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ABSTRACT

Monopole catalysis of proton decay is examined In the
soliton pilcture and monopole-soliton scattering is studled
numerically by constructing time histories of scattering
events. We study the effects of finite fermion masses and
the coupling constant dependence of the interactions in both
an SU{(2) model and the grand unified 3SU(5) model. All
relevant Abelian Coulomb energles, (including the
electroweak energy at distances 1less than 1/MZ), are
included and we find that the qualitative nature of a
scattering process 1s unchanged by the inclusion of these

interactions.
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I. Introduction

Magnetic monopoles have fasclinated theorists for over
fifty years, although their observation remains elusive.
Recently, Rubakov3 and Callan2 have demonstrated that in
grand unified theories, magnetic monopoles have the
surprising property that they <catalyse proton decay at

strong interaction rates. Many other authors3'll

have
extended thelir work, although unfortunately little
quantitative work has been done. In this paper, we attempt
to fill a part of this gap and study proton-monopole
scattering numerically. We gain a physical understanding of
the catalysis mechanism by constructing time histories of
scattering processes.

Rubakov and Callan have approached the problem of
monopole-fermion interactions in two different ways, both of
which involve the secattering of a fermionie J=0 partial wave
from =a 't Hecoft-Polyakov monopole. In Rubakov's approach,
the problem reduces to a massless two~dimensional Schwinger
model, which i3 exactly solvable. In this approach,
however, the effect of a finite fermion mass 1s unclear. In
Callan's approach, the theory is written as an equivalent
boson theory and fermions are written as soliton states,.
This picture 1s most suitable for constructing the time
history of a baryon number violating process and to see the
effect of finite fermion masses. It is this bosonized

version of the fermion-monopole dynamics which we will use
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in this paper. We emphasize however that Rubakov's and
Callan's work describes the same physics and a combination
of concepts from both approaches ¢an be extremely useful.

Most of our results are cbtained for the SU(2) medel
studied by Rubakov and Callan. We introduce this model in
Section II. In Section III, we formulate +the discrete
version of the model which we use for our numerical
analysis, with special attention ¢to the region near the
monopole core.

In Section IV, we discuss the Kkinematics of the
problem. This results in a 1list of all possible final
states for a gliven initial state. In the massless case,
there is at most one final state per initial state and the
problem is completely determined. For non-zero fermion
masses, additional processes are allowed. The simplest of
these are hellicity-flip scattering processes, which do not
lead to a violation cf any charge,

The competition between different final states can only
be studied numerically and this is one of the purpecses of
this paper. Starting with a set of sclitons moving toward
the monopole, we Integrate the equations of motion to find
the complete time evolution and the final state. The effect
of the boundary c¢onditions and the Adler-Bell Jackiw
anomaly5 become transparent by studying the behavior of the

boscon fields near the core.
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Cur numerical results are presented in Section V. For
the most interesting initial states, we show under which
conditions the baryon number violating processes dominate
over the processes with only helicity flip. We investigate
the dependence on the veloecity of the incoming solitons,
their spatial separation, and the gauge coupling constant.

In Section VI, we address the question of whether the
SU(2) model adequately describes proton decay catalysis by
SU(5)6 monopoles. We consider the effects of Abelian color
and electromagnetic interactlions not yet included in the
SU(2) model and find that their effect is unimportant. We
also 1Include the effects of the ZO electrostatic energy for

7

distances less than 1/M_ from the monopole. We discuss in

Z
Section VIIT the effects of including an extra heavy
generation of fermions. In the Appendix, we derive the

effective Lagrangian for the SU(5) model, with particular

emphasis on the Coulomb interaction terms.
II. The SU(2) Model

In this section, we study an SU(2) model in which an
SU(2) gauge field is coupled to an I=1 Higgs field and an
even number Nf of left-handed Weyl spinors. The Higegs
potential is arranged in such a way that the symmetry 1is
broken to U{1), resulting in a monopole which is coupled to
the fermions in the doublet representation of the SU(2)

group correspondling to the mcnopole, (which has generators

f). We denote the spinors which couple to the monopole by,
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-+
Yy, 1

wiL = o
L,i i=1'Nf y (2-1)
where + and - indicate the T3~charge of the particle. (In
this section "charge" refers to this Ts—charge.) In the J=0
partial wave, the upper components wz i and their

L
anti-particles, w§~i are only allowed as incoming states,
14

while the lower components ¢£;1 and w;;i are only allowed as
outgoing states.

We will study this system with nonvanishing fermion
masses. In principle, a mass term can be constructed by
pairing the upper component of a doublet wi with the 1lower
component of a doublet wi" In the SU{(5) and 80(10) grand

3

unified mcdels, the doublet assignment for the first

generation is

(2.2)

{Note that the T3 charge has the opposite sign from the
electromagnetic charge.) This has the property that if ¢£’i
is paired with w;,i" then w;,i is paired with wz,i" This
is not necessarily true in general, but we will assume this
in the rest of the paper. The mass terms combine the Nf
doublets in 1/2 Nf pairs. We denote each pair generically

as,
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+ b+
& L
bL ap . (2.3)

The bosonization of the spherically symmetric sector of
the theory can be done in twe ways: one which respects the
pairing of the fermions in §U(2) T3 eigenstates and one
which respects the pairing into mass eigenstates. The two
bosonizations are connected by a canonical transformation.2
In the second bosonized form, each mags-eigenstate 1is
represented by a field, (¢a and ¢, for Egq. (2.3)). The
pairing into doublets is represented by a boundary condition
at the origin. This boundary condition is all that remains
of the non-Abelian properties of the fields in the core of
the monopole in the limit of vanishing core size.

The second boscnization is the most convenient one for

the soliton picture and will be used in the rest of this

paper.
ITI. The Discrete Lagranglan
To study the problem numerically we discretize the

r-dependence of the Lagrangian, In the ceontinuum 1imit, the

Lagranglan is, (see Ref. 2 and the Appendix):
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N
r f .
L = [ dr [172 (éf - ¢,°) - micos(2/7e )]
0 i=1
N
f
F 2 .
- I ¢ , (3.1)
or2 joq 1

for Nf flavors of Weyl spinors in the original fermicn
Lagrangian. {The "dot", ("prime"}, denotes differentiation
with respect to t,(r)). The constant F is related to the

gauge coupling, g, as follows:

2
F = &

161 (3.2)

The coefficient mi is related to the fermion mass.

The boundary conditions on the boscons at r=0 are

¢, (0) ¥ (0)

i+l
, . for odd i.
9,(0) = =9, ,(0) (3.3)

We need a discrete version of L which implements the
boundary condition. For this purpose we use the following

Lagrangian,
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Ne
1 2 2
L = - ) [(o - 4., )5+ (o, - . Y]
222 1 tag 10 i 10 i1, 1
Ni1 ;f 5
+ (0, = & <uq)
j=1 =1 HI TEIT
vt -2 2
+ 57 [1/2¢7; - mj cos (/7o )]
i=1 1=1 J
N
N £
S P L (3.4)
j=1  23%a® a1 MY

where ¢ij=¢i(ja), N is the number of lattice points for the
r variable and a is the lattice spacing.
Since there is no canonical momentum for ¢iO’ we obtain

a constraint equation for that variable,

¢10 - ¢i1 = -(¢10 - ¢1+1’1) (3-5)

This is the second equation in Eg. (3.3). The first 1is
satisfied by construction. We impose no boundary condition
at r=Na, since we will assume that all fields stay 1in one of
the vacua of the sine-Gordon theory for all times at large
r.

Our boundary c¢onditions at r=0 differ from those

9

proposed recently by Callan. He chooses to enforce charge

(T3) conservation by a boundary condition z¢10 = 0. In our
i
case, such a condition 1s enforced dynamically on the fields

at r=a. For sufficiently small a, the combination Z¢i1 must
i
be very small to keep the total energy finite. Then

Eq. (3.3) leads to
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lim % ¢y =0 (3.6)
a+0
Thus in the continuum limit the different boundary

conditiona are equivalent.

IV. Allowed Processes

In this section we will investigate which final states
can be obtained from a given initial state. {Some of the
material in this section can be found in Refs. 1, 2, and
14). Initial states are defined at r=« and t=-«. In that
limit the Coulomb term in Eq. (3.1} can be ignored and the

solutions are just the familiar sine-Gordon solitons;

¢, = 2 tan_1(exp(Ai))
e
. 2m,B.
b, = - g — (n.1)
/ﬁ—si cosh(4i,)
i
where
2/ wm,
Ai = - (rwrg)
;1—81

(rg is the position of ¢, at t=-= and B, 1s its velocity).
The charges, qi, and helicity, Ai’ of a soliton can Dbe
determined from the correspondence with the fermion

Lagrangian;
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1
a; =
oo

[ 3(r) dr. (4.2)
X is -1 {1) for an incoming (ocutgoing) positively
(negatively) charged soliton. Note that +the <charge 1is
normalized to one. We summarize the possible asymptotic

states in Figure 1.

J: R Charge Conservatiocn

In the absence of the Coulomb term the time evolution
of the solitons can be solved exactly until they reach r=0.
The solution is simply Eq.{¥.1} with r replaced by r-gt,

(where 8 1s positive for a soliten moving toward the

monopole). In fact even the behavior near r=0 is exactly
sclvable. This becomes c¢lear when we define a boson field,
¢i(r) r>0
¢i(r) =
¢i+1(-r) r<o for 1 odd.
(4.3)
This automatically respects the boundary conditions, Now we

have a sine-Gordon Lagrangian for all r.

A so0liton ¢i coming towards the monopole from r =« will
pass through the origin wunchanged and continue to move
towards r=-«, Acgcording to Egq. (#.3), a =seliton on the

negative r-axis should be Interpreted as a ¢i+1 type

soliton, which is obtained by a2 reflection with respect to

the point r=0,. Therefore we c¢conclude that the boundary
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conditions alone allcw the process ¢i + ¢ for 1 odd.

i+

In fermion language, this process corresponds to,
+ - . (4. %)

{We note that this process will NOT occur when the gauge
coupling constant is non-zero).

This is the process discussed 1in Ref. 10 and more
recently 1in Ref. 11. It is a ¢onseguence of the fact that
the helicity operator commutes with the Hamiltonian for a
gauge theory monopole, { even inside the core and even for
non-zero fermion mass), as long as only the magnetic
{meonopole) field is taken 1into account. In soliton
language, this corresponds to the fact that in +the absence
of a Coulomb term a soliton moves with constant velocity,
without changing its shape.

In the presence of the Coulomb term, the situation 1Is
completely different. In that case, a process like
Eq. (4.4) would leave a T3 charge on the monopole core,
changing the monopole into a dyon, and the Cculomb energy
due to that charge is inversely proportional to the size of
the core. This would violate <conservation of energy!
Therefore T3 charge will be conserved within the fermion
sector alone, as long as the kinetic energy of the fermions
is much less than the excitation energy of a dyon. Charge

(non) conservation in the field of a monopole has been the

subject of many recent paper-s.12
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B. The Selection Rule in the Massless Case

The allowed processes can now be derived wusing charge
conservation and the peculiar kinematics of J=0 fermions in
the monopole. According ¢to Fig. 1, a 3set c¢f incoming
fermions with total charge Q must have total heliecity -Q.
(Here Q@ is the sum of the qi's, defined in Eq. (4.2)).

Since charge is conserved we conclude, again using
Fig. 1, that the total outgoing helicity is +Q. Therefore
any process with total incoming charge Q must have a total
change in heliecity equal to 2Q. This is true in the massive
as well as in the massless case.

In the massless case, the only source of helicity
violation is the Adler-Bell-Jackiw anomaly, which requires a

very specific change in helie¢ity, S8H = nN for any integer

f!
n. (The anomaly manifests itself through the Coulomb term
because all helicity changing processes disappear if that

term is removed}. Therefore we obtaln the selection rule,

Q =1/2 n Nf ' (4.5)

where Q@ IS the total incoming charge and Nf the number of
SU(2) Weyl— doublets.

Since there has been much confusion about the role of
ancomalies, some clarification may be helpful, We

distinguish two anomalies:

{1.) It is well known that baryon number has an anomaly
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with respect to the weak interactlion gauge group SU(Z)L. The
kind of proton decay discussed in Refs. 1 and 2 g however
not due to this ancmaly. Effects of this sort should vanish

if MW + » and therefore we expect such effects to be small.

(2.} Chniral fermion number has an anomaly with respect to
SU(2)M, the subgroup in which the monopole 1s embedded.
Rubakov uses this anomaly to explain the presence of
chirality non—-¢onserving processes. In a2 theory with
massless fTermions, ' this anomaly 1{is the only source of
chirality violation. Baryon number does not have an anomaly
with respect to the weak interaction gauge group SU(2)M. The
source of B-violation is not an anomaly, but the fact that
in the core fermions with different B-eigenvalues are
combined into doublets. This is a consequence of the grand

unification.

C. Helicity Conserving Processes

The simplest case to discuss is n=0. In that case the

total incoming charge is zero and helicity is conserved,

(Such processes were first mentioned in Ref. 13.) In one
special case, this problem is exactly sclvable: if at some
time to all solitons have equal position and velocity. It

is convenient to consider the linear combination O(P)=2¢i(r)

and the Nf-1 combinaticns of flelds orthogonal to it. of

these new fields, only o is sensitive to the Coulomb term.
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But since o(r,to) = é(r,to) = 0, o{r,t) = 0 for all t. This
implies that the Coulomb energy plays no role in the problem
and we have a situation which we have already discussed. We
conclude that such a process will be a combination of
processes like that given in Eq. (4.4}, in such a way that
the total charge in the initial and final states vanishes,.
There 138 another simple way to arrive at the same
conclusion and that 1s the observatlon that in the absence
of a Coulomb term and a mass term, the Nf flavors of SU(2)
doublets in the original theory are completely decoupled

from each other. Therefore eac¢h incoming fermion can only

go to an outgoing fermicn of the same doublet. This allows
us to consider the case where both an "a" soliton and "b"
(anti) soliton are approaching the monopole. This

corresponds, in terms of the field ¢ defined in Eq. (4.3},
to two s80litons coming from r=« and r=-« and scattering at
r=0.

The possible processes of this type are,

.\ s _ - (4.6)

(4.7)

(Process (U4.6) can cbviously only oceur if there 1is an

(almest) simultaneous other process with a compensating

¢hange in electric charge). aE and b; are In different
doublets; b; is the anti-particle of bE and hence a; and b;

are also Iin different doublets. Thus Eqs. (4.6) and (4.7)
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are Just the superposition of two processes like Eq. (4.4),
The same results can be obtained wusing fhe well known

scattering behaviour of sine~Gordon solitons.

D. Helicity Violating Processes in the Magssless Case

The simplest helicity violating process has n=1, (see
Eq. (4.5)), and total incoming charge Q = 1/2 Ne. This
process can only occur Dbecause of the presence of the
anomaly and its selection rules can be obtained by means of
a 3imple extenslion of Rubakov's calculation1 to an arbitrary
number of flavors, (each Weyl doublet of fermions defines a
flavor),

If for simplicity we allow at most one incoming soliton

per flavor, then we obtain the following basic processes in

the zero mass limit:

+ - - +
wLi + ij > wLi + ij (4.8)
+ + + +
L T TU AR O S /A ,  (4.9)
L1T le RJT RJm
where m = 1/2 Nf and ia # jb for any a or b. (Hence
11"‘im’ Ji...jm are just a permutation of the Nf flavor
indices.) The first process conserves helicity, the second

is the simplest helicity violating process generated by the
ancmaly. Any combination c¢f these processes is of course

also allowed.
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E. Conservation Laws

The conservation laws for these processes have been
discussed recently by Sen.1” His conclusion is that any
charge Y 1is conserved 1if it satisfies the following

requirements,

{a) [Ta. Y] = a i € T (4.10a)
and

(b) Tr (Ta T, ¥) =0 , (4.10b)

b
where T is an SU(2) generator and o an arbitrary real
number. Obviously, T3 satisfies these requirements and we
have already seen that T3 is conserved.

The validity of Eq. (4.10) c¢an ©be demonstrated as

follows. For any charge other than T3, Eq. (%.10) implies,

¥ =Y - oalT with [Ta, Yl] = 0 . (4.11)

Therefore the upper and lower component of each doublet have
the same %. and hence § is conserved in proceﬁi (L.8). The
second condition, Egq. {(L.10b), implies that Z § =0, {(i.e.
Y has no anomaly with respect to SU(2)), ané=1hence it 1is

alsc conserved in process (4.6). Therefore Y and Y are

conserved in every process.
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Conditions (4.10a) and (4.10b) are satisfied 1in the
standard S8U(5) model for all Abelian gauged symmetries,
(¢color isospin, color hypercharge, electric charge, and the
weak Zo—charge), and for B-L. {Baryon number of course does
not satisfy Egq. (4.10}). Condition (4.1Cb) must be
satisfied for any gauged symmetry, because of the absence of
anomalies, but there may exist rather contrived models in
which Eq (4.10a) is not satisfied for some gauge charge. In
that case the Coulomb energy of such a charge has to be

included to enforce conservation of this charge.

F. The Allowed Processes for Non-Zero Mass

To obtain the complete set of allowed prccesses in the
massive case we have to ineclude the basic helicity flip

process allowed by the mass termn,

+ +
Y3 YRi . (4.12)

This interaction conserves all Abelian charges as long as

they are vectorial. (The Z_ -charge is not conserved by a

0
process such as Eq. (4.12). We will discuss this process in
detail in Section VI.)

In the massive c¢ase the allowed processes can be

completely specified by requiring the conservation of

1/2 Nf + 1 charges. These charges can be chosen fto Dbe T

plus a vectorial flavor charge asslgned to each of the

1/2 N pairs of doublets. In the notation of Eq. (2.3),
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" by
has charge +1, has charge -1.
bL 2y,
Conservation of these 1/2 Nf + 1 charges is a necessary

condition; whether it is sufficient will be checked in
Secticn V.

For Nf = 2, the only processes that can occur for any
number of incoming particles are uninteresting ones. They
can all be generated by the mass terms alone. The simplest

examples are,

+ N +
a4, 7 2R
al + b > ag * by
a; + bg > a; + b; . (4.13)

The anomaly contributes to the same helicity flip amplitude
as the mass term and it is not very relevant which of the
two is at work.

For Nf = LU, corresponding to one generation of fermions
in standard models, the situation is more interesting. In
Table 1, we list the processes with one or two incoming
solitons and at most one soliton per flavor. In general
there is more than one final state per initial state. Among
the final states there is always one which does not violate

any charge except helicity. Whether such processes dominate
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the other ones, {which all 1lead to viclation of baryon
number in grand unified models), is a dynamical question

which we will study in the next section.
Y. Numerical Results for the SU(2) Model

The results we give in this section are obtained with
the Lagrangian of Eq. (3.4) for Nf = U4, The Weyl doublets

are taken to be,

d L c L? (5.1)

where (a,bd) and (e,d) satisfy the boundary conditions of
£q.{3.3). The results depend on the following parameters,
~the initial positions ro and velocilties 80 of the
incoming solitons,
-the masses of each of the four soliton types,
-the coupling constant F,
-the number of points, N, and the total length, R,
and
-the time increments At used to solve the equations of
motion.
A1l results satisfy an obvious scaling law-—-they are

invariant under the transformation,
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m, for all i

BO fixed

At > n AL,

where N is fixed. This invariance is exact even for finite
a and At. Unless otherwise specified, we choose the
following standard set of parameters: mi = 1 for all i,

(compared to the length scale shown on the r-axis of the
plot), F = .1, N = 100, At=.003, and R is the maximum length
shown in the plots.

The parameter At must be sufficiently small to prevent
numerical fluctuations. The advantage of the Lagrangian of
Eq. (3.4) and in particular the faect that the boundary
conditions follow from the equations of motion is that the
total energy is exactly conserved for non-zero a and for
At + 0. Therefore unphysical, numerical fluctuations due to
a value of At which is toc large can easily be recognlized
since they lead to non-conservation of energy. In practice,
requiring that energy conservation is satisfied with an
accuracy better than .1% turns out to be sufficient to make
all results virtually independent of At. Such an accuracy

could be obtained rather easily.
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A, One Incoming Soliton
If the masses of the four flavors are chosen to be
+

equal, the heliecity flip process aL + a; is energetically

more favorable than aE > b; + c; + d; , which requires the
creation of two additional solitons. One c¢an try <fo
overcome this barrier by giving the incoming soliton a large
kinetic energy, but we have not been able to produce the
second possible final state in that way. What we find is
the appearance of "half-solitons™ which, according ¢to
Refs.{9) and (14) should occur in the massless (or extremely
relativistic) limit. This final state is shown in Fig. 2.
These half-sclitons, after they have moved some distance
away from the origin, choose to become an a; soliton rather
than three scolitons. (0f course, half-sclitcns can not move
out to infinity since that would cost an infinite amount of
petential energy).

When the three particle final state 1s made mcre
attractive by lowering the masses of b,c, and d with respect
to a, the third process does cccur. We have studied this
for mb=mc=md=.5 and ma=.5 My Wwith an incoming "a" soliton

with r0=2. As is shewn 1n Figure 3, the transition between

the two processes occurs slightly above the kinematice

threshold, B = v1 - u2/9.
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B. I ' MO N
. ncoming a; L

This is the preo¢cess that has been most extensively
discussed in the 1literature. The competition 18  here
+ +

between a proeocess that is due to the mass term; aE + bL +> ap

+ b and a process that is possible because of the anomaly,

+

Rl
+ + + +

a + b + C + dR' Since the mass term should become

L L R

unimportant if the so0liton 1is extremely relativistic, we
expect the anomaly induced Drocess to dominate at
sufficiently 1large velocities. We find indeed that a

threshold velocity, B exists above which the second

th °*
process, (corresponding to proton decay in the SU{(5) model),
and below which the first process, (helicity flip), occurs,
This threshold depends on many parameters: the relative
velocity and distance of the two incoming solitens at the
initial time, the distance from the origin, the masses, and
the strength of the Coulomb interaction. In Fig. 4, we show
an example of a preccess that 1is above threshold, for a

rather arbltrary choice of iInitial conditions.

In addition to a dependence on physical parameters, g

th
depends also on numerical approximations. The main effect
is the discreteness of the r variable. Since we do not
continue the Coulomb term to r = 0, the maximum of the

Coulomb term i3 finite even if the sum ¢of all fields at r =
0 is different from zero. Near the origin, the Coulomb term
grows as N2, where N is the number of lattice points for a

given length R. The threshold veloecity will therefore grow
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with N, and we have to investigate whether for N -~» =, R
approaches 1 or a value smaller than 1. (If the 1limit is 1,
we would coneclude that anomaly induced proton decay 1like
processes occur only in the massless theory and vanish for
any non-zero mass.15)

The dependence of Bth on the number of lattice points
is shown in Fig 5. The asymptotic value is clearly smaller
than 1. The approach to the asymptotic value appears to be
exponential as a function of /N, The threshold velocities
are obtained with an initial state —consisting of two
solitons at ro = 2, The threshold increases somewhat for
larger ro and has a very strong dependence on the initial
separation between the two sclitons. Clearly, for large
separation the solitons will scatter independently and
choose the helicity-flip mode. This is shown in Fig. 6, a

plot of B versus 6r, the spatial separation of the

th
incoming solitons, (both solitons have the same initial
velocity and their initial distances to the origin are 2 and
2+8r). Clearly, the separation has to be less than roughly
the inverse mass of the solitons for the baryon number
violating process to occur.

Finally; the threshold velocity depends on the strength
of the coupling, F. This dependence is shown in Fig. 7. A
realistic value for F (=g2/16w2) would be ~1O_3. To approach
that value in a realistic way we have to make sure that Erc

< F, wWhere rc is the core size and E the energy - of the

incoming solitons. If this condition is not satisfied, it
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is possible to excite dyon states. For SU(5) monopoles, Erc
<< F for any reasonable value of E. In our case, however,
rc is effectively equal to the parameter a, the size of a
lattice cell. It 1is impossible to make a extremely small
and therefore F must be restricted to values greater than
~.05.

Although Fig. 7 gives a rough idea about the behavior

of B for small F, the small coupling limit, (F—10*3), is

numerically inaccessible. The threshold velocities in this
figure are obtained with N=100; Fig. 5 shows that the
results for small F are more sensitive to an increase in N
than the ones for large F. In particular, the threshold
velocity for F = ,05 inecreases to a much larger value,

{(between .5 and .6) if N approaches the continuum limit.

) + =
c. Incoming aL + cH

This process is very simple to describe if a: and CR

are always at the same point. Then the Coulomb energy does
not contribute and the discussion of Section IV.B applies.

We conclude that in this case the final state will always be

+
b, + d

L R When there 1s a2 finite distance in phase space

+ -
between a, and ¢

L L? the Coulomb energy can have an effect and

force the final state to be a. + o

R L This will clearly

happen if the two incoming states have a large difference in
their arrival time at the monopole core,. An example of the
process aE *cp o * bL + d; is shown in Fig. 8. This process

occurs almost independently of velocity if the initial
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separation between the solitons is less than ~.8. For larger
separations the helicity flip process occurs.
D Inc i a+ v el

. ncoming a, e

Since there 1is only one allowed final state this

process 1is all ready completely described by the arguments
in Section IV.F.
E. I ing a, + b,

. ncoming L R

There is no new physics here: the possible final states

are trivial combinations of the ones discussed in section

V.A. The processes with double solitons in the final state,
(see Table 1), can be obtained by separating the arrival
times of solitons aE and b; and choocsing appropriate masses.

VI. The SU(5) Model

We consider the minimal SU(5) GUT with one family of
fermions in the [5]1 and [10] representations and Higgs
fields in the [24] and [5] representations. The vacuum

expectation value of the [2Y4] breaks the symmetry to SU(3) x

SU(2) % U{1) at a ascale MX - 101& GeV¥, thus producing

monopoles with a mass near MX/a The embedding of the

GuT”’
monopole into the SU(S) group and the transformation of the
fermions under the SU(2) group corresponding to the monopole

are described in the Appendix.
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As in the 8SU{2) model of Section II, each Dirac fermion
is replaced by a bosonic field which satisfies the boundary

condition,

o (r=0) = ¢d3(r=o) $.(r=0) = '¢d;‘”=°)

o (r=0)= ¢ (r=0) 6 (r=0)= - ¢ (r=0). (6.1)

% Y2 44 Y2

The derivation of the effective boson Lagrangian and
the inclusion of the Coulomb interaction terms requires more
careful thought than in the SU{2) model, In the Appendix,
we discuss in detail the bosonization of the SU(5) theory
and the construction of +the effective Lagrangian. We
ineclude a discussion of turning on the electroweak
interactions at distances less than 1/M_, from the monopole.

Z
At distances greater than 1/MZ from the monopole, the
gauge symmetry 1s SU(3) x U(1)em. As in Section III, we
discretize the Lagrangian and also enforce the Dboundary

conditions of Eq. (6.1). The effective Lagranglan is then,

(see Eqs. (3.4) and (A17)),

L :
L, = L - Lo, ¢, )
1 §i1 32423242 15 %23
+1/2(¢,.~0 )23
33 7H (6.2)
where ¢1 = ¢u ’ ¢2 = ¢u s ¢3 = ¢d ’ ¢M = ¢e, and g 1s the

1 2 3
SU(5) gauge coupling constant. (Note that we neglect all
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renormalization group scaling of the gauge coupling

constants).

At distances less than 1/MZ from the monopole, the
effective gauge theory 1is SU(3) «x SU(Z)L x U{1) and 1is
described by the Lagrangian,

L = L, + 3L R (6.3)

where 6L describes the couplings of the Dbosonic flelds to

the Z0 gauge field. In the AO = 0 gauge, the discrete form

of 8L is, (see Egs. (A15) and (A16)),

(] b, i 2 " g
6L = = e (¢, .~¢, ,)A + = (¢, ...~ ¢. )
2/TOm ge1  hd T337Trd a5ty 1,347 1,3
4 2 N .
2na .2 Z
- T (e, . .0, la_ .} - oica. ) . (6.4)
i=3 i!J+1 llJ P,J 82 J=1 P!J
N
1 Z 2
- — (A )
5 j=1 r,j
where Ar i is the ZO field in the r direction at a distance

r=ja from the monopole. (We omit the superscript 3 used in
the appendix on Au.)

In this gauge, the variables Ap,j can be Etreated as
dynamical variables and their eqguations of motion can be
integrated if the initial values of Ar,j and Ar,j are given.
Since initially the scliton is at a distance >>1/Mz from the

core, we can take Ar,j(to) = A (to) = 0, As soon ag the

r,J
soliteon enters the reglon r<1/MZ, the weak Tfield is

generated with the correct strength.
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This can be checked in the Ar = 0 gauge, in the small
coupling limit. This case was considered in Ref. 7, with

the result,

3
. g2 Jgls)
hy = 5 ds (6.5)
8wr Yy
e A O FE RO U T SUEE JOR
/TG 1 2
(6.6)

which can be derived from Eq. (A15) by ignoring the 1last

term. For free solitons with velocity 8,

6, = 8 6, (6.7)

i

which is valid if the gauge coupling {s sufficiently small.

. 1
The field strength in the two gauges, (Ar and AO

respectively) should be identical in the limit m - 0, B>1,

since the mass term breaks the gauge invariance of the weak

interaction. Using Egqs. (6.6) and (6.7), we can calculate
1

the integral in Eg. (6.5) and compare AO with the

dynamically calculated field strength Ar' For incoming

solitons starting at position we find that, in the

ro
limits specified above, the correct field strength is built
up for all radii smaller than r,, {we use M, = 0 here). For

larger radii, we do not get the correct field because of the
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initial condition A =
r,J

0, but this is irrelevant.
Alternatively, we c¢an remove the "axial" terms 1n the
current, (the é terms in Eq. (6.6)), in which case Eq. (6.5)
is exact and the results in the two gauges agree even for
finite fermion masses. We do not wuse Eq. (6.5) however,
since it requires a boundary condition at r=0, whieh is hard
to implement when the solitons are near the core.

In the next subsection, we describe a numerical study

of the Lagrangians of Egs. (6.2) and (6.4).

B. Numerical Results

At large r the theory 18 that of focur wuncoupled
solitons with the solution given by Eq. (4.1). The
effective discrete Lagrangian is shown in Eq. (6.2) and the
equations of motion are easily integrated numerically as in
Section V. However, when a distance ~1/MZ from the monopole
is reached, the Lagrangian of Eq. (6.4) must be used for
numerical integrations, as described above. We make the
simplifying assumption that the Z, interaction is turned on

0

with a theta function at r=1/MZ

The fermion masses are all taken to be egual and are

set equal to zZero when the Z0 interacticns are turned on.

This is because the SU(2)L gauge symmetry forbids fermion

mass terms in the Lagrangian.16

We take the coupling
constant F to be .1, although we find similar results for

. 05<F<1.
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The effect of the additional sftrocng and electromagnetic
Abelian Coulomb interactions on the physics near the core 1is
expected to be amall since the corresponding charges vanish
near the c¢ore, We find that even quantitatively there is
hardly any visible difference for F<.1. {(We use the unified
SU(5) coupling constant for all interactions.) 1In Figure 9,
we show the effect of these additional interactions,
f{Eq. (6.4)), on +the final state of the process u + u +

1R 2R

for F=.2, an unrealistically large value.

a.. + e
3L °L

The effect of the ZO field 13 equally small, but the
fact that we set mi=0 for r<1/MZ is more lmportant. We find
that solitons enter the region around the core very easlly,
but are scmetimes trapped within a radius ?/MZ. This happens
because the sphere at r=1/Mz acts as a barrier. At r=1/Mz,
the massless solitons moving away from the core have to
become massive, which ¢osts a finite amount of energy.
Often the solitons do not pass this barrier, but
non~topological radliation is emitted during the process.
After a while the total snergy o¢f the field configuration
within r=1/MZ drops below the threshold for production of
any of the allowed final states, and the massless sclitons
are trapped.

The monopole core is not left in one of the ground

states, but in a state with four oscillating soliton flelds.

The conserved charges of the original incoming seolitons are
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present within r=1/MZ, but not on the core. The correct
physical interpretation of this phenomenon in the full
quantum theory is difficult, but since it depends crucially
on the r-dependence of the soliton masgs near the c¢ore the

physical relevance {3 questionable.

Fa

Despite this phencmencn, the processes u1R+u2R+d3L+eL

—_ <+
T

and u1R+d3L+u2R+eL

can still be observed above a certain
velocity threshold and for small radial separations o¢f the
incoming solitons. For example, Figure 9 shows the final
state of the first process with F=,2 and 1/MZ=.5. We find
that Figure 6, showing Bth as a function of the separation,
is essentially unchanged. The threashold veloeity is in fact
slightly lower in the presence of the weak interaction
effects. A plot very similar to Figure 6 also describes the
threshold velocity for the second process mentioned above.
Below these thresholds we do not observe the helicity flip

process, but the phenomenon desc¢cribed in the previous

paragraphs.

The processes with one incoming scliton are expected to
proceed via an intermediate state of half sclitons, 9,14
which should materiallize into full solitons at rsT/MZ. The
half solitons are very easily visible, but we find that they

are more likely to¢ remain trapped than full soliton final

states. The three soliton final state is reached only for
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special choices of the four masses and a large velocity of
the incoming soliton, (e.g. m,=3., m.=1., ma=1., m“=;1; and
8=.9).

These results were obtained with F=.1 and 1/M,=.5. The
full range of relevant mass scales (from m, to MZ) can not
be studied numerically. It is however «c¢lear that the
results of this section will approach those of Section V if
we could increase MZ/me to a much larger value, so0o that the

size of the weak interaction region is much smaller than the

gize of a soliton.

VII. Heavy Flavors

Our results thus far involve only one generation of
fermions. Additional generations could be important since
they are coupled to the first generation by the anomaly. In
the massless «c¢ase this is evident in the selection rule
(4.5). (Notice that the helicity conserving processes are
not expected to be sSensitive to additional generations,
since they do¢ not proceed via the anomaly.)} However,if the
additional fermions are sufficiently heavy ,we expect them
to decouple.

We have studied the effect of additional heavy fermions
from extra generations by adding two selitons, e and f, to
the model of Section V. There are several ways to choose
masses for the six solitons (see, for example, Ref. 9), but

we have concentrated on Jjust one possibility. In our
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approach, the solitons a,b,c,d all have egual masses, and
the masses of e and f are equal to each other; but different
from the others.

The sclitons e and f are coupled by the boundary
condition at r=0, just as are (a,b) and (c,d). (In
realistic models, e and f could correspond to charm quarks).
We study the final state as a function of p=me/ma, with two
incoming solitons of type a and b, There are three possible

final states:

+ + b+ > + + b+ (1)
&y L~ %R R
+ +
> Cp + dR (2)
+ +
> eR + f‘R (3)
For po>»>1, (and sufficiently large velocity of the

incoming solitons), we expect to see final state {(2), since
the heavy particles e and f should decouple from the
problem, The system reduces then to the one discussed in
Sec, V.B. For obvious reasons, we expect final state (3)
if p<<1. If p=1, modes (2) and (3) are equally attractive,
and since the system is deterministic, the final state must
be invariant if the pairs (c,d) and (e,f} are interchanged.
In other words, mcdes (2) and (3) are not allowed, since the
system has no way of choosing between them, and therefore,

for any velocity, the final state will be (1).
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A numerical analysis 1is necessary to determine the
final state In a given scattering process. We find that
mede (2) is chosen for p>1.05 and mode (3) for p<.9% , for
incoming solitons a and b with rg=2, 8=.9, and F=.1. Thus
the system behaves very much like a four flavor system at
values of p rather c¢lose to 1, long before the heavy flavors
actually decouple. The details of the final state and the
threshold velocity are of course influenced by the heavy
flavors over a much larger range of p.

The region around p=1 has a very complicated structure,
consisting of many small intervals of p-values in which one
of the three final states is chosen,bordering on intervals
in which another final state 1is preferred for a given
initial state. There even exists an interval for p>1, in
which final state (3) is chosen Instead of (2) ,although (3)
requires the formation of heavier solitons.

This interesting region shrinks with 1increasing N,and
may disappear in the continuum limi¢t. Since this
fascinating phenomenon has no relevance for catalysis of

proton decay we have not investigated this in more detail.
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VIII. Conclusion
We have studied the interactions of fermions with a 't
Hoof t-Polyakov monopcle in a classical soliteon

approximation. Our results can be interpreted as c¢lassical
cross secticns for production of the different final states.
We find the dynamical thresholds for the occurrence of a
given process. The main features of these thresholds as
functions of several parameters are presented in Sec. V.

Before we summarize our main conclusions, let us flirst
discuss the 1limitations of this approximation. In the
absence of the Coulomb term, {see Eq. 3.4), our
approximation reduces to & system with exactly the same
physical content as the Dirac equation for fermions 1in the
field of a magnetic monopole. This is the system studied in
Refs. 10, 11 and 17, (apart from the physics at the core)l.,
Qur approach includes the Coulomb fields produced by the
quarks, which turn out to be extremely important, and goes
one =step beyond solving the J=0 part of the Dirac equation.
Therefore a calculation of the cross-section in the soliton
approximation 1is at least as justified as using the Dirac
equation for that purpose.

Quantum corrections are obviously absent in this
approximation, but that is not the most serious limitation,
In the SU(2) model, quantum corrections will presumably
modify the theta function thresholds by an exponential
tunneling behavior below threshold and a resonance-like

behavior above threshold. In any c¢ase, they will not
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suppress a process that can be observed classically.

The more serious limitation is the incomplete
description of weak and strong interactlion physies, which
can only partly be implemented in the SU(2) model. {We are
only able to ineclude Abelian interactions-- non-diagonal
interactions are beyond our approximation). Related to this
is the fact that we have only studied free quarks, ignoring
the fact that they are confined inside a proton.

Our main conclusions are:

1. A11 of the processes expected to occur in the field of
a meonopole, (see Table 1), have been cbserved, We have
understood which processes occur du€ to the presence of
the anomaly and whiech are due to the boundary
conditions at the monopole core. (See also Ref. 1U4.)
No processes have which violate electromagnetic charge
have been observed Tfor finite values of the coupling
constants.

2. The most important baryon number violating processes

for one generation which we observed are,

a. ugp * Upp e * dg
b. uyp * dgp > upp * e
. ujg ¥ Upp * o * dgy,
d. dgy - ez + U+ Ugp.

Processes (¢) and (d) can only occur above a kinematic
threshold discussed in Section V.
3. The inclusion of finite fermion mass terms in the

Hamiltonian does not affect the qualitative nature of
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the =scattering processes -—-- monopole catalysis of

proton decay proceeds as predicted.

¥, We have studied the dependence of the scattering
processes on the coupling constant, the velocities and
the spatial separation of the inceoming solitaons. The
main features are given in Sec. V.

5. We have included the additional weak, electromagnetic
and strong Coulomb energies relevant for SU({s)
monopoles, We find that their effect on the final
state is very small. The r-dependence of the effective
fermions masses due to the breaking of the weak
interaction symmetry {(or due to QCD-effects) is more
important, but less well understood.

6. Additional generations will not have an 1Important
effect on catalysis of proton decay.

Although a reliable estimate of the cross-section {or
rate) for catalysis is still lacking, we have not found any
effect that weould suppress it by many orders of magnitude.
Processes a and b of point 2 ocecur in all the circumstances
which we have studied. The occurrence of ¢ and d 1is more
sensitive to the (current or constituent) masses of the
fermions, and we do not have meaningful conclusions about
them,

A1l B-violating processes require the quark velocities
to be above certain thresholds. Fer a small (B~10—3)
relative velocity of the proton and the monopole, the

relevant velocities are those of the quarks in the proton.
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The cross section depends on the probability - determined by
the proton wave function - for the gquarks in the proton to
be in the right region of phase space for one of the
aforementioned processes, This 1s a complicated model

dependent question, which we have not tried to address.
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APPENDIX
In this appendix we derive the bosonized two
dimensional Lagrangian, inecluding all Abelian Coulombd

interactions, for the standard SU(5) model. The derivation
of the SU(2) part of the Lagrangian can be found in Refs. 1
and 2 and expressions for the additional Coulomb energies
are given in Refs, 2 and T. Since a ccmplete derivation
has not been presented before and since there are several
small differences between the available results, we think it
is useful to present our complete derivatlion.

We start from the SU(5) Lagrangian,

. .1 a pvb - LM
L m Fuu F + iwsY DuwS
I U
NIRRT AR (A1)
with D =3 + A
H H H
a
A = -ig A T
u lglla
a
Fuv = [Du’ Dv] = -ig FuvTa
and ws, by are left-handed Weyl-fermions in the [51 and
[10] representations. The normalization of the generators
is
- ab
Tr(T_ T,) = 5 C, & (A2)

with € = for the fundamental representation. The
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gimplest eg = 1/2 monopole i1s embedded in the su(2) subgroup

generated by

0
0
t. 1 :
0 (A3)
ALl other generators can be classified according to
representations of this su(2) subgroup. Since the

boscnization methed is not very suitable for off-diagonal
interactions, we have to restrict ourselves to diagonal

ones, These generators can be chosen in the following way,

1

M1 - 3 diag( 1, -1, 0, 0, 0)
1
M, = — diag(-1, -1, 1, 1, 0)
2 /—-u
;)
My - — ' Giag(1, 1, 1, 1, -4) (A)
2/70

We will only consider the J=0 part of the fermiona in
Eq. (AY). First consider the gauge flelds. We choose the
following parameterization, consistent with spherical

symmetry with respect to J=L+8+T,
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p=
II

0 e ¢ 3 Mo ]
0 ! o 75,10

where n=;/|r|, F(0) 1, and F(=) = 0,

When Eq. (A5) is substituted into

obtains,
3 . .
CqopRopeva o 1 3 w’; —,,dok)‘?]
T MY 2g
k=0
2
2F 0,2
+ ;E_ [Dfo)

This can be simplified if it is written in

notation,

M o= (t,r)
K K
Au = Oﬂbnﬂf)
I L O
TRY wowv

ILAB-Pub-83/U43-THY

(A5) ¢

the acticn one

)2 (46)

a two dimensional

(A7)

where our nmetric is (+, -)}). Then we obtain,
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3 2
-3 pK pUVK, EE§ 29,0V . (A8)

1 a pva
¥ 2 v
g~ k=0 M r H

7 Fy

This last term vanishes in the 1limit Mx+w, (zero monocpole
size), and will be dropped from now on.

Now consider the fermions. We are only interested 1in
the fermions that interact with the monopole. Since the

generators M, are SU(2) singlets, the fermlons in one su{z2)

k

doublet have the sgsame Mk eigenvalue,

Doublet: e d3 u2 u1
- +
d3 e u1 u2
Eigenvalue of M1 0 0 1/2 -1/2
J§M2 -1 1 0 0
JF6M3 -1 -3 2 2 (A9)

The J=0 form of the fermions is,

Lo e et v i(Tem

Y (A10)
al JEr al

i
aBEBE‘g :] ’

where o is the spin index, & is the SU(2) gauge 1index and
i=1,..0.,4 labels the four deublets in Eq. (A9).
Substitution of Eq.{A10) yields the following action for the

fermions,18
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4 -1 i v, 0 3 k. k i
s = -ifdr dt ¥} xyM(e + > e AVU-1 ) QAT yxo (A1)
. noo2 TRY ity
i=1 k=1
£ 0
where yx =( ).In this two-dimensional space we define Y =r3.
g
Y1=iT1, and Q? is the Mk eigenvalue of doublet k.
The bosonized version of the two dimensional fermion
Lagrangian defined by Eq. (A11) is,
b 4 3
1 2 k
L=5 1 (367 ¢+ oy a“¢i[%s UAU’O - Q?A ]
i=1 M YT i=1 i k=1 H
3 4
1 k,.2,k, uk
T (I (@) AP ] (A12)
k=1 i=1 s
The last term is necesgsary for gauge invariance.19 Its

effect is to add an extra A-dependent term to the

The conserved currents are,

4
b _ 1 TRY
J0 B 2/ & Bvi£1¢i
4
1 k
JE = —— 3% (Qy¢,)
f? i=1
b
1,H ky2
sl Loep)
i=1
Since the mass term would be rather awkward
bosonized form, it 1is convenlient te make a

transformation,

currents,

(A13)

in this

canonical
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bo = 1/2 (¢1 + ¢2) + 1/2 f(w1-w2)ds

o4 = 172 (¢1 + ¢2) - 1/2 f(n1 - nz)ds

L 1/2 (w1 + wz) + 1/2 (¢{ - ¢é)

Ty " 1/2 (ﬂ1 + Wz) - 1/2 (¢{ - ¢2') (A1 L)

and the same with (e,d,1,2) replaced by (uT, Uy, 3, 4).
With these transformations we obtain the following

Lagrangian, (including the gauge fields),

3 4
2 1 K .uv,k 1 2
L = 49r“[- —= | F_ _F 1+ = 1 (3 9,)
ng? k=0 MV 2 42 ¥t
3 .
ML T G L gl a3pv3 (A15)
T k=0 M T M
with,
o _ _ v
Ju = -1/2 € 3 (¢e t eyt ¢u1 + ¢u2)
1 v
J = =172 e 3 (¢ - ¢ )
y v u2 u1
R Veg -
Ju = = suva (¢e ¢d)
33 o e 3% - o) + 25 (o o+
2 M
¢u2 S P P N (A16)

The 1last term in Egq. (A15) 1is again necessary for gauge
invariance. The difference in these gauge terms between
Eq. {At2) and Eqg. (A15) is due to the transformations from

Lagrangian to Hamiltonian and back, which are necessary to
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make the canonical transformation of Eg. (A14).

o 1

The fields Au' Au, and Ai can pe eliminated from the

Lagrangian since their -equations of motion can be solved

exactly. (This is most conveniently done 1in the Ap = 0
gauge. Since the ac¢tion, after a partial integration,
]
depends only quadratically on AO' this wvariable c¢an be
eliminated as in Ref. 2). Then we obtain the following
interaction Lagrangian,
L=-——i—t(¢+¢+¢ O L I T
1 32w2r2 e ' d u, u, u, U,
1 2
N CIEI IR (A17)

The first term is the T3 Coulomb term introduced by Callan.2

This expression c¢an be made more recognizable by

writing it in the following way,

2
g 3 1 2 2 2 1
L. = L5 + = .+ = ¢ + = 3 ) + (— ¢ +
I 8w2r2 8*7e 3 "4 3 u, 3 u, /3 d
1 2 1 1 2
— (. o N+ (s b, -5 ¢, 7] (A18)
/3 M1 Y2 2 Tuy 2 T,
This can finally be written as,
a o .2 _ %s ‘1 $12 1 $12
L. = - (@ —2)° - [(5 25=2)° + (5 2, =2)°]
L 2p? emyg er? 2 b7 S

(A19)

where Qem is the generator of electric charge, A3 and 18 are
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the usual Su(3) matrices and ¢=(¢u1,¢u2,¢d3,¢e).
Furthermore, we have used the well known SU{5) relation e =
V3/8g.

3

The contribution of Ju’ (which couples to the Z boson),
can not be solved exactly, (this is due to the second term
in the expression for Jﬁ (see Eg. A16), which 1Is present
because the correspcnding fermion current in four dimensions
has an axial vector ©part). We discuss this problem in

Section VI.
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Table 1. Possible processes for Nf=u; The pairs (a,b) and

(¢,d) are coupled at r=0. These pairs can represent (e ,
d,) and (u,, u,)}) or any permutation that does not alter the
1) Non=-zero mass,

pairing. The mechanisms are:

2) Adler-Bell-Jackiw anomaly, 3) Adler-Bell~-Jackiw anomaly

and non-zero mass, and 4) Boundary conditions at r=0.

Process Mechanism
+
I. aR 1
- + +
bL Cp dR 3
+ + *
II. bL ap bR 1
+ +
cR dR 2
ITI - * - 1
. Cp ap CL
- +
bL dR 4
+ + +
1v, CL aR cR 1,2
v b M 1
: R ~ 2R L
2a e L 3
+
2b o] R 3



a)

b)
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FIGURE CAPTIONS

Solitons corresponding to the possible asymptotic

states.

The helicity flip process a;+a;. The incoming
soliton az has a velocity B=.995 and all eof the
spolitons have mass, m,=1. The units on the

1

vertical axis are /m. The zeroc points for a,b,c,
and d solitons have been shifted vertically by
1,3,5, and T units, respectively. The time cof
each picture 1Is shown in the wupper 1left-hand

corner, This figure shows three half solitons

+

evolving into an ap soliton. of Eq. 3.14.

. . + + + - + +
The transition between aL->aR and aL+bL+cR+dR. The

solid line shows the kinematic boundary and the
cross hatches the threshold determined by the
fermion-monopole interactions. Below the c¢ross

+ + -
hatches a.»a_ and above them a, +b +c++d+. u=ma/m

+
L "R L "L "R R b
m

and m_=m_= is the minimum veloecity for

b=0c=Myr Bep

hich a’ +b, +c +d.
W [#] aL L CR R.

The proton decay process az+bz+cg+d;. The incoming

solitons are traveling at 8=.9 and are initially
separated by a distance d&R=1/2. (In the 8U(5’)

model, this process corresponds to

Uy tuyregtdap.)

The dependence of B8 on the number of lattice

th

points N. is determined for two incoming

Btn
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solitons (az+bz) traveling together.

The dependence of Bth on S8R, the Spacial
separation of the the incoming solitons. (This
figure is derived for incoming a;+b;).

The dependence of Bth on F, the coupling constant,.

{This figure is derived for incoming a£+b;.)

+ - - + . \
aL +oR +bL +dR. The incoming sclitons are

traveling at Bg=.9 and are initially separated by a

distance 6R=1/2.
d3L'

incoming solitons are traveling at f=.95 and are

Final states for the process u1R+u2R+e;+ The
initially separated by a dlstance &R=1/2. The
solid lines include the su(2) Coulomb
interactions, (Eq. 3.4), the dashed lines include
also the QCD Coulomb interactions, (Eq. 6.2), and
the dashed-dotted lines include both SU(2) and QCD
interactions plus the effects of turning on the ZO

interactions, (Eq. 6.4), at r=.5, The coupling

constant F is .2.
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