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ABSTRACT 

We present a method for studying hadronic transitions in lattice 

gauge theory which requires computer time comparable to that required by 

recent hadron spectrum calculations. This method is applied to a 

calculation of the decay p+lra. 

PACS Numbers: 12.40.Bb, 13.25.+m. 

c Operated by Universities Research Association Inc. under contract with the United States Department of Energy 



-2- FERMILAB-Pub-83/60-THY 

The valence Cl] (quenched [2]) approximation to lattice QCD has 

been used so far in the calculation of hadron masses and decay constant3 

[l,2,3], magnetic moments [43, and the properties of QCD at finite 

temperature c51. A qualitative argument Cl1 suggests that this 

approximation may be fairly reliable for the properties of flavor 

non-singlet hadrons, and a quantitative estimate C61 implies that at 

least for the calculation of masses at inverse lattice spacing up to 

1000 MeV, the valence approximation introduces errors of less than 

20+20%. In the present article we use the valence approximation to 

evaluate the pnrr coupling constant. 

The most important result of our calculation of gprrv is a 

demonstration that, using our method, the investigation of hadron decay 

processes can be carried out in reasonable amounts of time on presently 

available computers. 

The prediction we obtain for gpnn is 3.011.0. The experimental 

value of 53 pnn is 6.11fO;lJ. The quoted error on our result is purely 

statistical. It was obtained by dividing our data into subensembles and 

reevaluating quantities independently on each subensemble. There are 

several sources of systematic error which may be of equal or greater 

significance. In particular, our value for gprrrr has actually been 

obtained from a prrrr vertex with one of the pions somewhat off mass shell 

(E2-q2-m2=-0.29 GeV2) and thus may be suppressed by a form factor. A 

measurement of the peon coupling constant with all particles on shell 

could be carried out for perhaps twice the computer time of the present 

calculation. 
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The theory is defined on a four-dimensional hypercubic periodic 

lattice with lattice spacing a and periodicity N ~ in the p direction. 

On each nearest neighbor lattice link (x,y) is defined a variable U(x,y) 

in SU(3) with U(x,y)=U+(y,x). On each lattice site are defined two sets 

of Grassmann variables $f,,(x) and I):,(X) with a a spin index running 

from 1 to 4, c a color index running from 1 to 3, and f a flavor index 

taking values, in the present calculation, either u or d. We define the 

gauge action S to be the usual sum over plaquette contributions 

multiplied by go2 for bare gauge coupling go, and let the quark action 

be l$(x)Cxy$(y) where the quark coupling matrix C 
XY 

is -1 for x equal to 

Y, and K(r?Yp)U(x,y) for y displaced from x by one link in the 

ik-direction. The hopping parameter K is (8r+2mOa) -1 , where m. is the 

bare quark mass and the chirality parameter r is chosen to be 0.5 for 

reasons discussed in ref. Cll. The vacuum expectation value of a 

product of quark fields, which is all we need for the eVsntUa1 

evaluation of g ptrll’ is 

<II*(x = Z-‘ldu,ld~Qq(xi)~(yi) exp(SG+SQ) (1, 

where xi and yi are multi-indices combining flavor, spin, color, and 

position, Z is defined by the condition <l>-1, IdpG is an integral over 

one copy of Haar measure on each independent U(x,y), and ldpQ is a 

Grassman integral over the quark fields $ and 5. 

We now integrate out the quark fields in (11, replace the 

Matthews-Salam determinant which the integration produces by 1, and make 

a compensating shift in the bare gauge coupling constant. This pair of 

modifications are together the valence approximation. The vacuum 

expectation for a product of quark fields becomes 
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<nQ(xi)~(yi)> = Z-'JdkC detijlCV1 
'iyj 

1 exp(SG) (2) 

For any choice of xi and yj, (2) can be evaluated numerically Cl-61 by 

the combination of a Monte Carlo algorithm C71 to perform the integral 

over link fields and a Gauss-Seidel iteration C81 to determine the 

matrix elements of C-l needed for each Monte Carlo link configuration. 

Let us consider how the pnrr coupling constant could be extracted, 

at least in principle, from expectations of the form (2). For continuum 

QCD, define gparr by the condition that the truncated on-shell p-nrr 

vertex for normalized p and TI fields be given by the effective 

interaction 

S jd4x p;(x)nj(x)$>k(x)e 
ijk 

eff = -'pm (3) 

Now for lattice QCD let the (unnormalized) charged rho field p;(x) be 

T(x)YU$d(x) and charged and neutral pi fields n+(x) and n"(x) be 

-3 v (x)Y5$"(x) and [~"(x)Y5$u(x) - Gd(x)~5$d(x)]/JF respectively. For any 
-. 

of these fields f(x) let the spatial Fourier transform f(q,t) with 

momentum in the three-direction be 

7(s,t) = I: exp(iqx3) f(x) 
;; 

x*-t 

(4) 

Then for large values of t and its periodic reflection, N,a-t, the 

two-point functions for any of the fields f has asymptotic behavior 
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<F(q,t)+f(O)> -+ Zf(q){exp[-Ef(q)tl + expC-Ef(q)(N+a-t)]] 

(5) 

where Z,(q) is a product of vacuum-to-one-particle matrix elements of f, 

and Ef(q) is the energy of the one-particle state with momentum q. 

Similarly, for large separation of the time arguments with t,, t, << 

N,a, the three-point function becomes 

Gl(tl,tP,O;;) = <~;(0,t2)~0(q,t,)n+(0)> 

+ Zpnn(q) expC-E,(O)(tz-tl)-E,(q)tll (6) 

with a tl and t2 independent parameter Zp.,,*(q). 

The quantities ZV(q), zp(q), and Zpnn(q) are given by the 

expectation values 

Z,(q) = (N,N,N,)-1 l<Ql?+(q.0)ln+>12 (7) 

zp(4) = (~,~,N,)-‘I<~lb;(q,o)lp->1~ (8) 

Z pm(q) * czJq)zp(o)l ‘12 <p+li”(q,o)/lT+> (9) 

for rho and pi states normalized to one. Thus, according to the LSZ 

reduction formula, Z p,,(q) may also be thought of as the purr three-point 

function with the p line and one TI line truncated by removing factors of 

appropriately normalized free field lattice propagators. If we divide 

Z p,,(q) by a normalized free lattice propagator for the remaining pion 

and adjust the two pion momenta to place the remaining pion on its mass 

shell, we obtain a quantity whose continuum limit, up to kinematic 

factors, is the coupling constant gpnn of eqn. (3): 
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Zprrr(q) = 2qaJz P(Ep(0)a-E~(q)a.En(q)a)gpnn (,o) 

P(x,y) = 
sinh y 

cash y - cash x 
(11) 

It is perhaps worth noting that combining (6) and (10) yields the 

result that the three-point function, for appropriate t, and tZ, is 

proportional to a convolution of Fourier transformed propagators for the 

three particles: 

G,(tl,t2,0;;) = 

= 2w 
e-mplt2-tl e-Enlt,-tl .-E,ltl 

Pvn 
JZp2mpZ,2E,Z,2E~ 1 2m 

t D 2% 2% 
(12) 

where q=lq,l, the p is polarized in the 3 direction, and En=-. 

Ultimately we will evaluate gprrn by equating the lattice result for the 

three-point function with eq.(12). 

In practice the direct calculation of the three-point function from 

products of quark propagators cannot be carried out in a reasonable 

amount of computer time. To calculate directly values of the pnn 

three-point function at all the points needed to form the Fourier 

transforms in (6) would require running a Gauss-Seidel iteration not 

O(1) times on each Monte Carlo gauge configuration, as done in Previous 

calculations [l-61, but rather O(N1N2No) times. This would cost far too 

much computer time. An alternative procedure is to obtain the 

three-point function (6) by differentiating the p-n two-point function 

with respect to an external pion field. The expectation value we need 

can be written 
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<~;(o,t,)~O(q,t,)T+(o)> = k <~;(O,t,h+~O)>ala~O (13) 

where <... >o is a vacuum expectation with quark action modified by 

adding an external pion source 

%a = 'Q 
+ ~,civ (q,t,) - ii0 (-s,t,)l 

= 1 ;i;(x)CxyV(y) + aI h)Dxy$(y) 

XY XY 

(14) 

The valence approximation for <...>o gives 

-1 

<pJ(Xi)$YjDa = Z -jdpG detijl(C+aD)x,y,l wSC (15) 
1 J 

The procedure we adopt to measure <p;(O,t,)t”(q,tl)n*(0)> is simply ‘co 

evaluate <p;(O,t,)n+(O)>, from (15) using Monte Carlo and Gauss-Seidel, 

and then to differentiate with respect to a. We obtain <p;(O,t,)n+(O)>o 

using (15) in the same way propagators of the form (5) are obtained in 

the valence approximation without sources [l-61. This calculation 

requires only O(1) Gauss-Seidel iterations. 

The derivative in (13) we extract by evaluating <P;(O,t,)n+(O)>, at 

different values of a, using a single Monte Carlo ensemble of gauge 

field configurations. If different ensembles of gauge configurations 

are used at different values of a, statistical fluctuations will occur 

in <p; (O,t,)n+(O)>o from one o value to the next, and will be hard to 

extract in a reliable way. On the other hand, using the same gauge 

configurations we have found that for small values of o (L0.05) the 

dependence on a is linear to within about 18, and the derivative can be 

measured very accurately. 
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We now present our results. Our calculations are done on a lattice 

62x12x18 with 12 taken as the three-direction (decay plane) and la taken 

as the four-direction (time). The large transverse size of the lattice 

is required to make possible sufficiently small values of pion momenta 

to place the external pion close to mass shell. We use a gi2 of .95, 

the same value as ref. [Il. Adjusting the lattice spacing by setting 

the string tension to its physical value then gives an inverse lattice 

spacing of 1000*150 Mev. Averages were calculated from an ensemble of 

10 gauge configurations. The first was obtained after 1000 Monte Carlo 

sweeps of the lattice with 10 Metropolis updates on each link. 

Successive configurations were spread over an additional 5800 sweeps. 

The rho and pi propagators of eq.(5) were measured and energies and 

renormalization constants were extracted by fitting the observed 

propagators to eq.(5) plus an additional contribution for the first 

radially excited state. Calculations of the pion propagator were done 

both at zero momentum and at q of 521 MeV, which is the smallest 

momentum permitted by our transverse lattice size of 12 links. The 

value of q for the pions in the pna three-point function was also chosen 

to be 521 MeV/c. We extracted the derivative of <p;(O,t,)Tt(0)>a by 

evaluating it at a of 0 and 0.025. Our result at a of 0 was 

statistically consistent with zero, as required by charge conjugation 

invariance. 

In fig. 1 we show our data for the three-point function with the 

pions at fixed time slices 0 and 4 as a function of the p time. The 

solid line is the analytic evaluation of eq. (12). Its shape agrees 

very well with our data. Our value of g 
Pns 

comes from comparing the 

normalization of the two curves at the trough, where the p is farthest 
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from the two pions; it is nice to see that about the same value for g 
Pxn 

is obtained even when the P is quite close to the pions. 

Values of energies, renormalization constants and g as a 
Pns 

function of the hopping constant K are shown in Table 1. We have also 

included for reference values of the renormalized quark mass, (2KJ-1- 

(2K)-1, where K c is the critical K at which the pion mass is zero. 

Based on ref. [II we expected convergence of the Gauss-Seidel to fail 

for sufficiently large K and therefore chose to work at a range of K 

smaller than the value corresponding to physical pion mass. Table 1 

strongly suggests that an extrapolation of g pnrr to the physical value of 

K can be done reliably. 

To test the consistency of our procedure, we have also evaluated 

the Psn three-point function, which must be zero by G-parity 

conservation. We found it to be smaller by an order of magnitude than 

the pns three-point function, fluctuating in sign, and statistically 

consistent with zero. Another check was done to determine the 

contribution of radially excited pion states. For the external pion 

field we replaced the local operator by a nonlocal one formed from the 

gauge invariant product of quark fields at nearest neighbor sites 

connected by a link matrix. By examining the two-point functions for 

these operators, we determined the ratio of the renormalization 

constants connecting the local and nonlocal operators to the pion state. 

The ratio of three-point functions obtained using the local and nonlocal 

operators agreed with that predicted from the ratio of renormalization 

constants to an accuracy of 3i4%, indicating little contamination from 

excited states. 
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A variety of other interesting measurements can be performed by 

analyzing our data in more detail. Comparing values of hadron masses 

with those reported for a 65x14 lattice Cl1 provides a measure of the 

sensitivity of masses to lattice volume. In partial answer to the 

doubts raised in ref.191, a preliminary examination showed these effects 

to be of the order of a few percent for our lattice sizes. For 

significantly smaller lattices C2-41, these effects have been found to 

be large however [lOI. Our data can also be used to obtain a variety of 

other coupling constants. These will be reported elsewhere. Finally, 

it is perhaps worth pointing out that by an extension of our method to 

four-point functions it may be possible to measure scattering 

amplitudes. 
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work was supported in part by the United States Department of Energy. 
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TABLE I. Energies, decay constants and gpnn for three values of the 

hopping parameter K. The pions have momentum 2v/12a 1520 MeV. 

K E 
T zn M Z 

P P gpnlr (2K) -'-(2Kc)-' 

.325 1.09zk.04 .56i.l4 1.07k.03 .202*.032 3.24 t.17 .240 

.34 .95*.10 .47*.30 .94*.05 .132+.035 3.16~20 .172 

.355 .83+.20 +.35 
.37-i20 .79+.03 .072*.010 3.07+.60 .llO 

FIGURE CAPTION 

Fig. 1: Data for the ~-WI three-point function G3 as a function of the 

time slice of the p. The pions are fixed at times 0 and 4. 

The solid curve is the theoretical expectation for G3 based on 

eqn. (12) with paramete,rs fixed by the two-point function 

results. It is normalized by fixing gpnn so that the solid 

curve fits the monte cat-lo data where the p is far from the 

pions. 
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