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1. INTRODUCTION 
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These notes summarize a small amount of work dyne during 
preparation of the Fermilab Dedicated Collider proposal last year. 
The basic problem is as follows: 

Consider a storage ring with k proton bunches and k antiproton 
bunches, where electrostatic deflection devices are used to separate the 
beams except at the collision points in the interaction regions. Then 
the normal betatron motions of the bunches become coupled not only by 
the usual beam-beam force at collision points, but also by the forces 
exerted in the close encounters as one bunch passes nearby another. The 
problem we pose is simply to determine necessary and sufficient 
conditions for stability, given a linear approximation to the forces and 
motions as well as an assumption of rigid (coherent) bunch motion. This 
problem-essentially one of coupled oscillators-has been studied before, 
and the main result here may be folklore. 
some trouble, as usual, 

However, this author ha3.4h;t 
in identifying it all from the literature. 

hope that the formalism and results here may be of use in exploring this 
phenomenon in more generality. 

The main result of our short investigation is that sufficient 
conditions for stable motion are: 

1. All the bunch-antibunch forces be “small” and comparable in 
strength (acceptable for close encounters but perhaps not acceptable for 
the direct encounters at the collision points), and 

2. The differences in tune of all p and c bunches be of the same 
sign; i.e. the tunes of p and c be split apart. 

3. Integer tune stopbands are avoided. 
Note that nothing is assumed about the uniformity of the bunch 

spacing or bunch intensities. However, the first condition as noted may 
not be met in practice. Our use of perturbation theory for the 
close-encounter beam-beam force should be acceptable. But it might not 
extend to the usual direct beam-beam force. It will not be hard to 
relax this restriction. But the necessary work has not yet been done. 

II. SETUP OF THE GENERAL CALCULATION 

To set up the problem we essentially follow Chao & Keil 3, and let 

t F ($,- ( 
X+9 M G’(f) ) g 5 (;:‘j;, 

4 ) (2.1) 
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be the betatron coordinates of the ,th proton bunch and ,th antiproton 
bunch. We IlOW consider the mapping of these coordinates from t-0 to 
T/2, where T is the period of revolution around the machine. During 
this time each p bunch encounters each i bunch once and only once. 
Provided the ring has two-fold symmetry (which we assume to the case), 
we may then iterate this motion. We need only set up the 4kxlik matrix 
which implements the mapping. 

Let M((3f,Ci) be the usual 2x2 transport matrix for the protons and 
M(Ofloi) for the antiprc&ons*. Let Omn be the &oo’di;;knah,of ;tiz 
co1 ision point (for the m-p bunch against the + p 
change 6x 1 caused by the close encounter may be written (in linear 
approxinat?on) as 

s x,’ = G, (3(* f X-J 

(2.2) 

s x,: = E,,(X,t znl (2.3) 

Notice the ? & e 
intensities are n% assc!ed 

need not be the same because the bunch 
to be equal. However 

(2.4) 

where N is the number&f protons in the _th bunch and Nn 
of antip?otons in the n-- bunch. 

is the -number 

We may now write down the mapping (assuming p moves clockwise, i; 
anticlockwise). 

f&) = Pf~~+Qw, hi] -gJ4 
+ GaR M (ii+- 8,, @J -rfy%u,,@J~&~ (2.5) 

(2.6) 

**We assume a planar machine, with electrostatic deflection in 
either horizontal or vertical plane, but not both. 



Our notation is 

This can be written in matrix form. Let 5 R) 
V-Y ) f = 

L- j 
r;ctl 
Tct, 

$b 
with 

4y;, = iy”w4 
The matrix M has the form X, *. 0 

u-1 
0 ‘X* A 

75 5, 0 
3. T7, 

FERMILAB-CONF-84/29-THY 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

where A b B are of order-e and where X. and ?. are 2x2 matrices. 
in fact be checked that M is also symplectic.J 

It can 

Because,M is symplectic it follows that if A is an eigenvalue, so 
also is h . Therefore a necessary and sufficient condition for 
stability is that all eigenvalues of M have modulus unity. (Otherwise 
there -will be a growing mode when the motion is iterated, i.e. when we 
raise M to a large power). 

^ This then sets the problem. We need only examine the eigenvalues 
of M, where the 2x2 elements of the matrix are 

4 
L = l-l (-w4, Q&J -f- ,z F&r+ L++n) -f+@bn, e&J Ltt\ (2.11) 
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The off-diagonal 2x2 blocks of A & 8 (in hopefully obvious notation) are 

(2.13) 

w,, 

%hu= Enw yiq&-7-r, 0,J T- /L1(% ) %.J (2.14) 

This can be done by examining the secular equation for the 
eigenvalues A: 

F(x) f c&&L-xl = 0 
(2.15) 

III. RESULTS FOR THE SIMPLIFIED CASE - 

Up to this point, everything has still been general. Hereafter we 
adopt perturbation theory and calculate the eigenvalues of M as a 
perturbation series in E: i.e. we expand the resolvent Pi to second 
order in E. 

After some calculation, a simple result emerges. The details of 
the calculation are relegated to an appendix. But in brief, half of the 
effect of the close-encounters-forca goes into a coherent tune shift of 
each bunch (cf Eqns. (2.5) and (2.6)) 

Lb, = - ; c+m : 2-Avw, 
2u 4 (3.1) 

AT = M (3.2) 

with 

fLW = El 
mu,, NlQ 

(3.3) 
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The other half provides the coupling between p and 5 motions. And to 
this order the secular equation becomes, essentially (provided one is 
not near integer tunes). 

&a., AZm -_I =O 
(3.4) 

(?J- v,,(v- p,, 

where 

qj+=vo-c dV$ 
24 = To + & 

are the tunes of the relevant bunches, and the parameter v is related to 
eigenvalues A of M by the expression 

Thus if one can find 2k real eigenvalues of Eqn.cj.4). stability is 
assured. This is the case provided the p-p tune differences v -; 
all of the same sign, independent of m and n. 

m. n are 
In other words 1f the 

unperturbed tunes of p and p bunches are split by amounts large compared 
to the tune shifts (and, of course, one avoids integer-tune stop bands), 
then stability is assured. To see this one simply examines the function 
R(v) and observe that the residues of all the "proton" poles are of one 
sign and those of the the "antiproton" poles of the opposite sign. Thus 
the function is as shown in Fig. 1 and the 2k zeroes can be explicitly 
counted. As the two groups of tunes overlap, however, this argument 
breaks down, accidental degeneracies (to this order) occur, and a more 
accurate analysis is needed. 

(3.6) 

(3.7) 



--I- FERMILAB-CONF-84/29-THY 

IV. COMMENTS 

1. We may remark that the main resul seems to be contained in 
ancient work of Pe 

4 
legrini and Sessler. 5 More recent work by Chao and 

Kei13 and by Piwinski has concentrated on motion of a small number of 
bunches. Stability seems to be the general condition away from integer 
stopbands, provided beam-beam tuneshifts are small compared to 0.1. 
This includes some study of nonlinear effects as well. Thus there is no 
reason (yet) to be especially apprehensive about the results of the more 
extensive calculations not yet done. 

2. The close-encounter beam-beam force directly affects the 
sinuous equilibrium orbits of P and P, in particular changes the 
wavelength. The compensation can be made by carefully locat ng the 
electrostatic deflection plates and varying the voltage on them. 6 

3. The tune shift and coupling of p and p bunches come from the 
first moment of the close-encounter force. The tune shift is of 
opposite sig 

4 
to the the linear tune shift from the direct beam-beam 

interaction. 

4. The second moment of the close-encounter beam-beam force causes 
a tune-spread. This is small compared to the tune shift (of order of 
the ratio of beam size to beam separation), unlike the case of the usual 
direct beam-beam interaction, and may indicate that the nonlinear 
dynamics of the close-encountEr force may be less important than for the 
direct beam-beam interaction. 

5. We have assumed rigid bunch motion. This again seems to be 
safe because of the relative weakness .of the higher moments of the 
close-encounter force. 

6. The calculations here are also applicable to the 
close-encounter beam-beam interactions occuring near the collision 
points in pp colliders (provided the machine has two-fold symmetry). 

7. The aforementioned assumption of twofold symmetry is probably 
not crucial. The generalization should be no problem. 

a. It seems to this author that reasonable next steps are as 
follows: 

a. Calculate exactly the effects of direct beam-beam encounters at 
collision points, and then again use the second order 
perturbation-theory approach for the effects of the close 
encounters. This program should be no more involved than what has 
been done by Piwinski, Chao, and Keil. 

b. There is probably a systematic, "diagrammatic" expansion of the 
exact secular equation. This would be interesting to set up. 

c. Brute-force computer diagonalization of the full matrix & is 
probably feasible and may be the best way to go. 
We thank Jonathan Schonfeld and Tom Collins for helpful 

discussions. 
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APPENDIX: DETAILS OF THE CALCULATION 

We start with the secular equation, and temporarily choose a basis 
where we have diagonalized the matrices X and X . Then all off-diagonal 
elements are of order E. To second order Tn E we”have 

o- &h = + (~&y&-g&, l4,mq y;(, - 
iL - $j -A)+ 

.jCA-!) 
Provided there is no degeneracy (something we demonstrate later), this 
implies 

b--T +$+ = (3 -/ (A.2) 

where the trace is over a 2kx2k matrix. Alternatively we may write 4 -5 I hjn,M-( (XL- 1) Abne &,- p = ’ r: (A*3) 
they are the 2x2 matrices 

The form of Eqn (A.3) liberates us from 
any specific set of basis functions. For any 2x2 nonsingular matrix 

( 
x= 

&j$‘- x 
P- x-w-t &xx (A.4) 

Because X is symplectic, det X-l. And because X is a transport matrix, 
TrX=2cos u, where u is the “unperturbed” phase advance around half the 
ring; i.e. the machine tune v is 

(A.51 

The calculation of the trace in Eqn.cA.3) now is reasonably 
straight-forward. 

In Lhe numerator, it is sufficient to wise the unperturbed matrices 

xm and ji,; hence their inverses are immediately obtainable u,ing the 
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group property of2transport matrices. In the numerator, only the term 
proportional to h survives. 

In the denominator, we take care to keep the perturbations to X and 
ji. The result for the secular equation is then 

,=f$ 
- 2 * 

l)r, & Mr) Seljf~ x4.&* 

:p!i: hf ’ 

(n.6) 
, 

I*l’=l ~+$~x(2c-cJsp+& E” , ,sL;1 m I+f-A(2y4*4*Enw~ ,& 
t” B by 

where 6 
collisio!“of 

is thfh value of the B-functkgn at emn, the locabrb,. the 
the + proton bunch with the n-- antiproton bunch. 

We recognize in the denominator the familiar form for a first-order 
tune shift. The “tune shift” hv of the _th proton bunch due to close 
encounters with the ,th antiproto:nbunch is evidently given by 

(A.71 

and this is summed over all encounters [cf Eqns. (2.11) and (2.12)j to 
give the total coherent tune shift. 

AY, = z A&,, /z1 

& /n =pt$, 

With this notation, and with the convention (cf Eqns. (2.11) and 2.12)) 

(~.8) 

(A.91 

(A.10) 

(A.111 
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we may expand in small quantities and obtain the secular equation 

4 
z- (AL) (A&,) = 1 

“‘,‘= ’ b-V0 - dv*) (q- go-- AJ,) 

(A.121 

which is what was quoted in Section II. 
We also should mention the instabilities which occur when the tunes 

are near an integer. We have implicitly assumed the situation shown in 
Fig. 2a, where the relevant eigenvalues on the unit circle are 
well-separated from their complex conjugate images. Instability occurs 
when the eigenvalues and their images approach each other at integer 
tunes, e.g. Fig. 2b. If p and p tunes are widely split, with neither 
near an integer, but straddli 
be instability. This occurs 9 

g an integer value, then there can again 
when proton eigenvalues become degenerate 

with the antiproton images, as shown in Fig. 2c. It is unlikely that 
this kind of configuration would be chosen as an operating point in a 
real machine, and we shall not give it further consideration here. 
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Fig; 1 Behavior of the function R(v) for k = 4. 
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Fig. 2 &roes of the determinant M for (a) Stat$e behavior away from 
integer tunes, (b) unstable behavior when the p tunes are near integer, 
(c) unstable behavior when the sum of p and p tune.S is a even integer. 


