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We have observed Cerenkov light well below Cerenkov threshold.iﬁ an
integrating Cerenkov counter, used to determine the particle composition
of the secondary hadron beam which is the source of the Fermilab narrow band
neutrino beam. The radiation can be understood in terms of diffraction
effects in a finite length counter, and is emitted by pérticles traversing
the counter even when the counter is fully evacuated. At zero Pressure, the
light can be considered as transition radiation produced when the particles

. enter and leave the counter. A standard Cerenkov difffaction formula describes

both the normal Cerenkov radiation and the light emitted below Cerepkov‘

threshold.
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1) INTRODUCTION

The emission of Cerenkov lightl by a charged particle moving with
velocity Bc in a medium of refractive index 'n' is usually treated as
a 'shock-wave' phenomenon, yielding the condition that cosec = 1/n8(l)
where Gc is the angle between the direction of particle motion and the
emitted light. An alternative derivation2 of this condition for Cerenkov
light simply invokes conservation of energy and momentum in the process
particle + particle + photon and yields the expression cosec = §%41+?%§(n2—1))
where E is the energy of the radiating particle, and w the frequency
of the radiation. For hw << E as is the case for very high energy beans,
this is the same as the result obtained by the shock-wave treatment. In
both treatments, the Cerenkov light is emitted at a unique angle and only
when the condition nf > 1 is satisfied.

A more complete treatment 3,4.3 of Cerenkov light emitted in radiators
of finite length shéws that the radiation is not produced at a unique angle
but is in fact produced with a diffraction-like angular intensity distribution.
This distribution has a peak at the nominal Cerenkov angle, and a spacing

between lobes given by A8 = A/Lsinec where A is the wavelength of the light,

L the length of the radiator and ec the Cerenkov angle. It is known that

6

these diffraction effects can limit the ability of Cerenkov counters to

resolve different particles. Usually, however, gas-filled counters designed
to identify individual particles at high energies operate at Cerenkov angles
of 5 to 10milliradians and are made tens of meters long in order to obtain
sufficient light (the total light output being proportional to Ihsin28c).
Cerenkov countersT'8 used simply to determine the composition of secoﬁdary
beams, that is the relative fractions of pions, kaons and protons, can be

made to operate in an integrating mode since they do not attempt to identify



individual particles. Such counters can be made short and operate at
small (<2milliradians) Cerenkov angles, since it is not necessary that
each beam particle produce several photons. Diffraction effects in

such short counters can be important, and must be understood in order to
determine the beam composition correctly.

The broadening of the Cerenkov cone in a finite length counter implies
that a particle with a given velocity, Bc, will emit light at angles both
smaller and larger than the nominal Cerenkov angle. Although it is implicit
in the diffraction formula, it is not generally realized that the same effect

3 and that light

implies that light will be emitted below Cerenkov threshold 4
caﬁ‘be observed even when the counter is evacuated. We will show that the
remnant light at zero gas pressure can be attributed to transition radiation
generated when particles enter and leave the counter. For any finite
pressyre, the identification of this light as transition radiation rather
than Cerenkov radiation is in a sense a matter of nomenclature because the
light is a coherent superposition of both effects. In this note we report
on the observation of such light as an aspect of the operation of Cerenkov
counﬁers subject to éignificant diffraction effects. Such counters are
presently used for the determination of the partiéle composition of secondary
- beams for neutrino experiments at CERN7 and at Fermilabs. The understanding
of the properties of such counters is important since incorrect particle
ffactions can be obtained if the diffraction tails are mistakenly interpreted
as backgrounds.
2] THE EXPERIMENTAL SET-UP AND TECHNIQUE

We shall discuss data obtained with two different Cerenkov counters
used to determine the particle composition of the secondary beam which acts

as source for the narrow-band neutrino beam9 at Fermilab. Counter A was



initially used in Fermilab experimentlO E356 and was modified for later
use during the period May-December 1979 for experiment8 E616. Counter B
was used during the period January-June 1982 for experiments E594 and E701.
The radiator in counter A was 1.9 meters long, while that of counter B was
1.5 meters long. Cerenkov light was viewed at a fixed angle, typically 1.
milliradian, for counter A. For counter B, data were taken at angles of

1 and 2 milliradians.

The optical systems of counters A and B are shown in Figures 1 and 2,
respectively (all themirrors had front-coated surfaces). In Counter A the
Cerenkov light was focussed by mirror 1 onte an annular iris after reflecting
from Mirrors 2 and 3. Mirror 4 directed the light through a lens which -
focussed the ligﬁt onto aphoto-multiplier. The Cerenkov 1ight emitted at an
angle 9 is focussed to a circle at the location of the iris of radius f{tan8)
where f is the focal length of mirror 1. The 1 mr annular iris blocked all
light except rays for Cerenkov angles between 0.7 mr and 1.0 mr, {(corresponding
to <62> = 0.774x10_6). The shutter between mirrors 2 and 3 could be closed
remotely. The closed shutter measurements were used to determine the level
of background light level not originating from the main body of the Cerenkov
counter. In counter B the light was focussed onto the annular iris after
reflecting from mirrors 1 and 2. The shutter for this counter was located
between mirror 1 and mirror 2. Both counters had an additional shutter
around the photo-multiplier to help identify background due to particles
producing Cerenkov light in the glass of the phototube itself. Counter B
was constructed with fewer mirrors in order to reduce the number of réflecting
surfaces that accumulate dust. Note that in both counters, the beam passed
through the primary mirror (Mirror 1) which defined the downstfeam end of

the radiator region.



The principles of the experimental technique can be illustrated by
considering how an ideal Cerenkov counter with no diffraction effects could
be used to determine the particle composition of a perfectly paraliel, monc-
energetic beam of momentum p. The number of photons of wavelength A emitted
by a particle of velocity Bc traversing a long (L>>A/(sinec)) gas filled

counter is given by3

aN _ 2ma ., 2
ET e 7;5— Lsin GC (1}

where 00 is the fine structure constant. Light is emitted only at the

Cerenkov angle Gc vhich is given by
cosf = L {2)
c Bn

where n is the index of refraction of the gas. For a rhoto-multiplier
tube with a typical quantum efficiency in the visible spectrum the number

6,11
of photoelectrons is given by 1

N = BLsin26 (3)
Pe <

where B = 50 to 60 cm_l {(for glass phototube window) or B = 100 to 150 cm_l
{for quartz phototube window). For a 1 meter long counter, operating at a

1 milliradian Cerenkov angle, the above equation yields 5x10_3 photoelectrons
per particle. This illustrates that for such a counter the light intensity
must be integrated over a large number of particles.

The pressure dependence of the index of refraction n for helium gas is
given by the expression n = 1 + k Pr' HerePr is the pressure and k is a
constant which is proportional to 1/T where T is the absolute temperature.

At room temperature, the value of k for Helium gas is given by 2K = 8.615}(10_8
(Hgmm)_l, averaged over wavelengths (<)\> = 40002) in the optical region.

For small Cerenkov angles, and B close to 1.0, equation {2) can be



rewritten as
8% = oxp - B (4)

c

where p and m are the momentum and rest mass of the incoming particle,

respectively. For a monoenergetic parallel beam traversing an ideal counter

with an annular iris before the phototube which accepts light at angles

between BA and BB, light will be detected only for pregsures between P

A

and PB where

1 .2 2 2
Py =3 (Bp tm/p)
(5)
1 .2, 2,2
PB = (GB + m/p) .

The light intensity detected will be proportional to sinZB, for & between
GA and GB and to the number of particles of mass m. If the beam contains
several particle types, all of the same momentum but different masses,‘e.g.
positrons, muons, pions, kaons and protons, then there will be no light
observed through the iris as the pressure is varied except for pressures

in bands which correspond to the regions between P, and PB for each particle

A
type. The light intensity versus pressure is shown in Figure 3 for this
ideal case. Since the amount of Cerenkov light emitted by a particle only
depends on Bc and the iris accepts only a well defined angular interval,
the integral of the light intensity in each band is proportional to the
number of positrons, muons, pions, kaons and protons, respectively, in the
beam. Such a pressure curve can therefore be used to determine, on a
statistical basis, the fractional particle compositicn of any secondary
beam.

The Cerenkov curve in Figure 3 illustrates the principle of determining

particle fractions through the integrating technique. 1In practice, the



pressure curve for each particle type is broadened by several effects
including the angular divergence of the beam, the finite momentum spread of
the beam, the variations of the index of refraction with wavelength

(optical dispersion) any optical abberations in the counter as well as

by Cerenkov diffraction.12 For our beam, the effective rms angular divergence
is 0.14 mr and the effective momentum spread is 10%. The effective angular
dispersion is in general smaller than the true dispersion, because part of
the angular dispersion broadening can be compensated for by ﬁoving the

iris from the focal point of the mirror (i.e. a source at ®) to the location
of the focus for rays originating from the production target. The above
beam related dispersions can be expressed as a broadening of the angle of
the Cerenkov coné or equivalently in terms of the smearing of.the peaks‘in
the Cerenkov pressure curves. For a 1 mrad irié, the broadening due to

angular dispersion of the beam is given by

AB = 0.14 mrad
rIs
(&)
_ 9(A8)
(APr) = ” = 2.9 mmH

For a 200 GeV secondary beam, the broadening due to the 10% momentum bite

is given (for pions, kaons and protons) by

2
AB - 8p/p) (" = 0.06 mr (1's), 0.7 mr (k's), 2.5 mr (P's)
rms g pz

(7

2

(A/) m - 1 1 1
——%:B—- — 1.1 mmHg(ﬂ s), 14 mmHg(k g), 50 mmHg(p s}

(.{\Pr)

)

The variation of the index of refraction with wavelength leads to
optical dispersion broadening. For Helium gas at atmospheric pressure and
| 13
a temperature of 20° C the values of n-1 are 33.27, 32.90 and 32.67 (in

- (o] [e) O
units of 10 6) for wavelengths of 2800 A, 3500 A and 4400 A respectively.



o) -
The variation of n-1 for 3500 < A < 4500 A is %0.12x10 6. This variation,
weighted by the phototube spectral response, leads to the following dis-

persion broadening (for O = 1 mr)

_An/n ‘
(Ae)rms = tang = 0-13 mrad
(8)
ap = |-A% 1 p - (0.35%) P
r n-1 r b r

The dispersion broadening yvields APr = 0.0SmmHg,0.3 mmHg gnd 0.9 mmHg

for 200 GeV pion, kaons and protons respectively. 1In principle'these
negligible optical dispersion effects can be completely eliminated if‘a
narrow band optical filter is inserted in front of the phototube. The
temperature of the Cerenkov radiator is monitored, so small variations

in n-1 due to temperature changes can be corrected for. For example,.
.temperaturefluctuationsof order 1 degree centiqrade (i.e. %?—3 1/300)
lead to a broadening which is similar to that due to dispersion (Eq.IB}.
The broadening from optical imperfections and astigmatism due to off-axis
optics are smaller than those due ta diffraction effects, discussed in the

following section.

3) DIFFRACTION BROADENING

The number of photons per unit wavelength in a counter of finite

length L is given by3’4
where
x(8) =T (= - cosd] (10)

For a gas Cerenkov counter operating at small angles and B close to 1

x{8) can be rewritten as



L 2 .2
x(B) = TN {1-B"+8 —ZkPr]
mL .1 2
= o [—5-+8 -2kPr] (11)
Y
2
TL m 2
alyy [_E +0 -karl
P
In the limit of having a very long counter (L/A~+o0) Sinx becomes a § function
and Egq. 9 becomes
2 2 ‘
d ¥ _ 2T L2 .2
didcosh = A é(x)(l) sin’9 . (2

which reduces to Eq. 1 when the § function is integrated over all angles.
By setting x =T in Eq. (10) (i.e. the first diffraction minimum) we see

that'AGDIFF, the separation between the peak and the first diffraction

minimum is given by A8 = A/Lsin® =0.,21mr. Forf = 1 milliradians,

DPIFF
o

L = 1.9 mand A of 4000 A, this ABDIFF corresponds to a pressure broadening

of

g(A8 )
(AP) =.__.-.._.£E‘_E_...=5mmH

r’ DIFF k g * (13)

Comparison of the various causes of broadening in a 1.9 m long Cerenkov
counter shows that, at our energies the broadening due to diffraction effacts
is the dominant souyrce of broadening of the pressure curves for low mass
particles such as electrons, muons and pions. For higher mass particles,
such as kgons and protons, the momentum spread is more important if Ap is as
large as t10%.

Diffraction broadening differs from other broadening effects because
it results in.Cerenkov radiation below Cerenkov threshold.4’5 The‘angular

divergence of the beam for example cannot yield light if the pressure is



=10~

below the nominal Cerenkov threshold (P = m2/2kp2). The diffraction

thresheld
formula (Eq. 9, 11) predicts some radiation even at zerc pressure. This

point is discussed in the following section.

4) CERENKOV LIGHT AND TRANSITION RADIATION

In the derivation of the Cerenkov diffraction formula, the boundary
condition that no light is observed from regicns ocutside the counter was -
imposed. This is equivalent to saying that for optical frequencies the
dielectric constant (£) of the counter windows is infinite. (That is, the
value of n-1 of the windows is much larger than 92 or 1/Y2.) The transition
radiation emitted in the process of the particle entering and leaving the
counter is therefore an integral part of the formula. We will show that
for our data, eguation 9 yields the correct level of transifion radiation

in the counter.

if we investigate the prediction of Eq. 9 and 1l in the region far
from the nominal Cerenkov angles maximum (i.e. x#0) equations 9 and 11

can be rewritten in the form (for small angles)

d2N ~ By 8251n2x

-t {14)
dAidcosf ™ (1-8 +6 _2kp )

Note that for Ix[ >> 0 the average value of 51n2x ig equal to 0.5 and equatlon
14 gives the counter response at pressures away from the region of the Cerenkov
maximum to be independent of the length of the counter. Figure 4 shows the
'direct calculation of Eg. 9 for counters of length L = 1lm and L.= 2m; for

a 1l mr iris aﬁd % in the visible region. The curve, calculatéd foria 165

GeV pion beam, shows that while the response in the region of the peak changes

by a factor of 2 for a counter with twice the length, the response on the high

and low pressure tails is independent of the counter length. In order to
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illustrate the relationship between equation 14 and transition radiation,
we let Lasw(i.e. <sin“x> = %) and set the pressure to zero (i.e. vacuum).
At zero pressure the expression yields

d2N 40, 92

dArdeoss 1A [1-52+92]2

{15)

Some physical insight into the origin of this radiation may be cbtained
by noting that this form is very similar to the formula for the radiatiqn
emitted when a particle_crosses a boundary between two media, and is.then
known as transition radiation.14 Equation 15 is related to the formula

for transition radiation 15

&N _ 20 sin®6cos’0 (e-1) (1-8% pe-sin’e)
dAdcosd ™ (l-Bzcoszﬁl2 {€cose+(e-sin26)%)(liﬁ(e-sinze)%)

{16)

derived for radiation emitted at the boundary between vacuum and a single
plate of dielectric constant e = a(Ad) + 1 b(A). The - sign in equation 16
refers to radiation in the forward direction into the vacuum, (i.e. a plate-
vacuum transition) the + sign refers to radiation in the baqkwards’direction
(i.e. a vacuum-plate transition). In the optical frequencies, [s[ is >> 1,
and for 8 + 1 and small 6 equation (16) reduces to {17a) and (17b) for

forward and backward transition radiation, respectively.

—-——dzN - 22 —————62 {17a)
didcos® TA (1-62+62)2
a°n 20 912 Ve-1 |2

dAdcosB . TA (17b)

(1-82+6'2)2 e+l

Where 6' in equation 17b is T-0. Note that the ratio of equation 17b to

equation 17a is just the reflectivity of the mirror which in the thical
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range is very close to 1. Both the forward Cerenkov radiation and the
transition light from the upstream window must reflect from the mirroxr
before reaching the phototube. Therefore, the intensity reaching ?he
phototube from the forward transition light will be the same as from the
packward radiation from the mirror. Equation (17a) is precisely a factor
of 2 smaller than equation (15) as expected because of the two counter
interfaces (fhe upstream window and the downstream mirror). This factor
of 2 is correct in the limit L - ® because in that case the light from
the two interfaces cannot interfere. 1In a finite length counter, the
contributions of the two interfaces interfere with each other (see Appendix
B). The fact that the downstream interface (i.e. the mirror) is tilted
by about 5°.does not change our conclusion because the direction of the

s . . ) o ., 16
backward transition radiation is about the mirreor reflection of the

direction of the incident particle (see aAppendix B). The diffraction
formula {(which assumes € = « for the interfaces) should work very well’
in the region of the Cerenkov maximum; at zero pressure we expect the
expression to represent the radiation in the counter within the accuracy

of our measurement, i.e. about 10%.

Experimental observation of transition radiation at optical frequencies
was reported17 in the late 1950's. Previous observations18 of radiation
below threshold for electrons in water have also been attributed to diffraction
effects. In the 1960's several experiments19 have observed transition
radiation in the optical frequencies in agreement with theoretical calculations.
The fact that backward optical transition radiation from an inclined plane
is emitted around the mirror reflection of the incident particle direction
has been experimentally confirmed by more recent experimentszo with electrons
These experiments have alsc observed interference between transition radi-

ation emitted by two foils.
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In the following sections we will Present experimental evidence that
the diffraction formula describes the radiation observed in the counter at
all pressures. 1In the Cerenkov cone region it describes the diffraction
broadening and for the case of an evacuated counter it describes the amplitude
and angular distribution of the transition radiation emitted when the particle

enters and leaves the counter.

5) DATA WITH 200 GEV MONOCHROMATIC PROTONS: THE REGION OF THE DIFFRACTION PEAK

The response of each Cerenkov counter to a truly monoenergetic beam was
obtained by exposing them to a 200 GeV extracted proton beam (such a beam
has a momentum spread of Ap/p less than 10_4). To match the condition under
which the secondary beam is studied, the beam intensity was varied between
lOlO and lOll_particles delivered in a 3 miilisecond pulse. The angular
divergence of this beam (Af ¢ 0.1 mr) was smaller than the typical angular
divergence of the secondary béams. The Cerenkov light was viewed using an
annular iris which accepted light between 0.7 and 1.0 milliradians.

For such a meonochromatic beam, the diffraction formula predicts that the
response of the counter as a function of pressure is dominated by diffraction
effects. The data as a function of pressure is shown in Figure 5. The solid
line is the prediction of a Monte Carlo calculation which includes effects
due to the angular divergence of the beam, optical dispersion, and the
detailed optics of the counter (i.e. the off axis optics) as well as the
basic diffraction formula. The agreement in the region of the peak is

excellent over three orders of magnitude.

6) BACKGROUNDS
Data was taken with the main shutter of the counter open and c¢losed
on alternate beam pulses every l2 seconds. The closed shutter data measure

the background light level from sources outside the main body of the counter.
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We determined that the dominant source of this light comes from Cerenkov
radiation produced by halo particles in the glass walls of the phototube
and in the lenses of the optics system. The black surfaces on the inside
of the counters were tested and found not to be optically active at any
significant level. Both shutter open and shutter closed data are shown in
Figure 5. As can be seen the level of the shutter closed data is nearly
constant with very little dependence on the gas pressure. The shutter closed
level has therefore been added to the Monte Ccarlo prediction before
comparison with the data. The agreement between our Monte Carlo pre-
diction and the data, and especially the fact that part of the peak is

in a region below the absolute Cerenkov threshold pressure, is a confir-
mation of thé validity of the diffraction formula. The dashed line in
Figure 5 is a prediction of the Monte Carlo without diffraction, but

including all other effects.

Far away from the diffraction peak there are additional tails in the data
that are not predicted by the Monte Carlo calculation. These low level tails
are due to other effects. The tail at high pressure has a contribution
from scattering of light from dust particles on the mirror
{at the level of 10‘4 of the primary Cerenkov light). We have
observed that this tail decreased after the mirrors were cleaned. The tail
at low pressure and some part of the high pressure tail have contributions
from interactions of the beam in material upstream of the counter. Both
low pressure and high pressure tails increased when additional material was
introduced in front of the Cerenkov counter. When the amount of material
in front of the counter was increased by a factor of 5, only the tails far from
the peak increased in amplitude, while the large diffraction tails near

the peak remained unchanged.
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Note that the prediction, based on the Cerenkov diffraction formula,
shown in Figure 5 indicates essentially no light for protons at very low
pressures. In transition radiation terms this is because 200 Gev protons
do not have large Y; in terms of the diffraction formula, this is because
zero-pressure is some 50 diffraction minima from the peak. Light at zero-
pressure is observed primarily from particles‘such as pions and electrons

with large Y as discussed in the next section.

7) DATA WITH PIONS, KACNS AND PROTONS

Figure 6 shows typical (1 mr iris) Cerenkov pressure curves taken with
secondary beams containing pions, kaons and protons. The secondary beams8r9
were produced by targeting 400 GeV protons on a 10.5" and 12" long BeQ targets
for the data taken with counters A and B respectively. The decays of pions
and kaons yield narrow band neutrino beams used by Fermilab neutrino experiments.
The secondary hadron beam hag the properties described previously in- section 2.
Pions, kaons and protons are clearly resolved at all energies. Electrons can
be resolved from pions only at the lower energies (below 120 GeV) but pions
and muons cannot be separated. A calculation8 of the electron fraction of
the beam (which includes sources such as Dalitgz decays and photon conversions)
agrees with the measurements at lower energies and predicts a small electron
contribution j<3%) at the higher energies. B&As the curves indicate, there is
a significant and reproducible amount of light in the counter even when the
counter is evacuated to a pressure of 1 micron (shown as zero pressure).. At
this pressure‘all known particles at beam momentum are below Cerenkov threshold.
As discussed in previous sections, this light can be identified with transition
radiation emitted as the particles enter and leave the counter. Figure 7
shows the measured ratioc of the light intensity at zero pressure to the integral

over pressure of the light intensity for pions and electrons. The solid curve,
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which is discussed in detail in Appendix A, is the prediction of the

diffraction formula. The agreement is within the expected 10%.

8) THE ANGULAR DEPENDENCE OF THE ZERO PRESSURE LIGHT

We have investigated the possibility that the light at zero pressure
originates from excitation in the upstream window (e.g. scintillation
light). Such light would be isotropic and hence would not depend on the
orientation of the counter with respect to the direction cf the beamn. At
zero pressure, the transition radiation is peaked forward so the the observed
intensity should be strongly dependent on the angle between the counter and
the beam. To study this we replaced the annular iris with a hole which
accepted all light with 8 £ 0.5 mr. Figure 8 shows the intensity at zero
pressure for O £ 0.5 mr as a function of the ahgle between the axis of the
Cerenkov counter and the incident beam. The solid curves (which are described
in detail in Appendix A) are the predictions of the diffraction formula at
zero pressure. The dramatic difference in the angular distribution of
transition light produced by electroﬁs as compared to heavier particles
is due to the difference in the phase angle (x in Egquation 11) in the
interference term of the diffraction formula. The change versus momentum
in the shapes of the curves in Figure 8 is primarily due to the change in
the particle composition of the beam. The curves also illustrate that at
high energies (when the Cerenkov counter cannot resolve the electron peak)
the angular distribution of the transition radiatien can be used to determine
the electron fraction of the beam.

We conclude that the diffraction formula for light in a finite length
Cerenkov counter describes the radiation in the counter at all pressures

including the case when the counter is fully evacuated. The non-zero result
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from the formula in the zera pressure limit is understood in terms of
transition radiation.

Cur data indicate that when integrating Cerenkov counters of short
length are used in the determination of the composition of secondary beams,
the tails due to diffraction must be included in the analysis of the pion,
kaon and proton peéks. A Monte Carlo program which includes diffraction
effects should be used to determine corrections that relate the relative
areas to the fractional particle composition of the beam. In addition,
our experience indicates that the analysis is simpler when integrating
counters are tens of meters long in order to minimize aiffraction broadening.
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FIGURE CAPTICNS

1.

Cerenkov Counter A (used in Fermilab exporimonts E3%6 and EGL6).
Cerenkov Counter B (used in Fermilab experiments E594 and E701).
Cerenkov pressure curve for a 200 Gev ideal beam.

Monte Carlo Cerenkov pressure curve for a 1 mr iris and a 165 GeV

plon beam for a counter of L = 1lm and L = 2m. Note that the low

and high pressure tails due to diffraction effects are independent

of the length of the counter. The light intensity at the peak is
proporticonal to the length of the counter.

Data and the diffraction formula prediction for monochromatic 200

GeV protons. Note that diffraction effects result in light below
Cerenkov threshold for 200 GeV protons. The dashed line is the

Monte Carlo without diffraction. Data were taken with counter B
(experiments E594/E701}.

Typical Cerenkov pressure curves taken with a 10% momentum bite
secondary beam containing pions, kaons and protens.

Ratio of light at zero pressure to the integral of the light intensity
at higher pressure over the electron and pion peak region. The curve
is the prediction of the diffraction formula Monte Carlo {see Appendix

A). {9) Data from experiment E616, (M) data from experiments E594/E701.

{4) data from experiment E356.
The light intensity at zero pressure {(for a 0.5 mr hole) as a function
of the angle 6 of the counter with respect to direction of the particle
beam. These data indicate that the light is associated with the beam
direction (e.g. transition radiation) and therefore cannot be uniform
scintillation light from excitations in the wall. Also shown is the
prediction of the diffraction formula Monte Carlo for 140 GeV {assuming
0.83% e', 41.6% 7', 4.22% K and 53.4% protons) for 200 GeV (assuming
+

+
0.11% e+, 18.9% 7, Z2.3% K and 78.7% protons). Data were taken with

Counter B {E394/E701).
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APPENDIX A: TRANSITION LIGHT AND CERENKOV LIGHT

For a beam with a finite angular divergence and a finite momentum
spread the integral over pressure of the Cerenkov intensity at a fixed
angle is proportional to the total number of particles. The integral

over pressure of equation 9 is

4T, L

2
Ic —X—'X?EE; 8 dcost al

At zero pressure, the total amount of transition light is proportional to
the number of particles. The diffraction formula predicts transition
light intensity at the level of

2sin2{g%[62+m2/92]}

[32+m2/p2]2

szcose : AZ

IT =

0
TA

This formula is the same as the formula for the interference of transition
radiation from two foils given by Wartski et al.20 The ratio of the

zero pressure light to the integral over pressure is

I sin® (T21024m2/p21)
fo T L200) 2) 1 A3
Ia sz [92+m2/92]2

1

- - . 2 -5
For helium gas (2k=8.6x10 8 Hgmm y, L=1.9m, a 0.7/1.0 mr iris (<87>=0.8x10 )

and A=4000 g, equation A3 yields.
2,2
2sin®{9.3(1+ -—ELIEEzg}
3 0.8x10
2,2
(1+ d—E_ZE_“Eo2
(0.8x10°

a4

£ = 3x10°

The interference term between the radiation emitted when the particle
enters and the radiation emitted when the particle leaves the counter averages

to approximately 0.5 when equation A3 is integrated over all wavelengths in the

visible region and over the finite momentum bite of the beam. In that case
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we obtain

-3
3x10 AS

m2/92 2
_6)
0.8x10

H
12

{1+

12 6

For p=200 GeV/c, the term mz/p2 is 6.5x10 ~°, 0.49x10_6, 6.1x10 ° and
22x10f6forelectrons, pions, kaons and protons respectively. Therefqre,
pions and electrons will be the domipant source of the zero bressure
light. The.relativé contribution of electron to the zero presspre light "
is a function of the momentum p, and the electfon fractien of the beém.
At p=50 GeV/c the electron contribution dominates and for P290 GeV/c the
pilon contribution deminates. The contribution of protons is small except
at the highest momenta (p2250 GeV/c) where the proton fraction of the
beam is large.

We have calculated the quantity F, the ratio of the zero préssure
light level to the integral ove? the electron and pion peaks (using
eguation A3).

£.R,
F=o-tl A6
R1*R, '

where fl, fz, f3 and f4 are from equation A3 (averaged over A in the visible

region) for electrons, pions, kaons and protons, respectively and R R

1° Rar Byr
R4 are the fractional composition of electrons, pions, kaons and protons
in the secondary beam.

The comparison of the measured values of F and the calculated values
are shown in Figure 7, The calculated curves were obtained from a Monte Carlo
calculation which did not incorporate any of the approximations uged in

Egquations A4 and A5.

In the study of the angular distribution of the zero pressure light
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the 0.7/1.0 mr iris was replaced with a ©.5 mr hole. Fer L = 1.9 nm

~ o
and A = 4000 A Equation A2 yields

2,2
401 2$in2(0-373107(82+m /p )] 62dcose A7
= 2
T T (8%4+m2 /p%)

The situation for 6<0.5 mr is different from the case of the 0.7/1.0 mx
iris. At 621 mr, the phase angle in the numerator is large and.<5in2x>;o.5
when averaged over A. On the other hand, close to =0, the phase angle is
small and does not average to 0.5. This phase angle will be different for

the electron and pion components in the beam.

The values for the fractional particle composition used in the
calculations of the curves for Figures 7 and 8 were obtained from a
preliminary analysis of the Cerenkov curves. Final particle fractions
will he published in future communications., The electron fractions
used were those calculated in Reference 8.

The zero pressure intensity for 8<0.5 mr is shown in Figure 8 as
a function of the angle of the axis of the Cerenkov counter with respect
to the incident beam. The solid curve 1s the sum of.the contributions
from .the electron, picn, kaon and proton components of the beam. The
depth of the dip at 6 = 0 in the sum of all components is very sensitive
to the electron to pion ratio because the electron contribution peaks at
B = 0 and the pion contribution peaks at 6 = *1 mr. Thus the good
agreement between the Monte Carlo calculation and the data at all momenta
is not only an experimental confirmation of the diffraction formula but

also a check of the electron fractions calculated in Reference 8.
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APPENDIX B: TRANSITION RADIATION FROM INCLINED SURFACES

The downstream interface in the Cerenkov counter is the spherical
mirror which focusses the light onto the iris. This mirror is inclined
at about 5° with respect to the direction of the incident beam.

Transition radiation from particles incident on an inclined surface
has been originally calculated by Pafomov.15 Recent detailed cr:a.lculat:i.ons]'6
indicate that the angular distribution of the forward transition radiation
{e.g. metal-vacuum interface) is péaked around the direction of the incident
particle even when the interface is at an angle. The backwaxd trangition

radiation (e.g. vacuum metal interface) from an inclined surface concentrates

close to the direction of the mirror reflection of incident particle velocity
vactor. Therefore, after reflecting from the mirror, the angular distribution
of the forward transition radiation emitted as the particle enters the
counter, will be very close to that of the backward transition radiation
emitted from the mirror as the particle leaves the counter. This property
of backward transition radiation is the explanation of the, previously
. 19 | , . .
unexplained, large difference 9 in the angular distribution of forward and
backward transition radiation observed in 1960's for particles traversing
metal foils at an angle of 60°. Detailed studies of forward and backward
\ - C . 20

optical transition radiation have been done by L. Wartski.

The transition radiation from the interfaces can alsc include some
Cerenkov radiation which is generated in the window material but not fully

21 C . . L. 22

absorbed, as well as radiation from surface irregqularities . We expect
that these, and effects due to the finite dielectric constant of the windows

to be smaller than the uncertainties in our data {=10%) .
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