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qq wave function at the origin and a) the inverse density of states of
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He show that the square of the Bethe-Salpeter wave functiou at the

origin is given approximately for 1~ states by
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for M, > an, vhere

B(v) = (&msfiiv){l -exp{—#ta./liv)]

is the usual Coulomb factor and g{v) =1 is assoclated with the lowest
order gluonlc radiative cotrrections. We preseant numerical evidence for
the remarkable accuracy of these relations, which have important

implications for the use of nonrelativistic potential models to describe
quarkonium systems. We also discuss some subtleties in the v and ¢

dependence of corrections to leptonic widths.
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I. INTRODUCTION

The square of the Bethe-Salpeter wave fuaction at the origin is an
fmportant quaantity for qq systems. For example, it appears in
expressions for the leptonic and hadrounlc widths ré+e_ and T3z for 1 -
states, and the hadronic widths st for the 0 states. The leptonic

width for the decay of 17 states which will appear later in this paper

is given by

161&2e 2

S8 1y 0,0012(1-8) - (1)

r (efe?) = -

Here a is the fipe structure coastant, eq i{s the quark charge in units
of e, and ¥ = an+Ean 1s the total energy of the qq or ete” system.
xns(s,O) is the large-large S-—state component of the Bethe-Salpeter
two-fermion wave function for zero space-time separation of the quarks,
and A corrects for D-state, small-small, and (kinematic) relativistic
effects left out in the large-large approxinatlon.1

The function 1“3(6,0) 1s frequently treated theoretically by
replacing the full Bethe-Salpeter interaction kernel by an appropriate
tnsénntaneous interaction (the Salpeter approximatfon). This reduces
the Bethe-Salpeter equation to s relative-time-lndependent Salpeter -
equatlon. xns(a,ﬂ) {s then written in terms of & first approximation
!:;1(6) snd 8 factor which corrects for the retardatioo and gluonmic

radiative effects omitted in the instantaneous approximation,

+ >
ln5€0,0012 = 19581 (0)12(1-87p) . (2
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The definition of A; in this expression depends on the scheme used to

. >
!rel; only the complete function {(0,0) is unique. Because
Xns

determine
of the difficulties lovolved in constructing and solving relativistic
models for qQ systems, the relativistic wave function 1:51(6) is
usually approximated i{n phenomenological studies of quarkonium by the
solution ¢:g“'°1((3) of a Schtsdinget equation with a potential
adjusted to fit the observed spectrum. It s therefore of considerable
importance to explore the relationships between an(B,O) (or an
appropriately defined ngl(a)), and the Schr;dinger wvave function
¢:§°te1(3) or other better understood quantities.

in two teceat pnpers,l'z we discussed the calculation of the
leptonic wldtﬁ T;(e+e“) in detail (Eqs. (1) and (2) appear as Eqs. (57)
and (58) in Ref. i.) We showed that for nonsingular interactions the
Salpeter wave function 1:51(3) 1s siaply related to the Schradioger
wvave function ¢:g“'°1(3) calculated with a potential which fits the
exact relativistic spectrum. We thea used a duality argument and a
conjectured extension of this result to the case of potentials with &
color-Coulomb singularity to estimate the “radiative correction” A; to
the leptonic widths of 331 states in charmonium and b-quarkonium to
O(ai), wvhere a_ is the strong coupling counstant. In the present paper,
we will extend our earlier results to the case of singular potentlials,
and demonstrate the remarkable accuracy of our relations numerically.

The plan of the paper is as follows. 1In Sec. II, we review some
background; the relatton of l!nS(O)l2 to the fnverse density of states
for either relativistic or nonrelativistic systems with nonsingular
{interactions, the resulting relation between !Y:;I(D)lz and

|¢:gnre1(o)|2' and the extension of the noncelativistic relation to
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singular potentials. In Sec. III we preseat aumerical tests of our
relations for a relativistic oscillator interaction, and show that they
are accurate to a few percent even for highly relativistic particles.
In Sec. IV, we extend our results for the relativistic wave function to
the physically interesting case of potentials with color-Coulomb
singularities, and again demonstrate their validity numerically. Ta
Sec. ¥V, we discuss the calculation of &, 1o Eq. (1), and the relation
of &, and A; to the QCD perturbation expansion for the ete”
annihilation cross section. We sunnarlie our principal results in

Sec. VI.

II. BACKGROUND

We begin by recalliog that |¢:§nre1(0)!2, the equare of the
Schrodinger wave fuanction at the origin, is related to the laverse

density of atates dEnldn in the JWXB approximation by3*7

2
m dE
vnonrel. o

nonrel 2.4
logel® « vl 3

where v s the velocity of a free quark with kinetic energy

1
5 [Egv (@],
vacarely [¢g v (o)/a ]V, )
and the coaflining potential Vc(r) is assumed to be nonsingular at r=0.

Io Ref. 1, we derived a relativistic analog of Eq. (3) for the Salpeter

wavefunction for an instantaneous qq interaction,
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rel 2 Wgove &
16:2 dn

(5

where v:el 1s the velocity of a free quark with total enmergy Ha -

[

%[%—VC(O)], M, = 2a.+ B, and

2
- 4m
v:el - [1 _ __’%]1/2. €6)

The existence of such a relation for the relativistic case had been
conjectured but aot proved by Tatnov.8 Again, the interaction wmust be
nonsingular at the origin for Eq. (5) to hold, as thias result was
derived by making the JWKB approximation on a “relativistic
Schrdinger™ reduction of the Salpeter equation correct to O(VZIcz).
For nonelngular potentials, then, we caa use Eq. (5) to relate
I!rgé(O)lz directly to the measurable quantity dM /dn; or we can
conbine Eqs. {3) and (5) to relate |!:§1(0)|2 to the Schrodinger wave

function I¢ns“°“u1(0)l2 corresponding to the sane measured spectrum,

) w2 rel X

rel - 0 o nonre 2

lyest (o)l q mhns (0I*. N
n

We emphasize that a givea spectrum fa generated by different

interactions in the nonrelativistic and relativistic cases. We are not

concerned with the more familiar problem (e.g., fu QED) of relating
»
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relativistic and nontelativistic wave functions for a fixed

interaction.

If Vc(O) = O for both the relativistic and nonrelativistic cases,

we cas write the factor in Bq. (7) as

2 rel
“ v E E
n n - n n,1/2
;’3’ :;__nom a+ ‘:z'u_q) (1+ FIT;) : ®

This is alvays greater than unity for E, > 0 (as for a sonotonically
rising confining potential), so that I!:gl(O)lz is slways greater than
lt:g“rel(O)lz. The physical reason for thip is that the relativistic
kinetic epergy in the Salpeter equation is less than the

nonrelativigtic kinetic energy,
2,.2\1/2 _ 2
2(p%4uy) 2, < p°/my . (9

As a result, for s fixed spectrum, the relativistic potential energy
must be larger than the nonrelativistic potentlial energy, and the
relativistic wave function is more tightly confined, hence larger at
the origin.

Ia Sec. ITII, we preseat numerical tests of Eqs. (5) and (7) for
the spinless oscillator potentlal which demonstrate that these
equatioas are accurate to a few percent even for highly relativistic
particles. We also test Eq. (5) for the oscillator interactlon with
vector coupling (a strongly spin-dependent case). Although spin
depencdeace was not bullt into our derivation of Eq. (5), the results

ate agaln excellent.
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Since realistic qq poteutials involve a singular color-Couloab
component, Eqs. (3) and (5) cannot be used as they stand for the qq

9

system. However, Bell and Pasupathy’ and FrUman and Fromanl®:1l pave

extended the nonrelativistic relationship to the singular potential

V= —4% ®y t-l + Vc(r), vwhere ag is the strong coupling constant and

the coafining poteantlal Vc(r) is again nonsiongular at the origia.

Their result for zn-vc(0)> 0 is

2
dE
nonrel r nenrel, ™3 _nonrel “'n
I¢05 (o)l F(vn ) ZF a = (10)

where vnnourel is given in Eq. (4), and F(v) 18 the Coulomb factor

& -
P(v) = 14§o010mb(0) |2 o T8 [1-exp(-4ma /3w ]} ()

Thus the ounly explicit effect of the extra color-Coulowd interaction fs
to wultiply the original formula im EZq. (3) by P(vnnonrel)’ though
there is an faplicit change through the change 1in the spectrumn and

dEn/dn. We will derive a relativistic generalization of this result in

Sec. IV.

For E-V_(0) < 0, ve can use either the phase integral method of

10

Frman and Friman ~ or a modiffcation of the Bell-Pasupathy procedure

to obtsin the alternative expressionlz

2
a o “ dE
l¢_onTel (5312 ';l n“, E, -V (0) <O . (12)
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This result 18 exact for a pure Coulomb poteatial, and coanects

smoothly with Eq. (10) for Enfvc(O) + 0.
ITII. KUMERICAL TESTS OF THE JWKB RELATIONS FOR OSCILLATOR POTENTIALS

The expression for |¢:§nre1(0)|2 for nonsingular coufining
poteatials given in Eq. (3) has been tested by a number of aur.hors,13
and 1s quite accurate. We will therefore concentrate on tests of the

relativistic relations in Bqs. (5) and (7).

We first consider a spinless Salpeter equation for a qq system

with an oscillator interaction,
(2 @2 + D)2 - we 22t ¥ - 0, (13)

-
vhere !(ﬁ) is the Salpeter wave functicn in momeatua space, and we have

expressed p, a_, M, aod ¢! in units of klla, with k the spring

ql
constant of the oscilllator. With the substitutions r2 > -v: and

. | -Zuq+£,ue obtain the differential equation
[; vZ+e- (294 .:)”2 - 2a)) ¥(P) = 0. (14)
The wave fuanctions are of the fora
L) = oSN TP (15)

with the normalization
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1

P f 1255t (2212 p? dap =1. ' (16)
x

The S—state wave functions at the origin in coordinate space are given

by

1
(2x)

wrel(o) =

N O ;—}ﬁ [ o5 erpiap- an)
x

We have solved Eq. (14) numerically for =g w 3.276 and =y = 1.310
(values chosen to peruwit later comparison with spin-depeadent
calculations of Hostler and Repkol‘). Our results for the S-state
spectrum and the exact wave fuoctions at the origin are given in Table
1. We have also calculated the JWKB prediction for I!ngel(O)I2 using
Bq. (5) with dHnIdn {or dandn) calculated from a cubic polynomial fit
to the n-dependence of the spectrum. The predictions for |!:§1(0)I2
given in Table I are in excellent agreement with the exact results even
for a=l. The uncertaiaty in dHnIdn i3 on the order of one percent, as
judged by compariag results for quadratic and cublc fits to the
energies, and 1s essentially as large as the errors in I!:§1(0)|2. Ve
no;e that the case " 1.310 is quite relativisitic with ground-state
quark velocities v = 0.79 at the origin and v ___ = 0.65.

In order to test the relation in Eq. {7), we need Schridinger wave
functions for a potential which has the same spectrum as the Salpeter
equation, Eq- (14). We can coavert Eg. (14) imto the desired
Schrodinger equation without changing the eigenvalues E by the

substitution P + (uqll)llz t, and find that ¢nonre1(t) satisflies the

equation
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(2 v2 + 2 - W(0)) o0"relE) - o, (18)
q
vhere

() = ( an rz + &ug)lfz - qu {19a)

1 2 2
et P (19b)

vz, _ 2

( an) ' 4 an, r° > an . {(19c)

The Schrtdinger potential V(r) is always less confinlng thaa the
oscillator potential % r? used in the Salpeter equation, in agreement
with the physical argument following Eq. (B).

The potentials and the (identical) epectra for Eqe. (14) and (18)
are shown {n ¥Fig. 1. The expected trend toward closer spacing of the
eoergy levels as V{r) apptoaches the linear potential in Eq. (19¢) 1is
clearly evident (Ens « (g - ;)2I3 for the high states i{n a linear
potential, while E_o =(n - %) for the oscillator).

in Table II, we compare the exact values of the Salpeter wave
function at the origin with the values predicted using Bq. (7}. The
agreement is excellent; wvith & maximum ecror of 3.3% for the n=1 state
{n the highly relativistic system with m_ = 1.310. We note that the

q

conversion factor (H% vnrelf&ug v:onrel) 1s 1.22 even for the least

relativistic state (a=1, " 3.276), and is quite large for the more

relativistic states (5.33 for o=4, m

q = 13D
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In the last column of Table II we give the Schrvdloger wave

function at the origin for the nonrelativisitic oscillator problem

1 .2 1
SRS r?] ¢°"(¥) = o, (20)

the nonrelativistic limit of Eq. (14). The Schrudinger wave function

i3 only a reasonable {(10Z) approximation to the Salpeter wave functlon
for the n=1 state with B, " 3.276.

As 3 separate, somevhat more realistic test of our relations in
physical problems, we have used Eqs. (5) and (7) to predict |!:§1(0)|2
for the 381 gtates in the problem studied by Hostler and Repko.l‘ Those
authors solved the {large-large) Salpeter equation exactly for am
oscillator interaction with vector coupling. The results are stroogly
spin-dependent. {(The splitting between the 135l and 115o states for
the case L 1.31 is 30T of the spin-averaged S-state energy vhile the
splitting between the 1390 and 1392 states 1s 35T of the gpln- averaged
P-state energy.) Nevertheless, as shown in Table III, Eq. {5) glves
excellent values for IY:;I (0)12 1n terms of the 351 spectrum. The
predictions for the square of the 1So wave functioa at the origin are
of comparable accuracy. This is not a trivial result, since the 351
and 1‘.So spectra and wave functions differ signiflcantly.u We therefore
coaclude that EBq. {5) 18 more generally valid than the derivation in
Ref. 1 would suggest.

We have also made a rough check of the relation in £q. (7) between
the relativisitic and noarelativistic wave functions for equivalent

potentials by obtalning best fits to the spim-averaged Hostler-Repko

spectta uslng Schrodinger potentials of the form V(r) = Kz¥ and similar
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forms. Although we could not fit the relatiyisltic spectrum_precisely,
the results vere reasonably good, with errors of 10% and 15% in the
ground state wave fuactfons for = 1.310 and 3.276, and errors of
less than 3% for the n=2 and n=3 gtates. The accuracy of the results
‘fot the excited states is especially striking in view of the very large
conversion factor in Eq. (7). We are therefore couflideat that proper

splo-dependent fits to the Hostler—-Repko spectra would lead to results

as accurate as those in Table II.

IV. RELATIVISTIC EXTENSION OF THE COULOMB CASE

The relation in Eq. (10) between |¢:gnre1(o)i2 and the inverse
density of etates Ffor potentials with Coulomd slngulaflttes was derived
by Bell and Paoupsthy’ using a modified JWKE argument ind'by Froman and
?tﬂnnnlo using a phase integral method. We will use the Bell-Pasupathy
sethod to derive a relativistic extension of Eq- (10), but note that
our assumptions could be weakened somevhat f{n the phase-integral
approach.m’l1 )

The Bell-Pasupathy téchnique is based oan the assumption that the

exact wave functiou in the potential
bag
V(r) = = 5+ Velr), V.(0) flnite, (21)

can be approximated by & pure Coulomb wave functioa for the shifted
eaergy E-VC(O) for r small, and by the JWKB wave function for the full
potential for r large. By matching the Couloab and JWKB vave fuactions

at iantermediate r where Vc is relatively unimportaat, they coanstruct a
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phase—~shifted JWKB function which is a valid solution of the
Schrddinger equation from the matching point out. This corrected JWKB
function is then normalized. The normalization depends primarily om
the behavior of the wave function In the outer reglon where the full
potential acts, and is insensitive to the form of the wave functioas
very close to the origin. The Fesult in Eq. (10} 1is then obtained by
continuing the normalized wave function to the origin using the exact
Coulomb functioan.

The essential feature of Eq. (10) 1s that the effects of the long
range confining interaction Vc(t) appear only through the inverse
density of states. The extra multiplicative factor relative to Egq. (3)
is calculable using only the color—-Coulomb interaction. This relation
has been tested aumerically for the Coulomb-plus-linear poteatial by
Bell and Pasupathy, Table I in Ref. 9. We give a gimilar test in Table
IV using a different fit to the spectrum En.ls Except for the grouand
state, which is not expected to be well described in the JWKB
spproximation, Eq. (10) glves excellent values for I¢2§“r°1(0)lz. An
analytic test of Eq. (10) for the exactly solvable Rulthén potential
vas given some Cime ago in a different coatext by one of the authonl6
aod has been repeated receatly in more detail by Froman and Fru-nn.lo
again with excellent results.

Our exteunslon of the Bell-Pasupathy analysis to relativistic qg
systens involves some subtleties which are not present in the
nonrelativistic problem, but the priaciple of the analysis 1s the same.
We divide space fato two regions, t > l;lnnd r< -;1. and treat these
separately. We suppose that the qq Interaction is adequately described

in the outer reglon by the instantaneous Coulomb-gauge futeraction in
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Eq- (21), and will ignore possibdle long-range spin-dependent effects.
The dominant S-state part of the Bethe-Saléeter wave functlion for t=0,
r > 1;1 is then given by a solution of the instantaneous Salpeter

egquation, Ius{f.O) - !:El(r), where

(2 (92 + w2 -, + v(0)] 138N - 0. (22)

In the inner region, we muat also include the retardation and spin-
dependent effects associated with transverse gluons in the calculation
of y. Our objective, following Bell and Pasupathy,9 1s to copstruct a
normalized JWKB solution to Eq. (22) for the full potential, match this
solutlion at an intermediate value of r to the solution of Eq- (22) for
s pure color—Coulomb potential, and then continue the result through
the inner region to t = 0 to determine x(¥,0).

We will begin by considering the outer reglon and determining the
normalization of the JWEKB solution of Eq. (22). It is conveulent for
this purpose to reduce Eq. (22) to Schrydinger forn.}” We define the
tadial wave function un(r) and an effective potential Veff(r) as in

Ref. 1, Eqs. (45)-(47),
o(r) = 82 w(o) 11 - L, (23)
q

Vegr =V - I':T (g2, (28)
q

where V(r) is the potential in Eq. (21). After expanding the square
root i{n Eq. (22) acd iterating the resulting equation, we obtaln a

Schrddinger equation for w“(r),
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2
di’:i. vo(€) + m (B T v (r) = 0, (25)

which s valid to order vZ/cZ in the region in which [v(r)lknql<<1. Ve
can solve this equation in the JWKB approximation except near thes
Couloab singularity, and can match that solution sacothly for
Vc(t)(ﬁc’/3r to a solution of the pure e¢olor-Couload prodlem (that is,
a solution of Eq. (22) with V¥{(r)= —ka’IBr ) by incorporating an
appropriate phase shift in the JWKB function as discussed In Ref. 9.
{¥We assume that Hn - Vc(O) > an 8o that we can use free Coulosmb
wavefunctions.)

To determine the normalization of un(t) or w (r), ve add a2 smail

delta function perturbation to veff in Eq. (25),

Veff hd Veff + lb(r-ro)- (26)

This induces a discoantinuity of height -qh in the logarithaic

derivative of un(r) at r=r_ and therefore changes the asyaptotic phase

Q

of wn(r) by an amount ¢,

e - —nql S . (27)

Here

w(r) = <P_(";7)1’2 sina(r) (23)
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1s the unperturbed JWKB solution to Eq. (25), with the usual JWKB phase
A(r) shifted by $(E) to match smoothly to the Couloab wave functioa for

small r,

£ 1/2
Mr) = | p(r) dr + $(B), p(r) = [m (B-V,¢e)™'%, (29)
Tain

and p is the relativisitic somentum of & quark with total energy
1 1
A T T Ay

The extra phase £ changes the JWKB quaatization conditfoun from

T

nax 1/2 : ]
x o(E,) = #(E) + w12 { . (ByVoee) /2 dr + T = um,
a=1,2,... (30)
to
‘ln(!'.n) + €= xn . (31)

Since o is fixed for a given state, the energy eigeavalues £, must
change as a result of the perturbation by an amount BEn determined by

the condition

da(E)
* g€

8, + ¢ = 0. (32)

Ege. (27) and (32) give one relation for L

2
s = :ﬁ sin A(to) de, ] 33
o z p(ry) do
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We can obtain a second relation for 8E, using first order

perturbation theory. Because the effective potential in Eq. (23) is

energy-dependent, the calculation differs somewhat from that in Ref. 9.

We find that

- ‘C
1
8E J'0 H,z,(r)[lfi;; (E, + _ﬁ_! -9 ] dr = x VA() - (34)

The normalization condition for the Salpeter wave function un(r) is

given to order vi/c? byl

- L 4‘
2 -l = 1 8-
[, va(x) dr =1 = ¥ I vi(r) 1+ b e S

2a -
1 4a
x N3 v r) [+ — s _
[y ¥ale) I Zng (Bg + 53~ Vo)) O (35)
Cosbioing Eqs. (34) and (35) in the JWKB region, we find that
(36)

an A
8 a W m sin A(to)_
The normalization constant N is related to dznldu by Eqs. (33) and

(36},

de
My % N
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If Vv.(0) $£0, ¥ should be replaced by My = M -V (0), and p changed
accordingly.

We next observe that, by construction, the JWUKB wave function

connects smoothly with the exact solution of Eq. (22) for a pure color

Coulomb interaction,

“n(t) - EIIZ ugoul(r)
= (axm/2 ¢ yZeul (ny,

-1
Vc(r) - vc(O) < &a'ISr, T >a . {38)

HBere !g°"1 iz the Salpeter Coulomb wave function for energy e, —VC(O),
with the usual plane wave normalization, f.e., ugoul (1) goes
asymptotically to a sine wave of unit amplitudes for r + =. This
function (which we recently constructed analyttcallyla) gives =
solutiocn of the “free” Bethe-Salpeter problea (the problenlin which the
conflniog {nteraction is neglected) for r >> nq'l, and, with a proper
phase shift, counects smoothly for r ~ 1;1 with the “free” solution
1§ree(t,0) valid 1o the faner tegion r < -q-1_19
We cooclude that the full Bethe-Salpeter wave function xns(r,O)

caa be approximated smoothly for differeant (overlapping) ranges of r by

1 JWKB
Xos(T,0) ~ T u (c}y *o>r_, (39a)
Bs (&ﬂ)ér n °
= 07295 (ry, wl<r<r, (391)
- 8172 x§7*%(r,00, 0<Cr< -q‘1 . (39¢)

vbere u 7"<P(r) 1s defined tn Bq. (23), and r, La the JWKB-Coulomb
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_1 _
matching point, g < r, vith ¥ (r,) VC(O) <‘4a.13r°. If we.

evaluate xns(0,0) using Eqs. (39¢) and (37), we find that

lxg5(0,0312 = wl xEree(o,0y12

= ;%ngree(o,o),z %‘; . (40)

To complete our derivation of the relativistic generalization of
Eq. (10), we need to determine |x£7°2(0,0)12. We observe first that
the square of the exact, properly normalized Salpeter Coulomb wave

function for r ~ n;I involves an overall factor'®

2 2 4xa -
PopvTely @ B 80 _exp(edma /3977l (81)
&x 4xn 3vre1 s

This factor, vhich esets the scale of xsree(r,O) at r — -;1 is just the
square of an otdinary Coulomb wave function at r = 0. The

characteristic dependence of P(vrel) on a'/vrel is associated with the
longer range {infrared) part of the Coulomb interaction, and cannot be

sodiffed by short range effects as r + 0. The function ngree(O,O)l2

muast therefore coatain F(vr°1) 48 an overall factor, and must be of the

form

2
Ixfree(0,0)12 - 5? reviehn 4 0(a,]- (*2)



Perturbative calculations of ngtee(D,O)lzfor 1~ states, or

equivalently, of the croes section for e'e™ + qJ, 20,21 give

2 2nx 16a
free 2 P 1 _rel 2 s (] rel 2
0,0)12(1-4) = - + - +
lls (0,0)| “(1-4) -I;(l 3" Y[l Jorel 3 g ") + 0(a)]
where A {s the correction defined in Eq. (1) andl’z
g(v) = 1 + 0.046v - w(1-v)? ' (54)

is an accurate approximation to Schwinger”s exact exptession.zo’zz The
factor (1- ;. vfel 2y {4 pq. (43) may be identiffed with (1-A) as will
we discussed in Sec. IV. The first two terss in the remaining

expression are just the leading terms fa the expansion of the expected

eoslor-Coulomb factor,

dxa -
F(vel) - __;i% - eXP(—dﬂusl3vte1)] 1
v
2za 2%
el + %+ 824, ., (45)

3vre1 3 3vrcl

while the third cerm evaluated for v = 0 (g = 1) reproduces the

radiative correction to bound state decay widths calculated by a nuamber

of author|23

l6a
rp= ¢ 11 - 2+ oady) . (66)

(43)
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We coanclude from Eqa. (42) and (43) that

16a

2
Ixfree(0,0)12 - :_: reveeby - ﬁ! g(v"1) + o(adyy , (47)

Hn > z-q.

The Coulomb factor F inp Eq. (47) is in fact knovn to sum the leading
terms fo a /v i{n the perturbative calculation of o(ete™> qq) or
|xs(0,0)12; see, e.g., the discussion given by Pogglo et 51.2‘ Ia
addition, Celmaster?? has shown that the “radiative correction”
161.3[31 is specifically a short-range effect, consistent with our

argusents above.

Finally, coabining Eqs. (40) and (47), we obtain our relativistic

generalization of Eq. (10) for 1~ states.

163-

2 1 M 1 M
Ixg(0,0)1% = P(v™®h) o wFt _2n1 - e

1 2
g(v*%H) + o(ad)],
16:z " da : .

M, > zuq. < (48)

1f v .(0) ¥ 0, M, should be replaced in this expression by M -V (0), and
the relativistic velocity vtel modified accordingly. We coanjecture but

have not proved that Eq. (48) should be modified for Hn < an to

G.Hi dHn l&a.

Ixg5(0,0)12 = Tr g (1~ o+ Otad)] - (49)
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The two expressions connect smoothly for vrel + 0 and agree with
Eqs. (10) and (12) in the nonrelativistic limit.

These results can be generalized to different spln-parity states
by using the Coulomb factor for anonzero angular momentum, and changing
the relativistic and radifative correctlion factors to those appropriate
for the procesa of interest.

In Table V we present & numerical check of our results. We have

calculated the solutions to the Salpeter equation, Eq. (22),for the

potential
() = - ; +br (50)

for &« = 0.25, b = 0.18 cevz, and ay = 1.45 GeV (values la the raunge

needed for charmonium) and divided the results by the solution of the

18

Coulomb Salpeter equation™™ at small r. The ratio of the two wave

functions for r + 0 should equal the spectrum-dependent factor 1n

Eq. (48),
2 T e
P 1.2 . viet 2, (51)
11w a1 Yas () / Yol el * @

We see from Table V that the agreement of the numerical and theoretical
results 1ls excellent. The remalning arguments needed to justify the
transition from Eq. (40) to Eq. (48) depend only on the separatfon of
short-range and long-range effects, and well-established results {a

perturbation theory.
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We note finally that we can use Eqs. (10) and (48) to relkte
nonrelativistic and relativistic wvave fuanctions which fit the same

spectrum. Eliminatiag dHn/dn = dEn/dn between the two equations, we

find that

2
Ixn's(O.o)lz . F(vrel) Hn vrel

nonrel 2
F(vnonrel) I;E Joonrel I¢“5 (0!

x {1 - 160, (orel + 0(a? 2 (52
(- 5% 5™ + oD, > 2my. )

The combination of factors multiplying |¢:§nr°1(0)lz from the lefr is
always gredater than unity (this follows from Eq. (8), the observation
that F(v) is a monotoruically decreasing fuunction of v, and the fact
that voonrel , vfely. as a result, ie the absence of the radiative
corrections, Ixns(O,O)[2 would alvays be larger than l¢:g“t°1(0)|2 in
agreemeat with the “tighter coufinemeat”™ argumeant given following
Eq. (8). (This assumes, of course, that it is possible to fit the
relstivistic spectrum using a Schrodinger wodel and the glven a.-)

For M < 2-1, Eq. (12) aad our conjectured formula for lxns(0,0)lz

in Eq- (49) give the alternative expression

%

16a

2 1

12,5(0,0)1% = = lea2nTeleoy 2 [y o+ 0(ad)],  My< 2a, (53)
q
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1V. THE CORRECTIONS A AND A~

We now teturn to a brief discussfon of the radiative and
relativistic corrections A, A” to the leptonic widths of qq bound
states defined io Eqs. (1) and {2). In Refs. 1 and 2, we used duality
and the QCD expansion of a(ete™ + qf) to estimate these quantities to

i. Eq- (48) in the present paper provides a simple derivation

otrder a
of the duality relation, and justifies our earlier extraction of the
Counlomb-related terms (powers of a.lv) from the QCD perturbation
series. These terms are part of Ixns(D,O)lz.

The correction A, was derived in Ref. 1. TIn the present notatiom

1t is given to order vzlcz by

‘Iq -1 - F
by = 35 (X001 [ ar RKo(m rHxp5(0,0) = o [¥ xpg(r,0))

4 /2 (0,00 - 72 S fr yp(r.001} (54

where 1.5 18 the large-large D state coapouent of the Bethe-Salpeter
vave functiono and Ko(lqr) fs the exponentially decreasing hyperbolic
Bessel function. We will suppose that the dominant S—state wave
function can be approximated for r small by a series solution to a
relativistic Schrodinger equationzs with the proper normalization at

r=0,

1as(r.0) = 1,50, 00(1 - 3 &, ayr - 2 &¥e? + 0(aD], (55)
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where k% = nq(E-Vc(O)). We will neglect the D—state coatribution. The
integrals over r in Eq. (54) are easily performed, and we find that
16« E -v.(0)

a, = 9: D o(a2). (56)

q

In Refs. 1 and 2, we 1dentified A, with (E,-V,(0))/3m, ~ v 2(0),
the result appropriate for nonsingular interactions as ahown in
Eq. (61) of Ref. 1. 1In the preseance of a color~Coulomb singularity,
the approximation to &, in Eq. (56) contalns an extra piece 161.!91
which contributes one third of the “radiative correction™ im Eqs. {43)
or (48). It is pot an extra contribution to the radiative correctioan:
in the absence of a couflining interaction, one must get the same total
value for Ixs(O,O)l2 or afete™ o qq) vhether the calculation is done
uslog perturbation theory or the Bethe-Salpeter equation. The effect
of including 8 confining interaction is simply to renormalize 1u5(0,0)
as ia Eq. (40). The short range corrections deffned by ratfos of wave
functions are uunchanged to the accuracy to which we are working. By
choosing Ay = %.vnz io Eq. (43) and Refs. 1 and 2, we have fn fact
redefined A  and must delete the term 16a./9u from Eq. (56).

We remark also that the division of the various a -dependeat terms
into corrections 4, and A7 (the “radiative” correction relative to a
particular choice of wave function in Eq. (2)) is gauge depeadent,
though the total result is not. Our treatment of the Bethe-Salpeter
equation presupposes the use of the Couloab gauge, whereas the free QCD

calculations are usually done i{o the Feynman gauge.
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2

We will henceforth define A, to he-; Yo

thus retalaning only the
last term In Eq. (56). However, we note that (1- é.vi) is a natural
factor to {solate {in Eq- {1) for two reasons: First, it is the analog

of the overall factor (1 - % vz) which appears 1lan the free croes section
for ete™ + q7 (a fact which we used fn Refs.l and 2 and the discussion

followiog Eq. (44)) aund second, it depends only on v_, while all other

a’
terms depend on a,. With this defiaftion the function Ixfree(O,O)l2
needed in Sec. III 1s given by Eq. (47).

If ve vish finally, to separate |y (0,0)!2 in Eq. (1) futo a
leading terw aad a “radiative correction” A; as in Eq. (2), we must
choose a0 appropriate {nitial approximation for the Bethe-Salpeter wave
funct{on. A usual choice in phenomenclogical studies of gquarkonium is
to equate the function !:El (0) iu Eq. (2) with the oonrelativistic
Schridicger wave fuanction for the potential in Eq. (21), but this
cholce neglects essentlally kinematic relativistic effects wvhich can be
quite large for light-quark systems. We prefer to clrcumvent this
problem {o a way useful for numerical atudies and comsistent with our
earlier dualiry argunentsz (but perhaps awkward for perturbative

calculations} by calculating !ggl(r) for £ > m 1

q
equation and wmatching the result to a solution of the relativistic

using the Salpeter

Schrodinger equationzs for r < n;1 as in Sec. II. 1In this case, the

argument o Ref. 2 gives

l6a a?
r, = r(o) Q - % '3)(1 - 3 s g(vn) + C'z _%r) . (57)
x

x

where g{v) is defined ia Eq. (44) and
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C; = 24.26- 0.115 N - (58)

The first-crder correction 16us/3n in this expression 1s indepeadent of

(any reasonable) cholce of Y:EI(O) for the reasons sketched by

Celmaster?? and by Kummer aad erthumer-zs- The value of Ci depends on

this choice (and on the choice of renormalization acheme). Our result
s equal for the free cross section o(e’e™ + qi) to that obtatned by
simply extracting the kuown color-Coulomb factor F(vT®l) from the QCD

perturbation series in the MS scheme . 2

V1. SUMMARY

In this paper, we have derived a JWKB relation between the square
of the Bethe-Salpeter two—fermion wave function at the origin and the
iaverse deansity of states of the systea. Our derivation holds for the
realistic situation in which the two-fermion (quark-antiquark)
interaction Includes a color-Coulomb component at short distances and a
long-range confining interaction. Our principal results are as

follows.

Por 1" states, we find that lxns(O,O)I2 1s given for M_ > an by

2
M d 16a

l,(0,0012 = F(vTeLy “z yrel T:Eu— _3?'_ g(v™el) + o(ady), (59
16x

where F(v) is the Coulomb factor defined L{n Eq. (11}, Hu is the mass of
the nth state, and vrel is the relativistic velocity of a free quark

vwith mass =g and total energy M_ /2. This expression includes the
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effects of the short-range gluonic radlative correctious; the functlon
8(¥) 1s defined in Bq- (44). FPor M < an, we believe (but have ot

proved) that

bxgg(0,0))2 =

2
a M) dM, 16a g 2
T -
Tl el A (603
2 result which connects smoothly with Eq. {(59) for vrel + 0 and reduces
to the (proven) nonrelativistic expression in Eq. (12) for IHn-I-quZHq

<< 1. Using these results, we find that the leptonic width for the

decay of 1” states is given in terms of the inverse density of states

by

2.2
- x"e d, 16
I‘n(a e ) = ._._;.2 v:el i'(v:‘el)..E Lr- ...3;.~ g(v:ﬂ‘) + 0(0%)]

x (1 - ,; vEel 2y, > 2m. (61)
or by
l6x
rete) = % nze:c:. ;‘;3[1 - 2+ o0&, vh,

Ix

X < 2Iq- {62)
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We can also use the results in Eqs. (59) and (60) and the
corresponding results for a Schrodinger potential model fitted to the
same spectrum to relate the relativistic and nonrela}ivistic wave
functions. If we eliminate dHnIdn (= dEn/dn) between Eqa. (10) and

(59), or (12) and (60), we find that for a fixed Gq

2
Ix. < (0 O)Iz - F('rel) H‘ vrel l4 nonrel(o)lz
ast=e p(vooarel, ‘.q yooorel oS
(63)
16«.
rel 2
x [l - -5 g(v "7") + 0(c,")), M, > an.
2 : nonrel 2 16“3 2
|x, 50,03 = 21 i n- 3 < M, < 2m . (64)
q

These relations allow us to correct the wave fuactionas or leptoaic

widths calculated io the phenomenological Schrtdinger theory to obtain

reliable relativistic predictions. The corrections are quite large for

light quark systems.

The preseat results cao be generalized to different spia-parity
states by using the Couloab factor for non-zero angular momentua (see
Refs. 5 aod 9), and changing the relativistic and radiative corrections

to those appropriate to the process of interest.



-31-

ACKNOWLEDGMENTS

We would like to thank L. Bergstrom for correspoadence which
stimulated parts of this work, and L. J. Nickisch and K. J. Miller for
providing the numerical data on which Tables I-V are based. An early
version of this paper was written at the Aspen Center for Physics,

whose hosplitality we appreclate.

This work was supported In part by the U.S. Department of Energy
under coontrsct No. DE-AC02-76ER00881, and in part by the University of
Wisconsin Research Committee with funds granted by the Wisconsin Alummi

Research Foundation.



- 32 -

REFERENCES

*Permanent addressa.

1. B. Durand and L. Durand, Phys. Rev. D 25, 2312 (1982).

2. B. Durand and L. Duraad, Phys. Lett. 113 B, 338 (1982).

3. M. Krammer and P. Leal Ferrfera, Rev. Bras. Fis. 6, 7 (1976).

4. C. -Quigg and J. Rosner, Phys. Rev. D 17, 2364 (1978).

5. J.S. Bell and J. Pasupathy, Phys. Lett. 83 B, 389 (1979).

6. J. Pasup;thy and V. Singh, Z. Phys. C 10, 23 (1931).

7. This 1s just the Ferm{-Segre formula {ntroduced in atoule physics by E.
Fermi and E. Segre, Z. Phys. 82, 729 (1933). The formula has deen
rediscovered several times, and was appsrently first used in the
context of particle physics fn Refs. 3 and 4. See Ref. 10 for
refereances to earlier work.

8. E.A. Taioov, Phys. Lett. 97 B, 283 (1980); Z. Phys. C 10, 87 (1981).

9. J.S. Bell and J. Pasupathy, Z. Phys. C 2, 183 (1979). The method
used in this paper was Introduced for an equivalent problea by M.E.

Rose, Phys. Rev. 49, 727 (1936).



- 33 -

10. N. Fromaa and P.O. Froman, J. Physique 42, 1491 (1981).

11. The derivation of Eq. (10) given in Ref. 10 makes it clea; that the
assunptions used by Bell and Pasupathy in Ref. é are unnecessarily
restrictive. Tt is only necessary in the Frtmans” arbitrary-order
phase-integral approach that the potential be well-approximated near
aad inside the inner turaing poiant by ﬂ; c, L+ vc(O), and not that
this approximation extend into the JWKB region. The range of validity
of Eq. (10) is therefore greater than the Bell-Pasupathy assumptiona

aight suggest. The same reaarks apply to our relativistic extension of

the Bell-Pasupathy argumeat in Sec. IV.
12. Our procedure is to match the JWKB wave function for a pure Coulomb

potential in the region E < 0, —/Exr »» 1,

o’ (r) - [nq(;-+ E)l—ll‘ llu[nélz f; (;.4--2)Uz dr+e}

- (rl.qa)lli lin[Z(qqar)%+¢]

to the exact solution of the Schrodinger equation,

' 1/2 ®q.1/2 o gy 172
oCoulery o 2(-_“3)112 r e BGE) 2. 1,.1(;.. _;_ (__%) . 2, 2(-n.E) t)

- (- 4E.1/2 r )
- (.?;)1“ un[z(mqur)“-% 1.



13.

14.

15.

- 34 -

This determines the phase ¢ of the JWKB wave function and the relative
normalization of the two functions. The normalization of the JWEB
vave function with a nonsingular confining potential present is thea
deterwined exactly as 1o Ref. 9, and the normalized wave function is
continued to r=0 using the matched Coulomb wave function. The result
is given in Eq. (12) for a color-Coulomb potentfal, q » 4a,/3. The

JWKB quantization coadition for the phase-shifted wave function s

o al/2 (To (@ 1/2 -
ox = = j’o (3 Ve + B} %r, ve1,2,... .

The quantization coadition is exact for a pure Coulomb potential.

See, e.g., C. Quigg and J. Rosner, Phys. Rep. 36, 167 (1979).

L. Hostler and W. Repko, Ann. Phys. (NY) 130, 329 (1980). These
authors express energles and masses In units of (32k/9)1!3 . We have
eliminated the unusuzl factor (32/9)1/3. Qur masses ag = 1.310 and
3.276 correspond to Q= 2 and Q = S in thelr notation, aad vere ?icked
to correspoad (very roughly) to the ¢ and ¢ systems.

Our procedure of fitting In E, to a polynomial in fn n was suggested by
two coagiderations, first, that the JWKB quaatization condition in the
presence of a Coulomb interaction depends on o rather than (n - ;) {see

Ref. 9), and second, the obsarvation of A. Martin, Phys. Lett. 938,

338 (1980), that charmonium potentials {of which the



Coulomb-plus-linear potential is an example) are well approximated for
the most relevant values of r by simple power laws, V(r) ~ Er¥’. The

povwer-law approximation gives a spectrum with E « n2vl(2+v)- Simple

fits to the spectrum using polynomlals fn n do not change the results
in Table 1V significantly.

16. L. Durand, Phys. Rev. 322, B 310 (1964). The formula of M.E. Rose
(Ref. 9) discussed in this paper is equivalent to Eq. (10).

17. We could also treat Bq. (22) directly usiag the relativistic JWKB
method developed recently by P. Cea, P. Colangele, G. Nardulli, G.Paiano and
G. Preparata, Phys. Rev. D 26, 1157 (1982).
The present method is somewhat simpler. Although it involves aa
{appareat) expansion in powers of vzlcz, we believe that the result ias
Independent of this e#pansion. This conclusion is supported by the
numerical resuits in Table V, and can be demonstrated directly for
nonsingular potentials using the results of Cea et _al.

18. B. Durand and L. Durand, Phys. Rev. D 28, 396 (1983).

19. We cannot simply continue the Salpeter wave function to the origin
because of an artificial singularity caused by the singularity in the

static color-Coulomb potential. The Salpeter wave function diverges as



20.

21.

22.

23.

24,

25.

- 36§ -

— -1 dag da,

T for f <L L vwith v = 75;(1 +-_§;.+...); see Ref. 18 for detalls.
This singularity is cancelled order-by-order in perturbation theory
vhen the contributions of transverse gluona are included in the

caleculation of x(r,0).

J. Schwiﬁger, Particles, Sources, and Flelds (Addison-Wesley, Rew

York, 1973), Vol. 1II, Sec. 5.4.

T. W. Applequist and H. D. Politzer, Phys. Rev. D12, 1404 (1975).
For a comparison of g(v) with a much-less-accurate approximstion
proposed by Schwinger, Ref. 20, and used by many authors, see Fig. 1
in Ref. 2.

R. Barbteri, R. Gatto, R. Kdgerler, and Z. Kunszt, Phys. Lett. 378,
455 (1975); R. Barbieri, R. Kdgerler, Z. Kunszt, and R. Gatto,

Nucl. Phys. B105, 125 (1976); W. Celmaster, Phys. Rev. D 19, 1517
(1979). |

E.C. Pogglo, H.R. Quinn, and S. Welnberg, Phys. Rev. D13, 1958
(1976).

Ref. 2, footnote &. The free S-wave solutfoan of the equation

1 ,2 1 2 2 M
[q Ve o+ Zm_q("“ - &-q ) - i-;v(r)lqws(t) -0

with a Coulomb potential V = —4us/3r has correct relativisitic kinematics,



gives the exact S-state eigenvalues for the Salpeter Coulomb wave

equation derived in Ref. 18,

.: 1/2
= 2n_Jii+ 1 , m=1.2 ...,
X, q 2 |

sgrees in phase with the exact solution to O(asvz} for r large, and

extends smoothly to r = 0 where it has exactly the value in Eq. (42),

2
2 1
log(o1® = - F(v"*).

We expect,therefore, that it gives z quite reasonable approximation to
the r-dependence of xns(t,O). The normalizarion at the origin is
absorbed in the overall factor 105(0,0) in Bq. (55).

26. ¥. Kusmer and G. Wirthumer, Nucl. Phys. BI85, 41 (1981).



TABLE I. Numerical test of the relativistic JWKB expression for |?:§1(0)|2
in terms of the inverse density of states, Eq. (3). The energles and vave
functions were calculated for the spinless Salpever equation with an oscillacor

potential, Eq. (13). dEn/dn was calculated from a cubic fir to the spectrum
1/3

for n=1-4., Energies and masses are given in units of k' ~, with k the spring
constant of the oscillator. |Y;§1(0)l2 is given in units of k.
el 2 el 2
a, a E g dEn/dn IVES 0| I?:s )| Error
JWKB Exact 4
3.276 1 1.133 1.469 0.2872 G.2931 -2.0
2 2.553 1.375 0.5012 0.5020 -0.2
3 3.887 1.307 0.7023 0.6972 +0.7
& 5.152 1.238 0.8896 0.8871 +03.3
1.310 1 1.660 2.012 0.1846 0.1864 -1.0
2 3.528 1.739 0.3766 0.3758 +0.2
3 5.165 1.550 0.5601 0.5616 -0.3

4 6.654 1.443 0.7545 0.7477 +0.9
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TABLE TII. Numerical test of the relativistic JWKB expression for l?:;l(ﬂolz
in terms of the inverse density of states, Eq.(3), using exact results for

the spin-dependent Salpeter equati&h for an oscillator kernel with vector
coupling, Ref. 1/. dEn/dn was calculated from a quadratic fit i?3the 381
spectrum for n=1-3. Energies and masses are given in units of k¥ '~, with

k the spring constant of the oscillator. I?ﬁ;l(O)Iz is given in units of
k.

3 Tel 2 el 2
- n E (CS)) dE /dn | S (0] H:s 0| Error
JWKB Exact 2

3.276 1 1.316 1.550 0.3364 0.3271 +2.8
2.851 1.520 0.6106 0.6078 0.5

4.356 1.490 0.8975 0.8924 0.6

1.310 1 2.420 2.101 0.2886 0.2852 1.2
4.457 1.974 0.5816 0.5825 0.02

6.368 1.848 0.9042 0.9003 0.5




TABLE IV. Numerical test of the unonrelativistic JWKB relation for
I#:gnIEl(O)lz in BEq.{10) for the singular potential V(r) = -a/r + br
2

with a = 0.25 and b = 0.18 GeV -. and m, = 1.45 Gev. dE /dn was

calculated from cubic polymomlal fits to lnEn as a function of &n n
(see Ref. 15}.

a En dEnIdn ‘w:gnrel(o)lz liﬁ;nIEI(o)‘z Error
(Ce™) (Gev) Predicted Exact z
(Gev3) (Gen) 3
1 0.5161 0.6273 0.03585 0.03869 -7.4
2 1.0556 0.4667 0.03244 0.03237 +0.2
3 1.4779 0.3890 ' 0.03010 0.03020 -0.3
4 1.8451 0.3472 0.02896 0.02895 +0.02

5 2.1768 0.3185 0.02816 0.02829 -0.5
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TABLE V

2
Numerical test of the relativistic JWKB relation for lim ﬁ;l?ns(r)/Y§°ul{r)i2

Eq. (51), for the singular potential V(r) = -a/r+br with a = 0.25,

b = 0.18 Gevz, and mq = 1.45 GeV. dEn/dn was calculated from a polynomial

fit to the lowest six energies.

2

n B V:E1 %;l?ns(O)/TSOUI(O)IZ zi;i vrel %% Error
{GeV} (GeV3) (Z)
1 0.4924 0.519 0.0242 0.0229 5.4
2 1.0022 0.669 0.0281 0.0280 -0.3
3 1.3925 0.737 0.0309 0.0306 -1.0
4 1.7260 0.779 0.0334 0.0332 -0.6

5 2.0236 0.808 0.0355 0.0350 -1.3
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FIGURE CAPTION

Illustration of the difference between nonrelativistic and rela-
tivistic potentials which give the same energy spectrum, using the
potential-% rz in the spinless Salpeter equation, and the equivalent
nonrelativistic potential V(r) = Jqur2+&ni - an in the Schr8dinger
equation. V(r) is quadratic for r<< qu, and approaches the linear’
potent ial shown in the figure for r>> an. This changelin the
dominant r-dependence is reflected in the decreasing spacing between
adjacent levels. E, ‘q’ and r-1 are given in units of k;ls. with

k the spring constant of the relativistic oscillator.






