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ABSTRACT 

We have investigated the constraints imposed on left-right 

symmetric theories of weak and electromagnetic interactions by the KL- 

KS mass difference, including the additional restrictions on the top 

quark mass and mixing angles coming from the KL + u+~- decay rate, and 

emphasizing the sensitivity of the results to various model-dependent 

assumptions. In the manifest left-right-symmetric electroweak theory 

it was found that values for the mass mR of the charged, right-handed 

boson WR as low as 220 GeV/c*, the original estimate of B6g. Budny, 

Mohapatra and Sirlin, cannot be rigorously ruled out by existing data. 

However, for a large class of plausible models the lower bound on the 

mass of WR was found to be considerably higher, but still within the 

range that experiments now in progress will be able to explore. The 

lower bound on mR was also found to be quite sensitive to the value 

assumed for the top quark mass and to the model dependent values of 

the hadronic matrix elements of the quark operators, as well as to 

certain model-dependent assumptions regarding the dispersive part of 

the KL + u+w-amplitude. We present the lower bound on mR for a wide 

range of the relevant parameters, which includes two specific models: 

the MIT Bag Model and the vacuum insertion approximation. 
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One possible extension of the highly successful standard theory1 of 

weak and electromagnetic interactions of three generations of quarks 

and leptons is the left-right symmetric model* based on the gauge group 

su(2)L x su(2)R x u(l)B-L. This model has the standard theory as a low 

energy limit and bounds can be placed on the minimum energy range at 

which deviations from the standard theory resulting from the right- 

handed VtA weak interaction are allowed by present data. Beg, et a1.3 

concluded some time ago, from an analysis of all the low energy charged 

current data, that the mass m8 of a right-handed intermediate boson WR 

was bounded below by 

mR 1 2.76 mL = 220 GeV/c* . (1 ) 

where mL = 80 GeV/c* is the mass of the left-handed intermediate boson 

WL. 

In a more recent paper Beall, et a1.,4 found the KL-KS mass 

difference Am leads to a much stronger constraint, 

mR -> dm m = 1.6 TeV/c2 , 
L (2) 

for the "manifest" left-right symmetric model, under certain, not 

unreasonable, assumptions. The present generation of experiments5 in 

progress are expected to be sensitive to right-handed weak interactions 

with mass scales below about 500 to 600 GeV/c2, which is considerably 

above the lower limit found by BGg, et. a1.,3 but far below the more 

recent lower bound of Beall, et a1.4. 

We have therefore investigated the lower bound on m8 imposed by 

the KL-KS mass difference Am, including the additional constraint 
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coming from the branching ratio for the rare decay KL -f u+~- and we 

have explored the sensitivity of the numerical results to the various 

assumptions involved in the analysis. Furthermore, in our analysis all 

the Kobayaski-Maskawa5 mixing parameters were allowed to vary over the 

full range by the present data. 

We have found that right-handed intermediate boson masses even as 

low as 220 GeV/c2 cannot be excluded at present without introducing 

theoretical assumptions that are open to question. Specifically, the 

lower bound on mR was found to be quite sensitive to the mass mt 

assumed for the predicted top quark, there being no stronger 

constraints than originally given by Beg, et a1.3 if m 2 45 to 50 

GeV/c*. And for smaller values of mt the bound on mk depends very much 

on the model used to calculate the K0 - K" matrix elements of the AS = 

2 quark current operators, particularly the ratio of matrix elements of 

the right-handed to left-handed contributions to Am. For example, the 

lower bound on mR obtained in the context of MIT Bag Model turned out 

to be significantly different from the resulting bound using the vacuum 

insertion approximation for the AS = 2 matrix element. We shall 

therefore present our numerical results below for a wide range of the 

relevant parameters, allowing the lower bound on mR to be extracted 

graphically for various values of the top quark mass and different 

models for the AS = 2 matrix elements. When the top quark mass is 

known, provided it is not too large, the lower bound on mk can be 

substantially strengthend. 

In the following we first discuss the rather important 

implications of the KL + n%- branching ratio, which we then include 
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analysis of the constraint on mR due to the KL - KS mass difference. 

Numerical results are then presented and discussed, emphasizing their 

relevance for experiments now in progress. 

In the context of the standard six-quark model the short distance 

contribution to the KL + P+P- amplitude, in the unitary guage, is given 

by the diagrams shown in Fig. 1. This short-distance contribution to 

KL + u+P-is bounded by the dispersive part of the amplitude, which in 

turn can be bounded in terms of the two-photon contributions to the 

absorptive part of the amplitude and the measured KL + u+P- and KL + yy 

decay rates.7 One finds that 

II ReAi G(xi)ni / < K (3) 
i=u,c,t 

where the Ai = Vdi Vsi* are products of standard Kobayashi-Maskawa (K- 

M) matrix elements. In their original work Shrock and Voloshin7 

estimated the dispersive part of the KL + u+u- amplitude of the two- 

photon intermediate state to be unimportant and found the constant K 

in Eq. (3) to be K = 1.96 x 10s3. More recently Barger, Long, Ma and 

Pramudita* have concluded that, while the two-photon intermediate state 

indeed dominates the absorptive part of the KL + u+u- amplitude, the 

dispersive part cannot be neglected. Including the two-photon 

contribution to the dispersive part in the analysis, they find the data 

do not rule out bound K values for the bound K in Eq. (3) as large as 

7.34 x 10-S. In our numerical calculations below we shall consider a 

wide range of values K. 

The functions G(Xi), with Xi = mi*/mL*, contains the dependence on 

the charge 2/3 quark masses. Specifically, for arbitary quark masses,g 
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G(x) = ; (&)*lnx +$t; & (4) 

while 

Au = clslca (5) 

i6 * AC = -s1c2(c1c2c3 + s2s3e ) (6) 

and 
At = -s1s2(c1s2cs - c2sseis)* (7) 

where si = sinei and Ci = COSei, as usual. (Note, that by unitarity of 

the K-M matrix A, + A, + At = 0, which will be of considerable 

practical usefulness in the computations below.) 

The factors ni represent multiplicative DC0 corrections, which are 

unity in the free quark-proton model. Numerically, the contributions of 

the u and c quarks in Eq. (3) are negligible compared to the right-hand 

side and we shall ignore them. And the contributions to the KL + utu- 

decay rate involving V t A interactions in the Sum x SU(2)t x U(l)D- 

L model are also negligible since these right-handed interactions are 

supressed by at least one factor of B = (mt/mR)* relative to the V-A 

interactions; and 8 is already known to be small (6 -< 0.13) from 

previous work.3 

Consequently, the net effect of the Kt + utv- decay rate is to 

limit the range of the combination of K-M parameters At as a function 

of the top quark mass, and Eq. (3) becomes simply 

IReAt < K /G(xt)nt (8) 
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This restriction plays a very important role in determining the lower 

bound on mR due to Am. 

Following the original work of Gaillard and Lee,l" we shall assume 

the KL - Kg mass diffeence is given by the short-distance contributions 

of the box diagrams shown in Fig. 2. For the standard model one 

findsll 

GF2 
AmLL = &T mL2 Re[F(xi 8i )MLLl (9) 

where F(Xi,sf) depends upon quark masses (Xi = mi2/mL2) and the 

parameters of and 

MLL= <K"[:yJl-vs)d]* jK">. (10) 

Allowing for multiplicative QCD correction parameters nij, which are 

unity in the free quark-proton model, we havell 

F(Xi “i) = j kLc t AjAkB(Xjyxk)njk 
, , 

where for i = j 

B(Xi,Xi) = Xi& t; (1 - xi)-1 - $1 - xi)-*] 

and for i # j 

- $ [xi/(1 - xi)131nxi (12) 

B(Xi*Xjl = XiXjI(Xj-XiJml[i tG(l-Xj)-' - $(l-xj)-*]lnXj 

+i- j - ~[(l-~~)(l-x~)]-~l (13) 



The contributions involving the up quark have been included in Eqs. 

(ll)-(13) using unitarity of the K-M matrix and taking mu = 0, a good 

approximation. 

Since B is small it is sufficient to consider only the 

contributions to Am of the V+A interaction coming from the box diagrams 

shown in Figure 2 in which there is one WR and one WL. In the 

approximation that 1 >> xt >> xc = 0 one finds for B << 1 that 

AmLR = DF2 8 112 mL2ReCH(xi $8 i )MLR1 (14) 

where 

H(xi,ei) = Ac2xc(lnXc t l)ncc t At2xt[l-xt]-l(ln xt t l)ntt 

and 

t 2AcAt JY& [l-x,1-l lnXt qct 
(15) 

M LR = <:")Sv"(l-Ys)d d u,(l + us)slK"> (16) 

In Eqs. (14) and (15) we have assumed "manifest" left-right-symmetry 

in which the quark mass matrix is hermitian and can be diagonalized by 

the single unitary K-M matrix V; i.e., VL = vR. Moreover, we have 

assumed the multiplicative QCD correction factors are also left-right 

symmetric, a point we shall return to below. 

Combining both contributions, the KL-KS mass difference is then 

Am GF* 
m =- 6n2 

m~FK2(MLL/M~~)ReCF(xi,si) + 8 ~8 $ H(xi.si)] 

LL 

(17) 
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For convenience, we have normalized the matrix elements MLLand M to 
LR 

their values in the vacuum insertion approximation: 

and 

MVAC 
8 F 2m2/(2m), LL=3 K (18) 

(MLR/MLL)VAC= +[m2/(md+ms)2 + kk" (19) 

Here, FK = 1.23 m, and m are the kaon decay constant and mass while md 

= 7 MeV/c2 and mS = 150 MeV/c* are quark masses and4 I(MLR/MLL)V,,I = 

7.7. We have allowed for an arbitrary value of the additional physica- 

lly observable CP nonconserving phase 0 in Eq. (19), which is possible 

in the left-right-symmetric model, and we have chosen $ to be the 

relative phase between SL and sR, the left and right-handed strange 

quarks.12 And we also have parameterized most of the model-dependence 

in Eq. (17) by introducing in 

P = (MLR/MLL)/(MLR/MLL)VAC (20) 

Numerically we determined the lower bound on mR resulting from the 

constraint imposed by the KL-KS mass difference [Eq. (17)] and the KL 

+ u%- decay rate [Eq. (811 for a wide range of values of the top quark 

mass mt, the model dependent matrix elements MLL and MLR and the bound 

K in Eq. (8). For simplicity we neglected any QCD corrections (ni = 

nij = 1) and also ignored small CP nonconserving effects, considering 

only 6 = 0 or TI in the numerical computations. However, all other K-M 

parameters were allowed to vary over the entire range consistent with 

the measurements l3 /cosel 1 = 0.9737 + 0.0025, Isinelcoses / = 0.219 ? 

0.011 and Isine,sina, 1 = 0.06 + 0.06. These data imply that 

IAul = 0.213 + 0.012 and unitarity of the K-M 
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matrix requires that 

A, = - (A, + At) (21) 

while the K + u+ P- decay rate restricts ]Atj for a given value of 

mt as indicated above in Eq. (8). In addition, these dataI3 also 

require Isin o /< 0.5, which bounds At even more strongly than Eq. (8) 

for small 3 values of mt in the case At > 0. 

The lower bound on rnR was found to be very sensitive to the value 

of the top quark mass and the numerical value of the bound K in Eq. 

(8), as might be expected; but, in addition, the results were found to 

also depend quite significantly on the model used to evaluate the AS = 

2 matrix elements MLL and MLR, the critical parameter being p, their 

ratio. For illustrative purposes we show in Fig. 3 the lower bound on 

mR as a function of mt assuming the largest value for the bound in Eq. 

(8) K = 7.34 x 10-3, for two typical models: the vacuum insertion 

approximation (p = 1) and the MIT Bag Model (p = 1.667). It is clear 

from Fig. 3 that, independent of the model for the matrix elements, if 

mt is larger than about 45 to 50 GeV/c2, there is no better lower bound 
. 

on rnR than Beg, et a1.3 found in their analysis of all the low energy 

charged current data some time ago. However, if mt is smaller than 

about 45 GeV/ c2 a considerally stronger bound does result from 

imposing the constraints due to the KL-K~ mass difference and the KL + 

u+u- decay rate and this improved lower bound on mR is rahter model- 

dependent, being larger for models in which p is larger. 

The critical dependence on the value of Mt of the lower bound on 

mR can be qualitatively understood essentially as follows: Even though 

the K-M martrix elements coupling the top quark to the down and strange 
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quarks are rather small, the very large mass of the top quark tends to 

compensate14~ making the top quark contribution to Am comparable to the 

contribution of the lighter up and charm quarks. For small mt, i.e.; 

below the "knee" in Fig. 3, the lower bound on 1mR occurs for At < 0, 

while at larger values of mt the bound occurs when At > 0. In both 

cases [Atj is bounded by the constraint due to the Kt + u+u- decay rate 

CEq. (811. The "knee" in the curves shown in Fig. 3, corresponds to the 

point where the lower bound on mR changes from occuring at the 

most negative to the most positive value of At allowed by the KL + u+u- 

decay rate. And this changeover reflects the fact that for small mt the 

large positive values of At allowed by Eq. (8) are forbidden by the 

constraint /sin e,l < 0.5, which follows from the measured K-M matrix 

elements, independent of the KI + u+u- decay rate; cf., 4s. (5)-(7) 

above. As mt increases the cancelations among the various contributions 

become more significant due to the increasing relative importance of the 

diagrams in Fig. 2 with one top quark and one charm or up quark. 

[Recall that the minimum value of mR occurs in the regime when At, while 

small, is positive and A,= -A,= -0.213 * 0.012; cf., Eq. (17).] 

The lower bound on mR is also rather sensitive to the model chosen 

for evaluating the AS=2 matrix elements Mtt and MtR, primarily through 

their ratio p since Am/m is so very small. In Figs. 4 and 5 we have 

illustrated this point for some representative values of mt. Using the 

vacuum insertion approximation for MLL, Eq. (la), we shown in Fig. 4 the 

dependence of [mR]MIN on the ration P = (MLR/MLL)/MLR/MLL)vAc for 

corresponding lower bound on mR obtained using the MIT BAG Model for 
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MLL [(MLL)BAG = O-42 (MLL)vAcI-~~ The dramatic decrease in the lower 

limit on mR as mt becomes large is evident in these figures, as it was 

in Fig. 3, which emphasizes that this is a typical feature of any 

plausible model. The increase of [mR]MIh as P increases simply 

reflects the fact that the larger left-right matrix element MLR must be 

compensated by a larger WR mass in the propagator occurring in the 

denominator of the diagram; cf., Fig. 2. And it is easy to understand 

that P is larger for the MIT BAG Model than for the vacuum insertion 

approximation since the V+A interaction, which becomes S-P after Fierz 

rearrangement, is more spread out in space and therefore makes possible 

a larger contribution to the integration over the extended size of the 

bag. 

Since there are a number of other models for evaluating the 

matrix elements MLL and MLR we emphasize that Figures 3, 4 and 5 can be 

used to estimate the resulting lower bound on mR by interpolation; and 

if one considers $ * 0, simply replace p by Rep. 

It should be noted that in our numerical computations we have 

used the free quark-parton model for which the multiplicative QCD 

correction factors ni and nij are all unity. To explore the 

sensitivity of our results to these corrections we have taken the QCD 

correction factors for the pure V-A interaction matrix element MLL, 

calculated by Gilman and WiseI6, and assumed the unknown corrections to 

MIR to be the same. Our numerical results for [mR]MIN increases 

somewhat (- 10%) under this ad hoc assumption, but not enough to 

significantly effect our conclusions which are illustrated in Fig. (3) 

-(5). And we must emphasize that in obtaining the results shown in 
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these figures we have assumed that both B and Xt are small, so the 

bounds shown cannot confidently be extrapolated beyond this regime. We 

have also neglected possible mixing between WL and WR, which has been 

shown to be smal13; and the contributions of unphysical scalars in the 

diagrams shown in Fig. 2, which are suppressed by mass-dependent 

couplings, are unimportant for our considerations. 

The suggestion of Barger, et a1.8 that the two-photon 

contribution to the dispersive part of the KL + Utp- amplitude is more 

important than previously estimated by Shrock and Voloshin7 is more 

significant for our results. In our numerical computations illustrated 

in Figs. (3)-(5) we allowed for the largest possible contributions of 

the top quark in Figs. (1) and (2) consistent with all the analysis of 

the present data, choosing K = 7.34 x 10m3, since we sought the 

smallest lower bound on mR. We have explored the sensitivity of the 

resulting [mR]MIN to the value to the value of K, as well as the value 

of mt. in the context of both the vacuum insertion approximation and 

the MIT Bag Model for the AS=2 matrix elements, In Figs. 6 and 7 we 

show the three-dimensional SUrfaCe representing the lower bound [mR]MIN 

as a function of both mt and K for the interesting ranges of these 

parameters. Clearly, as K is decreased [mR]MIN increases rapidly. 

We note that our results are in substantial agreement with the 

recent work of Oonoghue and Holstein17 based on an analysis of AS = 1 

matrix elements. Nor do we disagree with the results calculated by 

TrampeticlH for the matrix elements MLL and MLR, where our work 

overlaps; although the lack of physical significance of the sign of the 
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integral for MLL in the MIT BAG Model pertaining to Am has been 

misunderstood. Since only certain values of the relevant parameters 

were considered in this paper, the lower bound on mR was not obtained. 

And we note that a related calculation by de Forcrandlg seems to agree 

with our conclusions regarding the bound found by Beall, et a1.4; but 

we do not understand why, since the effects of the top quark were 

ignored, while we found them essential to our results. 

To summarize we have shown that the KL + ptP- decay rate plays an 

important role in establishing the lower bound on mR imposed by the KL 

-KS mass difference. Moreover, the results are quite sensitive to 

several theoretical assumptions and present experimental information 

is not sufficient to rigorously rule out a right-hand boson WR as 

light as 220 GeV/c', the original bound of Bsg, et a13. However, we 

emphasize that this approach is potentially very useful; the lower 

bound mR would be quite substantially strengthened if the top quark 

were found to below about 40 GeV/c2. Clearly, the present round of 

experiments designed to explore the mass range up to about 500 -600 

GeV/c2 will very important. 

Addendum: The preliminary result mR > 450 GeV/c2, assuming no 

'L-'R mixing, has recently been reported by the Berkeley/LBL/ 

Northwestern/ TRIUMF collaborationzO. 
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FIGURE CAPTIONS 

Fig. 1: One-loop diagrams contributing to the short-distance part of the 

KL ., u+u- amplitude, in the unitary gauge. 

Fig. 2: The annihilation box diagram contributing to the short-distance 

part of the KL - KS mass difference. The scattering box 

diagram is obtained by crossing. 

Fig. 3: Lower bound on the mass mR of the right-handed weak boson WR 

as function of the mass mt of the predicted top quark assuming 

K = 7.34 x 10-3. The bounds are shown for two typical models 

for the AS = 2 matrix elements: MIT Bag Model (p = 1.667) and the 

vacuum insertion model (P = 1.0). Also shown is the lower bound 

mR > 220 GeV/c2 of ref 3. 

Fig. 4: Lower bound on the mass mR of the right-handed weak boson WR 

as a function of p = (MLR/MLL)/(MLR/MLL)VAG for several values 

of the top quark mass mt in GeV/c2 assuming K = 7.34 x low3 and the 

vacuum insertion approximation for MLL [Eq. (18)]. Note that 

PVAG = 1.0 while PBAG = 1.667. 

Fig. 5: Lower bound on the mass mR of the right-handed weak boson WR as 

a function of p = (MLR/MLL/(MLR/MLL)VAG for several values of 

the top quark mass mt in GeV/c* assuming K = 7.34 x 1O-3 the MIT 

BAG Model for MLL [(MLL)BAG = 0.42 (MLL)VAG]. Note that PVAG = 

1.0 while PBAG = 1.667. 

Fig. 6: Lower bound [mR]MIN as a function of both mt and K assuming the 

vacuum insertion approximation for MLL and MLR. 

Fig. 7: Lower bound [mR]MIN as a function of both mt and K assuming the 

MIT Bag Model for MLL and MLR. 
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