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Abstract

Perturbative coefficients for Wilson loops and the static-quark self-energy

are extracted from Monte Carlo simulations at weak coupling. The lattice

volumes and couplings are chosen to ensure that the lattice momenta are all

perturbative. Twisted boundary conditions are used to eliminate the effects of

lattice zero modes and to suppress nonperturbative finite-volume effects due

to Z(3) phases. Simulations of the Wilson gluon action are done with both

periodic and twisted boundary conditions, and over a wide range of lattice

volumes (from 34 to 164) and couplings (from β ≈ 9 to β ≈ 60). A high

precision comparison is made between the simulation data and results from

finite-volume lattice perturbation theory. The Monte Carlo results are shown

to be in excellent agreement with perturbation theory through second order.

New results for third-order coefficients for a number of Wilson loops and the

static-quark self-energy are reported.

I. INTRODUCTION

Simulations using highly-improved lattice actions have become commonplace in recent
years. Effective use of these requires perturbative matching calculations for masses, coupling
constants and currents, among other quantities. Higher-order perturbative calculations for
these actions are laborious but they are essential in order to obtain precision results for most
observables.

An alternative to doing calculations in analytical perturbation theory is to directly mea-
sure short-distance quantities in Monte Carlo simulations at weak coupling, as proposed in
Refs. [1,2]. One exploits the fact that the lattice theory on a finite volume enters a per-
turbative phase at weak coupling. In effect the couplings and volumes in the simulations
are chosen to ensure that the lattice momenta are all perturbative (up to possible zero
modes). In this way one can in principle extract perturbative expansions for many quanti-
ties, by fitting Monte Carlo data for appropriate correlation functions to a power series in
the coupling.

This approach has been shown to reproduce analytical results for the first-order mass
renormalization for Wilson fermions, and the first-order additive self-energy for NRQCD
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fermions [1,2]. In addition, preliminary estimates of some third-order Wilson loop coefficients
were made in Ref. [3]. An extension of this technique to background field calculations was
considered in Ref. [4]. Preliminary work on perturbative simulations of quark actions has
also been done [5,6].

The Monte Carlo method as implemented here requires as input from conventional lattice
perturbation theory only the expansion of the average plaquette, and of the static potential
(or some other quantity that defines a physical coupling constant), to the desired order, along
with an estimate of the scale relevant to the quantity of interest. These inputs are necessary
because we use a renormalization scheme defined through the perturbative expansion of the
static-quark potential [7,8]. The renormalized coupling αP in this scheme can be extracted
from measured values of the average plaquette, given its perturbative expansion.

The method proceeds as follows. Simulations are done at a several different values of β
(β = 2N/g2 for SU(N) gauge theory). At each β we use the measured value of the plaquette
to solve for the value of the renormalized coupling αP (q∗1,1), at the scale q∗1,1 that is optimal
for the plaquette [7]. We then run the couplings at each β to the scale q∗ appropriate to the
quantity of interest, whose expectation values are then fit to a truncated series in αP (q∗).
The fit yields numerical values for the perturbative coefficients. To assess the effects of the
truncation of the perturbation series at finite order in αP , the fits are done including many
higher-order terms, beyond the order of interest, but where the fits incorporate constraints
on the coefficients [9], which are required to lie in a range of values that is consistent with
a well-behaved perturbative expansion. One can also improve the quality of the results by
using lower-order coefficients from conventional perturbation theory, if available, in order to
further constrain the fits to the Monte Carlo data, thereby obtaining more accurate values
for previously unknown higher-order terms.

In order to ensure that the lattice momenta are all sufficiently perturbative, simulations
are done on lattices for which

2π

La
≫ ΛQCD, (1)

where ΛQCD is the QCD scale parameter, a is the lattice spacing, and La is the physical
length of the lattice. In order to minimize perturbative finite-volume errors we must also
ensure that the spacing between lattice momenta is small compared to the characteristic
momentum scale q∗ associated with the quantity of interest

2π

La
≪ q∗. (2)

In practical simulations the lattices are such that Eq. (1) is extremely well satisfied:
aΛQCD ranges from 10−3 to 10−29 in the analyses in this paper. Moreover the quantities
studied here all have characteristic scales near the ultraviolet cutoff, hence aq∗ is indepen-
dent of a, and Eq. (2) can be easily satisfied. In theories with additional scales, such as quark
masses m, the characteristic scale q∗ is proportional to f(ma)/a, where f is some dimension-
less function, hence aq∗ is independent of a provided that m is adjusted to keep ma fixed.
Perturbative finite-volume effects can also be analyzed in detail by running simulations at
several different volumes.

In simulations with periodic boundary conditions (PBC) however there are lattice zero
modes which will violate Eq. (1). One must also ensure that nonperturbative finite-volume
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effects arising from Z(N) phases are sufficiently suppressed. One way to achieve this, using
a local updating algorithm, is to work on lattices with sufficiently large volumes, where the
simulation is started with perturbative initial values for the links (e.g., by setting all links
to the identity). A more powerful approach, analyzed in detail here, is to adopt boundary
conditions that eliminate zero modes and suppress transitions between different phases.

It is also desirable to have a more general means for dealing with potential infrared
problems. The effects of lattice zero modes on most observables is not known and, while
these could in some cases be accounted for by a numerical fit to the data, it is preferable
to eliminate these states from the outset. More generally zero modes can significantly alter
the expected perturbative form of correlation functions. For example, the presence of zero
modes would pose a significant problem for extracting quark masses, as one could not assume
the existence of an isolated pole in the perturbative quark propagator. Twisted boundary
conditions (TBC) [10–12] can be used to eliminate zero modes, and are easily incorporated
into simulations using existing code for a given action.

In this work we present a comprehensive study of this Monte Carlo method for extracting
perturbative quantities [13]. We do simulations of SU(3) gauge theory using the Wilson
gluon action. The evolution of the αP coupling is known for this theory through three-loop
order which, in principle, allows one to use the method to determine perturbative expansions
through fourth order. Simulations are done for both PBC and TBC. We show that using
TBC is an effective means of suppressing nonperturbative finite-volume effects due to Z(3)
phases, as well as eliminating the effects of lattice zero modes. We also make an extensive
analysis of perturbative finite-volume effects for TBC. We analyze simulation results for a
large set of Wilson loops and the static-quark self-energy, over a wide range of couplings
and lattice volumes. A high-precision comparison is made between the simulation data
and results from finite-volume lattice perturbation theory. The Monte Carlo results are
shown to be in excellent agreement with perturbative calculations through second order,
which are available for these observables for both periodic [14,15] and twisted [16] boundary
conditions. New results for third-order coefficients for fourteen different Wilson loops and
the static-quark self-energy are also reported.

Wilson loops provide a good quantity for a first test of the Monte Carlo method, since
small loops are relatively insensitive to nonperturbative phases, and have small finite-volume
errors. The perturbative expansion of small Wilson loops is also relevant to determinations
of the strong coupling from lattice simulations [8]. The calculation of the static-quark self-
energy is considerably more involved, as it is very sensitive to nonperturbative phases and has
large perturbative finite-volume corrections. The static-quark self-energy thus represents a
good prototype for more realistic calculations of other perturbative quantities, such as quark
masses. The self-energy is also useful for determinations of the b-quark mass from lattice
simulations [17].

The rest of this paper is organized as follows. In Sect. II we use PBC to study Wilson
loops at large β. Simulations are done on 164 lattices at nine couplings. We evaluate Wilson
loops of sizes R × T with R, T ≤ 5. The results are fit to a truncated perturbation series,
using the renormalized coupling αP evaluated at a scale q∗R,T that is appropriate to each
Wilson loop [7]. We explicitly subtract the leading effects of lattice zero modes from the
Monte Carlo data using an existing analytical calculation [18]. A detailed comparison is
made with perturbation theory through second order, and estimates are made of the third-
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order coefficients.
In Sect. III we review how simulations are done using twisted boundary conditions, and

their use in analytical perturbation theory. We demonstrate that these boundary conditions
can be used to virtually eliminate nonperturbative effects due to Z(3) phases even on lattices
with very small volumes.

The static-quark self-energy is analyzed in Sect. IV. We extract the self-energy from the
gauge-invariant Polyakov line, which describes the propagation of a static quark across the
entire time-extent of the lattice. Other extractions of the self-energy have relied upon large
Wilson loops [15,19], and the gauge-fixed quark propagator [5] (the latter methods could
prove more efficient in Monte Carlo simulations, as one can limit the propagation time on a
lattice of a given size). We make a perturbative analysis of the self-energy on finite lattices,
and show that one can sum leading logarithms in the finite-volume correction. We present
results of simulations of the self-energy, with runs at nine volumes at each of nine couplings.
We compare the simulation results with perturbation theory through second order, over the
whole range of lattice sizes studied here, and make an estimate of the third-order self-energy,
including an extrapolation to the infinite-volume limit.

During the course of the calculations described in this paper, we also investigated the
question of how to design the most efficient calculations through intelligent parameter
choices, by using the techniques of constrained curve fitting [9]. In calculations like those in
this paper, for example, one can choose the couplings β in order to minimize the simulation
cost required to achieve a given precision in the perturbative coefficients. Although the
Monte Carlo calculations described in this paper were designed before these optimization
techniques were worked out, we include a description of them here, in an Appendix, for use
in future calculations.

Some conclusions and prospects for future work are briefly discussed in Sect. V.

II. WILSON LOOPS

In this section we analyze simulations of Wilson loops at large β. The Wilson gauge-field
action SWil for SU(3) color is used, where

SWil[U ] = β
∑

x,µ,ν

(
1 − 1

3
ReTr Uµν(x)

)
, (3)

and Uµν is the plaquette. Simulations were done on 164 lattices at nine couplings. Details
of the simulation parameters are given in Table I. Periodic boundary conditions were used
here, in order to make a direct comparison with the first- and second-order perturbative
coefficients calculated on finite lattices by Heller and Karsch [14]. We will also verify that
the simulations reproduce the effects of lattice zero modes to leading order.

We analyze the logarithm of the Wilson loop

− 1

2(R + T )
ln WR,T =

∑

n

cn αn
P (q∗R,T ), (4)

using a renormalized coupling αP that is determined from measured values of the plaquette,
according to [7,8]
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TABLE I. Simulation parameters for Wilson loop measurements. These simulations were all

done on 164 lattices with periodic boundary conditions. The lattice coupling β for each simulation

was determined from the bare coupling αlat by β = 6/(4παlat). The measured values of the

average plaquette are shown, along with the renormalized couplings αP (3.40/a) and scale masses

ΛP extracted from Eqs. (5) and (7). Ten configurations were skipped between measurements in all

cases, and the observables were computed by binning the measurements in bin sizes of 50, which

resulted in negligible autocorrelations at all couplings.

αlat β Measurements 〈1
3Re-TrU2〉 αP (3.40/a) aΛP

0.010 47.746 2320 0.957542(1) 0.01049 5.47 × 10−23

0.015 31.831 2459 0.935857(2) 0.01614 8.63 × 10−15

0.020 23.873 2112 0.913829(3) 0.02209 1.05 × 10−10

0.025 19.099 1558 0.891441(3) 0.02839 2.94 × 10−8

0.030 15.915 860 0.868599(9) 0.03510 1.25 × 10−6

0.035 13.642 746 0.845305(8) 0.04225 1.81 × 10−5

0.040 11.937 748 0.821472(9) 0.04992 1.34 × 10−4

0.045 10.610 500 0.797038(11) 0.05819 6.40 × 10−4

0.050 9.459 500 0.771872(11) 0.06719 2.24 × 10−3

− ln W1,1 ≡
4π

3
αP (3.40/a) [1 − 1.1909 αP ] . (5)

The coupling αP is defined such that the logarithm of the plaquette has no third- or higher-
order terms in its perturbative expansion [8]. Other quantities, of course, do have higher-
order terms when expressed as a series in αP . One can express αP (3.40/a) as a series in the
bare lattice coupling αlat, using the third-order expansion of the plaquette given in Ref. [20]

αP (3.40/a) = αlat + 4.564 α2
lat + 28.566 α3

lat + O(α4
lat). (6)

The large coefficients in this expansion are an artifact of αlat; using αP eliminates large
renormalizations of the bare coupling. We also note that the logarithm of the Wilson loop is
better behaved perturbatively than the Wilson loop itself, due to the exponentiation of the
perturbative perimeter law; this is also why we have divided by the perimeter in defining
the perturbative coefficients in Eq. (4).

The perturbation series for each Wilson loop is evaluated using the renormalized coupling
at a scale q∗R,T determined according to the procedure of Ref. [7]; the scale corresponds to the
typical momentum carried by a gluon in the leading-order diagram for a given quantity. The
scales are given in Table II. The couplings at these scales are evaluated by first measuring
the average plaquette in the simulation, and solving Eq. (5) for αP (3.40/a). We then evolve
to the scale appropriate to the quantity under consideration using the universal second-order
beta function, plus the third-order term for αP , with [21]

αP (q) =
4π

β0 ln(q2/Λ2
P )

[
1 − β1

β2
0

ln [ln(q2/Λ2
P )]

ln(q2/Λ2
P )

+
β2

1

β4
0 ln2(q2/Λ2

P )

×
((

ln
[
ln(q2/Λ2

P )
]
− 1

2

)2

+
β2,P β0

β2
1

− 5

4

)]
. (7)
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TABLE II. Scale parameters for the couplings for various Wilson loops.

Loop aq∗R,T Loop aq∗R,T

1 × 2 3.07 2 × 5 2.46

1 × 3 3.01 3 × 3 2.45

1 × 4 2.96 3 × 4 2.38

1 × 5 2.95 3 × 5 2.35

2 × 2 2.65 4 × 4 2.30

2 × 3 2.56 4 × 5 2.27

2 × 4 2.49 5 × 5 2.23

For our quenched simulations β0 = 11, β1 = 102, and β2,P = β2,MS + BP , where β2,MS =

2857/2 is the third beta function coefficient in the MS scheme, and where BP = −147.57
can be obtained from existing three-loop calculations [20,22], as described in Ref. [8]. The
values of αP (3.40/a) and ΛP for our simulations are given in Table I.

One can convert a perturbative expansion in αlat to one in αP (q), at the scale appropriate
to a particular quantity, through third order, using

αlat = αP (q) − α2
P (q)


β0

4π
ln

(
π

aq

)2

+ 4.702




+ α3
P (q)






 β0

4π
ln

(
π

aq

)2

+ 4.702




2

− β1

(4π)2
ln

(
π

aq

)2

− 7.841





+ O(α4
P ). (8)

This connection can be obtained from the third-order expansion of the plaquette in the bare
coupling [20], which can be used to solve for αlat in terms of αP (3.40/a), given its definition
in Eq. (5); one can then use a perturbative expansion of the evolution equations [23] to
eliminate αP (3.40/a) in favor of αP (q). Equation (8) extends the second-order connection
between αlat and αP (q) given in Ref. [7].

The first- and second-order perturbative coefficients for the Wilson loop were computed
by Heller and Karsch [14] for an expansion in the bare lattice coupling. We convert this
expansion to a series in αP (q∗R,T ) using Eq. (8). These perturbative calculations were done
on finite lattices with periodic boundary conditions, neglecting the contribution of lattice
zero modes. Our simulations of the Wilson loops were also done with PBC but do contain
the effects of zero modes. In Sect. III we will consider simulations using twisted boundary
conditions to eliminate these states. For Wilson loops however we can make use of an
analytical calculation of the zero mode piece czero

1 of the first-order coefficient in Eq. (4), due
to Coste et al. [18]

czero
1 =

4π(RT )2

9(R + T )V
, (9)

where V is the lattice volume. We will use this expression to explicitly subtract the leading-
order effects of the zero modes from the Monte Carlo data. In the following we will show
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the Monte Carlo data after first making this zero mode subtraction, unless explicitly noted
otherwise; hereafter we will use cn to denote the (finite-volume) coefficients without zero
mode contributions.

We present Monte Carlo results for the 5 × 5 Wilson loop in Fig. 1, in terms of the
quantity

κMC
1 ≡ 1

αP (q∗R,T )

[
− 1

2(R + T )
ln WMC

R,T

]
, (10)

which should exhibit the limit κ1 → c1 as αP → 0. We extract estimates of the perturbative
coefficients cn from the Monte Carlo data by fitting the results to the series expansion Eq.
(4) where, to begin with, we treat all coefficients cn≥1 as unknown. We will compare the fit
values for c1 and c2 with the results from analytical perturbation theory, which provides a
stringent test of the Monte Carlo method.

An important aspect of the fitting procedure is how to reliably account for the systematic
error arising from the truncation of the fit function at a finite order in αP . Including too
few terms in the expansion in αP results in a poor fit to the data, while including too many
higher-order terms results in very poorly constrained values for the lowest-order coefficients
which should, in fact, make the dominant contributions to the data. This situation can
be remedied by incorporating constraints on the coefficients, which are required to lie in a
range of values that is consistent with our expectation that the perturbative expansion is
well behaved. We do this in practice by using conventional least-squares fitting routines,
where the χ2 is augmented according to:

χ2(cn) → χ2
aug(cn) ≡ χ2(cn) +

∑

n

(cn − c̄n)2

σ̄2
n

, (11)

which tends to constrain the fit values for the cn to the interval c̄n ± σ̄n. This approach can
be motivated by Bayesian statistical analysis [9].

If perturbation theory is reliable we expect the coefficients cn to be of O(1). We performed
least-squares fits to Eq. (4), minimizing χ2

aug with c̄n = 0 and σ̄n = 5 for the first five orders
in the expansion. The dashed line in Fig. 1 shows the results of the fit for the 5× 5 Wilson
loop; note that the curvature in the Monte Carlo data κMC

1 shows the sensitivity of the
simulations to the third-order term in the perturbative series. The quality of the fits is very
good, with Q-values in excess of 50%.

The measured values of c1 and c2 are in excellent agreement with perturbation theory,
as shown in Table III, with an accuracy of a few parts in 104 for the first-order coefficients
and a few parts in 102 for the second-order coefficients. The third-order coefficient can also
be resolved, here with almost no input from analytical perturbation theory. The fit values
are very stable to changes in the values of c̄n and σ̄n used in Eq. (11).

Note that if the Monte Carlo data are fit with c1 constrained to its value from pertur-
bation theory, then the errors on c2 are reduced by a factor of about three, with fit values
in agreement with perturbation theory within the reduced errors. Similarly, we obtain more
accurate results for c3 by fitting the Monte Carlo data with c1 and c2 constrained to their
perturbative values. We did fits to Eq. (4) for the next three orders in the perturbative
expansion, minimizing χ2

aug using c̄n = 0 and σ̄n = 5 for n = 3, 4, 5. The results for c3 are
given in Table IV, where the fit errors are seen to be about 10%.
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TABLE III. Monte Carlo results for the first three perturbative coefficients for selected Wilson

loops (cMC
1,2,3). The results were obtained from a simultaneous fit to the coefficients, as discussed in

the text. The first- and second-order coefficients from perturbation theory for the same size lattice

are also shown (cPT
1,2 ). The effects of zero modes are not included in the perturbation theory values,

and were removed at leading order from the simulation data. Note that more accurate results for

cMC
3 for the full set of Wilson loops are given in Table IV, where the fits are done with c1 and c2

constrained to their perturbative values.

Loop cMC
1 cPT

1 cMC
2 cPT

2 cMC
3

1 × 2 1.2037(2) 1.2039 −1.244(16) −1.260 0.0(5)

1 × 3 1.2587(2) 1.2589 −1.185(19) −1.198 0.4(5)

2 × 2 1.4337(2) 1.4338 −1.312(19) −1.323 1.1(5)

3 × 3 1.6089(3) 1.6089 −1.218(24) −1.217 2.5(6)

4 × 4 1.7067(4) 1.7067 −1.213(29) −1.210 3.4(6)

5 × 5 1.7693(6) 1.7690 −1.201(40) −1.177 4.3(7)

TABLE IV. Monte Carlo results for c3, where the first- and second-order coefficients are con-

strained to their values from perturbation theory.

Loop cMC
3 Loop cMC

3

1 × 2 0.43(9) 2 × 5 2.52(17)

1 × 3 0.66(11) 3 × 3 2.53(15)

1 × 4 0.84(12) 3 × 4 2.98(17)

1 × 5 0.94(14) 3 × 5 3.26(19)

2 × 2 1.41(11) 4 × 4 3.40(19)

2 × 3 1.91(13) 4 × 5 3.71(21)

2 × 4 2.28(15) 5 × 5 3.91(23)

It is also interesting to verify that the simulations reproduce the leading effects of the
zero modes. A convenient way to visualize these effects is to plot the quantity

κMC
2 ≡ 1

α2
P (q∗R,T )

[
− 1

2(R + T )
ln WMC

R,T − c1αP

]
, (12)

where the first-order coefficient is set to its perturbative value. We plot κ2 for the 5 × 5
loop in Fig. 2, after subtracting the leading-order zero mode term from the Monte Carlo
data. We see that the data reproduce the second-order coefficient from perturbation theory,
with κ2 → c2 as αP → 0. In Fig. 3 we plot κ2 but where the leading-order zero mode is
not subtracted from the data. We see evidence of singular behavior in κ2 at small coupling,
indicating that the first-order term is not completely removed from the Monte Carlo data
when the zero mode component is not treated. The dashed line in Fig. 3 shows the results
of a fit to Eq. (4), taking account of the leading zero mode contribution, where the term
czero
1 /αP is included in the fit line. This shows explicitly that the Monte Carlo data are

sufficiently accurate to reveal the small contribution from the zero modes, at sufficiently
small couplings.

We also present results for the residual
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κMC
3 ≡ 1

α3
P (q∗R,T )

[
− 1

2(R + T )
ln WMC

R,T − c1αP − c2α
2
P

]
(13)

for the 5 × 5 loop in Fig. 4, which is convenient for visualizing the sensitivity of the Monte
Carlo data to the third- and fourth-order terms. The statistical errors in the Monte Carlo
data are too large to resolve c4, although the best fits suggest that c4 is of the same order
as c3 for all the Wilson loops analyzed here.

A potential complication in our analysis of c3 is that we have only corrected the Wilson
loop data for the effects of zero modes to first order. However we expect that the leading
contribution from zero modes that remains is of O(α2

P (RT )2/V ) which, given the lattice
volume and the range of couplings analyzed here, should only be comparable to terms of
O(α4

P ). In fact there is no visible effect of zero modes beyond first order, within statistical
errors; this would should up as singular behavior in κ3 at small αP (compare Fig. 4 for κ3

with the two plots of κ2 in Figs. 2 and 3). We also note that while we have extracted values
for c3 on a finite lattice, the volume is large enough that the results should give a good
approximation to the coefficients on an infinite lattice (with the corrections expected to be
of O(1/V )).

A determination of higher order terms in the expansion of the 1×1 and 2×2 Wilson loops
has also been made in Ref. [24], using numerical simulations of the Langevin equations, where
a perturbative expansion in the bare lattice coupling is applied to the evolution equations
themselves. The results are presented in Ref. [24] as an expansion of the Wilson loops in
powers of the bare lattice coupling, WR,T = 1 −∑

n c̃nα
n
lat. We can convert our third-order

result for the expansion of ln(WR,T ) in αP (q∗R,T ), to an expansion of WR,T in αlat, by using
the inverse of Eq. (8). We find c̃3 = 0.3 ± 0.9 for the 2 × 2 Wilson loop, in agreement with
the result c̃3 = 0.0 ± 0.9 reported in Ref. [24].

We note parenthetically that the expansion of the Wilson loop itself is very poorly
convergent, and that the vanishingly small value of c̃3 for the 2 × 2 loop is accidental. One
finds very large expansion coefficients for other Wilson loops. These expansions are tamed
by taking the logarithm, and expressing the series in αP (q∗). For example, our results give
c̃3/c̃1 = 76.1 ± 0.1 for the 5 × 5 loop, with this large value arising almost entirely from
the exponentiation of the perturbative perimeter law, and the renormalization of the bare
coupling (compare with c3/c1 = 2.2±0.1 for the logarithm of the 5×5 loop). In Sect. IV we
show that the third-order expansion of the static-quark self-energy is also very reasonable
when expressed in terms of αP (q∗), but is very poorly convergent when expressed in terms
of αlat.

III. TWISTED BOUNDARY CONDITIONS

A. Formalism

The analysis of the preceding section shows that simulations at large β can be used to
make accurate determinations of perturbative quantities at higher orders than have been
achieved using conventional perturbation theory. However, as discussed in Sect. I, simu-
lations with periodic boundary conditions (PBC) are subject to the effects of lattice zero
modes, and a more convenient method for dealing with potential infrared problems in more
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general situations is required. Fortunately lattice zero modes can be completely eliminated
by using twisted boundary conditions (TBC). We also find that TBC significantly reduce
nonperturbative finite-volume effects due to Z(N) phases.

Twisted boundary conditions [10–12] for the link fields resemble a gauge transformation
on fields which cross through selected lattice boundaries

Uα(x + Lν̂) = ΩνUα(x)Ω†
ν , (14)

where we take the twist matrices Ων to be constant. A twist must be applied to at least
two boundaries µ and ν, as the transformation matrix Ων for a single boundary can be
completely eliminated by a field redefinition. The requirement that Uα(x+Lµ̂+Lν̂), which
can be connected to Uα(x) by crossing the two lattice boundaries in different orders, be
single-valued implies that the twist matrices must satisfy the algebra

ΩµΩν = ηΩνΩµ, η ∈ Z(N), (15)

where we consider the general SU(N) gauge theory in most of this section. A pair of twist
matrices generates a multiplication table that forms a discrete subgroup of SU(N). In
particular [11]

ΩN
ν = (−1)N−1I, (16)

where I is the unit matrix.
The Wilson gluon action for TBC is written in terms of link variables in the usual way,

Eq. (3). The matrices Λ(x) that generate gauge transformations

Uµ(x) → Λ(x)Uµ(x)Λ†(x + µ̂) (17)

are subject to the same TBC as the links (Eq. (14)). One consequence of this is that the
Polyakov line Pµ in a twisted direction µ must have an additional factor of the corresponding
twist matrix, if it is to be gauge-invariant:

Pµ ≡ 〈Uµ(x)Uµ(x + µ̂) . . . Uµ(x + Lµ̂) × Ωµ〉 . (18)

The only zero-action fields are pure-gauge configurations Uµ(x) = Λ(x)Λ†(x + µ̂) [11], in-
cluding possible Z(N) phases. The action also possesses a discrete symmetry

Uα(x) → ΩiUαΩ†
i (19)

where Ωi = Ωµ, Ων , ΩµΩν , etc. Note that Eq. (19) is not a gauge transformation, because
Λ(x) = Ω does does not satisfy TBC [11]. This symmetry implies that the Polyakov lines
in the twisted directions have zero expectation value, even in the perturbative phase of the
theory.

We have done SU(3) simulations with twisted boundary conditions across two “spatial”
boundaries x and y

ΩxΩy = ηΩyΩx (Txy), (20)

where η = e2πi/3, and across all three spatial boundaries x, y and z

10



ΩxΩy = ηΩyΩx,

ΩxΩz = ηΩzΩx (Txyz). (21)

We refer to these two cases as Txy and Txyz boundary conditions, respectively.
Explicit representations of the twist matrices Ων are not needed since, as shown in Ref.

[11], one can absorb them by a field redefinition of the link variables, leaving only phase
factors η and η∗ multiplying the plaquettes at the corners of the twisted planes. We have
done simulations with this field redefinition, and also using an explicit representation of the
boundary conditions Eq. (14) using the matrices (for SU(3))

Ωx =




0 1 0
0 0 1
1 0 0


 , Ωy =




e−2πi/3 0 0
0 1 0
0 0 e2πi/3


 , (22)

and

Ωz = ΩyΩ
2
x =




0 0 e−2πi/3

1 0 0
0 e2πi/3 0


 . (23)

The boundary conditions Eq. (14) lead to an unusual quantization of the lattice momen-
tum modes, as well as removing the zero modes. Making the usual substitution

Uµ(x) = eigaAµ(x) (24)

the boundary conditions take the form Aµ(x + Lν̂) = ΩνAµ(x)Ω†
ν . A twisted plane wave

basis is used to Fourier analyze the fields

Aµ(x) =
1

V N

∑

k

χkΓke
ik·(x+ 1

2
µ̂)Ãµ(k), (25)

where, in order to obey the boundary conditions, the matrices Γk must satisfy the algebra

ΩνΓkΩ
†
ν = eikνLΓk, (26)

and where χk enforces a constraint on the mode sum, to be developed below (see Eqs. (30)
and (31)).

The quantization conditions follow by iterating Eq. (26) N times and using Eq. (16).
One finds that momenta in twisted directions are quantized as if the SU(N) fields live on a
lattice of length L×N , rather than the actual length L (although some modes are excluded)

kν =





2π

LN
nν , ν = twisted direction,

2π

L
nν , ν = periodic direction.

(27)

The extra momentum degrees-of-freedom come about because the color structure of each
mode is unique, up to a phase. Substituting Γk = Ωα

xΩβ
y into Eq. (26) one finds, with a

convenient choice of phase [11],

11



Γk = Ω−ny

x Ωnx

y η
1
2
(nx+ny)(nx+ny−1). (28)

These matrices are orthonormal under the trace

1

N
Tr
(
Γ†

k′Γk

)
=

{
1 if n′

x,y = nx,y mod (N),
0 otherwise.

(29)

Since the fields Aµ must be traceless one finds that a set of modes, including the zero modes,
are excluded

χk =

{
0 if nx = ny = 0 (mod N),
1 otherwise.

(30)

In the case of Txyz boundary conditions, a further constraint emerges from Eq. (26)

χk =

{
1 if nz = 2nx + ny (mod N),
0 otherwise.

(Txyz) (31)

Hence there is a factor of N2 − 1 more momentum modes with TBC, each of which has a
single color degree-of-freedom, which is exactly the number of independent colors that one
has for each momentum mode with PBC.

At tree-level the twisted gluon propagator in momentum space has the structure [11]

〈Ãµ(k)Ãν(k
′)〉g=0 = 1

2
V Nχkη

−
1
2
(k′,k)δk,k′Dµν(k), (32)

where

(k′, k) ≡ n′
xnx + n′

yny + (nx + ny)(n
′
x + n′

y). (33)

For the Wilson action in Lorentz gauges one has

Dµν(k) =
1

k̂2

[
δµν − (1 − α)

k̂µk̂ν

k̂2

]
, (34)

with k̂µ = 2 sin(1
2
kµ) and k̂2 =

∑
λ k̂2

λ.

B. Suppression of Z(N) phases

The Polyakov line along an untwisted direction is an order parameter for the Z(N)
degenerate vacua of the lattice theory, which correspond to the invariance of the Wilson
action under the transformation

Uµ(x) → ηUµ(x), ∀x ∋ x · µ̂ = constant. (35)

The Polyakov line is also sensitive to the formation of domains between different Z(N)
phases. These nonperturbative effects must be suppressed if one is to use Monte Carlo
simulations at large β to extract perturbative quantities. In particular we will use simulation
results for the Polyakov line itself to obtain the perturbative self-energy of a static quark.
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In order to suppress nonperturbative Z(N) phases we start the simulation with all links
initialized to a “cold start,” Uµ = I. The probability of making a transition to an nontrivial
Z(N) phase in a local updating algorithm can then be reduced by working at sufficiently
large lattice volumes. In fact our results for Wilson loops on 164 lattices with PBC, presented
in Sect. II, are in excellent agreement with finite-volume perturbation theory. However we
find that nonperturbative Z(N) phases are generated frequently on small lattices when PBC
are used, and this occurs even at extremely large β. On the other hand, we find that using
TBC leads to a dramatic suppression of these effects compared to PBC, on lattices of the
same size.

We illustrate the effects of Z(3) phases with simulation results for 44 lattices at β = 9.
We show run time histories and scatter plots of the real and imaginary parts of the Polyakov
line along an untwisted direction (hereafter taken to be the “temporal” direction t), where

Pt(L) ≡ 1

3L3

∑

~x

ReTr

〈
L∏

xt=1

Ut(x)

〉
, (36)

for a lattice of volume L4. Results for PBC are shown in Fig. 5, for Txy boundary conditions
in Fig. 6, and for Txyz boundary conditions in Fig. 7. We see that nonperturbative Z(3)
phases and domains render simulations with PBC useless for extracting perturbative quanti-
ties on small lattices. We also see that twisted boundary conditions create a barrier between
Z(3) phases, and that transitions between these phases and are essentially eliminated with
Txyz boundary conditions (with no tunneling events observed in millions of updates in the
range of β values considered here). In Sect. IV we show that the remaining finite-volume
effects on lattices with Txyz boundary conditions are very well described by perturbation
theory for β >∼ 9, even on volumes as small as 34.

IV. STATIC-QUARK SELF-ENERGY

A. Perturbation theory

In this section we consider the perturbative expansion of the self-energy E0 of a static
quark. We extract the self-energy from the gauge-invariant Polyakov line Pt along an un-
twisted direction, which describes the propagation of a static quark across the entire time-
extent of the lattice. One could also obtain the self-energy from large Wilson loops [15,19],
or from the gauge-fixed static-quark propagator [5]. This study however represents a good
prototype for calculations of other more realistic perturbative quantities, such as quark
masses.

We first define the self-energy E0(L) on a finite lattice according to

aE0(L) ≡ − 1

L
ln(Pt(L)) (37)

where, for comparison with our simulation results in the next subsection, we consider lattices
with equal lengths L along all sides. One then obtains the infinite-volume self-energy E0 by
taking the limit,

E0 = E0(L → ∞). (38)
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We analyze the tadpole-improved self-energy. This is obtained by dividing the links
in the Polyakov line by a mean field u0, Uµ(x) → Uµ(x)/u0. Hence the tadpole-improved
self-energy is related to the unimproved self-energy by the addition of ln(u0). We use the
average plaquette to estimate the mean-field:

u0 = 〈U2〉1/4. (39)

The expansion of the self-energy to second order was computed in perturbation theory
according to Eqs. (37) and (38) by Heller and Karsch, for an expansion in the bare coupling,
with the result [14,15]

aEunimp
0 = 2.1173 αlat + 11.152 α2

lat + O(α3
lat) (40)

for the unimproved self-energy. Hereafter we consider only the tadpole-improved self-energy,
which we denote by E0. We convert Eq. (40) to an expansion in the renormalized coupling
at the appropriate scale using Eq. (8):

aE0 = 1.0701 αP (q∗E0
) + 0.117 α2

P + O(α3
P ), q∗E0

= 0.84/a, (41)

where Eq. (5), with couplings evolved to q∗E0
, provides the tadpole subtraction.

In the next subsection we will compare Monte Carlo data for the self-energy with results
from analytical perturbation theory on finite lattices. In order to extract the infinite-volume
self-energy E0 from the Monte Carlo simulations we must also make an extrapolation of
measurements of E0(L) done on finite volumes. We can gain some insight into the nature
of the perturbative finite-volume corrections from some analytical considerations.

We define perturbative coefficients cn(L) on a finite lattice according to

aE0(L) =
∑

n

cn(L)αn
P (q∗E0

). (42)

For TBC the first-order term is given by

c1(L) =
π

NL3

∑

~k

χkD44(k4 = 0, ~k) − π

3
[TBC], (43)

to be compared with a calculation for PBC, ignoring the contribution from zero modes

c1(L) =
π(N2 − 1)

NL3

∑

~k 6=0

D44(k4 = 0, ~k) − π

3
[PBC]. (44)

The constant π/3 that is subtracted from the momentum sums in the above expressions
is the value of the one-loop tadpole-improvement counterterm, neglecting its very weak
dependence on the lattice volume. We remind the reader that the mode sums in Eqs. (43)
and (44) are different, due to the different quantization of the momentum components along
the twisted and periodic directions. The two sets of boundary conditions yield identical
results in the infinite-volume limit, where the color factor N2 − 1 emerges in the case of
TBC because χk averages to N2 − 1 over infinitesimal momentum intervals.

Results for c1(L) for the three boundary conditions are presented in Fig. 8, which shows
that finite-volume effects are reduced with TBC, as suggested by Eq. (27). As is evident
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from the plots, finite-volume corrections are very well parameterized by a simple linear form
in 1/L,

c1(L) = c1 − X1
1

L
+ O

(
1

L2

)
, (45)

where c1 ≡ c1(L = ∞). One can evaluate X1 numerically from Eqs. (43) and (44) with the
results X1 ≈ 1.891 (PBC), 0.254 (Txy), and 0.771 (Txyz).

We expect the finite-volume correction to run with a coupling αP (q∗L), evaluated at an
infrared scale q∗L that is set by the box size:

aE0(L) = aE0 − X1
αP (q∗L)

L
+ O

(
α2

P

L
,
αP

L2

)
, q∗L ∝ 1

L
. (46)

A physical interpretation of this functional form for c1(L) is that the static quark experiences
a perturbative Coulomb interaction with its images in the walls of the lattice. The different
values of the coefficient X1 for different boundary conditions also has a natural interpretation
in this picture: TBC reduce finite-volume effects by effectively putting the image charges
further away from the source charge.

Having established Eq. (46), one can deduce logarithms in L in the self-energy at higher
orders. For example, at second order one has

c2(L) = c2 −
1

L

(
X2 + Y2 ln(L2)

)
+ O

(
ln(L2)

L2

)
, (47)

where c2 ≡ c2(L = ∞), and

Y2 = X1
β0

4π
. (48)

This follows from an expansion of the running coupling in Eq. (46), to second order in the
coupling at a reference scale, such as αP (q∗E0

). One can explicitly isolate the logarithm in
the second order coefficient using existing perturbative calculations, which were done long
ago by Heller and Karsch in the case of PBC [14], and which have also recently been done in
Ref. [16] for TBC. Results of the perturbative calculations for the three boundary conditions
are plotted in Fig. 9 over a range of lattice sizes. The dashed lines in Fig. 9 show fits to Eq.
(47), where c2 is constrained to the correct value; the fits are in excellent agreement with Eq.
(48). Note that the curvature in the results for c2(L) reveals the presence of the logarithm,
particulary in the case of PBC and Txyz boundary conditions, where the logarithm makes
a significant contribution at the lattice sizes shown in Fig. 9.

In the next subsection we will use Eq. (46) to deduce the form of the logarithms in L in
the third order self-energy, which will help to constrain the infinite-volume extrapolation of
the Monte Carlo data. We note that one should similarly be able to determine the leading
logarithms in the finite-volume corrections to other quantities, which should likewise prove
useful in Monte Carlo determinations of their perturbative expansions.
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TABLE V. Simulation parameters for static self-energy measurements with Txyz twisted

boundary conditions. At each β simulations were run on nine volumes, L = [3, 11] inclusive.

The measured average plaquette on the lattices with L = 10 are given, along with the scale mass

ΛP computed from Eqs. (5) and (7). The bare coupling is shown along the renormalized coupling

αP (q∗E0
) evaluated at the scale appropriate to the self-energy with tadpole renormalization.

β 〈1
3Re-TrU2〉 aΛP αlat αP (0.84/a)

60.0 0.966311(1) 2.57 × 10−29 0.008 0.00843

23.8 0.913831(4) 1.05 × 10−10 0.020 0.02338

19.0 0.891415(5) 2.95 × 10−8 0.025 0.03058

16.0 0.869332(6) 1.13 × 10−6 0.030 0.03824

13.6 0.845310(7) 1.81 × 10−5 0.035 0.04731

12.0 0.822493(8) 1.25 × 10−4 0.040 0.05676

10.6 0.797025(10) 6.41 × 10−4 0.045 0.06844

9.5 0.771866(11) 2.24 × 10−3 0.050 0.08138

9.0 0.756142(13) 4.29 × 10−3 0.053 0.09032

B. Self-energy from Monte Carlo simulations

We measured the static-quark self-energy in simulations done with Txyz twisted bound-
ary conditions at nine couplings. The simulation parameters are given in Table V. Simula-
tions were run on nine volumes L4, L = [3, 11] inclusive, at each of the nine couplings, for
a total of 81 lattices. The number of measurements made on each volume, at all couplings
except β = 60, were as follows: 2000 measurements for the lattices with L = [3, 6] inclu-
sive, 1500 measurements for L = 7, 1200 for L = 8, 800 for L = 9, 600 for L = 10, and
400 for L = 11 (ten times as many measurements were made on each volume at β = 60).
One hundred configurations were skipped between measurements at all couplings, except
at β = 60, where ten configurations were skipped between measurements. The observables
were computed by binning the measurements in bin sizes of one hundred, which resulted in
negligible autocorrelations at all couplings. The static energy and its error were computed
from the binned ensembles using a standard jackknife analysis.

To demonstrate the reliability of the Monte Carlo method, we first use the simulation
results to estimate the first- and second-order perturbative coefficients. In Fig. 10 we plot
the quantity

κMC
1 (L) = aEMC

0 (L) / αP (q∗E0
) (49)

versus αP (q∗E0
), for all values of L. The dashed lines show the results of least-squares fits

to Eq. (42), minimizing χ2
aug (Eq. (11)) using c̄n = 0 and σ̄n = 5 for the first five orders in

the expansion. The quality of the fits is very good in most cases, with Q-values typically in
excess of about 20%, although the lowest Q-value in the fits is 3%.

We show the Monte Carlo results for c1(L) in Fig. 11, where they are compared with
finite-volume perturbation theory for Txyz boundary conditions, Eq. (43). The data agree
with perturbation theory within errors of only a few parts in 103.
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Monte Carlo results for c2(L) are shown in Fig. 12. In this case the fits to Eq. (42)
were done with c1(L) constrained to its perturbative value. We see that the Monte Carlo
simulations also reproduce the results of second order Txyz perturbation theory [16] over
the full range of lattice sizes, within errors that are as small as a few parts in 102 at several
volumes.

The third-order term in the self-energy is not known from conventional perturbation
theory. We use our simulation results to estimate c3(L), by redoing fits to Eq. (42) with both
c1(L) and c2(L) constrained to their perturbative values. In order to determine the value of
c3 at infinite volume, we must also account for the systematic error due to the extrapolation
from finite lattices. The leading finite-volume corrections come from logarithms in L, which
can be determined using renormalization-group arguments (cf. Eqs. (46)–(48)). Making
use of these constraints considerably improves the accuracy of the extrapolation to infinite
volume.

We show the Monte Carlo data for the third-order coefficient as a function of lattice size
in Fig. 13, after subtracting the logarithms at O(1/L); the data are presented in terms of
the residual

δc3(L) ≡ c3(L) + X1
β2

0

(4π)2

1

L
ln2

(
L2

L2
0

)
+ X1

β1

(4π)2

1

L
ln

(
L2

L2
0

)
. (50)

The scale length L0 in the leading logarithm is determined from second-order perturbation
theory where, according to Eq. (47), L0 = exp(−X2/2Y2). We evaluate the scale length from
a fit to the Txyz perturbation theory results illustrated in Fig. 9, which gives L0 ≈ 0.45 for
the expansion in αP (q∗E0

).
The Monte Carlo data are consistent with the logarithms in Eq. (50), which are found

to dominate the extrapolation to the infinite-volume limit, even from these relatively small
lattices. To extract the infinite-volume coefficient c3 we fit the remaining finite-volume
corrections to the form

δc3(L) = c3 + p1,0
1

L
+
∑

m≥2

1

Lm

2∑

n=0

pm,n lnn

(
L2

L2
0

)
. (51)

Figure 13 shows the results of a fit to Eq. (51) where χ2
aug is minimized using c̄3 = p̄m,n = 0,

and σ̄c3 = σ̄pm,n
= 4, for m = 2, 3 and n = 0, 1, 2 (and for p1,0). The fit yields

cMC
3 = 3.56 ± 0.50 (infinite-volume limit). (52)

Changing the order of the expansion in 1/L in Eq. (51) makes litle change in the fit value for
c3. We conclude from these results that renormalized perturbation theory for the tadpole-
improved self-energy is well behaved through third order, with the data in Fig. 13 clearly
demonstrating that c3 is of O(1).

An estimate of the third-order term in the expansion of the unimproved self-energy, in
the bare lattice coupling (Eq. (40)), has recently been reported using numerical simulations
of the Langevin equations [19]. We can convert our result for c3 from an expansion in
αP (0.84/a) to one in αlat, using the inverse of Eq. (8). We find cMC

3,lat = 86.6 ± 0.5 (without
tadpole improvement), in agreement with the value c3,lat = 86.2 ± 0.6 reported in Ref.
[19]. The bare coupling is clearly a very poor expansion parameter, with 96% of c3,lat being
absorbed by renormalization when a physical coupling is used.

17



We note that the simulations in Ref. [19] were done on much larger lattices than were
used here. We were able to extract c3 from smaller lattices because the leading finite-volume
corrections were identified using renormalization-group methods. This determination of the
third-order self-energy involved a modest computational effort. The entire set of simulations
in the present analysis required only the equivalent of about 150 days of running on a single
1 GHz processor.

V. SUMMARY AND OUTLOOK

The results presented here demonstrate that higher-order perturbative expansions are
accessible in Monte Carlo simulations at large β. An extensive theoretical analysis was
presented together with the results of numerical simulations of a large set of Wilson loops
and the static-quark self-energy. Twisted boundary conditions were investigated as a means
of eliminating zero modes and suppressing nonperturbative finite-volume artifacts, and an
extensive analysis of perturbative finite-volume corrections was made. Wilson loops pro-
vided a good quantity for a first test of the Monte Carlo method, since small loops are
relatively insensitive to finite-volume effects. The calculation of the static-quark self-energy
was considerably more involved, as it is very sensitive to nonperturbative phases and has
large perturbative finite-volume corrections. The static-quark self-energy thus represents a
good prototype for calculations of other more realistic perturbative quantities, such as quark
masses.

The simulation results were shown to reproduce perturbation theory on finite lattices
through second order to high precision, over a wide range of lattice sizes and couplings.
Monte Carlo results for the fourteen smallest Wilson loops were found to agree with per-
turbation theory within the errors, with an accuracy of a few parts in 104 for the first-order
coefficients, and a few parts in 102 for the second-order terms. The Monte Carlo results for
the static-quark self-energy were found to agree with finite-volume perturbation theory over
the full range of lattice sizes analyzed here, with an accuracy of a few parts in 103 at first
order, and a few parts in 102 at second order. This precision was achieved with relatively
little computational effort. New estimates of third-order terms for the Wilson loops and
the static-quark self-energy were obtained to about 10% accuracy. Renormalization-group
arguments were used to improve the quality of the extrapolation of the self-energy to infinite
volume. The results demonstrate that renormalized perturbation theory for Wilson loops
and the self-energy is well behaved through third order.

These methods can be directly applied to improved gluon actions, and can be extended
to quark actions. We have done some work on large β simulations for fermions in the
nonrelativistic formulation of QCD, extending the preliminary studies reported in Refs. [1,2].
We find that simulations of the additive energy and multiplicative mass renormalization
reproduce results of one-loop perturbation theory, and can resolve the second-order terms
in the expansion of these quantities, over a wide range of bare quark masses [5]. Further
work in this direction is in progress.
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APPENDIX:

DESIGNING OPTIMIZED MONTE CARLO SIMULATIONS

In this Appendix we consider the question of how to design the most efficient calculations
through intelligent parameter choices, by using the techniques of constrained curve fitting
[9]. As discussed in the Introduction, one objective of this analysis, in the context of short-
distance Monte Carlo simulations like those in this paper, is to choose the couplings α
for the simulations so as to minimize the cost required to achieve a given precision in the
perturbative coefficients.

As described in Ref. [9] and in Sect. II, the effects of truncation errors in fitting power
series to Monte Carlo data may by estimated by augmenting χ2 with a function that con-
strains parameters, which are poorly determined statistically, to plausible values. Consider
for example the logarithm of a Wilson loop, denoted by W , which has the expansion

W (α) = c1α + c2α
2 + c3α

3 + . . . . (53)

We will use αi (i = 1, 2, . . . , nα) to denote the set of couplings at which the simulations are
done. We may define an augmented χ2 as in Eq. (11),

χ2(cn) → χ2
aug(cn) ≡ χ2(cn) +

∑

n

(cn − c̄n)2

σ̄2
n

, (54)

where the second term on the right tends to constrain poorly determined parameters to the
range c̄n ± σ̄n, based on our prior experience with the power series. In the examples in this
Appendix, we will use c̄n = 0 and σ̄n = 1.

A well designed calculation should minimize the errors in the final results, for a given
amount of computer time. The uncertainties in the fit parameters cn are determined from
the inverse of the Hessian matrix, which we denote by Hmn, where

Hmn ≡ 1

2

∂2χ2

∂cm∂cn
. (55)

Then the uncertainty in cn is

δcn = H−1
nn . (56)
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In the case of Eq. (53), an explicit expression for the Hessian matrix can be obtained

Hmn =
nα∑

i=1

αm+n
i

σ2
W (αi)

+
δmn

σ̄2
n

, (57)

where σW (α) is the statistical error in W (α). We note that a useful approximation for the
statistical error in the Wilson loop (or its logarithm) is

σW (α) ≈ fα, (58)

where f ∝ 1/
√

CPU time and is independent of α.
The optimal selection of the values αi at which the simulations are to be done may

be determined by numerically minimizing the δcn with respect to the αi. The optimal
placement of α’s for the first couple of parameters may be guessed without doing much
calculation. For example, since relative statistical errors are independent of α, c1 is obtained
most accurately by running at the smallest possible coupling α1 (avoiding round-off errors),
thereby minimizing truncation errors from higher-order terms in the series expansion. The
smallest total error in c2 is then obtained by choosing a second coupling α2 such that the
statistical error in the slope of W̃/α, which is ∼ fα2/α2 = f , is equal to the truncation error,
which is given by σ̄3α

3
2/α2 = σ̄3α

2
2. Explicit numerical minimization reproduces expectations

for these simple cases, but also produces optimized design parameters for arbitrary numbers
of points and allocations of CPU time among them. The results of a three-point optimization
are illustrated in Fig. 14. One sees that as the CPU time is increased, smaller and smaller
couplings are obtained from the minimization calculations, though the optimal α’s do not
fall quite as quickly as the fourth root of CPU time (as would be expected in a two-point
fit).

Perturbative series in lattice QCD are typically used in nonperturbative Monte Carlo
calculations with α’s in the range of about 0.15–0.30. To illustrate the effects of optimization
calculations on the final result of a nonperturbative simulation, we consider the application of
the perturbative series Eq. (53) to a simulation with α = 0.25. The results are shown in Fig.
15. The errors coming from the lowest-order coefficients are greatest when the short-distance
simulations are done with low statistics, but these errors decrease most rapidly with CPU
time; hence the order of the term that contributes the largest error to the nonperturbative
quantity rises as a function of the CPU time of the perturbative simulations.

Similar results, different in detail, are obtained for other quantities. For example, for the
third order coefficient κ3 for the 5×5 Wilson loop, shown in Fig. 4, the statistical errors are
f/α2 and the truncation error is σcα. The minimization formula gives the optimal placement
for a single-point simulation as

α =

(
f

σc

)1/3

, (59)

as expected.
Constrained curve fitting formulas for parameter fitting provide a concrete way of trans-

lating estimates of truncation errors into designs of efficient computations. For one or two
parameters, they lead to exactly the same the same choices of parameters that intuitive
guesswork provides. However, they also provide clear optimizations in the much more com-
mon situations in which we have too many parameters to guess about, or in which we are
trying to design new runs to improve the results from imperfectly designed initial runs.
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FIG. 1. Monte Carlo results for κMC
1 for the 5×5 Wilson loop, after the effects of zero modes are

removed at leading order from the simulation data using Eq. (9). The statistical errors are smaller

than the plotting symbols. The filled square shows c1 from perturbation theory. The dashed line

shows the results of a fit to Eq. (4).

22



FIG. 2. Monte Carlo results for κMC
2 for the 5×5 Wilson loop, after the effects of zero modes are

removed at leading order from the simulation data. The filled square shows c2 from perturbation

theory. The dashed line shows the results of a fit to Eq. (4), where c1 is constrained to its

perturbative value.
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FIG. 3. Monte Carlo results for κ2 for the 5× 5 Wilson loop, when the effects of the first-order

zero mode term are not removed from the simulation data. The dashed line shows the results of a

fit to the data, described in the text.
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FIG. 4. Results for κ3 for the 5 × 5 Wilson loop. The dashed line shows the results of a fit to

Eq. (4), where c1 and c2 are constrained to their perturbative values.
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FIG. 5. Simulation results for the temporal Polyakov line on a 44 lattice at β = 9 with periodic

boundary conditions. Run-time histories are shown for (a) Re Pt and (b) Im Pt. A scatter plot of

Im Pt versus Re Pt is shown in (c).
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FIG. 6. Simulation results for the temporal Polyakov line on a 44 lattice at β = 9 with twisted

Txy boundary conditions. The panels are the same as in Fig. 5.
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FIG. 7. Simulation results for the temporal Polyakov line on a 44 lattice at β = 9 with twisted

Txyz boundary conditions. The panels are the same as in Fig. 5.
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FIG. 8. First-order coefficient for the tadpole-improved self-energy from perturbation theory,

using different boundary conditions. The dashed lines show fits to Eq. (45). The filled square

shows the infinite-volume value c1 = 1.0701.
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FIG. 9. Second-order coefficient for the self-energy from perturbation theory, using different

boundary conditions. The dashed lines show fits to Eq. (47). The filled square shows the infi-

nite-volume value c2 = 0.117.
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FIG. 10. Monte Carlo results for κ1 for the self-energy, Eq. (49). The results for each lattice

size L are plotted versus the renormalized coupling αP (q∗ = 0.84/a). The lowest set of data points

is for L = 3, and the highest set is for L = 11. The dashed lines show the results of fits to Eq. (42).
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FIG. 11. First-order coefficient for the self-energy from Monte Carlo simulations (cMC
1 ) and

analytic perturbation theory (cPT
1 ). The filled square in (a) shows the perturbation theory value

of c1 on an infinite lattice. The difference between the Monte Carlo results and the perturbation

theory is shown in (b).
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FIG. 12. Second-order coefficient for the self-energy from Monte Carlo simulations (cMC
2 ) and

analytic perturbation theory (cPT
2 ). The filled square in (a) shows the perturbation theory value

of c2 on an infinite lattice. The difference between the Monte Carlo results and the perturbation

theory is shown in (b).
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FIG. 13. Simulation results for the third-order coefficient for the static-quark self-energy, after

subtracting logarithms at O(1/L), according to Eq. (50). The dashed line shows the result of

a fit to Eq. (51), with the shaded area corresponding to the 68% confidence level region for the

infinite-volume coefficient.
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FIG. 14. Values of the couplings α2 (lower curve) and α3 (upper curve) which minimize uncer-

tainties in the fit parameters c1, c2 and c3, as functions of the CPU time (in arbitrary units). The

coupling α1 is always about zero.
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FIG. 15. Contribution of errors in the perturbative coefficients to the final error in a

long-distance simulation of a Wilson loop, as a function of the short-distance simulation time

(in arbitrary units) that determined the cn. The contribution of a given coefficient cn to the final

error is δcnαn, where here we take α = 0.25. The errors coming from the lowest-order coefficients

are greatest for low statistics in the short-distance simulations, but decrease most rapidly with

CPU time.
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