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ABSTRACT

Properties of the lota are explained by a radially mixed quarkomium
state., Very different radial wave functions for the strange and nonstrange
components arise from the near degeneracy of the first radially excited ss
state and the second radially excited nonstrange state. The KRw decay is
dominant; the nww decay suppressed and the SU(3) relation between the two
decays naturally broken., Coherent effects analogous to those in nuclear gilant
resonances enhance production in radiative ¢ decays by a considerable factor.
One experimental test is a search for decays like D or F + 1% * KRnw or ¢y +

1¢ + © KR¢$.
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The controversy over the nature of the lota {(1440) meson resonance

[1,2,3]; i.e. whether it is an ordinary quarkonium state or a new exotic
object like a glueball or a mixed state of quarks and gluona has been confused
by the use of the standard nonet mixing formalism for the quarkonium state.
It has been pointed out [4,5,6] that the atandard nonet mixing pattern should
not be expected to hold for pseudoscalar mesons and that different degrees of
radial excitation should be mixed as well as the different flavor eigenstates
{7,8,9].

Ve point out a new kind of mixing for the {ota in which it is a
mixture of different degrees of radial excitation with collective coherent
effects [10] analogous to the glant resonant states observed in nuelear and
condensed matter physics [l1]. Such a state has very different properties
from those of standard nonet mixing and seem to be consistent with the
experimental data for the lota. The basic physics underlying this mixing
description is: 1) Radial excitation spacings decrease at higher excitation as
indicated by ¢ and T spectra, 2) The same dynamical mechanism appears both in
radiative J decays to pseudoscalar mesons and in the mixing of the different
unperturbed pseudoscalar states; namely q§ pair creation from gluons [12].
Rediative ¥ decay is very sensitive to small coherent admixtures in meson wave
functions,

In the language commonly used by nuclear physicists, the
pseudoscalar mesons are "particle-hole excitations" of the vacuum. Radiative
¥ decay is described by a summation of all bubble diagrams in which the
excitation of a particle-hole pair by a gluonic probe is followed by a series
of annihilations and pair creations. The contributions from diagramas of
different order and from different excited configurations in the intermediate
bubbles are all coherent and tend tec push all the transition strength into a

single "collective" or "gliant resonant" state.



Let ng, n'f and n"f denote the ground, first radially excited and
second radially excited states of a quark-antiquark palir with flavor f
analogous to the notation n., n'. and n", used for charmenium. We use the
conventional notation for the physical pseudoscalar meson n', but the '

denotes radial excitation in all other cases, The isospin scalar states in

the u and d flavor sector are denoted by Moo na and ng, e.g.
n > = : {|n >+ |n >} (1)
n V2 u d

We assume that the lowest-lying pseudoscalar states with I = Y = ¢
are mixtures of the six states n , n',, n",, n,, n', and n",. A detailed
dynamical model Qould define and diagonalize the mass matrix in this space of
six states {8]. However such calculations are very sensitive to the values of
parameters which are not known from first principles like unperturbed masases
of the six states before the mixing is taken into account and the strengths of
the mixing interaction and to the number of radially exclited states
included., For this reason {t is difficult to obtain reliable quantitative
results, However the qualitative features of the giant resonance phenomenon
can be seen from the following reasonable assumptiona regarding these
parameters,

1. The unperturbed radial excitation splittings can be taken from
the charmonfum spectrum (8,13,14].

2. The difference between the unperturbed masses of the strange and
nonstrange states with the same radial excitation ia just due to the quark

mass difference which can be taken from low-lying hadrom spectra [8,13].

Then



Mo(n;) - Mo(n;) = M(P") = M(y') = 344 MeV (28)

() - 10ty T 2(m -m ) T 2(MCA)-M(p)] = 355 Hev (20)

M) - MO%(n') T -11 Mev ¥ O (2¢)
n 8

where M0 denotes the unperturbed mass in the absence of mixing and m_ and m

8 u
denote the quark masses, The conventicnal nonet pattern is thus already
destroyed at the fourth excited pseudoscalar state with the n; approximately
degenerate with and perhaps even lower than the n;.

The relations (2) suggest that the n; and n, are much more strongly
mixed with one another than either with the corresponding state in its own
standatd nonet and that the mixing should be treated by degenerate

perturbatfon theory. In the lowest approximation the fourth and fifth states

in the pseudoscalar meson spectrum are the linear combinations
[1> = cosdn'> + sinf|[n"> (3a)
3 n
Id) = -sinﬂ'ﬂ') + cosBln") (3b)
8 n
where § I8 a mixing angle to be determined by the dynamics. One of these two
states is a candidate for the physical iota which has been observed as the
fourth pseudcocscalar state in the spectrum of radiative ¢ decays,

The transition matrix elements for the production of these states In

rdiative ¥ decays are then given by

<17'T|w> - cose<n;7’TI¢> + sinB(n:YlT]¢> (4a)



<dY|T‘w> - -ain8<n;Y'T'w> + cose<ngle,w> (4b)

We now show how coherence and mixing can strongly enhance the y*+2y
transition. The optimum mixing angle for this effect is the giant-resonance

mixing angle defined by the relation

<ngY|T]w>

tan Q@ _ = (5)
c <n;Y|T’w> 7

Substituting eq. (5) into eqs. (4) gives

<1cle'¢> = <n;Y'T'¢>/cosBG ' (6a)
|<ncle|¢>|2 - |<n;YlT|¢>|2 + |<n;YlT‘¢>|2 (6b)
<dGT|T|¢> =0 (6c)

where IIG) and ,dG> denote the states (3) with the the mixing angle b¢-
Equations (6) show the characteristics of glant resonance mixing. All of the
strength of the radiative ¢ decay transition comes into the state '10> and the
state ,dG> is decoupled.

A considerable additional enhancement is obtainable from very small
mixing of the 1 with the first three states in the pseudoscalar meson
spectrum, the n, n' and Z.

Let us write

M - [ ] n 1] 2
1> cosBG ni> + stnd [n"> + e [n> + e, [n'> + e3|c> + 0(e®) (7a)

1 2



|nH> = ln) - e e + 0(&2) (7b)

1

where llg> and fn”> denote the | and n states with this additional mixing, €1

€, and €4 are small parameters, and equations similar to (7b) hold for the n'

and . Then

<1zY|T|¢> = <IGY'T|¢>+El<ﬂYIT|¢>+ﬁz<n'Y|T|¢>+E3<CY|T|W>+G(EZ) (8a)
|<agr|Tfwe]® = [ar|tje|? +
+2Re[<1c¥|T‘¢>[elcnY’T,¢>+ez<n'T'T|w>+c3<cij|¢)+O(ez)] (8b)
M 2 2 2
[y T|e>|® = [ev|T|9>] - 2Re[e1<\cy]T|¢><ny|T|w>] + 0(e”) (8¢)

This shows the large coherence effects characteristic of the giant
resonance phenomenon. For a rough qualitative picture we take €) = €9 = €4 =
0.1, and set all the transition matrix elements equal. Then these 1%
admixtures of each of the three low-lying states Iinto the iota wave function
(7) produce a 60% enhancement and a 20% suppression of the radiative
transition probabilities (8b) and (8c) respectively, thus increasing the ratio
of‘iota production to n production by a factor of 2.

In this description, the iota has a very strong transition matrix
element for radiative ¢ decays while the dominant component in its wave
function is n;. This would explain why the dominant decay mode observed for
the iota Is KRm and the corresponding nonstrange state nnm i{s not seen, All
SU(3) predictions from the standard nonet model can be broken since the
strange and nonstrange components of the wave function have different degrees
of radial excitation and a different number of nodes. Giant resonant mixing

thus provides a good qualitative description for the observed | properties.



We now show that the giant resonance description not only describes
the qualitative features of the physical fota but alsc arises naturally from
the dynamics in any conventional model for radial mixing with unperturbed
masses satisfying eqs. (2); e.g. with potentials that fit the charmonium
spectrum.* The glant resonance mixing angle (5) and the phase coherence of
the wave function (7) and the radiative ¢ decey matrix element arise

automatically. In such models the mass matrix has the form (8]
M= M+ A (9}

The matrix elements of the unperturbed mass operator M0 and the annihilation

interaction A are given by

1,013, o 0
<nf|H |ng> 6fg61iji (10a)

i J
> =
<nf|A'ng By &gy (10b)

where n% denotes the unperturbed state of a quark-antiquark palr of flavor f

and radial excitation i, £ = n or 3 and 1 = 0,1 or 2 denotes the states

Nes n} and n; respectively. H%i {s the unperturbed mass eigenvalue and ggy

|
are constants specifying the Interactioen,

The key dynamical assumption {s the factorized form of eq. (10b)
where the constant ggy depend only upon the properties of the n% wave

function. In the simple models, where the annihilation depends upon the wave

function at the origin, ggy is given by [13]

*In harmonic oacillator models [7] this degeneracy (2) dces not appear and
glant resonance mixing does not occur,



8y = 8 Ng(0) (1)
where g 1s a constant specifying the streﬁgth of the interaction. The
underlying physics behind the factorization (IOb) is that the quark-antiquark
annihilation and subsequent pair creation goes via an i{ntermediate state of
gluons which does not remember the quantum numbers of the Initlial state. Ve
do tiot need the explicit form (11} for cur purposes and can use any
generalization having the factorized form (10b) such as including a finite
range for the interaction.

The second essential dynamical assumption is that the radlative ¢
decay depends upon the same property of the wave function as the annihilation
interaction (IOb) because the transition occurs via the same kind of gluonie

intermediate state [10]. This is expressed formally by the relation
<niY|T|lP) =Gy (12)
f f1i

where G is a constant specifying the strength of the transition.

The relation (2¢) between the unperturbed masses becomes, Iin this
notation,

Hsl N MnZ ' (13)

The giant resonance mixing angle (5) 18 seen to be
tan 6 = —= (14)

We now see that states (3a) and (3b) are the eigenvectors of the
annihilation matrix (10b) in this two-dimensional subspace when the mixing

angle is defined to be the giant resonance value (14)., The deccupled state



dp> is indeed decoupled and is an eigenvector of A with the eigenvalue 0, and

also an eigenvector of the mass operator (9)
AIdG> - 0 (15a)
0 0
M,dc> - Hsljdc> - anldc> (15b)
Substituting eqs. (12) and (l4) into eqs. (6) then gives

<107|T|w> =G gslfcosac -G g (léa)

Jgrirfen|? - Gz[sil + g2,] = 6 gé (16b)

where g. 13 defined as

g = gslfcoaﬁc (l6c)
The iota wave function to first order in standard degenerate

perturbation theory i{s then

Er18¢

M 1 ¢ zgc
I‘G> - ,lc) +W l“n> + 8 l n l

n'> (17a)

where AHfi denotes the unperturbed mass difference between the fota and the
state n%. These mass differences are always positive since the three admixed

states all lie below the lota. We then obtain

32 82 82
M nl sl n2
Qgr|Tlv> = 6 g {1+ g+ ot o |
nl sl n?

(17b)
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This is the analog of eq. (Ba) and shows explicitly that the parameters €1 €
and €, are indeed all positive and that the coherence with the constructfve
interference of the giant resonance does come out of the dynamics.

The mass eigenvalue of the U is above the d because the operator A
is positive definite and has positive eigenvalues-[IOI. However the d by egq.
(6c) 1s not expected to appear in radiative ¥ decays. The lota in this
formulation is indeed the fourth state in the spectrum appearing in radiative
Vv decays,

A quantitative calculation of the properties of the fota depends on
the exact values of the parameters Bgq and the unperturbed masses "?1- It
also must be corrected for the mixing with higher states which would tend to
counteract the giant resonance effect since the higher states would be mixed
in with a negative phase. However one would expect the qualitative features
to remain. The approximate accidental degeneracy expected from eqs. (2)
should not be far off, suggesting the use of nearly degenerate perturbation
theory to describe these states. If the coefficients ggq decrease reasonably
rapidly with the degree of radfal excitation, we can expect that the
contributions from the higher states will not be very {mportant. In any case
the existence of the giant resonant state must be carefully considered in any
analysis of the fota, 1Its description as a quarkonium state cannot be
discarded simply because ites properties are in disagreement with the standazd
nonet mixing model [15].

This model can be tested experimentally by a search for the fota in
the decays of charmed and charmonium states. The 1% decay modes for decays of
D or F mesons are s-wave and should have comparable branching ratios to nm and

¢n decays, They would be observed as

+ =
bt or FF v 1xt » Ksk—i+n+ (18a)
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p* or F s 1T+ K.Kaw01+ (18b)

o_+

* o kOl (18¢)

d+ or F+ +
o0 + wn? - KRHIO {18d)

The kaon pair would be very close to threahold and the two pions
would have very different energies in the center of mass system of the D or F,
This might help reduce background. Although the D decays are Cabibbo
suppressed, they might be enhanced by a factor similar to that f{n eq. (17b) if
the @ is produced in both the s8 and d3 components with a strength
proportional to the wave function at the origin.

The 1¢ decay mode might be seen in ¥ decays with branching ratios

comparable to n¢ and n'¢
¥+ 14 + KRn¢ (19)

Another possible experimental test fs in radiative decays of the
iota to vector meson states, The strengths of these transftions are very
sensitive to details of the radial wave functions and are not easily
predicted. However, if the p Y decay mode is seen, then the wy and ¢y decays
should be investigated. The ¢y and p Y decays are not related, since the
strange and nonstrange components have very different radial wave functions.
However the standard 9:1 ratio holds for the p Y and wYy decays which come from

the same nonstrange component

F(1+wy) = (1/9)T(1+py). (20a)
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The ¢Y decay mode should be considerably larger than the wy decay

C(i+dy) > T(1ruy) . {20b)
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