ever was) dominated by matter
or radliation, it does not represent a possible candidate,

D. k =+, A=Az <O

This solution is essentially identical to the first one of case
C. It begins at a singularity and expands until Q@ = A, and then col-
lapses. Unless Aa is agaln very close to zero, this is not a realis-
tic choice.

E. k=-=1, 0, A >0
Because the cosmological solutions to k = -1 and k¥ = 0 are
qualitatively similar, we will not distinguish them here. For & » O,
there are again two solutions corresponding to the two signs in
(2.12). One solution is an expansion from an initial singularity to R

= <o, For A = 0, this is perhaps the most likely candidate. The
second solution is a contraction from R = = to a singularity at R = 0.

F. k=-1, 0 A0
This case is qualitatively identical to case D.
Ge p=0, k=+l,A>0

For completeness, we also present the possibilities in which
there is no matter present. For p = 0, we have
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Q =3k (2.20)

The behavior of ¢ is shown in Fig. 2.

Fig. 2. Schematic plot of Q(R) for k = +1, 0, -1, and p = O.

There 1is only one solution in this case which has the Universe
initially contracting in from R = = until Q = A when the Universe
bounces and begins to expand back out to R = «, For causal Universes,
k = +1 forbids the possibility that A < 0.

H. p =0, k=20, A>O

This solution most clearly has the De Sitter exponential
expansion. It is indeed a space with constant curvature and constant

expansion rate
HZ = RZ2/R2 = A/3. (2.21)

It may either exponentially expand to R = » or exponentially contract
to a singularity from R = o, In this case, A = 0 corresponds to
Minkowski space and A < 0 is again forbidden.

I. p =0, k = -1, any value of A

This case is qualitatively identical to that of k = -1,0 with
matter, cases E and F.

Je A< Q
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As we have indicated, Q < A is forbidden in a causal Universe.
It does represent a class of solutions known as anti-De Sitter spaces
and contains closed time-like paths. It will not be in the scope of
these lectures to pursue these solutions any further.

The above set of cosmological models covers the full range of
homogeneous and isotropic Universes. We will now briefly review some
properties and observables of the Universe today. It is important to
note that because of the scaling with R there is a sequential rele-
vance of terms in the expansion rate. As we have seen in a matter-
dominated Universe p ~ R 3, while for a radiation-dominated Universe p
~ R™ which means that at early times (small R) the expansion rate
will be dominated by either matter or radiation. Eventually, at large
enough R if k # 0, the curvature term will begin to dominate until
finally the Universe is controlled by the cosmological constant if it
exists. Each of these periods has a different time-dependent
expansion. In particular, we know that the expansion today is not
governed by the cosmological term and hence we will assume A = 0 until
section 7. With that, the Hubble parameter can be expressed as

2 _ anG
W = k2 + 3N o (2.22)
R

We can define a critical energy density Po such that p = p, for k =0

_ 3m2
P = ﬁﬁﬁg' (2.23)
In terms of the present value of the hubble parameter
b, = 1.88x10729 h% g em 2, (2.24)
where
|
hg = Hg/(100 km Mpc s ) (2.25)

-1
is the present value of the Hubble parameter in units of 100 km Mpe
s"l. The cosmological density parameter 1s then defined as the ratio
of the present energy demsity to the critical density

Q = p/pc. {(2.26)
Furthermore, the value of 2 will determine the sign of k. For & > 0
we have k = +1, @ = 1 corresponds to k = 0 and & < 0 to k = -1l. 1In
terms of @ the Friedmann equation can be rewritten as
N
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It is also useful to define an additional quantity known as the
deacceleration parameter

a, = -RR/R? (2.28)
and from Eq. (1.27) we have
a, H% = 4uGy (p + 3p)/3 (2.29)
or
2q0 = (3y-2)u. (2.30)

The measurement of q_, is extremely difficult and at best there is only
a limit q_, < 2 which for a matter-dominated present Universe corres-
ponds to £ < 4, To be sure a low value 9y corresponding to & < 1l is
also allowed indicating that as we can not even determine the sign of
k, we are not as yet curvature dominated,.

As we have said repeatedly, the Universe is expanding. This is
perhaps the oldest discovery of modern cosmology and involves the mea-
surement of the cosmological redshift. {In a contracting Universe
there would be a cosmological blue shift.) If we take again our
example of section ! of two observers in which a light signal is emit-
ted by | and received by 2, the redshift is then defined by

LI 2.31
25 g = v, /e (2.31)

for nearby observers, where Vi» v, are the emitted and observed
frequencies corresponding to a refative velocity v between the
observers. For large separations, care must be taken, and distances,
and timescales, and hence velocities must be derived by integrating

over the metric. However, Vig is determined by the expansion by

vi, = R 6r, (2.32)

where §6r is the coordinate separation of the two observers. For light
signals (ds? = 0) Eq. (2.32) can be rewritten as

R
vip = (3] Rér = Hét = Hd, (2.33)

where d is the physical separation of the two observers, Finally, we
see that a determination of z and d will lead to a value of the Hubble
parameter. Present limits are

-1 -1 -1 -1
50 km Mpc s < HO < 100 km Mpc s (2.34)

or
1/2 £ h, £ 1. (2.35)
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In addition tc determining the present density of the Universe or
the density parameter by measuring q 4 it is also possible by means of
measuring mass-to-light ratios. The mass of a galaxy or gravitational
system if In gravitational equilibrium can be computed via the wvirial
theorem from measured rotational velocities. The total mass of the
system is then compared with its absolute luminosity which is derived
from the measured apparent luminosity. The total density p is then

p={(=) &, (2.36)

where (M/L) is the above described mass—fo—light ratio and £ is the
total luminosity density of the night sky’

-3
£ = 2x10% h, Lg Mpe, (2.37)

where Lg Is the solar luminosity Ly = 3.9x1033 erg s7!. We can now
define a critical mass-to-light ratio

(M/L), = p /& = 1200 h (2.38)
and the cosmological density parameter is given by
Q = (M/L)/(M/L)c. {(2.39)
In principle this could give us an accurate determination of Q. The
problem is that the derived value of Q1 seems to depend on what scale
we measure (M/L). For example, the following four systems all give
different values®’ of @
1} solar neighborhood
M/L) ~2 £ 1 =>a ~ (0,0016 + 0.0008)/h0
2} central parts of galaxies
(M/L) ~ (10-20) h0 => 0 ~ (0.008 - 0.017)
3) binaries and small groups of galaxies
(M/L) ~ (60-180) hU =2 ~ (0,05 - 0.15)
4) clusters of galaxies
(M/L) ~ (300-1000) ho => R ~ (0.25 - 0.8).
The dependence on h_ A of the last three mass=to-light ratios is due to
the uncertainties in estimating the mass and absolute luminosities of
distant objects, It is evident that as we look on larger and larger
scales the value of 9 seems to be increasing., This is known as the

missing mass problem. In particular, it seems to indicate that there
is dark matter present in the Universe on large scales. Neutrinos
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(and/or perhaps stable supersymmetric particles) are a popular
candidate. Although there is no evidence for f# > 1 this alone is not
sufficient to prove that we live in an open Universe.

There is one additional quantity which is a measureable relic of
the big bang, that is, the temperature of microwave background radi-
ation. 1If we take the premise that at very early times as R + 0, the
density of radiation becomes very high corresponding to a very high
temperature, we should see a relic of this temperature today. In
particular, as we will see shortly, the temperature of the radiation
falls off as

T ~ 1/R (2.40)

in an adiabatically expanding Universe, The radiation would have
remained In thermal contact with the matter just until the recombin-
ation of free electrons and protons to make neutral hydrogen at about
T ~ 4000°K. Subsequently, the radiation would have redshifted down to
a very low temperature today. In fact, this Ffdiation is exactly what
was observed in 1965 by Penzias and Wilson?’ when they measured an
isotropic blackbody with a temperature  of 2.7°K.

Today, the content of the microwave background consists of
photons. We can calculate the energy density of photons by

Py fEdeY, ( 1)

where the density of states is given by

g : -
=5y -1]71 42
dn, = -%; lexp(E,/T)-1]7! q2dq (2.42)

and gy = 2 simply counts the number of degrees of freedom for photons,
EY = q is just the photon energy (momentum). (We are using units such
that h = ¢ = kg = 1| and will do so throughout the remainder of these
lectures.) On performing the integral in (2.41) we have that
2
=12
oy 15 T (2.43)

which is the familiar blackbody result.

In general, at very early times, at very high temperatures, other
particle degrees of freedom join the radiation background when T ~
for each particle type i if that type is brought into therma
equilibrium through interactions. In equilibrium {(we will define this

*
The present range for the temperature is between 2.7 and 3°K. The
original measurement by Penzias and Wilson was not as exact, they

found T0 = 3.,5¢ 1°K.
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notion more precisely shortly) the energy density of a particle type i
is given by

p, = J‘E dn (2.44)
and L i 4y
g

dn = lexp[(E_ - u )/T] £1] “lq?dq, (2.45)
9 2a2 44

where again g, counts the total number of degrees of freedom for type
i,

Eqi = (m§ + q%)lfz. (2.46)

My is the chemical potential if present and * corresponds to either
fermi or bose statistics.

We can also define the other thermodynamic quantities such as the
entropy density.

l _ Tgi -
s, == |[E dn_ * [ 1n (14n_ ) d3qq, (2.47)
TPy 9y (a3 9y
where
n o= | E - Tt 1] "L, 2.48
% |exp| ( 6 ui)/ Iy ( )
The free energy is just
Fi =Py - Tsi = Wmn - Py (2.49)
and
n, = fdn_ , (2.50)
i q4

The <chemical potential is generally taken for net baryon number.
However, as we will discuss in section 3, the net baryon number

n_— n=- n
n=-2_B_ . B o010 (2.51)

n n

¥ Y

is very small, and one usually neglects the chemical potential.

At this point, it will be useful to note that the conservation of
energy Eq. (l1.29) also implies conservation of entropy. Having set M
= {0, we can rewrite (2.49) as

s =-% (o + p). (2.52)

In addition, we have the thermodynamic identity
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e = — = g, (2.53)
Equation (1.29) can also be rewritten as

3L - %E [R3 (p + p)]. (2.54)

Combining these two equations, we have

d

S [R? s] =0 (2.55)

or conservation of total entropy.

We can now see how the specification of total entropy determines,
for example, the maximum radius of a closed Universe. For a simple
gas of photons s = (1/T) (p + p) = (4/3T) p =« T3 hence we have that

RT = constant. {2.56)

Thus, in addition to the equation of state, we must specify the
temperature (or total entropy) at the maximum radius, i.e., the
constant in (2.36).

Returning to our discussion of a free gas at high temperatures,
it will be useful to look at the limit at which T >> m, l.e., a
relativistic gas. 1In general, the total energy density is given by
7 T i
[B B 8 F ) 30 30 ’
where EB(F) are the total number of boson (fermion) degrees of freedom
and the sum runs over all boson (fermion) states with m << T. The
factor of 7/8 is due to the difference between the fermi and bose
integrals. Equation (2.57) defines N(T) by taking intoe account new
particle degrees of freedom as the temperature is raised.

Once again, we can compute the pressure and entropy density in
the high temperature limit

P = p/3 =% N (T) T (2.58)
s = 4/3( 2) =By (m) 1. (2.59)

We can also rewrite Eq. (2.7) giving us a relationship between the age
of the Unlverse and its temperature

t = (90/32%3 GNN(T))UZT-Z. (2.60)
Put into a more convenient form

tT2

fey = 2.4 [N(T)]TY/2, (2.61)

where t is measured in seconds and TMeV in units of MeV.
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The value of N(T) at any given temperature depends on the
particle physics model. In the standard SU(3)xSU(2)}xU(l) model, we
can specify N(T) up to temperatures of 0{100)GeV. This is done in the
following table.

Table 1

Temperature New particles 4N(T)

T £ m, Y's I v's 29
m, <TX m, ei 43
m, < T < My u 57
m, <T< Tg _ m's 69
T. <TX st range T's 4+ u, u, dl d + gluons 225
m, <TKL Meharm ss 247
m, < T KL m. cg 289
me < T < myoeron Tg 32?
my < T < M op b‘~ g
me < T XK m,, tt 87

* . A
T, corresponds to the confinement-deconfinement transition between
quarks and hadrons.

At higher temperatures, N(T) will be model dependent. For example, in
the minimal SU(5) model, one needs to add to N(T), 6 states coming
from W5, Z, 24 for the X and Y gauge bosons, another 24 from the
adjoint Higgs, and another 10 from the 5. Hence for T > M, in minimal
SU(5) N{(T) = 160.75. In a supersymmetric model this would at least
double, with some changes possibly necessary in the table if the
selectron (scalar partner of the electron) has a mass below M.

Much of the preceding discussion has invelved the notion of a
temperature and all of the thermodynamic quantities (2.57-2.59) depend
on the assumption that the particle states which are counted in N(T)
must be in thermal equilibrium. Therefore, we will define this notion
in the context of an expanding universe. Particle states will be said
to be in thermal equilibrium if there 1s a reaction rate involving
that state which is fast on an expansion time-scale.

If, for example, the Universe were not expanding, then given
enough time, every particle state would come into equilibrium with
each other. Because of the expansion of the Universe, certain rates
might be too slow indicating, for example, in a scattering process
that the two incoming states might never find each other to bring
about an interaction. Depending on their rates, certain interactions
may pass in and out of thermal equilibrium during the course of the
Universal expansion. Quantitatively, for each particle i, we will
require that some rate I; involving that type be larger than the
expansion rate of the Universe or
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I, »H (2.62)

i

in order to be in thermal equilibrium.

A good example of processes in equilibrium at some stage and out
of equilibrium at others is that of neutrinos. If we consider the
standard neutral or charged—current interactions such as
e +e =v+Vvor e +vewe + v, etc., very roughly the rates for
these processes will be

' =adn v, {(2.63)
where ¢ will be taken as the weak interaction cross section
v~ 0 (107%) T2/M, (2.64)
n is the number density of leptons
n ~ T3 (2.65)

and v their relative wvelocity (v -~ 1). Hence the rate for these
interactions is

~ -2 S
Tk o(1074) T /Mw. (2.66)
The expansion rate, on the other hand, is just

8rGyp 1/2 1/2

3
o= (—) = (S M1/

~ 1.66 N(T)1/2 TZ/MP,

(2.67)

where the planck mass is defined by

= gol/2 . 19
M, = Gy = 1.,22x10%7 GeV. (2.68)

Neutrinos will be in equilibrium when Ty > H or
T 1/3 o . .
> (500 M{/M,) 1 MeV (2.69)

The temperature at which these rates are equal is commonly referred to
as the decoupling or freeze—out temperature and is defined by

For temperatures T > T,, neutrinos will be in equilibrium, while for T
< Ty they will not. Basically, in terms of their interactions, the
expansion rate is just too fast and they never "see" the rest of the
matter in the Universe (nor themselves). Their momenta will simply
redshift and their effective temperature (the shape of their momenta

distribution is not changed from that of a2 blackbody) will simply fall
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with T =« 1/R. It 1s dinteresting to note that at wvery high
temperatures neutrinos were again out of equilibrium. The interaction
rate for T >> M behaves as

"
r ~& .« 13
T2
where g is some gauge or Yukawa coupling then [ ~ H when

’ (2.71)

g4T ~ Ni/2 T2/Mp (2.72)
ar
T ~ N1/2 gh M, o~ 1015 Gev. (2.73)

Thus at temperature scales much higper than the GUT scale, equilibrium
might be a very bad approximation.®

At the epoch of neutrino decoupling, T ~ 1 MeV, the neutrino
“"temperature” is still equal to the thermal background temperature
which includes only photons, electrons, and positrons. Soon after
decoupling the et pairs begin to annihiliate {(when T X me). The
energy released, as we will see, is served to heat up the photon
background relative to the neutrinos. Because the neutringcs are
decoupled, their entropy must be conserved separately from the entropy
o£ interacting particles. If we call Ty, the temperature of photons,
e~ before annihilation, we also have T, = Ty as well. The entropy
density at T = Ty is just

_4 P> sy om0 11y g
»=3 1) (3 (T (2.74)
while at T = T<, the temperature of the photons just after
annihilation, the entropy density is
_4 P ay w2 3
s¢ = T, - (5) (55) (2) TS (2.75)

and by conservation of entropy (2.55) s, = sy and
(T(/Ty)3 = 1174, (2.76)

Thus, the pheoton background is at ‘thigher temperature than the
neutrinos because the annihilation energy could not be shared among
the neutrinos, and

Ty = (4/1DV3 T~ 1.9°K, (2.77)

The same type of phenomena would also occur if there are other
neutral weakly interacting particles which decoupled at higher
temperatures.10 A possible example of such a particle might be the
graviton. If we assume that the decoupling temperature in this case
is Td = M_ then the photons would have received the energy due to the
annihilation of every other particle species relative to the
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graviton. In this case sy = (4/3) (n2/30) N (M) T3 and S¢ = 4/3
(m¢/30) (2) T® so that Tg = (2/R( )17 3Ty, As we have said for
minimal SU(5), we must have N(M_ ) 2 160 or T; < 0.7°K. 1Tn a minimal
supersymmetric model N(Mp) b 356)and Tg < 0. 5°K.

This concludes the review of the standard cosmolegical models.
We will now build on this by tackling the questions on the origins of
elements, the baryon asymmetry and even the homogeneity and isotropy.
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Section 3. Big Bang Nucleosynthesis

The two most important pieces of evidepce in support of the
standard big bang model are the observation?’ of the 3°K microwave
background radiation and the explanation!’ of the origin of the light
elements and their abundances. Because of the initially high
temperatures and densities and the large abundance of neutrons
relative to protons, the chains of nuclear reactions similar to those
occurring in stars might have occurred. Indeed in the simplest model
of nucleosynthesis, one can compute the produced abundances of
deuterium, 3He, “He and ‘11 and one finds an amazing degree of
agreement with the observed abundances (The observations which must be
compared with the big bang abundances must be from sources where
little or no subsequent nucleosynthesis has taken place.) In this
section we will look «closely at the predictions of big bang
nucleosynthesis and {its cosmological consequences in terms of limits
on particle physics.

The temperature region of interest is one typical of nuclear
energies, i.e., T ~ 1 MeV, The initial conditions for the problem
will therefore be set at T >> 1 MeV. Once again, because the
asymmetry between baryons and antibaryons is so small and since we do
not expect very different asymmetries among the leptons (standard GUT
models even predict thelr similarity) we will take all chemical
potentials to be zero. One of the chief quantities of interest will
be the neutron-to-proton ratio (n/p). At very high temperatures (T >>
1 MeV), the weak interaction rates for the processes

n -+ v e + e_
e P

+ —
n+e = p+ ve (3.1)

wpDt+e +v
n pte vy
were all in equilibrium, i.e., T, > H. Thus we would expect that
initially (n/p) = 1. Actually in equilibrium, the ratio is
essentially controlled by the boltzmann factor so that

{(n/p] = exp(-am/T), (3.2)

where mn - om is the neutron—-proton mass difference. For T
>> Am, (n/p = 1.

At tempertures T >> ! MeV, nucleosynthesis can not begin to occur
even though the rate for forming the first isotope, deuterium, through

n+peD+y {(3.3)

is sufficiently rapid. To begin with, at T 2 1 MeV deuterium is
photodissociated because 2.2 MeV (the binding energy of

deuterium; EY = 2.7T for za'¥lackbody) Furthermore, the density of
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photons is very high n /nB ~ 10109, Thus the onset of nucleosynthesis
will depend on the quanIity

n1 exp{—2.2 MeV/T] (3.4)
where

is the baryon to photon ratio. When this quantity (3.4) becomes
¢ 0(1l), the rate for p + n » D + ¥y finally becomes greater than the
rate for dissociation B + y » p + n. This occurs when T ~ 0.1 MeV or
when the Universe is a little over 2 min. old.

Because nucleosynthesis begins when T < 1 MeV, the rates for
processes which control (n/p) (3.1) as well as those which keep
neutrines in equilibrium are frozen out. As we have seen, neutrinos
are effectively at a lower temperature at T £ 1/2 MeV, this must be
taken account in the expansion rate (2.67) which now has

4 473
Ny= N+ (37) N,
4L/3
=2+ (3) + 3L -3, (3.6)

Furthermore, because the rates for processes (3.1) also freeze out (at
T {1l MeV), the neutron to proton ratioc must be adjusted from its
equilibrium value. When freeze out occurs, the ratio (n/p) is rela-
tively fixed at

{(n/p) ~ 1/6. (3.7)

This equilibrium value is adjusted by taking into account the free
neutron decays up until the time at which nucleosynthesis begins.
This reduces the ratic to

(n/p) ~ 1/7. (3.8)
Since virtually all the neutrons available end up in deuterium which

gets quickly converted to “He, we can estimate the ratio of the “He
nuclei formed compared with the number of protons left over

- _ 1 -
X, =, /N =7 (a/p)/(1 - (a/p)) (3.9)

or more importantly the “He mass fraction

*
We distinguish between N_ and Ns = NY + {4711 N, = 3.91 because
of the difference in the temperature dependence of p = T4 and s = T3.
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Y, FAX, /(1 +4X) = 2(a/p)/{L + (n/p)). (3.10)

For (n/p) = 1/7, we estimate that Y, = 0.25 which is very close to the
observed value.

The actual calculated wvalue of Y, will depend on a numerical
calculation which runs through the complete sequence of nuclear

reactions.l? Once deuterium is produced by Eq. (3.3), tritium can be
produced by

D+D-T+p (3.11)
which then gets converted to make 'tHe by
D+ T - “He + n. (3.12)

“He has in addition several other processes which go towards its
production

H
-+
3
+
—=

D+D

3He + n

H
i~
5
+
<

3He + D = “He + p
3He + IHe ~ “He + 2p
T+p~ " + v. (3.13)
Additional processes for producing T and 3He include
n+D+-T+y
p+ D~ 3He + ¥
D+ D« 3He + n. (3.14)
The nuclear chain is temporarily halted at this point because
there are gaps at masses A = 5 and A = B, i.e., there are no stable

nuclei with those masses. There is some further production, however,
which accounts for the abundances of ®Li and ’1i through

SHe + “He - "Be| + v
T+ et oy,

T + “He - 714 + v

p + ’Li ~ “He + “He, etc. (3.15)
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Once again because of the gap at A = 8 there is very little subsequent
nucleosynthesis in the blg bang. A second chief factor in the ending
of nucleosynthesis is that during this whole process the Universe
continues to expand and cool. At lower temperatures it becomes expo—
nentially difficult to overcome the Coulomb barriers in nuelear col-
lisions. In spite of these effects, numerical calculations of the
elemental abundance continue the chain up until Al,

Before reviewing the results of the big bang nucleosynthe-
sigli~l4 calculations, it is important to realize that there are
three additional parameters which have a very strong effect on the
results, They are 1) the baryon~to-photon ratio n (3.5); 2) the
neutron half~1life Ty /23 3) the number of light particles or, in par-
ticular, the number of neutrino flavors Nv'

As we have seen above, the value of n controls the onset of
nucleosynthesis (3.4), Basically what happens is that for a larger
baryon-to-photon ratio n the quantity (3.4) becomes smaller thus
allowing nucleosynthesis to begin earlier at a higher temperature.
Remember also that a key ingredient in determining the final mass
fraction of “He, YH’ was (n/p) [see Egq. (3.10)) and that the final
value of (n/p) was determined by the time at which nucleosynthesis
begins thus controlling the time available for free decays after
freeze out. If nucleosynthesis begins earlier, this leaves less time
tor neutrons to decay and the value of (n/p) and hence Yu is
increased.

The value of n can not be determined directly from observations.
If we break it up and try to look individually at the number density
of baryons and photons present in the Universe today = we find that

ng = pp/mp = Qg /my (3.16)
= 1.13 x 10‘593h% cm”3,

where pp is the energy density in baryons, mg 1s the nucleon mass,
fig is that part of 8 (2.26) which is in the form of baryons and e
is the critical energy density (2.23)., The number density of photons
is just given by

ny i) dnY (2¢(3)/7%) TY (3.17)

*Once again we are not considering the effects of a chemi-
**cal potential, which can also greatly vary the results.!“?
The baryon—to—photon ratio should not have changed since nucleosyn-
thesis. At these energy scales, baryon number is conserved and
there are no major processes which would have produced entropy to
change the photon number,
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or in more useful units

ny = 400 (T0/2.7)3 em 3, (3.18)

where T 1is the present temperature of the microwave background radia-
tion. ﬁhtting n back together we find

n = 2.81 x 10"893h%(2.7/ro)3. (3.19)
Thus we could determine n if we knew gy h,, and T o Tt is important
to keep in mind however that physically it gs n which is determined at
the level of microphysics through baryon generation {see section 6)
and not the other way around.

If we now use the limits on h, and T we can get a feeling of
where 1 lies in terms of QB' If we use 2.7°K < TD < 3°K and 1/2
< h0 < I we find that

5.1 x 10‘9nB < n< 2.8 x 1078q,. (3.20)

Furthermore, as we saw In sectlon 2, depending on what scale we con-
sider as typically representing the overall density we might have QB
in the range 0.0008 - 0.8. Thus we see that the observations leave us
with more than three orders of magnitude uncertainty. As we will see
shortly, however, consistency of the standard big bang nucleosynthesis
model allows only for a factor of about 20 in @ and only about 2-3 in
Ne

The second parameter, T o1 1s important in that it also plays a
role in determining the value of Y . Although we don't usually con-
sider T a parameter, the uncertéinties in its measured value are
significant from the point of view of nucleosynthesis. After all, it
is this quantity which will control the weak interaction rates and
hence determine the freeze-put temperature. The common value of
T/, F I0.6 min. is actually uncertaln by about two percent and this
is enough to affect the production of “He. The range we will consider
is

10.4 min. < T < 10.8 mwin.

1/2

As 1In the case of n, iIncreasing 7 leads to a larger value of
Y . We can see this by looking again at a comparison between the weak
interaction rates and the expansion rate. If we parametrize the weak
interaction rate hy Tk = ATS and the expansion rate by H = BTZ then
the freeze—out temperature is given by Eq. (2.70)

Tg = B/A. (3.22)

If we now increase T /93 this corresponds to decreasing ka ~ 1171 or
decreasing the value o? A. This in turn gives a higher value for Tqe
Now if T, is larger, this will give a larger value of (n/p) at freeze-
out via Eq. (3.2) and hence more “He via Eq. (3.10).
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The final {nput parameter, we said was the number of light parti-
cles. Specifically, what we mean 1s the number of degrees of freedom
corresponding to particles which are still relativistic (m << T) when
T < 0(1) MeV. 1In addition, we must require that these particles be
relatively stable so that they will be present when freeze—out occurs,
thus 1 > few seconds. As we hinted to above, likely candidates for
these particles are neutrinos and thus the number of neutrine flavors
N, becomes important. Of course any other types of light particles
such as photinos or axions, etec., may also be important.

The number of neutrino flavors N, will also affect the primordial
abundance of “He and like n and T , 1ncreasing NY increases Yq. The
expansion rate (2.67) is proportional to [N(T)]! 2, At T 1 MeV,

N(T) is given by

= 7 7
N(T) = 2 + 5+ £ N (3.23)
which takes into account the contribution of y's, et's, and N, flavors
of neutrinos. Thus increasing N,,, increases B in the notation of

Eq. (3.22) and again leads to higher value of Ty, with the same effect
of producing more “He.

Let us now lock at the observationslS) which tells us the abun-
dances of the light elements. In particular, we will be interested in
the abundances of D, 3He, *He, and 7Li. Deuterium is the most easily
destroyed of the light elements. It is also very difficult to produce
in astrophysical systems where it is not further processed to form
3Re. Therefore, any of the observed D is generally assumed to be
primordial. Furthermore because deuterium is so easily destroyed {or
burned) we must assume that the abundance of D produced in the big
bang 1Is greater than the observed value or

(D/H)gp > (D/H)pes (3.24)
where (D/H) is the ratio (by number) of deuterium to hydrogen.

The abundance of deuterium is found by a number of thods which
include the analysis of meteoritic and solar wind data,!®’ line spec—
tra from the atmospheres of the gian F) planets,?’ and ultraviolet
absorption studies on interstellar gas18 which indicate that D/H lies
in the range (l-4) x 10 5 and a good lower limit to the deuterium
abundance would he

(D/H) > (1 - 2) x 1073, (3.25)
In Fig. 3, we have plottedl“) the produced D/H ratio in big bang
*For particles which interact more weakly than neutrinos, care must he

taken in that they may have a lower temperature if they have decoup-
led earlier.l0
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nucleosynthesis as a function of n for N, = 3 and T1/2 = 10.6 min.

(The “He abundance is the most sensitive to variations in these quali-
ties, see Fig., 5.) If we now require that (D/H)BB > (1 - 2) x 1073
from Eqs. (3.24) and (3.25), we find an upper limitl4)

to the baryon-—
to-photon ratio n

n< (7 - 10) x 10710, (3.26)

Any larger value of n would have led to increased burning rates for D
in the big bang with very little D left over

2
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Fig. 3. The abundances (by number relative to hydrogen) of D, 3He and

their sum as a function of n for N, = 3 and 11/2 = 10,6 min.
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In general, direct measurements of 3He are very difficult. Once
again, most of the available data is derived from metecritiec and solar
wind data.lE) However, as we have said, deuterium is burned to 3He in
the sun, hence the solar wind data actually reflects the presolar
abundance of the sum (D + 3He)/H. The observations indicate that

3 < -5
(D + He)/H|pree 4 x 1073, (3.27)
Meteoritic datal?® can give the pre-solar abundance of 3He/H where it
is supposed that nc processing of D takes place. These measurements
indicate that

e /| % 2 x 1075, (3.28)

pr=®

Unlike deuterium, JHe is very difficult to destroy in its
entirety in stellar systems. Pre-main-sequence stars are very effic-
ient in burning deuterium to 3He via D + P * 3He + Y SHe 1is only
destroyed at high temperatures (T > 7 x 10® °K) through 3He + 3He
+ *He + 2p and 3He + “He + 7Be + \ O At higher temperatures (T >
108°K), “He is burned to carbon and oxygen. The point is that, in
general, some fraction g of the initial 3He abundance will survive
stellar processing. TIf one takes into account the fact some of this
Me is redeposited 1in the interstellar medium (pre-solar) then in
terms of g we have

3 1 3
(D + 3He)/m . < (n/H)]preg + 2 He/H)]pree (3.29)
which can be rewritten as
3 3 1 _ 3
(D + “He/H)|,, < (D + He)/H!pree + (g 1) He/H|pre® (3.30)

The value of g, however, can only be determinedzO) by models of stel-
lar evolution and in fact may differ depending on the mass of the
star. In low mass stars (M < SMQ), g > 0.7 is not unreasonable while
for high mass stars (8Mg < M < 100 M), g may be as low as 1/4, Since
an initial spectrum of stellar masses would cover all ranges, perhaps

a lower limit to g of 1/2 - 1/4 would be safe.

If we put together the presolar limits on (D + 3He)/H and 3He/H
with the above limit on g we have an upper limit on the sum of primor-
dial 3He + D,

(D + 3He)/H|gzp < (6 - 10) x 1075, (3.31)
In Fig. 3, we have also displayed the behavior of the 3He/H and (D
+ ?He)/H ratios as a function of n. In this case an upper limit on (D

+ dHe)/HIBB corresponds to a lower limitl*) on T,

n > (3=-4)x 10710 (3.32)
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from Eq. (3.31). Putting this together with the upper 1limit on 7
Eq. (3.26) we have

(3-4) x 10710 ¢ n < (7 - 10) x 10710 (3.33)

as the range of n consistent with the abundances of D and 3He,

=10 -G
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]O:]Illll[ T I ——10
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1G° —1g®
?Li 4
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M ot | Lo | 711
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1010 107

7

Fig. 4. The abundance (by number relative to hydrogen) of ’‘Li as a
function of n for N, =3 and Tysp = 10.6 min.

i is another isotope which is in principle difficult to draw
solid conclusions from. The main difficulty is that 7Li is both
easily produced as well as destroyed. Recently, however, there have
been some measurements?! of the 7Li abundance in some very old
Population II stars. Since some ’Li might have been destroyed hefore
the formation of these stars, we mi ght expect
(7Li/H)POPII < (7Li/H)BB. (The present ‘Li abundance would be larger
still representing the contribution from stellar processing.) The
observed limit on the 7Li abundance is
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(7Li/H)PopII < 1.5 x 10710, (3.34)

In Fig. 4, we show!*) the calculated ratio of /Li/H as a function of n
for N, = 3 and 7;/, = 10.6 min. The upper limit Eq. (3.34) corres-
gonds to bounds on n of (2 - 5) x 10719, The calculated rates for
Li, however, have uncertainties which lead to uncertainties in the
predicted abundance of 7Li by about a factor of 2. Thus the only safe
bounds on n from Ii are

10710 ¢ n ¢ 7 x 10710 (3.35)
remarkably consistent with the bound Eq. (3.33) from D and 3He,.

This brings us to *He which is probably the most important of the
isotopes studied. The main reason “He is so important is that there
is so much of it., VNext to hydrogen it is the most abundant element
around and its abundance is quite well known. Unlike the other light
elements which have observational uncertainties of » 100%, the %“He
abundances are measured to within a few per cent. The main problem is
that it is also produced in stars and care must be taken in trying to
derive the "observed” primordial abundance.

To be sure, one can place an upper limit on the primordial abun-
dance by YqBB < YuOBS (Yq, remember is the total “He mass fraction).
However, in order to use big bang nucleosynthesis to set limits on
particle physics (e.g., Nv) a mach pore accurate determination of YABB
is needed. Spectral measurementsZ?) of galactic HII regions give very
accurate values of Yu' however, there they have been contaminated with
by—products of stellar processing. The observations of galaxies with
low metal abundances could in principle yield an accurate wvalue of
YqBB but these measurements are difficult because these galaxies are
typically very far away. It is not possible within the scope of these
lectures to cover completely the discussion of Y, - The best estimates
consistent with the observations place Yl+ in the range

0.22 < Y, < 0.25. (3.36)

If we restrict ourselves as before to N, = 3, 17/ = 10.6 min., the
upper limit on YH implies an upper limit on n from Fig. 5

n<5x 103 (3.37)

which is once again consistent with the previous limits Eq. (3.33).
(The lower limit om Y, does not give an interesting bound on n.)
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Fig. 5. The abundance {(by mass) of "“He as a function of n for N,
= 2,3 and 4 and for 7t = 10,4 min (solid), 10.6 min (dashed), and

10.8 min (dotted). 1/2

Figure 5 actually contains significantly more information than
just a limit onm n. In Fig. 5, we see clearly the behavior of Y, with
respect to all three parameters: 1, Ty/z, and Ny. It is clear how
Yq increases with increasing values of any of the three parameters.
It is also immediately clear that we can set a limitlz-lq) on N, pro—
vided that we have a lower limit to n. Tsing n > 3 x 10710 and Y
< 0.25, we find that N < 4 with the equality being at best marginal.
This implies that at most one more generation is allowed, assuming
that the neutrinos associated with each generation are light and
stable.
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The strong dependence of Y, on the three parameters requires
great precision to strengthen the limits due to nucleosynthesis.
Strictly speaking, n > 3 x 10710 and T /9 > 10.4 min. allows N, = 4
only if Yq 2 0.253; however, we are not vet in a position to believe
the third decimal place. For TléZ 2 104 wmin., the limit Eq. (1.37)
on n can be relaxed so that N, <3, Y < 0.25 implies n < 7 x 10710,
We can also turn the limits around ang set a lower limit to the helium
abundance by assuming n > 3 x 10710 ang N, > 3 then we have Y > 0,24,
If future observations actually yield Y, < 0.24, one would have to
argue that perhaps V. is heavy and unstable (the present limit is only
My, < 250 MeV). If we only assume N, » 2, then the lower limit om Y
becomes Y » 0.22, Any observation of the primordial helium abundance
less than 0.22 would indicate an inconsistency with the standard
model.

The importance of the success of big bang nucleosynthesis can not
be overstressed. The abundance of the predicted elements differ by
about nine orders of magnitude, from ’Ii to “He. Furthermore, all of
these predictions are consistent with the observations only for a nar-
row range of the baryon-to-photon ratio (3 — 4) x 10710 ¢ n < (7 - 10)
x 10710, 1Tt is incorrect to think of this as a drawback (in the sense
that one would be more comfortable with a large ranmge for n). 0On the
contrary, it 1s evidence of the predictive power of the model.
Indeed, the Universe has only one value of n, Y , etc. If we just
concentrate on a central value for n, say n= 5 x 10710 with N, = 3
and 1, ,, = 10.6 min., we have D/H = 3 x 1075, 3He/H = 1.2 x 1073,
’Li/H ="1.2 x 10710, and ¥ = 0.25, all remarkably consistent with the
observations.

There is still one more important consequence of the above
limits, that is the limit on n can be converted to a limit on the
baryon density and Q. TIf we turn around Eq. (3.19), we have

Qp = 3.56 x 1o7nh32(T0/2.7)3, (3.38)

and using the limits on n Eq. (3.33), h0 Eq. (2.35) and T0 from (2.7 -~
3)°K we find a range for Sig

0,01 < 2y < 0,19. (3.39)
Recall that for a closed Universe 2 > 1, thus from Eq. (3.39) we can
conclude that the Universe is not closed by baryons. This does not
exclude the possibility that other forms of matter (e.g., massive neu-
trinos, etc.) exist in large quantities to provide for a large Q. 1In
fact, if large clusters of galaxies were representative of 9 the limit
from nucleosynthesis would indicate that some form of dark matter must
axist.

This concludes our review of big bang nucleosynthesis. We again
stress its credibility and importance because it takes place at an
energy scale in which we feel we understand the physics. We will not
be able to make the same statement for the last three sections.
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Section 4. Limits on Neutrino Masses

In this section, we will look at a typical class of constraints
available from cosmology: those on particle masses and 1ifetimes.
Most of these limits can be extended to other types of neutral parti-
cles, but we will take neutrinos as a canonical example. We will
begin the discussion with stable neutrinos and then move towards the
constraints on unstable neutrinos.

For cosmological purposes, a stable particle is one with 1ife-
time T > 102 sec. The limits on stable neutrinos can be divided up
into three mass regions: 1) light neutrinos, m,, <1 MeV; 2) massive
neutrinos, m > I MeV; and 3) very massive neutrinos with a lepton
asymmetry. Let us begin with the limits on light neutrinos. Neu-
trinos with mass less than 10™%eV are still relativistic and thence,
equivalent to zero mass neutrinos and are allowable. For m,, > 107%ev
we can compute the total mass density in neutrinos by

Py = W, (4.1)
where n,, is the number density of neutrinos
= (3 3 /.2
n, = (Pe,e(3) /72, (4.2)

where g, 1s the number of degrees of freedom for a massive neutrino.
Depending on the particle physics model, there are two choices for gy
For Dirac mass neutrinos gy, = 4 (1.e., the mass term in the Lagrangian
is similar to that for an electron = vv), For Majorana mass neu-—
trinos, g, = 2 (the mass term is = wv), We can put Eq. (4.2) in terms
of the photon number density Eq. (3.17)

_ 3 €y Ty,3 _ 3
TN ey 43

If we compare the neutrino mass density to the critical mass
density Eq. (2.23) we can write down that part of § which is due to
neutrinos

2, = p,/p, = 0.01 mv(eV)hsz[E%]{To/Z.Vjs (4a4)

for neutrino masses in eV. Although the Ilimits on £ and h_ taken
separately yield a limit ©h2 { 4 this would imply an age é%r the
Universe t; < 8 x 109 yrs whiék is much too small. We regret that we
are not able here to go into the details involving the age of the Uni-
verse arguments, but consistency requires that §hZ2 < 1. We thus have
the following limitZ*’ on the mass of light-stable neutrinos,

*A tighter limit assuming T, > 1.3 x 1010 yrs gives2?) 2n < 0.25.
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m, (eV) < 200 gT! ev. (4.5)
v v

Actually the limit Eq. (4.5) is additive in the sense that if more
than one species of light neutrinos (or other types of particles at
the same temperature) exist, the limit becomes

L m,(eV) < 200 gl ev, (4.6)
\Y

i.e., the sum of all light masses must be less than 200 ggl. Thus,
for Pirac-type neutrinos

6 m < 50 eV (4.7)
while for Majorama-type neutrinos
5 m,, < 100 av. (4.8)

It is interesting to note that from Eq. (4.4) we see that to close the
Universe with light neutrinos we need a total mass EmU » 200
h%g"1[2.7/T0)3 which is only possible with h < 1.

The limits on more massive neutrinosZSFZE) are qualitatively
different and involve a2 numerical calculation. The difference is that
unlike the case for light neutrinos, massive neutrinos have a chance
to reduce their number density through annihilations. In equilibrium,
the neutrino number density 1s essentially governed by the Boltzmann
factor exp(mv/T). It is only after the rates for neutrino annihila-
tions freeze out (I, < H) does the neutrino density become fixed. For
light neutrinos the rates all froze out at 1 ~ 1 MeV. For more mas-—
sive neutrinos, freeze out will occur at a higher temperature (typi-

cally Te ~ mv/20) because the density of neutrinos has fallen so as to
render no < H.

In order to calculate the number density of neutrinos, one must
solve the Boltzmann equation

48 = 30 - <ov> (a2 - n2), (4.9)
where n is the equilibrium number density, H = —T/T takes 1into

account the Universal expansion, <ou> is the thermal average of the
cross section

~ (2m2
<{ow Ggmy NA/ZW, (4.10)
where GF is the Fermi weak interaction constant and N, is the number
of annihilation channels., Solving Eq. (4.9), one finds2®’ for the
total mass density

py = mp, = (1.6 x 10'27gcm_3)[mv(GeV)]_1'85 x

x N, 0-95(Bf)-0.52 (4.11)
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where g. = N(T_) is the number of degrees of freedom at the tempera-
ture at which the annihilations freeze out. Dividing Eq. (4.11) by
P, we again have an expression for .,

2, = 2.66 m, 1 *85(Gev), (4.12)

where we have taken NKO-SS (gf/2)_0'52 = 3 x 1072 as a typical value.
Once again, wsing the limit Qh% < 1 implies

my, 2 1.7 GeV, (4.13)
for each type of heavy neutrino.

The limit Eq. (4.13) can actually be strengthened by re lizing
that neutrinos in the GeV range (or higher) would cluster?’?’ with
galaxies, binaries, and small groups of galaxies. In this case, we
should not use the cosmological limit Rh% < 1 but rather the limit on
§¢ coming from binaries and small groups {see section 2) Qh% < 0.15.
Thus for clustering neutrinos we have

my, ¥ 4.7 GeV. (4.14)

If we consider still larger neutrino masses, although their
annihilation rates are effective enough to reduce their number den-
sity, if we assume that there is a slight excess of neutrinos over
antineutrinos (or visa versa), the slight excess will remain even
after the annihilations have ceased. 1In the simplest models of baryon
generation (see the following section) we expect that a slight asym-
metry on the order of the baryon asymmetry be produced. It would
indeed be difficult to imagine that absolutely no asymmetry results
since baryons and leptons are mixed in the processes which produce the
baryon asymmetry. Thus, let us assume that

n, = (nv - n;)/n.Y = §n, (4.15)
where & is a model-dependent factor which we will suppose is 0O(1).
Independent of the annihilations, the left-over mass density will then
be
p. = m nn_ = muénnY (4.16)
and

2, = 3.8 x 107m(GeV)nh 2(T /2.7)3s. (4.17)

Taking n > 3 x 107'% and @02 < 1 we have an additional upper limit28)
on the neutrino mass

Im, £ 88 87! Gev, (4.18)
v
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where we have taken a sum over all species with asymmetry én. As
before, if we apply the limit due to the clustering around galaxies
Hb% < 0.15 we have the following limit

m, £ 13 87! Gev, (4.19)
T T ; T T | T | 1 I T | !
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Fig. 6. Astrophysical constraints onm the lifetimes and masses of
neutrinos.

We will now briefly describe the limits that one can place on
unstable neutrinos. These limits as well as for stable neutrinos are
all %ummarized27’29) in Fig. 6. The limits on wustable neutrinos
30:27) 411 assume that a significant portion of the decay products
involve photons or charged particles. There are basically three
ranges for lifetimes which use different arguments to rule them out.
The first range is for ' T,, between 1012 gec and 102% sec. During this
range neutrinos decay after the decoupling of photons during the
recombination period of neutral hydrogen formation. Because the decay
occurs after decoupling, the decay photons remain unthermalized and
would show up in the UV, X- and y-ray backgrounds. Limits on the



-30-

observed fluxes of these backgrounds rule out neutrinos with masses up
to about 1 TeV (see Fig, 6). Heavier neutrinos would not be suffi-
ciently abundant to interfere with these backgrounds unless, again,
there was some asymmetry between Vv and V.

Neutrinos with intermediate lifetimes 2000 sec £ T £ 10}2 sec
decay early enough that their decay products can still be thermalized
with the microwave background. However, they distort the spectrum in
that they produce too many photons for a given temperature. Once
again, for sufficiently high masses, the abundances are sufficiently
low so as to be acceptable.

The final lifetime range 1is for neutrinos with 10 3sec < T
< 2000 sec. Neutrinos with this lifetime and a mass less than 10 MeV
are ruled out3l by supernova energetics. During the formation of a
neutron star or a black hole, a supernova releases a total of 10°3
ergs of which 1091 ergs is visible, the remainder being in the form of
neutrinos. Neutrinos which decay in this range would yield supernovae
which produce more than 10°1 ergs in visible light and are hence ruled
out.

Once again we stress that although we have limited this discus-
sion to neutrinos, generalizations are applicable to other particle
types as well, We hope only to show the power of cosmological and
astrophysical limits on particle properties.
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Section 5. Big Bang Baryosynthesis

As we have seen in the first three sections of these lectures,
the big bang model very successfully explains the expansion of the
Universe, the existence of the cosmic background radiation, and the
abundances of the light elements. As we will try to show in this
section, the big bang mcdel when combined with GUTs can explain the
orligin of the baryon asymmetry and the value of n. Up until now, we
have simply used n as a parameter without regard to its origin.
Indeed, it is very strange that such a small parameter exists. On the
other hand, it is difficult to understand why there is an asymmetry in
the first place, i.e., why isn't 1 = 07

There is a fair amount of evidence that indeed n # 0. There is,
to begin with, no evidence within the solar system of antimatter. In
addition, the cosmic rays show only evidence of p's with no @'s which
would be necessary to definitively argue in favor of antimatter in the
cosmic rays (p's can and are produced as secondaries in collisions).
It has also been argued®?’ that if in clusters of galaxies certain
galaxies were of one form of matter or the other, the y-ray flux pro-
duced by pp anmihilations in the cluster would exceed the limits on
the observed y-ray flux. Furthermore, it is very difficult to imagine
a mechanism leading to such large separations of matter and antimatter
when one accepts that at early times they were so well mixed.

Let us for the moment, assume that in fact n = 0. Then just as
in the case for neutrinos (section 4) we can compute the final number
density of nucleons left over after annihilations have frozen out. At
very high temperatures T > 1 GeV, nucleons were in thermal equilibrium
with the photon background and ny = 0 = 3/2n. (a factor of 2 accounts
for neutrons and protons and the factor 3/4 for the difference between
fermi and bose statistics). As the temperature fell below my, anni-
hilations  kept the nucleon density at its equilibrium value (nN/n )

= (mN/T)3 2 exp (—mN/T) until the annihilation rate YPA
R nNm;2 fell ©below the expansion rate. This occurred
at T = 20 MeV. However, at this time the nucleon number density

had already dropped to

nN/nY = nﬁ/nY ~ 10 18, (5.1)
which is eight orders of magnitude too smallsz) aside from the problem
of having to separate the baryons from the antibaryons. 1f any separ-
ation did ocecur at higher temperatures (so that annihilations were as
yet incomplete) the maximum distance scale on which separation could
occur is the causal scale related to the age of the Universe at that
time. At T = 20 MeV, the age of the Universe was only t = 2 x1073
sec. At that time, a causal region (with distance scale defined by
2ct) could only have contained 1073 Mg which is very far from the

ga}%ctic—mass scales which we are asking for separations to occur,
104t M,.
@
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A final possibility might be statistical fluctuatioms, but in a
region containing 1012 Mg there are ~ 1080 photons so that one would
only expect statistical fluctuations to produce an asymmetry 0
~ 10740 Thus we are left with the problem as to the origin of a
small non-zero value for n. We can assume that it was an initial con-
dition to start off with and in a baryon number conserving theory it
would remain nearly constant. [The production of entropy (photons)
could cause it to fall.] In this case, however, we must still ask
ourselves, why is it so small? A more attractive possibility, how-
ever, is to suppose that the baryon asymmetry was in some way gener-—
ated by the microphysics. Indeed, if one can show that a small non-
zero value for n developed from n = 0 (or any other value) as an
initial condition, we could comsider the question solved. In the rest
of this section, we will lock at this gsecond possibility for genera-
ting a non-zero value of n using GUTs.?3

There are three basic ingredients necessarya) to generate a non-—
zero N. They are

1., baryon number violating interactions

2. C and CP violation

3. 2 departure from thermal equilibrium.

The first condition is rather obvious, unless there is some mechanism
for violating baryon number conservation, baryon number will be con-—
served and an initial coerdition such as n = 0 will remain fixed. C
and CP violation indicate a direction for the asymmetry. That 1is,
should the baryon number viclating interactions produce more baryons
than antibaryons? I1f C or CP were conserved, no such direction would
exist and the net baryvon number would remain at zera. The final
ingredient is necessary in order to insure that not all processes are
actually occurring at the same rate. For example, in equilibrium if
every process which produced a positive baryon number was accompanied
by an equivalent process which destroyed it, again no net baryon num-
ber would bhe produced.

The first two of these ingredientrs are contained in GUTs, the
third 1in an expanding universe where it is not uncommon that interac-—
tions come in and out of equilibrium. Tn SU(5), for example, as we
have seen in the earlier contributions to these lectures, the fact
that quarks and leptons are in the same multiplets allows for baryon
non-conserving interactions such as e~ +d = u + u, etc., or decays of
the supermassive gauge bosons X and Y such as X »e” +d, U + u.
Although today these interactions are very ilneffective because of the
masses of the X and Y bosons, in the early Universe when T > M
~ 10'% GeV these types of interactions should have been very
important.

As we have also seen in the earlier contributions, C and CP
violation is wvery model dependent. In the minimal SU(5) model, the
magnitude of C and CP violation iIs too small to yield a useful value
of ne« The C and CP wviolation in general comes from the interference
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between tree level and first loop corrections. We refer the reader to
those contributions for further details.

As we have said, the departure from equilibrium is very common In
the early Universe when interaction rates can not keep up with the
expansion rate., In fact, the simplest (and most useful) scenario for
baryon production makes use of the fact that a single decay rate goes
out of equilibrium. It is commonly referred to as the out of
equilibrium decay scenario,3" The basic idea is that the gauge
bosons X and Y (or Higgs bosons) may have a lifetime long enough to
insure that the inverse decays have already ceased so that the baryon
number is produced by their free decays.

More specifically, let us call X, either the gauge boson or Higgs
boson, which produces the baryon asymmetry through decays. Let a be
its coupling to fermions. For X a gauge boson, a will be the GUT fine
structure constant, while for X a Higgs boson, (4ma)l’/? will be the
Yukawa coupling to fermions. The decay rate for X will be

Iy ~ o My. (5.2)

However decays can only begin occurring when the age of the Universe
is longer than the X lifetime PBI, i.e., when p? H

a My N(T)1/2T2/Mp (5.3)
or at a temperature
T2 < a MXMPN(T)'”Z. (5.4)
Scatterings on the other hand proceed at a rate
Iy ~ o213/M% (5.5)

and are hence not effective at lower temperatures. In equilibrium,
therefore, decays must have been effective as T fell below My in order
to track the equilibrium density of X's (and X's). Thus the condition
for equilibrium is that at T = MX, I'p > Hor

My @ Mp(N(MX))_l/z ~ 10184 GeV. (5.6)
In this case, we would expect no net baryon asymmetry to be produced.

For masses My 2 1018q GeV, the lifetime of the X bosons is longer
than the age of the Universe when T ~ Mye Decays finally begin to
occur when T < Mys however, the density of X's is still comparable to
photons n§/nY ~ 1 whereas the equilibrium density at T < My is nx/n
~ (MX/T)3 2 % exp [-Myx/T] << 1. Hence, the decays are occurring dut
of equilibrium (inverse decays are not occurring). Hence, we have the
possibility for producing a net asymmetry.
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Let us now look at what happens during the decay of an X,X pair.
If we consider the example of the X gauge boson and its decays to u,u
with branching ratio r and net baryon number change &b, = -2/3 and to
e”, d with branching ratio l-r, and net baryon num%er change Abz
= 41/3

X ~F* a+ u Abl = -2/3 {5.7a)
X ~=>e” + 4 Ab, = +1/3 (3.7b)
1-r 2

A similar set of decays will occur for X

R —u+u Ab_ = +2/3 (5.8a)
r 1

T —>et +4d Ab_ = -1/3 {5.8b)
l-r 2

If C and CP are wviolated then r#F and we can define the total net
baryon number produced per decay of X and X

4B = (&b )r + (Ab,) (l-r) + [AbIJE + [Abf) (1-%)

= Tr - r. (5.9)

The value of r-r will of course depend on the specific model for C and
CP violation.

The total baryon density that will have heen produced by the X,X
pair [provided Eq. (5.6) is not satisfied] is

ng = (AB)nX (5.10)
and since we also have ny = ng = nY,
ng = (AB)nY. (5.11)

Although the net baryon number is conserved during the subsequent
evolution of the Universe, the photon number density is not. A more
useful quantity just after baryon generation is the baryon—to-specific
entropy ratio, ng/s. The entropy density, recall from Eq. (2.59) is

_ 2n? 3
and can be related to the photon number density Eq. (3.17) by
- o N(T
g = € ( )DY' (5.13)



—4 4~

At T ¢ My ~ 10%3 GeV, wa expect N(T) 2 0(100) so that s ~ 0(1l00Q) Nye
Thus the baryon-to-entropy ratio we would expect to produce in the
out-of-equilibrium decay scenario would be

np/s ~ 1072(4B). (5.14)

The value of ng/s that we are looking for must be related to the
limits on n (Eq. 3.33) found in our discussion of nucleosynthesis,
From the time of nucleosynthesis to the present, the contribution to N
is due only to photons and the cooler neutrinos, Ng = 3.91 [see foot-
note related to Eq. (3.6)] and hence

s = 7.04 Tye {5.15)

Thus, n in the range (3-10)x10710 corresponds to a value of ng/s
in the range (4.3-14)x10711, Comparing this with the expected pro-
duction, Eg. (5.14) gives us a lot of hope that GUTs may provide us
with a viable mechanism for generating a small (but not too small)
value for n.

Although we can be encouraged by the above scenario, we must
still show that given a GUT, after the full set of Boltzmann equations
have been integrated, am acceptable and definite value of n emerges.
In particular, most GUTs do satisfy Eq. (5.6), for o = 1/41 and
M, ~ 1013 Gev decays will be occurring at T ~ My, but im at best
partial equilibrium. Thus the estimate, Eq. (5.?&) is mnot a good
on=z. We will now outline what needs to be done in order to calculate
in general the baryon—to-photon ratio in a GUT, in terms of the C and
CP violating parameter AB.

As we have just said, a full solution to this problem requires
. . 35 .
solving a set of Boltzmann equations. In Eq. (4.9) we wrote down
the Boltzmann equation for annihilations. Here we will be more inter-
ested in equations governing decays

dn
~q& = -3Hn, ~ Tp(n, - nxoj, (5.16)
where n,  is the equilibrium number density of X's, In general, we

can define the number of particles of type i in a phase-space element
dVdIIi as

_ b
dN, = uapri(pi,xi)dVdHi, (5.17)

where u, is the velocity four-vector, N; 1s the phase-space density,
and

I | 3 0
dHi P gid pi/pi (5.18)

is the momentum element for i with g degrees of freedom. The number
density of type 1 is just
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£,
_ - 1 2
n, = J uapridni e /N, p2dp; (5.19)
which reduces to Eqs. (2.45) and (3.17) for

Ny = [EXP[(Pf = )/T] & 1,7, (5.20)

If there were no interactions which could change the number of i's,
then the density would change as

= - 2
dni/dt 3Hni {5.21)
simply due to the expansion of the Universe.
When we add interactions, we have that

dn,

i
dt

= —3Hn, + S Al 4, ., 4l 41 ...
i 1777 m

L 3

2
X[Nsz"‘

— 5-‘

s s e s-n)
liNi)(lj:Nj) W(ngm + PiPj

- (5.22)
NiNj...(liNE)(liNm),..W(pipj..+ pgpﬁ..)],

where the factors (liNi) are the stimulated emission and exclusion
factors for bosons and fermions. The invariant transition rate is

W= (s/2n)w2(2n)” s (x p¥ -z pl), (5.23)
in out
where s is a statistical term containing (m!)_l for each set of m
identical incoming or outgoing particles and n is the total number of
particles in the process."’? is the invariant amplitude for the
process.

For practical purposes, one generally uses only Maxwell-Boltzmann
statistics so that all factors (ltNi) are neglected. We now have a
prescription of how to calculate the number densities of each particle
type i which involves a change in baryon number. We must also include
all interactions which carry a change in baryon number such as decays,
annihilations, and scatterings. In the simplest case where we only
consider decays and inverse decays we can reduce Eq. (5.22) and take
X's as an example

dn .
P, S - - — N~ u.u
~F = "3 + ] dHXdHuLdHU?[NulNUZW(ulu

2 > ¥

N WX +u +1)
X 1 2 ]
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+J dL_di i |N N W(e + d + X)
- NW(X »e + d)]. (5.24)

In Fig. 7, we look at the t%pical results which cne finds after a
complete numerical integration3®’/ of the Boltzmann equations. These
particular resluts are for an SU(5) model, but their behavior is
generic for most any GUT. What is plotted is the time development of
the baryon-to-entropy ratio ng/s normalized to the net baryon number
produced by palr decay AB. The horizontal scale, MX/T, is proportion-
al to t1/2, The three curves correspond to different cholces for the
mass of the boson X. In curve 1, we have chosen, a mass which we
expect to satisfy the out-of-equilibrium condition My = 3 x 10184 ang
we 1indeed find that the maximum asymmetry has been generated
ng/s = 1072A(B) as we expected (5.14), This in itself confirms the
original idea.

-7 [

16° 162 18 1 10 10° 10

Mx/T

Figure 7. The time evolution of the baryon asymmetry in units of (AB)
for 1) My = 3x1018 o 2) M, = 3x1017 a; 3) M = 3x101® o; and 4) if
scatterings remain very effective.
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The good news that we find from Fig. 7 is that even for lower
masses, an asymmetry is still produced. In curve 2, we have chosen
M, = 3x1017¢ and we find still a substantial asymmetry n_/s ~ 107%
(AB). What is happening is that at T ~ My, inverse decays are sgtill
effective in trylng to restore equilibrium. Eventually, they too
freeze out and any X's and X's still present, decay freely to produce
a net baryon number. If we continue to lower the mass as in curve 3,
Mx = BXIOIGG, scatterings begin to play a role in driving things
further towards equilibrium. Again, when they freeze out the remain-
ing X,X pairs decay leaving an asymmetry. If scatterings become
dominant, however, the resulting asymmetry in the standard model will
become exponentially small with decreasing M, as shown in the dashed
curve. In Fig. 8, we have plotted the final asymmetry which is pro-
duced as a function of K = 3><1017a/Mx where K is defimned by

K = PD/H|T=MX' (5.25)

Depending on whether or not X is gauge or Higgs boson, the resulting
final asymmetry can be approximated by

ng/s = 2x1073(AB)/{1 + (3K)!1-?] (5.26)
for Higgs bosons, and

ng/s = 8x1073(aB)/[1 + (16K)!*3] (5.27)
for gauge bosons.

The above approximations assume that only one type of boson car-
ries baryon—number violating interactions. In general, there may be
several in which case the baryon asymmetry genmerated by a heavy boson
may be wiped out (totally or partially) by lighter ones. The degree
of damping can be approximated as

(ng/s) exp[-0(K)] (5.28)

initial

for Higgs bosons and

(nB/s) exp[-5.5K] (5.29)

initial
for gauge bosons. The resulting asymmetry is then computed (using the
lightest boson which violates baryon number) by damping any prior
asymmetries by Eq. (5.28) or Eq. (5.29) and adding to that the asym-
metry generated by Eq. (5.26) or Eq. (5.27).

As supersymmetric theories are becoming ever more important (and
popular) it will be worthwhile looking at what happens to the baryon
asymmetry in a supersymmetric GUT. The largest effect due to the
increased number of particles is that scatterings may become more
important and make it harder to go out of equilibrium. In addition,
the GUT coupling may be larger and the existense of dimension 5 opera-
tors all increase the effects of scatterings.37
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Figure 8. The final baryon asymmetry as a function of K = 3x10!7 a/Mx
in units of (AB). The dashed curve assumes effective scatterings.

It is also very common in supersymmetric theories to have Iight
Higgs bosons (My ~ 1010 GeV) which violate baryon number. For a
proper choice of couplings to the different generations, proton decay
does not rule out such light Higgses.38 Even in a non supersymmetric
GUT, such a light Higgs boson would yield an asymmetry nB/s ~ 4x1078
(AB) which is probably too low to explain the baryon—to—-photon ratio
MNe In a supersymmetric theery this number would be many orders of
magnitude smaller. As we will show, however, this does not pose a
serious constraint on supersymmetric theories.

Before addressing the baryon asymmetry directly, it will be use-—
ful to first address some general cosmological problems which might be
encountered in a supersymmetric GUT. 39 To begin with, let us con-
sider global supersymmetry. At zero temperature, supersymmetric GUTs
may have several degenerate minima [e.g., SU{5), SU(3)xSU(2)x U(1l),
SU(4)xU(1), etc.] all with zero vacuum energy density. This degen~
eracy will however bhe broken at finite temperature, and we must now
ask which minima is preferred.

The standard picture for a phase transition in the early
Universe, e.g., SU(5) + SU(3)xSU(2)xU(1l) would have a single minima at
temperatures greater than some critical temperature T,.
Below T, other minima develop with lower vacuum energy density. 1f
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there is a barrier between the minima, the transition will in general
be of first order. If there is no barrier and the symmetric high
temperature minimum disappears at Tc, the transition is second
order. There is, however, no degeneracy. Fipgures 9a and 9b show
schematically the possible behavior of the scalar potential as a
function of a scalar field E.

In Figure 10, we see schematically the behavior of the scalar
potential In a supersymmetric GUT, the important finite temperature
corrections are just

Vp(E) = V(E) + € 1212 - ¢, T, (5.30)

where V(I) is the tree-level potential, C, is derived from v,
and C2 [= (72/90) N(T)}] simply counts degrees "of freedom. The I?TZ isg
an expansion only relevant near the origin [for ID>T it is cut off by
exp(~L/T)] and is not all that important here in distinguishing the
minima. The value of C2, however, will be different in the different
minima depending on how many light particle states there are in each
vacuum. This term will break the degeneracy. Unfortunately, it does
so in the wrong way. In SU(5) C; is larger than Cs in either
SU(3)xSU(2)xU(1) or SU(4)xU(l). Thus, it appears that at any temper—
ature the SU(5) symmetric state would always be the lowest minimum,
and a phase transition would be impossible.

The above picture is somewhat relieved when one realizes that
there is some scale A_ such that SU(5) becomes strong, i.e., agyt ~ le
Thus it is incorrect to think of SU(5) containing large numbers of
(nearly) massless particles at T < A_.. TInstead, as T drops to As, Cp
in SU(5) could become smaller than C_ in the other minima. In this
case, the vacuum energy density in the symmetric phase would be
greater than those in the broken phases and hence a phase transition
would become possible. If we now look at a simple example of a
supersymmetric model, consider the most general (renormalizable)
superpotential for the adjoint I,

£(L) = %mTR(zZ) +-§A TR(Z3). (5.31)

In global supersymmetry the scalar potential for Egq. (5.31)
{neglecting D terms) will be

V(L) = TR|m& + AL2 - %A TR(12)|2. (5.32)

Now although the vacuum energy density of the broken phase is lower
than in the symmetric phase, there is a barrier*? of height
o(m*/A2), The phase transition will complete itself only if the
probability of tunneling per unit volume p, becomes greater than H",
If we choose m = Moo~ 1016 Gev and A ~ 1, the tunneling probably 1is
given by‘* 1

p ~ 1 e B, (5.33)
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Figure 9. a) Schematic view of the scalar potential for a first—order
phase transition. b) Schematic view of the scalar potential for a
second-order phase transition.



-5~

where the action B is
B = 0.04(M_/T)9, (5.34)

and at, T ~ AS (when the transition first becomes possible) »p
< 10710°° ang cgrtainly in this case no transition occurs. One possi-—
ble solution® (although not very attractive 1is to set m ~ my,
and A ~ mw/m ~ 10714, In this case the barrier would be lower than
the non-perturbatlve effects due to A ~ 109-101 0 Ge¥, This type of
rroblem {(small couplings) seems to have a possible solution in local
supersymmetry through the use of non-renormalizable interactions. We
will not here go into this solution but only refer the reader to some
recent proposals.”3

T=0

t

Fig. 10. Schematic view of the scalar potential im a supersymmetric
theory. The dashed curves correspond to the effects of finite temper-—
ature. The arrow indicates that the SU(5) minimum is expected to move

up as T approaches A .
Let us now return to the problem baryosynthesis in supersymmetric
models. Consider the addition“2:%37 to the superpotential Eg. (5.31)
f = alHZH + aZYHH + a3uY2 + an3, (5.35)

where H and H are in 5 and 3 representations, and Y is an SU(5)
singlet. Tn order to keep the mass of the triplet in H and A light



[my ~ 0(101 0y GeV] we will need a, ~a, ~ 107®, and we can allow a
~ o~ l. In this «case, Y will also %ave a mass of O(1010) Gev i%
v~ 1010 gev., It is the H and H which will eventually be responsible
for producing the baryon asymmetry.

Regardless of the exact details of SU(5) (perturbative or non-
perturbative) the singlets Y will be unaffected. Their decay will be
governed by the term linear in Y

4a2a3uYHH. {5.36)

So long as iy > ZmH, Eq. (5.36) leads to a decay Y - H,H with a rate
~ nlgl
Ty ~ a5agh. {5.37)

Once again, the decays will only begin to occur when I'y 2 H or

1/2 o~ 1098
Tp < azaB(uMp) 10° GeV. (5.38)

At Tp, however, ny ~ n, and hence ny ~ ng ~ Ny as well. Thus, the H,
A's are out of equilibrium [as at T ~ 108, GeV n,/n_ ~ exp(~100) in
equilibrium]. Their subsequent decays will then pro%ucl an asymmetry

Tp -2
nB/s ~ (AB) By ~ 107<(AB) {5.39)

or very close toc the original out-of-equilibrium decay est{pate. N In
Eq. (5.39) AB is the nunet baryon number produced by an H, H (H,H)
decay and the factor Tp/my is due to the entropy produced by the
decay. Thus we see that the original worries about baryon generation
in supersymmetric models were unfounded.

Before c¢losing this sectlon, we would like to look at two
problems which result from combining GUTs and cosmolo§y. The first
problem concerns the abundance of magnetic nwnopoles.““ GUTs predict
the existence if magnetic monopoles. The monopoles will be pro-
duced“s) whenever any simple group [such as SU(5)] is broken down to a
gauge group which contains a U(l) factor [such as SU(3)xSU(2)xU(l)].
The mass of such a monopole would be

Moo~ Mo/ ag ~ 1018 Gev, (5.40)

The basic reason monopoles are produced 1is that in the breaking of
SU(5) the adjoint can not align itself over all space. On scales
larger than the horizon, for example, there is no reason to expect the
direction of the Higgs field to be aligned. Because of this random-—
ness, topological knots are expected to occur and these are the mag-
netic monopoles. We c¢an then estimate that the minimum number of
monopoles produced would be one per horizon volume or causally con-
nected region at the time of the SU(53) phase transition t_
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~ -3
Ny (2tc) . {5.41)
The time t. is related to Tc through (2.60)

te * 0.3M, N(TC)_I/Z T.72 (5.42)

s0 that the monopole-~to—photon ratio is
~ 3
nm/nY (IOTC/MP) . (5.43)

Just as in the case of neutrinos, we can look at the limits on
the abundance of magnetic monopoles due to the overall density of the
Universe. The mass density of monopcles will be

o =M (5.44)

m

and the fraction of critical density in monopoles can be expressed as

I

Qh% = 9.5x10% M_(GeV) n_ (em 3). (5.45)

Thus for Mm ~ 108 Gev and ﬁh% < 1 we have that

n/ny < 010723}, (5.46)

The predicted density, however, from (5.43) for T, ~ Mg ~ 1013 Gev
ylelds

(nm/nY) ~ 1079, (5.47)

Hence, we see that standard GUTs and cosmology have a monopole
problem. There are basically two solutions to this problem. If
instead of T, ~ M., the S5U(5) phase tramsition were Supercooled“s) and
T, < 1010 GeV the number of monopcoles might be acceptable. Recall the
‘types of supersymmetric GUTs described above have exactly this
property, TC ~ A, ~ 10% - 1019 GevV., Thus they might not overproduc%
monocpoles. The “second solution involves the inflationary Universe“
scenario and will be discussed in section 7.

The final problem we would 1like to discuss in relation to
particle theory is only a problem in locally supersymmetric theories.
This problem involves the overproduction of entropy through gravitino
decay.“7 At very early times we expect that gravitinos were as
abundant as photons. Gravitinos, however, only couple gravitationally
and hence are decoupled from the thermal background until very late
times when they decay., Their decay rate will be the gravitational
rate

r /M2, (5.48)

~ me
372 T 372
where m /2 = 100 GeV is the gravitino mass. Because of their early
decoupling, gravitinos will be at a lower temperature then the photons
when they decay so that their total mass density will be
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P30 ~ My DY/N(MP)' (5.49)
When gravitinos decay, the Universe will be matter dominated {this
depends of course on the gravitino mass) and the expansion rate 1is

given by

B ~mnl/2 132 /1, NQ(M, /2 (5.50)
so gravitinos decay when T3/2 ~H or
Tp ~ m343 M523 N(M,)1/3. (5.51)

After the decay products of the gravitinos thermalize, they will
have reheated the Universe to a temperature

Ty ~ (mg,, TH/N QMp))1/% ~m3/2/mp/2. (5.52)

Z 3/2

Tn addition, the entropy increase of the Universe will be

(Tp/Tp)3 ~ (Mp/my ;) 2/N(M,). (5.53)

3/2
If we put some numbers 1into these equations, we find that for m /2
~ 100 GeV, gravitinos decay at T, ~ 10 eV, i.,e., after nucfeo—
synthesis., The entropy increase is 0(10%) which presents problems for
both big bang nucleosynthesis as well as big bang baryosynthesis. 1In
the next two sections, we will look at other cosmological problems and
their resolution [as well as a solution te¢ the gravitino problem“a)]
in the inflationary Universe scenario,
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Section 6. Cosmological Problems

In the previous five sections, we have outlined the standard big
bang cosmological model from the GUT epoch at t ~ 1073% sec to the
time of recombination at about t ~ 10° YIS, The model in its sim-
plicity is amazingly successful. Independent of any particle physics
model, it does, however, have some problems of its own which we would
like to address in this section. They are 1) the horizon problem; 2)
the small scale inhomogeneity; 3) the curvature or flatness problem;
4) the rotation problem; and 5) the cosmological comstant. All but
the last of these problems may be resolved by inflation“’ as we will
discuss in the next section.

The horizon volume or causally connected volume today, is just
related to the age of the Universe V, « t3., The microwave background
radiation with temperature T_ ~ 3°K has been decoupled from itself
since the epoch of recombination at Ty ~ 104°K, The horizon volume at
that time was V; « tg. Now the present horizom volume scaled back to
the period of decoupling will be V! = VO(T /Td)3 and the ratio of this
volume to the horizon volume at decoupling 1is

VY/Va ~ (Vo/V ) (T /Tq)°

~ (e /eg)d (T /T3 ~ 10°,

(6.1)

where we have used ty ~ 3x1012 gec and t, ~ 5x10!7 sec. The ratio
(6.1) corresponds to the number of regions that were causally discon~
nected at recombination which grew into our present visible Universe.

The microwave background radiation appears to be highly isotrop-
ic. 1In fact, the limits on the anisotropy put

AT/T < 107", (6.2)

This means that on large scales, the Universe must be very isotropic
and homogeneous, (any inhomogeneities would also produce fluctuations
in the microwave background). The horizon problem, therefore, is the
lack of an explanation as to why 10° causally disconnected regions at
tq 211 had the same temperature to within one part in 1041

Although it appears that the Universe is extremely isotropic and
homogeneous (in fact the standard model assumes complete isotropy and
homogeneity) it 1s very inhomogeneous on small scales. In other
words, there are planets, stars, galaxies, clusters, etc. n small
scales, therefore, there are large density perturbations. The problem
is to understand how such density perturbations were formed (remember
that on large scales we must have 8p/p ~ 6T/T ~ 10™*) and how on small
scales these perturbations grew to 8p/p ~ O(Ll).

The curvature problem (also known as the flatness or oldness
problem) stems from the fact that although the Universe is very cold,
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we still do not know whether it 1is open or closed. Recall that
because of the scale dependence in the Friedmann FEq. (1.253), the
expansion rate will always be matter—~ or radiation-dominated early (p
~R73, R™") and curvature-dominated later (k/R2). Neglecting the cos-—
mological constant, the curvature term was expressed in terms of § and

H% in Eq. (2.27)

k/RZ2 = (@ - 1) H%. (6.3)

If we now use the limits 2 < 4 and H < 100 km s~ M_ 7! (the limit h
< 1/2 necessary when © > 1 to be consistent witﬁ the age of the
Universe will make no difference here) we can form a dimensionless
constant

kK = k/R2T2 = (g - 1) H2/T2 < 3H2/12
(6.4)
< 2x10798

where we have wused T > 2.7°K. In an adiabatically expanding
Universe, k is absolutefy constant (R ~ T !) and thus the limit (6.4)
represents an initial conditien which must be imposed so that the
Universe will have lived this long looking still so flat.

A more natural initial condition might have been k ~ O(1). In
this case the Universe would have become curvature dominated at T
~ 1071 M_ . For k = +1, this would signify the onset of recollapse.
Even for k as small as 0(10_“0) the Universe would have become cur-
vature dominated when T ~ 10 MeV or when the age of the Universe was
only 0(1072) sec. Thus not only is (H.4) a very tight constraint,
it must alsoc be strictly obeyed. Of course, it is also possible that
k = 0 and the Universe is actually spatially flat.

Similar to the curvature problem is the rotation problem,“g)
i.e., why isn't the Universe rotating? By rotation we mean an
anisotropy din the Universe to which 1is associated a preferred
direction and angular momentum. The strongest limits on the rotation
are due to its poss%ble effects on the microwave background radiation
and one finds that®?

w < 10721 g7 (6.5)

where w is the associated angular velocity of the Universe. w will
scale with the expansion and the scaling depends on the equation of
state

w ~ R3Y™S (6.6)
where Yy was defined in (2.13). Thus for a matter—dominated Universe

(¥ = 1) w ~R2 and for a radiation-dominated Universe (y = 4/3), w
~ R_}'-
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We can now scale back w to the planck time and see what kind of
initial condition is imposed by (6.5). The limit (%6.5) can be scaled
back to the epoch of recombination (when we expect the change over
from radiation) to matter domination by

1 to
—21 ¢~ —
wy < 10 s [td

)“/3 ~ 0(1071%) g7l (6.7)

at recombination. At earlier times, w scales back to the planck time
as
tdjl/z
—

P
We can again form a dimensionless constant which at the planck time
was

w, < 0(10714)y g7t ~ 0(10l*) s71, (6.8)

P

w
@ = EE' < 2x10729, (6.9)
P

Because a rotation term would enter into the field equations as w2,
the limit (6.9) is amazingly similar to (6.4). Once again we would
expect that initially w ~ O(l).

The £final problem we would like to discuss is that of the cos-
mological constant. As we sald in section 2, the Universal expansion
is not dominated by the cosmological constant. This can be put in the
form of a 1limit on A and when put in dimensionless form reads

A/Mg ¢ 107121, (6.10)

As we will see in the following section, the cosmological constant
might not really have been constant throughout the entire evolution of
the Universe. Tf we associate wvacuum energy densities of the various
phases the Universe passed through as an effective cosmological con—
stant, we would expect a wide varliety of wvalues. The GUT epoch would
have A ~ (MX/AM Y ~ 10712, While at SU(2) breaking, we would get a
contribution A "~ (MW/M o~ 10788,  How all of the phase transitions
which are accompanied %y a change in vacuum energy density all con-
spired to give such a low value for A today is mot at all understood.
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Section 7. The Inflationary Universe

In all of the problems that were discussed in the previous sec—
tion f{except for the cosmological constant) it was assumed that the
Universe has always been expanding adiabatically. During a phase
transition, however, this is not necessarily the case. If we go back
to Fig. 9a, and we suppose that because of the barrier separating the
two minimum, the phase transition was a supercooled first-order
traniition. Tf in addition, the transition takes place at Tc such
that Tg < V_, the energy stored in the form of vacuum energy will be
released. I released fast enough, it will produce radiation at a
temperature Tﬁ ~ VD' In this reheating process entropy has heen
created and

(RT)f ~ (TR/TC) (RT)i (7-1)

provided that T, is not too low. Thus we see that during a phase
transition the relation RT ~ constant need not hold true and thus our
"dimensionless constants” w and k may actually not have been constant.

The inflationary Universe scenario,“) is based on just such a
situation. If during some phase transition, the value of RT changed
by a factor of 0(1029), the first, third, and fourth of our cosmo-
logical problems would be solved, The isotropy would in a sense be
generated by the immense expansion; one small causal region could get
blown up and hence our entire visible Universe would have been_at one
time in thermal contact. 1In addition, the parameters kX and w could
have started out O0(1l) and have been driven small by the expansion.

If, in an extreme case, a barrier as 1In Fig. 9a caused a lot of
supercooling such that T << V_, the dynamics of the expansion would
have greatly changed. 1In the example of Fig. 92 the energy density of
the symmetric vacuum, VO, acts as a cosmological constant with

A = 8m VO/M%. (7.2)

If the Universe is trapped inside the false vacuum with I = 0,
eventually the energy density due, to say, radiatieon will fall below
the vacuum energy density, p <X VO. When this happens, the expansion
rate will be dominated by the constant VO and we will get the De
Sitter—~type expansion (2.16), (2.17)

R ~ exp[Ht], (7.3

whe re

*
We now refer to T, as the temperature at which the transition
actually takes place rather than when 1t 1s at first physically
possible.
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HZ = A/3 = 8v V /33, (7.4)
The cosmological problems could be solved if
HT > 65, {(7.5)

where T is the duration of the phase transition and the vacuum energy
density was converted to radiation so that the reheated temperature is

found by 72

b
35 M(Tg) Tg = V

0° (7.6)

If such a barrier persists down to low temperatures, the phase
transition must proceed wvia the formation of bubbles of the broke
phase. The bubble formation rate per unit volume 1s given byl
(5.33)

p ~ Ae B, (7.7)

where Al/% is generally taken to be the overall mass scale in the
problem (A ~ ™ or A ~M*) and B is tunneling action. The transition
will take place in such a way so as to minimize the action. There are
in general several possible forms for B of which the form ylelding the
lowest value will be realized. One possibility51 is the Einstein
action

B = -4n [ d% V-g (R, - 24), (7.8)
where g = det g,, and R, = RH is the curvature scalar. Another pos-—
sible action would be the Cofeman—De LucciaSZ) bounce action for the

formation of a bubble including gravitational effects. The phase
transition will be completed if bubbles form fast enough or p 2 H*.
More specifically, the fraction of space in which the transition has
not occurred can be expressed as'®

£(t) = expl-% dt* p(t) R3(t) V (r,eN], (7.9a)
where
v(e,et) = 2RU[T, den/R(en)13. (7.9b)

The transition is finished at time T when f{1) = 0.

The scenario just described is the original idea of Guth“) for
cosmological inflation. In this scenario, the Universe would undergo
a phase transition, say SU(5) + SU(3)xSU(2)xU(l) in which the poten-
tial resembled that in Fig. 9a. The Universe would then get hung up
in the SU({5) phase down to a very low temperature {(and may, therefore,
solve the monopole problem). After completion of the phase tran-
sition, the Universe would reheat to
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Tg ~ M/ [N(Tg)]1/%. (7.10)
Baryon generation would then follow so long as Tg was not too low.

It is now kgowu that there is a problem with Cuth's original idea
for inflation.>3 It turns out that the requirement that the Universe
supercool for a long encugh time (T > 65) is not compatible with £(7)
+ 0, i.e., the phase transition does not finish. In order to have a
long infationary time scale, a large barrier was necessary so as to be
sure that the action for tunneling was also large. It is necessary in
this scheme that the initial probability for tunneling be wvery small.
The problem is that under these conditions the tunneling probability
never catches up with the expansion rate, which is exponential at this
point. As a whole, the Universe remains in the De Sitter state trap-
ped in the symmetric SU(5) vacuum with only a few isolated bubbles
contalining the true SU(3)xSU(2)xU(l) vacuum. Not only is the result-
ing Universe very inhomogeneous, but each bubble remains empty as all
of the energy is stored in the bubble walls and is only released
through collisions which in this case do not occcur.

The sgolution to this problem is called the new inflationary
Universe®*) and its basic and simple idea is this: tumnel first and
inflate later. To realize this type of inflation, one must have a
long flat scalar potential. 1f one can argue (e.g., by thermal
effects) that at early times or high tempertures the Universe was in
the symmetric phase I = 0 and then at some lower temperature T < < T.
a bubble is formed. The supercooling may be due to either a barrier
as 1in the previous case or a suppression of thermal fluctations so
that the field I rests near the origin. In the case of a barrier,
once a bubble is formed, if the potential is very long and flat at
values of I past the barrier, the potential energy density
(approximately constant) will again act 1like a cosmological
constant. If a single bubble were to expand by 29 orders of
magnitude, the phase transition need wnot be completed as in the
previous case. The entire visible Universe would be contained within
one bubble. The bubble would be filled in this case not by bubble
collisions, but by dissipation of the kinetic energy of the scalar
field as it finally reaches its global minimum. A generic example of
such a potential is shown in Fig. 11.

Popular examples of flar potentials considered for inflation have
been the ColemanuWeinberg55 potentials which are derived by taking
first—order radiative corrections to the tree potential. If scalar
self couplings are small enough, the tree potential can be neglected
and we can concentrate on the corrections. In general, we can write
the C-W potential as

v(9) = A% (1n %— 1/2) + Dg2 + 1/2 A M, (7.11)
'S



-61-

where ¢ is some scalar field [it may be the adjoint in the case of
SU(5) or any other scalar field which is appropriate]. The ¢4
coupling A is given by

S S wo_
A = [EBgBM b

64 w2 Y4

- (7.12)

where gB% is the number of boson (fermion) helicity states of mass
Mg F)* he expression (7.12) takes into account all possible first-—
or er corrections, the relative minus signifies that it 1s a fermion
loop correction rather than one due to bosons. The effective mass? is
given by

D = 1/2(M% + cT? + bR, -3 A < ¢2>), (7.13)
where MD is a possible bare mass term, ¢T? is a gauge group dependent

finite temperature correction, bR is a possible coupllng to the
scalar curvature R, and the final term is an effect of ¢ fluctua-

tions in curved space’b> 57) - A4 is the ¢4 self coupling.
V(@)
Vb
O u

0 v ¢

Fig. 11, Typical shape of a scalar potential needed for the new
inflationary scenario.

In standard SU(5) the potential (7.11) is determined. The X and
Y gauge bosons deminate the loop diagrams and we have gg = 36, M M%
= 25/8 g2 vZ, where g is the SU(5) gauge coupling, g2/4m = 1/41 and v
is the vacuum expectation value for the adjoint. In this case
A =-—2022 ou o osep0m2, (7.14)
102472
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The constant ¢ = (75/8) g2 is wvalid for 0 ¢ ¢ < T < v. 1In order for
inflation to occur during SU(S; Coleman—Welnberg breaking the
tunneling action must be 1arge.58 If not for a barrier in this
model, thermal fluctuations would drive the transition too early
resulting in insufficient inflation.

To determine whether or not inflation actually occurs in this
nodel, let us first look at the time scale for the field ¢ to go from
its initial post barrier position to its global minimum at < ¢ >
= v. The roll-over time scale is determined by the equation-of-motion
for ¢

$ + (3H + T) ¢ + 8V/3¢ = O, (7.15)

-

where [ 1s the rate of interactions of the ¢ field, and controls
particle creation. The T term is only relevant when I' 2 H. TInitially
I' must be small for inflation to occur and we will neglect it for the
time being. Initially ¢ will also be small so that the rell-over
time scale can be derived from
3HG + (3V/36) = O (7.16)
T o= B¢ ~ (32V/3¢%)/3H. (7.17)
For ¢ < < v the roll-over time scale is

T ~ 3H/2D. (7.18)

In the case of the Coleman-Welnberg potential (7.11) we have

8wV g n
H2 = - %Ay (7.19)
3M2 M2
P P
and the condition HT > 63 translates into an upper limit on D
D < (4n/130) Av¥/M3, (7.20)
For v ~ 10!% GeV we find that
D < 0(1019)Gev2, (7.21)

This is the first drawback on the new inflationary scenario with
Coleman—Weinberg type SU{(5) breaking. The limit (7.21) implies that
each mass term in D must be fine-tuned down to 0(10%9) GeV. This is,

however, technically unnatural as scalar mass will tend to get radi-
ative corrections to their mass of 0(1015) GeV,

A fine-tuned mass term as in (7.21) will also make it very
difficult for the Universe to remain in the symmetric state down fto

low temperatures, If we look, for example, at the action given by
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(7.8), this can be rewritten in the formSI)
B = (3M;/8) [1/v, - 1/v,]

~ 4 - -
(3Mp/8) [(v1 VO)/VGZ}, v Vo <<y, (7.22)

1
where VO = 1/2 Av* and Vl is the value of the potential at the local
maximum

VooVt D2/4A 1n{4v2A/D). (7.23)

Thus the action is
B = 3M;D2/8A3v81n(4v2A/D). (7.24)

For SU(5) and D satisfying (7.21), we find B ~ 0(1072) << 1 and hence
does not at all prevent a transition from cccurring. In order to make
B large we would need A < 0(107*) corresponding to D < 0(1016)Gev2 ang
hence mass terms fine-tuned down to 0(10%)GevV. Unfortunately, A is
not adjustable in SU(5) so that it is not clear that ¢ will be con-
strained near the origin long enocugh so that inflation will actually
occur.5?)

This model however appears to be a good one in the sense that so
many things go wrong it gives ome a list of things to watch for. 1In
addition to those we just mentioned, it was also pointed out that dur-—
ing inflation scalar field fluctuations®’’/ would drive the phase tran-
sition unless A < 5x1072, 1n the present case, however, the effective
ot coupling for ¢ ~H is about two orders of magnitude larger.

The most serious blow to Coleman-Weinberg type inflation comes
from the density perturbations which are produced during ther roll-
over.b? The isotropy of the microwave background radiation tells us
that any perturbations produced on large scales must have Sefp
< 0(107™%), Ideally, what one would want from inflation is what is
known as the Harrison-Zeldovich®! spectrum of density fluctuations.
They are also known as scale independent perturbations which are the
type most desired for the purposes of galaxy formation. Their magni-—
tude, however, must be O(107%). Any perturbations stronger than this
would produce visible anisotropies in the microwave background radia-
tion while weaker perturbations would not have had enough time to ETOow
during the present period of matter domination (since decoupling).

The initial spectrum of perturbations can be classified by their
magnitude on a given length scale

(22) ~ 1/430 ~ 1/M0, (7.25)

p’ ginitial
where M is the mass contained within the volume 23. Perturbations on
scales larger than the horizon grow in magnitude. Inside the horizon
they oscillate until further growth is possible when the Universe



—64—

becomes matter dominated. Parturbations on larger scales have a
longer time to grow and for n = 2/3 1t turns out that as each scale £
enters the horizon, the magnitude of the perturbations are equal.
This is what is meant by scale-independent perturbations. In ad-
dition, for n » 2/3, perturbations are too strong and tend to "close
up” and form individual Friedmann "Universes,” i.e., they will be
described by an independent metric. Tor n < 2/3, the perturbations
are too weak to form galaxies. Therefore, the n = 2/3 spectrum is the
one preferred for galaxy formation.

As it turns out, phase transitions, such as the SU(5) transition

described ahove, produce62 very nearly the n = 2/3 spectrum which is
desired. The perturbations are formed because the field ¢ does not
roll down to its global minimum homogenecusly. There will, in

general, be a time spread over which certain regions roll down faster
or slower than others. The density perturbations have been calculated
in terms of this time spread60

E% = 2/2 H ét, (7.26)

where &8p/p is the magnitude of the perturbation as it enters the
horizon. The time spread AT has been estimated to give

AT = 64/9, (7.27)
where the scalar fluctuations are taken in a De Sitter space to be
8¢ = H/4w3/2 (7.28)
and ¢ is found from the homogeneous equation of motion (neglecting &)
3H$ = —(aV/a¢) (7.29)
at t = —-1n (Hk"!)/H where k is the wave number of the perturbation.

If we now go back to the Coleman-Weinberg potential (7.11), we
can compute the magnitude of density perturbations that one finds.
Equation (7.29) becomes

3Hp = —8A(1n H/v) ¢3 (7.30)
for ¢ ~ H, where we have used the fact that D << W2, For SU(5), the
solution to (7.30) is

b = ¥3/8% HZ 1n73/2 (HkT1), (7.31)
where

A = -8 A In H/v. (7.32)

From Egs. {(7.26), (7.27), (7.28), and (7.31) the final magnitude of
the density perturbations becomes
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dp/p ~ (4A/3n3)1/2 10372 (yk~ly, (7.33)

We see, therefore, that although it is not completely scale indepen-
dent, the logarithmic variations are not enough to disturb its useful-
ness for galaxy formation. If we now take k on galactic or horizon
scales today we find

dp/p ~ 50 (7.34)

iees, about 5 orders of magnitude tooc large. Had this number turned
out to be 0(107™%), inflation would have solved the cosmological prob-
lem of small scale perturbations as well as the others.

Clearly the 1list of problems with the Coleman-Weinberg SU(5)
inflationary model is 1long enough. Before moving to the brighter
possibilities we neote that it has also been shown®3 that wunder
reasonable circumstances, the above model does not even break ¢to
SU(3)xSU(2)x0(1), but rather SU(4)xU{l). Not only do we have a small
lumpy Universe, but we're in the wrong vacuum as well.

In the remainder of these lectures, we will consider the effects
of supersymmetry on cosmological inflation. Let us recall one of the
most powerful tools that supersymmetry puts in our hand, namely, the
non-renormalization theorems.su) In the previous contribution, we saw
how these theorems led to the stability of gauge hierarchy, that is,
if we set the mass scale for a scalar field at, say, m, ~ 102 GeV, a
non-supersymmetric model would have corrections smé ~ PIO15 GeV)2 So
that

n? ~md + ém? ~ (1015 Gev)?, (7.35)
whereas in a supersymmetric model
sm? = 0. (7.36)

Because we know that the Universe is not exactly supersymmetric {there
are no charged scalars with mass 0.511 MeV) there will be some radia-
tive corrections

§m? ~ e M2, (7.37)

where Mg is the scale of supersymmetry breaking and € is some coupling
constant. In locally supersymmetric models

£ M~ 10716 (7.38)

T M3

and hence the smallest corrections are typically

2 . ol
Sm L (7.39)
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where we have used the relation

~ M2
LA Ms/Mp' {7.40)
Thus for m $ M, the stability of the gauge hierarchy is guaran-
teed.

Because of the cancellations in radiative corrections, one might
expect that supersymmetry would have a big effect on our previous dis-
cussion involving Coleman-Weinberg potentials.Sg'ES) If we go back to
(7.12), in an exactly supersymmetric model, for every Mp,gp there is a
Mg = Mp and gp = gg so that A = 0, i.e., there is no Coleman-Weinberg
potential. In broken supersymmetry, we might have some splitting
between the bose and fermion states

Mg - ME ~ eM2 (7.41)
so that
g . g
A= BEL e . B(F) M2 - 12 |2
bhm2yt 3272t
g5 (7.42)
w—-—-—-——-M%Mze
32m2yh s
and in SU(5) if we take M% = (25/8) g%v?, gp = 24
A = (75/3272) g2 (MZ/v?) e, (7.43)

The most serious constraint on A came from the magnitude of density
fluctuations A < 0(1071%), This translates to

MZ & < 0(1017) GevZ2. (7.44)

For € ~ 10716 this requires M < 0(10'®) GeV which is not at all a
serious censtraint. -

The above exercise is of course not a model, but only gives ome
an idea that supersymmetry might be very important for inflation. For
interesting models, we must have M, ~ 101 € Gev so that 1o Mé/M ~
102 GeV., In addition, if we want to consider GUTs or in?aation around
that epoch we can in fact neglect the effects of supersymmetry break-
ing because Mg <K My and thus work in the context of exact supersym-
metry. Therefore, in the following, we will be able to confidently
neglect radiative corrections and work entirely at the tree level.

The scalar potential in supersymmetric models, recall, is derived
from a superpotential £ by

v = z]af/ag|? (7.45)
1
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for globally supersymmetric modelsSE) and

2 jm2 *
v=e Hlogl?m Lzl%%- + p E/M2|2 - 3|g)2] (7.46)
i i

in mnimal N = 1 local supersymmetry.67) In Egs. (7.45) and (7.46)
we are summing over all chiral supermultiplets and M = M /Y81 =
2.4x1018 Gev, Near the origin these potentials can be expanded so
that they can always be put in the form

V() = & + yo2 - B3 + ap" + ... (7.47)

where we have left open the possibility for including non-renormali-
zable term in V as these will frequently appear in the supergravity
models given by (7.46). So long as we restrict ourselves to scales
< < Mp our theory will still be well defined.

To begin with, let us consider ¢ to be a chiral supermultiplet
gauge singlet and that ¢ picks up a vacuum expectation value <0|¢|0>
= y. In the following we will no longer restrict ourselves to p ~ My
i.ee, ¢ and inflation need not be related te GUTs. As we will see
shortly, for u > > Mys inflation is easier to achieve. The bhasic
properties of V(¢) must include that at ¢ = u, the potential have a

mnimum so that (8V/8¢)| =y = 0 and (BZV/8¢2)| _— > 0 and we will
want the vacuum energy gen81ty at the minimum %o vanish so that we
have no cosmological constant. This requires V(u) = 0 as well. At

the origin on the other hand, we want a flat potential with positive
energy density & > 0.

As in the case of the Coleman-Weinberg potential, we will imagine
that initially the field ¢ is near the origin,. We will not yet
specify whether this is due to finite temperature effects or not. We
will demand, however, that fluctuations do not drive the field away
from the origin at T > H. The Hubble parameter, when T < H, i.e.,
when the Universe becomes dominated by the vacuum energy density & is
given by

2 = §§-a/m§ = (1/3) &/M2, (7.48)

If we scale the parameters as

§ = dut, vy = w?, B=8u L {7.49),
we can show the constraints on the dimensionless parameter §, Yy and B
in terms of u.

Depending on the couplings, the potential may or may not have a

barrier. For,y > O and B > 0O there will be a barrier with a*maximum
at ¢, ~ (2v/38) u. Without a doubt, the strongest constraint on the

*
For constraints on the scalar potential for inflation see Ref. 68.
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parameters comes from the density perturbations. The starting point
of the calculation should be taken to ¢O ~ H or in the case of a bar—
rier, the larger of ¢ ~ H or ¢, ~ assuming again that initially
we are at ¢ = 0. If at ’ F8¢ 1s domanated by the quartic term,
the density fluctuations w1l% be very similar to those in (7.33)

8p/p = (Ll6a/3w3)1/2 10372 (yr™1), (7.50)
If, on the other hand, it is the cubic term dominating we then havesg)
Spfe = (2w3)71/2 (g/H) 1n? (HkTD). (7.51)

In this case ({(which lS probably the most interesting physically) the
constraint 8§p/p ~ 107% becomes

B ~ 0€1077) (u/M) §L/2, (7.52)

In additign, the long roll-over time scale gives a constraint on the
value of ¥ in terms of § and

Y < 0(1072) (u/M)2 3. (7.53)

We can now see the benefit of keeping ¢ independent of GUTs. 1If
¢ was taken to be the adjoipt and we related u ~ My we find that B8
~ 10710 gl/2 and 'Y < 1079 &, Although this type of fine tuning is
allowable in supersymmetric theories, it again represents an unnatural
set of parameters which must be imposed on the model. If instead we
let u ~ M we have B ~ 1077 81/2 and Y < 1072 §, which is a con-
siderable improvement. This situation, i.e., where the scalar driving
inflation picks up a_v3cuum expectation value ¢ ~ u > > My is called
primordial inflation.®?

At this point, it 1s worth noting two points in which inflation
is facilitated by primordial supersymmetric inflation. If we go back
to Fig. 11, there are at least two obvious ways in which we can make
the scalar potential flatter. One way is to decrease the value of V
{leaving v fixed) and the second is to increase the value of v
(leaving V fixed) or, of course, both. As we saw in the exercise with
the Coleman-Weinberg potential, supersymmetry can accomplish the first
while the second is defined to be primordial inflation. As v ap-
proaches M, we must start to worry if first-order gravitational (FOG)
effects do not come in and change the picture. One possibility, how-
ever, is that these effects will be incorporated if one works in the
framework of supergravity., The overall hope in this case is that if

all quantum gravitational effects are contained in extended N = 8§
supergravity, perhaps the physics at, or below, the planck scale are
correctly understood in an N = 1 supergravity. We will make this

assumption to close our discussion on inflation.

In order to construct a model for inflation im N = 1 super-
gravity,7° let us start with the most general superpotential for a
single scalar field ¢ which we will now call the inflaton
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gingle scalar field ¢ which we will now call the inflatom
An (¢)n+l

- .3 9
fr=m (E n + 1 ‘M

+ A), (7.54)
where m is an as yet undetermined mass scale. The scalar potential is
determined by (7.46) and can be put in the form (7.47)., Note that for
a certain range of parameters (A2. > 4 A_ A ) we can restrict our
attention to the real axis. We can then make the identifications
between the couplings A; and o, B,Y,%

o

a =( ra P+ g+ %‘*okz + 2 A hgt 2 Aghy) mE/MB (7.55a)

Z 4
-8 = 2(A Ay + ApA, + AOAI/Z)mB/M5 (7.55b)
Y= 2AA, m® /M4 (7.55¢)
8 = (A5 -3x274) ub/M2, (7.55d)
where we have used Al = 2A in order to cancel the linear term at the

origin.

In the spirit of primordial inflation, we will take p = M. We
will then require that supersymmetry remain unbroken at ¢ = p. One
reason as we said earlier 1is that radiative corrections can be
neglected in this case. More importantly, however, is that if super-
symmetry were broken at 9 = u by f (7.54), the gravitino would pick up
a4 mass m ~ m3 /M2, Although we have not said what the value of m

3/2 -2
is, as we will see shortly m ~ 1074M. To preserve the gauge
hierarchy, we would need m ¢ 107°M, this however would never reheat
the Universe so as to produce a baryon asymmetry or large enough
density perturbations., Thus demanding exact supersymmetry at ¢ = u
implies that
%
Fo(w) = 155 + o Ene]] =
In addition to preserving supersymmetry we must also cancel the cosmo-
logical constant from Egs. (7.56) and (7.46) this requires

0. (7.56)

f(u) = 0. (7.57)

These two conditions reduce to two constraints on the superpotential f
(7.54) X
n

n+ 1

An = 0O, (7.58b)

+ A =20 (7.58a)

o1 S

The final constraint on f comes from the fact that ¢ = p must also be
a minimum. It is not difficult to show that any point which preserves
supersymmetry and cancels the cosmological constant is a minimum so
long as
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32€/9¢2 # 0 (7.59)
a trivial constraint to satisfy.
Let us now look at the simplest form of f which satisfles these
constraints_ [we will neglect any temperature corrections on this
potential?l’)

f=md(x + Agh + A /2 $2) (7.60)

and the constraints yield

A=A /2= =x /2, (7.61)
If we choose A = 1 then A_= 2 and A, = 2. The mass scale m is fixed
from the magnitude of the gensity perturbations (7.52)

Bo= ~(a/M)® XA ~ 0(1077)§1/2
’ (7.62)
=0(1077) (m/M)3 (AOZ - 3a2)l/2

or
o3 ~ 0(1078)M3, (7.63)

The condition for a long roll-over time scale is now automatically
satisfied because § = 0 and at ¢ ~ H, 92V/3¢2 ~ —6BH and 3HZ/6BH ~
H/28 ~ 1/[8/3 (m/M)3] >> 65.

Let us now close this discussion by looking at what happens to
the Universe, in a more-or—less chronological sequence,’?2 If there
is a region in the Universe in which ¢ is near the origin, this region
will inflate (regions in which ¢ is not near the origin do not and
will hence be overshadowed by those which do inflate). As ¢ ap-
proaches its minimum at <¢> = M it will begin to oscillate until the

decay rate of ¢
becomes comparable to the expansion rate of the Universe which is
governed by non-relativistic matter. When the ¢'s decay the Universe
will reheat to a temperature
~ m3l2 ml/2
T My /M . (7.65)

In the case described above, the mass of the inflaton is given by

m3 Ay

3
=-.—-n-].— = .~ —8
m¢ L (nln) 2x10°M

M2 M2 (7.66)
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~ 5x101 0 Gev

and hence the reheat temperature is T, ~ 2.8x10712M ~ 7x10%GeV,
Although this may seem rather low for generating a baryon number, it
turns out that an acceptable number will still arise. The inflaton
will decay via gravitational interactions which are found in the cross
terms of the scalar potential such as

my a, ¢ YHEH {7.672a)

my a, ¢ y3 (7.67b)

etc., where we have included the superpotential (5.35). 1If we suppose
that the branching ratio for ¢ into Y or H, H (or anything which leads
to H, H) is 0(1/10) then the total baryon—to-entropy ratio produced
will be

nB/s ~ 0(1/10) (TR/mH)AB
~ 0(107%)aB (7.68)
which is still a sufficient baryon excess.

Looking back on our goals in this section, we have seen that of
the five problems listed in section 6 we have been able to solve four
of them by inflation. The horizon, curvature, and rotation problems
were all solved similarly by the exponential increase in R. The small
scale inhomogeneities are also supplied by inflation in that density
perturbations 6p/p ~ O(10™*) can be generated. We are left however
with the problem of the cosmological constant which is tuned by hand
to be zero today.

In section 5, we saw two additionmal problems arise due to GUTs
and supersymmetry. The monopole problem can also be solved by
inflation. During the inflationary period, we expect SU(5) to break,
the density of monopoles will then be exponentially suppressed and the
proble? disappears. The gravitino problem disappears in much the same
way.*8 The dinitial abundance of gravitinos 1is exponentially
suppressed; however, during the reheating they may be reproduced.
Typically the abundance relative to photons is just TR/M and is at an
acceptable level if Tp £ 0(1012)Gev, clearly satisfied in the above
example.

As we have seen through these lectures, cosmology has come a long
way in the past twenty years. In the four series of lectures in this
volume, we have tried to bring the reader more-or—less up-to—date in
GUTs, supersymmetry, and cosmology. Our hope, of course, is that the
reader can now digest it and expand upon 1t.
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