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SUMMARY

Calogero receatly proposed a new and very powerful method for the
solution of Sturm-Liouville eigenvalue problems based on Lagrangian
differentiation. In this-p&per, I present some results of a numerical
investigation of Calogero”s method for physlcall} interesting problems.
I then show éhat one can “lovert” his differentiation technique to
obtain a flexible, factorially convergent Lagranglan integration scheme
which should be useful in a variety of problems, e.g., solution of

integral equations.
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In a recent paPEE(l), Calogero proposed s new and very pawerful
method for the solution of Sturm~Liouville eigeavalue problems. 1Ia his
approach, the operators x and d/dx 1o the differeutial equation are
replaced by speclal n x m matrices X and Z, and the eigenvalues and
eigenvectors are determined by matrix methods. Calogero shows that
under reasonable assumptions (a subset of) the matrix elgenvalues
converge factorially fast to the true elgenvalues, |6kmlknl-(um12n)°'2.
In this paper, 1 present sSome results of a numerlcal investigatlon of
Calogero™s method for physically interesting problems. Its remarkable
success suggested that one might “invert”™ the differentiation scheme to
obtain a flexible, factorially convergent integration scheme useful ia
a variety of problems, e.g., integration with sparse data or the
solution of integral or integrodifferential equations (my original
motivation). T present the {untegration scheme and some tests of its
accuracy here.

Calogero”™s work(l) {3 based on the observation that n x a matrix

operatotalaudidefined in terms of o arbitrary points x;,...x, by

(1) RIS LIY D

(2a) -Elj - (Ii'xj)_l, 14 5,
|+

(2b) Zgm L (xgmx 7t
{rh

satianfy the Heisenberg algebra of x and d/dx when actiog on the finlte

basis {x(®), u = 0,-..,8~1} with (2‘4)

{3) _x-i(_') - x?./'i(‘i)' a=0,...,n~1,



and
n
(&) xy(x) = IIl (x-x)-
¥i
specifically(?)
(3 _1_:__{(") -z 0 <@ <2,
(6) z ™ =g (™) g <ac< ol

These results are closely connected to Lagrangian interpolatica

(2). The x"s are the Lagrange interpolation polynomials (5), Z1is

given in teruws of = by

and the x"s give a matrix representation of the monoaials x™,
(8) D SO RN S ACOTLHCAE

Hore'generally, the {unique) polynomial of degree n-1 which 18 equal to

a fuoction f(x) at Xyserea Xy is
(9 F(x) = (7)), By = £Cxg) xy(x)-

This polynomial approximates f(x) im the sense that(s)



~fho

(10) £(x) = F(x) + R,
(11) R = £® 5y T (x-x,)/a!, 2, <E<x-
k] {=1 i 1 n

Por functicuos with bounded derivatives, the Lagrange laterpolation
formula f(x) = F(x) thus gives a factorially convergent approximation,
iRnf < (naxlf(n)(ﬁ)l)lxn-xllnln!. The foramulas for Lagraagian
integration(s) and diffeteutintiou(z's) are obtained by

integrating or differentiating the polynomial F(x), and have similar
error terms.

Calogero”s procedure ia ref. 1 is to map the differential equatiou(s)
a? ' d

(12) Aw(x) -.[az(x) —_ + al(x) —_—F ao(x)]w(:) = aw{x), a< x < b,
de dx

to the matrix equatica
(13) Av = [a,(X)22 + a,(X)Z + a (X)]v = Aw
- - - -~ LY —— . gl

e(a,b). PFor

by the substitutioas x » X, dfdx » Z, ¥ith x;,-..x,

operators A with polynomlal eigeafuncrions, the n eigenvalues
ij.j-l,...n of.é_are equal to the lowest n elgenvalues kj of A (7), and
the eigenfunctions are related by v = H(xi)f‘l i(x;l)’ w (x) = (‘_l_(!)._: Y,
J=1,...a0. It is therefore plausible that the matrix equatlion will also
give good approximations for some of the lowest eigenvalues and
eigenvectors of A for more gemeral problems. Calogero in fact
estiastes the rate of convargeace of eigenvalues of A to correspondiag

sigeuvalues of A, with the result quored sghove.
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There are some subtleties ian this procedure which cause
complications in practice. The matrices‘gi are usually oot polynomial
and carry w off any fionite basias E:f‘)}- There 13 consequently no
reason to expect all of the o eigenvalues °£Jt.t° converge to
elgenvalues of A. Furthermore, for the a, real {the usual case),‘i_is
real but not eysmetric and can have pairs of complex conjugate
elgenvalues which do not correspond to any of the (real) eigenvalues of
a aelf adjolnt Sturm-Liouville operator. As a result, only a subset of
the i‘s may actually converge to elgeavalues of A. However, when this
subset is properly ordered, we find that ij *hj where &) < &p; € ... X
Ay~ are the n” < n lowest eigeuvalues of A. These A"s are easy to pick
out of the complete set {i) because of thelir rapid convergence aund
subsequent stabilicy as n 13 increased.

In Table I, I 111ustra£e the remarkable power of Calogero”s method
using the Bessel functcious Jx(jl'nr) for r on [0,1] with jz,n the oth
zero of Jx(x)(S.I impose the bouandary coaditions Ji - tl, r + 0, and

31(11 n) = 0 explicitly by writing the Bessel function as
(14) 3y1y o0 = tta-tDvyeh),

2

change to z = r° as a new variable, and obtaln an equation for w of the

form ia eq. (13) with

(13) - —4}., M- -6(1+1)‘.l;+ B_I.I(_l-.-i), 2" ﬁ(].fl)l(l-—.i) .

As may be seen from Table I, the convergence of the elgenvalue 30 x to
L]

Jox ko'klfz is extremely rapid. For exaample, jo 1 18 accurate to

twenty-two figures for o = 15, while J, 14 1s accurate to 3.4% for a =



-H—
20 even though there are only two points to define each of the ten
loopa of Jo(Jo,xo‘)' The results for 31,k and 32,k are similar.
I have also tested Calogero”™s method for the
physically—lnteresting problem of the radial Schrodinger equation with
the Couloab~plus— linear potential used to fit the-mgss apectra of

bound cc and Bb systems (charmonium and upsilonium)(g)

(16) V(r) = - ::_ + br.

The wethod I have ugsed is appropriate for a large class of confining
lnteractions(lo). It favolves extracting both the dominant exponential
factor in the radia)l wave fuoction for r + = and the factor r® which
appears for r » 0, and changing variables to eliminate irratiomnal
powers of r in the resulting wave equation. Specifically, I write

Bl(r) as

{17) Rl(r) - exp[— % { nqb)lfz r3lz) r1 w(x), x = Zrlfz,

and apply Calogero”s procedure to the equation for w(x) using n equally
spaced polnts which extend beyond the (estimated) classical turning
polnt. The results of the calculatioa for charmonium are given In
Table 1I. The ground atate (1S) energy for a 20 x 20 matrix is
accurate to (a ridiculous) 1 eV our of 0.36 GeV, while the 55 and 5P
levels are accurate to 0.4 {12=0) and 0.1% (2«1). The calculation (and
that in Table I) required 0.76 sec per & value on & CDC Cyber 175, and
is sufficlently fast that one caun coatemplate adjustment of the

potential poiot-by-point in fittiang the observed energies.
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The success of Calogero”s method for differentiation and
differentlal equations suggests that an “inverse” method related to
Lagrangian integration might be useful for numerlcal integration anad
the solution of Integral equations. In the remainder of the paper I
will develop a simple matrix procedure for Lagranglan Integration and
sketch how it might be applied. My derivations will be given elaewhere
io more detall.

I begin with the expressions

b 4
(18a) E(x) = [ &(x") dax”, f(x;) = O,
X
1
(18b) g(x) = & (0.
X

The Lagrangian matrix representation of the second equation 13(2)

(19)

‘.8""-2-__: _fj - f(xj)l"j(xj)'
with g(x} = (x(x), g)- The matrix 2 is singular and cannot be ioverted
in eq. (19) to obtain the integral f from g. In particular Z
annihilates the constant vector x(o), eq. (6), so has a vanishing

g,

determinant (zero is in fact the n-fold-degenerate eigenvalue of Z).

However, Z can be written as
iy

o!o
(20) Z=L +. R .

vhere the matrices L and R are noneingular,
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1l-1, -1,... L3 1 0

21 L= v e R = .
b L [ I ] NN
“ilv“n -

x4 = uj(xj), i=1,...n, aad the (n-1)x(n-1) natrixjé_is the

restriction of Z to the indicated block,

L

(22) 3._13 -2y 1.3 2,.em

The matrix Z is invertible and Z ' is the matrix asalog of the

1

integral operator i{n eq. (18a). Thus, multiplying eq. (19) by L,

using the representation fori in eq. (20), and imposing the boundary
condition £, = O from eq. (18a), one finds that eq. (19) is
equivaleat to the (a-1)-dimensional equation

(23) g =

£

}NI

0 0
Hherei- (E). g - (5], and

Lt

(24) f=z)

joas

Since the projection (x(x),f) gives the Lagrange interpolatiocn
polynomial for £(x), eq. (24) and the boundary condltlonnzl = 0 give

the integration formula (exact for polynomials g{x) with degree < n-2}

25) £ = ] s & = G0, B gratxragiey).
xl -— g~ -

This is an open-endpoint formula; g is uveeded only at the o-1 poiats

b AR Hhile_é_invoives all a polots xy,.-.X;-
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By taking diffecences of the expression in eq. (25) for different

choicesa of x ¢ {xj} I obtain the formulas

x n
(26a) [ M og(xdx” = T (Agm i Apx) B(X
xl k-z L] L]

(26b) Ay = xg(x)(ED p/mlx)-

Eq- (26a) is the usual Lagrange integration Eornula(s) and has an

error term Rn bounded by
(27) IR < L paxlg(®1(y)In®, x, <y < x M=x - X,
R, =0T 3 y s Xg & F 2+m? 1+a i

More generally for arbitrary 2 and b in the {nterval [x;,x,],
b " -~ - 4_1 -
(28) Ja 8(x)dx = (x(b) - =(a), 2 g)-

The advantage of the present approach to Lagrdagian integration is
its flexibility. It is easy using matrix methods to change n and the
selected points {xj} during a calculation.Thus for equally spaced
polnts, eq. (28) is a Newton—Cotes lotegratlon formula exact for
polynonials of degree < n-2, while fo? a-xl=0,b-1, and Xg, -0 Xy the n-1
zeros of Pn_1(2:-1), eq. (28) gives Gauss” 1ntegration formula and 1is
exact for polynomials of degree < 2n-3. Furthermore, the rate of
couvergence of the Lagrangian approximation to the exact fotegral cam
be greatly euhanced by increasiag o as the number of polnts used in the
integration is increased. For exanple, the value of Si(x)

-I: (siux/x)dx is given correctly to 121073 by eq. (268) with o = 12

equally spaced poinots {x}{-1,0,-..,10} {11 point Newton- Cotes
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integration) and to < 1x10710 for o ~ 20; to obtain the same accuracy
with Simpson”s rule requires ~25 (~435) points. Some preliminary
calculations alsc show that these results can be quite useful 1n the

numerical solutlon of Integral equatlions.
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Zeros of the Bessel functions calculated using Calogero's method.
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TABLE 1

Results given to more than 10 figures are accurate to 21 in the last

figure given.

k jo,k’ exact(s) jo.k’ n =15 jo,k' n = 20

1 2.40482 55577 2.40482 $5576 95772 76862 17

2 5.52007 81103 5.52007 81103 86310 65

3 8.65372 79129 8.65372 79129 1 cee aee
4 11.79153 44391 11.79153 4468 11.79153 44390 1429
5 14.93091 77086 14.93093 S 14.93091 77085
6 18.07106 39679 18.0732 18.07106 4005
7 21.21163 66299 21.0256 21.21164 66

8 24.35247 15308 24.98 24.35309

9 27.49347 91320 27.60 27.515
10 I0.63460 64684 - 30.74




TABLE II

The energies En ] of the lowest states in charmonium calculatred using

Calogerc's method for the potential V(r) = ~-a/r + br, a = 0.49,

b = 0.17 GeV’, m_ = 1.35 cev (7).

En,o (GeV) En,l (GeV)

N ngxace" (D) 20x20,r =9 Gev ! "Exact"(®) 20x20, r__ =12ev !
max max

1 0.3643 0.3643 0.7720 0.7720
2 0.9505 0.9505 1.2292 1.2292
3 1.3862 1.3862 1.6155 1.6155
4 1.7592 1.759% 1.9605 1.9606

5 2.0948 2.1035 2.2773 2.2797




