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ABSTRACT 

A weak-coupling expansion is developed for the supersymmetric Liouville 

quantum field theory defined on a circle. The zero-mode system 

(supersymmetric quantum mechanics with an exponential potential) is first 

solved exactly, and then nonzero-mode effects are incorporated as 

perturbations. The theory is translationally invariant, conformally 

covariant, and has a zero-energy ground state with <T$> # 0. 
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The supersymmetric Liouville theory is a two-dimensional model of real 

scalar ($) and Majorana spinor ($) fields with exponential interactions. In 

superfield form, the classical action is given by 

A = jd29d2x(+ dR@dLO -F ega) 
R 

with 

CJ = Q + ?%$ + L?%F 
2 

and 

a 
dR,L aeR L , =-- iBR L (a7 f ao) 

(1) 

(2) 

(3) 

eR Here '0 : (e ) is the usual Majorana Grassman variable with 

ei = ef = keR,e,} = 0. Our other conventions are: y0 = [f -1 ). 
P ' 

2 = (: k); 7 = i(eL,-OR); d2e = de de * x' = (T,o); glL" = (A -y). Mote 
R L' 

that the auxiliary field, F, may be eliminated from (1) since it only appears 

quadratically. 7T.f .sQ The result is F = - R e . 

The model defined by (1) was proposed in Ref. [l] as a supersymmetric 

extension of the Pure Liouvllle theory (obtained by setting $=n) which would 

maintain the latter's complete classical integrahility. More recently the 

model has been extensively analyzed [2-71 as a result of the Polyakov approach 

181 to the covariant quantization of the spinning string. A goal of this 

analysis (as yet unachieved) is to compute quantum correlation functions 

involving arbitrary exponentiala of superfields, for all values of the 

coupling constant, g. 
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In this paper we shall consider the weak-coupling limit, g + 0, of the 

supersymmetric Liouville theory defined on a circle. We shall extend to the 

supersymmetric case some results which were previously obtained (91 for the 

pure Liouville theory. 

We show that a weak-coupling expansion can he defined for the 

supersymmetric theory by first solving the zero-mode problem exactly and then 

perturbing in nonzero modes. Within this framework, we compute the first 

nontrivial corrections to matrix elements of exp(ag@) between states whose 

energies are O(g2). We al~so check the conformal covariance of the model using 

perturbation theory, and confirm some results obtained from a formal operator 

analysis. 

Consider the model in component field form. In that form, a close 

analogue of the Hamiltonian analysis of the pure Liouville theory, as given in 

[91, is obtained through the use of the supercurrent. Classically, the 

supercurrent is 

S 
P 

= (IfjQ -M egQ 
g 

)Y,~J + iCIYp,YylaYQ (4) 

where the last term is a conformal improvement. The classical supercurrent is 

traceless on-shell, i.e. y.S = 0, if the improvement coefficient is C = l/g. 

For the quantized theory, we anticipate that C will require corrections, as is 

true of the conformal improvement coefficient for the pure Liouville theory 

IlOl. Indeed, we shall argue below that 

2 
c =; cl+&) (5) 

is necessary for the conformal covariance of the model. 
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We now quantize the supersymmetric Liouville theory on a periodic spatial 

interval (i.e. a circle), 0 < o < 2n, using operator methods. At time z = 0, 

we define canonical C$ and Q fields using the mode expansions 

Q(O) = 4 + i E ,$" ; (a, e-in' + bn eino) 

n(u) = g + k ,& (an .-ino + bn e'"o) 

LLR(o)=-L.+’ 1 2*oun 
VG J2n n#O 

I+,(O) =-!- 1 +L 1 .-ino dn. 
J4n Gii n+fl 

(ha) 

(7=) 

(7b) 

(7c) 

All these operators are by construction periodic in a: @(o) = $(c+~x), etc. 

One may also contemplate 6's which are antiperiodic in o (cf. 151 and 

references therein). However, we shall not discuss that possibility here. 

The bosonic mode operators, (q,p,an.hn], satisfy the usual commutation 

relations (cf. [lo]) such that [@(o),n(o')] = 16(0-o'). The fermionic 

nonzero-mode operators satisfy the anticommutation relations 

I”,, Uk} = 6n+k,o = {dnsdk} 

The zero-mode fermionic operators satisfy 

(8) 

JL2 = l2 = 1, {qn} = 0 (9) 
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Thus we have {$R(o),$R(o')} = 6(u-0') = {+L(a),$~,(o')]. All other anti- 

commutators vanish. In addition the fermionic mode operators commute with the 

bosonic operators. 

Next we define the supercurrent operator as in Eq. (4), but with e .?rn 

replaced by :e ge :, where colons denote normal-ordering with respect to the a, 

and b, operators, as in [IO]. It turns out that this simple normal-ordering 

prescription leads to a calculational scheme (at least for weak-coupling) 

which is ultraviolet finite. 

It is also convenient to take spatial Fourier transforms of the left- and 

right-handed projections of the supercurrent operator. So we define 

G; = $ Iydo .*iNLJ(Mo)+; e(o))+ L,R(e ? 2c & GL R(u) 

TM &z@(d 
g : ~R,Lw). (10) 

The usual supercharges are obtained for N = 0, for which case we write 

(11a) 

Z* = .* + R* 
n (lib) 

(1:) = p (i) T 7 .gq (;) 

(;T, = Jorr Jo (2 “,-n, 
n -n 

zf = 
1 

T f! J4n l:do (:e"('): - eRq) '$R,L(") 

(llc) 

(lid) 

(lie) 
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Hence Zt represents all interactions involving nonzero-modes. 

A weak-coupling expansion is now defined by perturbatively constructing 

exact eigenstates of Z+ or Z-, treating Z: as the perturbation. This is 

analogous to constructing exact eigenstates of H f P for the pure Liouville 

theory using the Lippman-Schwinger formalism (cf. 191). Consider the case of 

2 . We have 

Z- 11k> = gk Ilk> 

where 

Ilk> z Ik> + ' 
gk-Z-+iE 

Z; Ik> 

= “i” (gk-;-+ie “;I” 10 
0 

(12) 

(13) 

Here we have chosen Ik> to be a nonzero-mode vacuum, but a nontrivial zero- 

mode eigenstate. Thus 

R-[k> = 0, R+lk> = 0, 

z-lk> = gklk>, -m<kcm, 

z;lk> = gklk>. 

(14a) 

(14b) 

(14c) 

Note the spectrum of z- is continuous, nondegenerate, and includes k = 0. 

Note also that it was not necessary to choose Ik> to be a nonzero-mode 

".3CU"rn. This was done only to simplify the analysis to follow. 

The zero-mode solutions in (14b) may be explicitly obtained in the 

position representation, where p = - i !- and where 
dq 
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<qlk> = ( 
x cash ti 112 

2rr2 
1 

K1 (x) + K1 (x) 
3- - ik 7 f ik 

iK 1 (x) 
- - 
2 

ik 
(x) - iK1 

y + ik 

1 

(15) 

where Kv 4d1 gq is a modified Bessel function and x : -e . 
2 

The normalization of 

the states is as appropriate for a continuum with 

<k'(k"> = + a(k'-k"). (16) 

Note that the Ik=O> state is particularly simple in this representation. 

<qlk=O> = 2 (,!,) exp(- F egq). 
g 

(17) 

The state Ik=O> is in fact the ground state of the unperturbed system 

governed by Zi, in the usual sense that it has lowest energy (zero) and it is 

translationally invariant (with zero momentum). This can be understood from 

m 
& (Z,)2 = h + 2 1 (b-"b, + nu-,un) 

n=l 
(1R) 

with 

2 4rrM2 2gq h +(z-)2 ++-+ 
g2 

+ MiWregq. (19) 

The nonzero-mode operators in (18) annihilate Ik>, by construction, while 

hjk> = -& g7k21k>. The operator h in (19) is easily seen to he the 
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Hamiltonian for a supersymmetric quantum mechanical model with an exponential 

interaction, as previously discussed in Ill]. The supersymmetric model has a 

zero-energy solution, unlike the pure I.iouville theory, because il/hlk = !l> = 

-Ilk = O>, and the last potential term in h is therefore attractive. Si"Ci2 

T+ = -& i1 h+ n~onzero modes, another statement of the above is that the 

ground state of the supersymmetric Liouville theory on a circle consists of a 

negative fermion-pair condensate. 

The exact ground state Uk=O> defined by the series in Eq. (13) also has 

the above properties of translational invariance (zero momentum) and zero 

energy. This follows from the usual definition of the momentum operator. 

m 

P= 1 (b b -a a)+"(" 
-n n -" n -*"* - d-,d,), (20) 

n=l 

which commutes with Zi and Z* 
1' 

and from the fact that the Hamiltonian for the 

full theory, H, is defined for supersymmetric models by 

H 7 P =' (Z*)2 
477 - (21) 

Note that H + P is trivially finite when acting on the states defined by 

(13). 

Next we consider the effects of the Z, terms in (13) by examining 

specific operator matrix elements, as was done for the pure 'L.iouville theory 

in [lo]. We have calculated <k"Ile ag@ Ilk'> to lowest nontrivial order in the 

limit g -t 0, with k" and k' fixed. The basic methods are straightforward 

extensions of those in [lo] and only the results of the calculation will he 

given. It is necessary to normal-order the components of e Q@ to remove 

ultraviolet divergences. We find 
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(22) 

<k"O$R:eag': ,,k'> = .-ix(k”) <k.- IL e 'EX /k'> .ix(k') f(a;k",k') (23) 
J&ii 

~“II$L:~ag’:Ilk’> = .-iX(k”) <,+$. eagq/k’> .ix(k’) f(a;k-,-k,) 
1T 

(24) 

where the phase x(k) is 

(k + 4k3) + O(g8) , 

and where f is a polynomial in a,k", and k' when calculated to any finite 

order. For example, 

f(a;k",k') = 1 - 2 [4(k"2-k'2)2 + (a-1)(4a+3)(k"-k')2 

+ a(4a-7)(k"+k')2 + a(a-1)(7+16a+12a2)/3] + O(&. (26) 

It is necessary to consider terms up to and including n=3 in the series of Eq. 

(13) in order to obtain these results. 

The net effect of nonzero-mode perturbations on the matrix elements in 

(22-24) is to multiply the zero-mode (supersymmetric QM) matrix elements by 

simple polynomials. Exactly the same effect appeared in the pure I.iouville 

case [lo]. Also, the arbitrariness of the in prescription in Eq. (13) is 

completely expressed by the phases x(k") and x(k') in Eqs. (22-24), since the 

QM matrix elements are real. 

Note that the structure of the polynomial in (26), in particular the 
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presence of a and (a-1) factors, implies that matrix elements of the spinor 

field obey the appropriate equations of motion. That is, 

i@ = 2M :eg': $ (27) 

The change of sign of k' in the polynomials in Eqs. (20) and (24) is 

crucial to verify Eq. (27) for matrix elements of that equation. Also, 

the results Eqs. (22) and (23) are compatible with the supersymmetry 

transformation obtained from using canonical commutation relations, 

lz-, :e"@ :I = -iagJZ;I +, :e=ga: . 

Next we comment on matrix elements of the BB component of the superfield 

e=@ . To be compatible with supersymmetry (cf. {Z-,$L :e agG:})we must obtain 

<~"II :e"@: (+ c&j&-F)llk'> 

=e -ix(k”)<k- lewq(& agilln + $ .gq) ,k,> .ix(k’) f(a;k",-k') (2X) 

and we indeed find this result. nowever, some care is needed in removing 

ultraviolet divergences to obtain (28) by direct calculation. The problem is 

that <k-II :eag': T$ilk'> and <k-II :eag': Fllk'> are not separately UV finite. A 

proper definition of :e =gtJ : F must be given to cancel the UV divergence in 

:eag': T$ and subsequently give the finite result in (28). We have found that 

the naive choice, :e ag': F = -" :eag': :eR':, with the mode sums for C$ 

and + cut-off symmetrically, is not an acceptable definition. A prescription 

which does yield (28) is to symmetrically cut-off the mode sums for 

,a> e, _ and F. Hence F differs from :e ": at order g2 and beyond [12]. This 

acceptable cut-off treats all components of the superfield D on a more equal 
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footing, and for this reason we believe it respects the supersymmetry of the 

model. 

We also note that Eqs. (22) and (28) imply that these matrix elements are 

consistent with the bosonic eauations of motion 

&$ = M :eg': (2F - g;LG), (29) 

where the RHS is defined as the limit as the aforementioned cut-off is 

removed. 

Finally, we consider the conformal covariance of the supersymmetric 

Liouville theory. A formal, canonical operator calculation leads to the super 

conformal algebra [13] 

I$>G;l = <+* + (+ + 2%C2) k2 ?I~+, " 
, 

(30a) 

IG;J,fl = (k -in) <+n (3nb) 

[L&L;] = (k-n) $+n + (+ + .c2) k3 *k+n,Q (3Oc) 

where L * n is defined as the spatial Fourier transform of the conformally 

improved [lo] energy-momentum tensor, 1,: = i /do e *ino (Too f Tel). To arrive 

at Eq. (30), one may naively take F = - F :e .s@ : and ignore cut-off 

subtleties. One then finds that the algebra does not close unless the 

condition in Eq. (5) is imposed. A careful investigation of cut-off schemes 

which preserve the algebra in (30) is in progress [14]. 

Here we report on a check of the algebra Eq. (30). and the relation in 

m. (5), using the weak-coupling analysis defined above. An immediate 
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(31) 

consequence of Eq. (3Ob) is that 

Gi IIk> = 0, for N > 0, 

or else the positivity of the Hamiltonian (cf. Eq. (21)) for the 

supersymmetric Liouville theory would fail. To test this, we compute directly 

for N > 0 

<k") :e=g': G; Ilk'> 

+!{( 2 I+$-gc)+Z hn7 (& + JN 3 - ; $(gC-1) 
n=l 

+* 

2N2 
{ (,@-I) + O(g2,] <k" Ieagq lh,J-egq I Ik’> 

+ o(g5)} <k"le(=+l)gqllk .‘> 

(32) 

To the order calculated (again, up to and icluding "=3 in Eq. (13)) we find 

that the matrix element vanishes as expected, given Eq. (5). Thus the weak- 

coupling expansion reveals the conform1 covariance of the model, as was also 

the case for the pure Liouville theory [lnl. 

Ill concl"sio", we have developed a weak-coupling expansion for the 

supersymmetric T,iouville theory which preserves translational invariance and 

conformal covariance, and which exhibits the spectrum of the theory. It 

remains to develop an exact quantum solution to the model, and to find strong 

coupling approximations. 
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