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ABSTRACT

Monopole induced béryon number violating processes are
analyzed using the conservation laws for the ordinary and
the chiral charge densities. It is shown that in the
strictly massless limit, reactions - of the form
ul+M+ug+d§+e++M are ruled out by these cdnservgticn laws.
This, however, does not mean that the baryon number

‘ vioclating processes are suppressed, since reactions of the
type ul+u2+M*d§+e++M may take place even if the incoming uy
and u, do not have any appreciable overlap in their
wave-functions. The' role of anomaly in the barvon number
viclating processés is investigated. It is shown that the
baryon number violation takes place because of
non-trivial boundary condition at the monopole core, and is
independent of the existence of anomaly. We may have

chirality conserving, as well as chirality non-conserving

‘baryon number violating processes. It is also shown that
the inclusion of extra Coulomb energies, e.q. weak or
electromagnetic  Coulomb energies, cannot qualitatively

change the baryon number violating effects.

# Operated by Universities Research Association inc. under contract with the United States Department of Energy



2,3 that

It has been pointed out by Rubakovl and Callan
grand unification monopoles of the 't Hooft Polyakov type4
may catalyze baryon number violating processes at strong
interaction rate. Two different but equivalent ways have
been proposed to understand the process. Both the
approaches focus on the J=0 partial wave amplitude for a
fermion in the presence of a monopole. In the first
approachl’z, one shows that the theory reduces to a massless
Schwinger model, which can then be exactly solved, and one
finds a non-zero vacuum expectation value for a baryon
number violating condensate. In this approach, the
helicities carried by various fields in the condensate may
be read out in a straightforward manner. However, it is not
easy to see the kinematical constraints, which allows only a
definite helicity state of a particle to be ingoing, and the
opposite helicity state to be outgoing. Also, the mechanism
of baryon number violation is not clear in this picture. 1In
the other approach3, the theory is mapped onto an equivalent
boson theory, and fermions are represented as solitons in
these boson fields. 1In this picture, it is straightforward
to see how the helicity state of a particle 1is related to
whether it is ingoing or outgoing. One can also construct a
time history of a process involving initial and final state
solitons, which look 1like a baryon number violating
scattering process. But in this picture, we do not get any

constraint on the helicities of the initial and final state



particles, besides the kinematical constraints. As a
result, it is not immediately clear from this picture which
scattering processes are allowed, and which are not. In
particular, the process one fermion + monopole + three
fermions + monopole, which may be ruled out by combining the
results of the first approach with the kinematical
constraint on the helicities, do not seem to be ruled out by
the second approach.

In this paper we work in the soliton approach, and show
that the effective boson theory has some exact conservation
laws. The conserved quantities are related to the chiral
and the ordinary charges in the original fermion theory. We
show that of the four ordinary charges and four chiral
charges that can be constructed out of the fermionic
fields, three ordinary charges and one chiral charge are
exactly conserved, one ordinary charge and two chiral
charges are locally conserved, but may flow into or out of
the monopole core, and hence are globally non-conserved, and
one chiral charge is 1locally and hence also globally
non-conserved due to the anomaly. Using the four exact
conservation laws, one may rule out many processes, in
particular the process ulR+M+u2§+d3E+eE+M, where the initial
and the final state fermions are free ingoing and outgoing
waves respectively. However, this does not imply
suppression of baryon number violating processes, since, as

we shall show, reactions of the form u +M>d c+eZ+M may

1rTY2R 3L,



take place even if the ingoing uq and us do not have an

appreciable overlap in their wave-functions, as opposed to
the claim by Grossman et. al.6

Using our formalism we can trace the origin of baryon
number vioclation. We show that the baryonic charge is a
linear combination of charges, some of which are exactly
conserved, and some of which are non-conserved at the

boundaryFl. Thus the non-conservation of the barvonic charge

comes solely from the boundary conditions and has nothing to

do with the anomaly. In reactions of the tvpe
c, +

ulR+u2R+M+d3L+eL+M, the baryon number, as well as the total

helicity, is non-conserved. Hence both, the non-trivial

boundary condition at the monopole core, and the anomaly,
are responsible for this process. However, there also
exists allowed reactions of the form ulR+d3L+M+u2§+e£+M,
where the total helicity carried by the initial and the
final state particles are the same. Anomaly plays no role
in such processes. As far as our knowledge goes, this type
of helicity conserving processes were first noted by Seo7,
who has given a list of all the possible baryon number
violating processes. All the processes listed by him obeys
the conservation laws that we shall discuss below. We,
however, do not agree with his claim that the
non-conservation of the baryon number takes place in an

extended region around the monopole, rather than at the

monopole core. This may be just a matter of semantics.



Using the same conservation laws, we £ind out a
sufficient condition to be satisfied by a charge in order
that the violation of the charge 1is not catalyzed by
monopole. We also show that the effect of including any
extra Coulomb interaction, due to the presence of other
gauge fields, cannot qualitatively change the results of
Callan and Rubakov, if the generator corresponding to the
extra gauge field commutes with the SU(2) subgroup in which
the monopole lies. Hence the inclusion of these energies is
irrelevant for -a qualitative analysis. This again
contradicts the investigation by Grossman et. al.  Thus we
conclude that the monopole catalysis of proton decay takes
place at a typical strong interaction rate.

Finally, we caution the reader that, in our analysis, we
treat the proton as a c¢ollection of three free massless
quarks. We ignore various strong interaction effects, e.g.
chiral symmetry breaking, since we do not know how to
systematically include such effects in our analysis. Also,
it is not clear to us that for strongly interacting quarks
inside a proton, we can even distinguish the processes

-

+ c, +
uy +Msus+dgte” M, Uy +u, AT e M, 1+d3+M+u2+e T+ and

u2+d3 M+u1+e *im as separate mechanisms for proton decay.

+M->1u +d

Let us cons1der a system of SU(2) monopole with two
F2

Dirac doublet of massless fermions \;c/’} and (\JVCZ;.) . Por SU(5)
2] .

‘ e
monopoles we shall identify these doublets with ( 3) and

AT

Cdg.. As was shown by Callan, in the J=0 partial wave
amplitude, the system may be described by an equivalent
boson theory of four scalar fields @l, @2, Ql and QZ' with

the Hamiltonian,

H = fav (L z:(rr +P +&%+ ﬁ-f) +$-a (P +P.+q,+ Q)]

()

where C 1is a constant. Here Hi and Pi are the momenta

conjugate to Qi and Q;- Various fermion field bilinears may

be expressed in terms of the fields @i, Qi+ Hi and Pi in the



bosonized theory. Table I summarizes the operator
correspondences for all the charges and the radial currents.

The fields ¢i and Q; satisfy the boundary conditions,

§£(yﬂ=0) = QL(T::O) §3£CV=0)=-Q1<Y=O) (2)

There are altogether four ordinary charge densities and
four chiral charge densities 1listed in Table 1I. We
calculate the commutator of each of the eight charges formed
out of these charge densities, with the Hamiltonian, to see
which of these charges are conserved. When we use the
boundary conditions (2), and the extra constraint that
<I>1+Ql+<I>2+Q2 must vanish at r=0 in order to keep the total
energy finite, we £find that the following charges are

conserved:

I

Si=§ meidy CHYC W +RXY°K) = ﬁgﬁ.’-&j) dov /7T

S, = o.(“iTTT"Jd' (Ve Yy +%GY°X,) = ﬁ;&z’- &, ) & /I

Sz = ﬂmz dr iij‘ (VY V- Y X;)
=SB+ B e+ a)) dv /U

Sy = c',f”‘n'r*('z dv (YU Y Y Y, + XYY’ X, - % v Yoy - G YY)
=°f”CTT,+‘P,—ITz—-Pz) dx /I7F (3)

The following charges are nonconserved only through the

boundary terms:



N= STyt de (Bvoy -B v X, Bove g+ By )
0 ’
= S(3/+Q -8/~ &) dx NTT
Nl ol (§| + éq - ?Zz - é&)|v=o
N;zofw( Y, Y°Y y =X, v°rsx,) 4mrvidr =°f?n';—ﬁ)<£v/ﬁ
Nz, oG (f.," Q:) 'Y:O
o0
Nz = 6{?\773. YV W - Y vt X, ) ywvt = ;(Wz"@) dr N7

Ky oc (E/- &) lv=o ()

Finally, the charge,
L= S@ YY" Y+ Yy i+ B Y Y  y+ X Yoy X, ) 4mridy

=;“(T1;+f>, + T+ R) dr /T (5)

fails to commute with the Hamiltonian because of the
presence of the Coulomb term. This is the effect of
anomaly. Conservation of Sl’ S2 and S3 implies the
conservation of total number of fermions of type 1, the
total number of fermions of type 2, and the total T3 charge
respectively, where T3 is the diagonal generator of the
SU(2) subgroup. Conservation of S4 implies that the total
helicity of particle type 1 minus the total helicity of
particle type 2 must be conserved. Note that of all the

chiral charges, only Ll fails to be conserved because of



anomaly. The above conservation laws may also be derived by
using the equations of motion, or by using the current

0

conservation law (BOJ +3rJr=0 or proportional to the

anomaly).

As was pointed out by Callan3, fermions may be
represented by solitons in the fields @i and Q- Solitons
corresponding to various fermions are shown in Fig.l. Let
us consider the soliton corresponding to the field wi. If it

moves with a constant velocity v (v>0 if it moves outward),

we have,

ve-§ B dv/JF = - § T dor /6T ©)

which shows that the helicity of a particle is determined by
whether it is moving outward or inward. We can write down

the following general rule:
helicity=-sign of the T3 charge x v 07’

With all the conservation laws and helicity constraints

in mind, we may write down the following allowed processes:

Vi + Wor *TM—> Y + VY, +M @)
Vie + X% +M > g, + X5 +M (o)
Ve + l//zf +M — X.g+x§,_+M (o)

etc. A process of the form:

ViR + M = Wi + W + Yo +M Q)



is not allowed by the conservation of S4. In fact, for the
process wlR+M, there is no final state of the form M + free
fermions, which is allowed by all four conservation laws.
It is interesting to see what happens when we have only a
J=0 right handed wl in the initial state. We shall come
back to this question later.

Let us now investigate reactions (8) and (9) in some
details. All the conservation laws that we have derived so
far are valid in the true quantum mechanical sense, 1i.e.
the matrix element of the operator between any two states is
conserved. We shall now look at the system at the classical
level and study its time development. 1In (8), the charges
N2 and N3 fail to be conserved, although N2—N3 is conserved.
As noted in Eqg.4, this violation must be accompanied by a
non-zero value of (@i—Qi+¢é—Qé) at the origin. In reaction
(9), on the other hand, N2 and N3 are conserved, but Nl is
violated. Hence this must be accompanied by a non-zero time
derivative of ¢1+Ql—¢2—Q2 at the origin.

We show the time sequences for the reactions (8) and
(9) in PFigs.2 and 3 respectively. The reader can verify
that the charges Nl, N2 and N3 are non-conserved only at the
boundary in the time sequences described in Figs.2 and 3.
Conservation of these <charges at finite r forces the
individual fields to carry fractional helicity. Although
the two scattering processes look very different, they

basically take place through the same mechanism. In fact,
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we may define,

(v) Y’m).;. xz.) (w)=(x)+(v) (2)
X, Xir -V Xz ¥ Xa

and then bosonize the theory in terms of the primed

variables. The following reactions are then equivalent:

<
Vir + Ve +M=> Y+ Wi+M = Yo + X1 +M > X+ 44, +M

[ 4
W+ Xig +M b Wi + X +M =Yg + Yot M- Yo + Y +M

()

and hence in terms of the new boson fields, reaction (8)
will have the time sequence of Fig.3, whereas reaction (9)
will have the time sequence of Fig.2.’

The point we want to emphasize 1is that both the
reactions (8) and (9) take place via the combined effect of
anomaly and the vnon—trivial boundary condition at the
monopole core, even though reaction (8) is just a helicity
flip amplitude. This can be easily seen by noting that both
the reactions (8) and (9) violate conservation of charges
(N2+N3 and Nl respectively) which are anomaly £free, and
hence must flow into the monopole core.

For an SU(5) monopole the reaction (9) reduces to

4 *
sg T € +™M — W, + Uy +M Gy)
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which violates baryon number. The origin of this violation
~ ‘
may be understood by noting that the baryonic charge,

Sy dy -9, Yy + Gy W -7 x]/3

= L (N+Ss 4 5,) +L(S5-N,)
& Z -4 (5)

is violated through the boundary terms.

For reaction (10), Ll is conserved and the process
takes place even if we switch off the anomaly term (set C=0
in (1)) without changing the boundary conditions (2). This
can be seen easily by noting that for reaction (10), the‘
Coulomb term vanishes idetically at all time at all points
in space, if the two incoming particles travel together.
This clearly shows that it is the non-trivial boundary
conditions at the core, rather than the anomaly, which is of
fundamental importance in the baryon number non-conserving
processes. Constructing the time sequence for reaction (10)
is left as an exercise to the reader.

Let us now go back to £ﬁe reaction ¢1R+M. Any final
state involving free outgoing fermions, that carries the
same S4 charge as the initial state, must leave a net Sl’ 82
or S3 charge atv the monopole, which then spreads over an
infinite radius around the monopole core. Thus in this case
it is not possible to get a final state of the form
monopole+free fermions. We can still gain some knowledge
about baryon number non-conservation in this process by
doing a classical analysis of the reaction. This time we do
not know what the classical final state is, we must actually

solve the equations of motion to find the final state. We
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define,
A= @+ + Q+Q,)/

B=@+9,-8,-9,)/2
@3]
C=(‘P.’<Pz,+@.o"Qz)/2-

>=(@-P -+ Q) /2

B, C and D satisfy the free field equations of motion. A

satisfies the equation:

A-A"=-Gc/v?) A (7)
The boundary conditions on the various fields are:

A =0 A9 =0
(t8)

B(o) = ¢’'(0) = D(9)=Q

With these boundary conditions and the equations of
motion, we may study the scattering of solitary waves in A,
B, C and D fields. The result has been summarized in Fig.4.
Of these, the solitary waves in B, C and D travel with the
velocity of light all through (since they are free fields)
and come back undistorted. The solitary wave in A, on the
other hand, may suffer a time delay and may also be
distorted by scattering. For the present purpose, we may

neglect both these effects.
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We may now construct the initial and £final states of
any scattering process by superposing the various diagrams
in Fig.4. This is allowed, since the equations of motion
are linear in the fields.k In particular, we may verify the
correctness of reactions (8)-(10) using these diagrams. If
we now study the scattering of a §1 soliton from the core,
we get the final state shown in Fig.5. We find that the
scattering process conserves all the charges Sl' SZ' S3 and
84, but the outgoing solitons carry half fermionic charge.
Although this analysis does not tell us what are the
possible final states, we can interprete the classical
result as a time evolution of the éxpectation values of
different operators in a given state. Note that <4B> is
non-zero in this scattering, where B is the total baryonic

charge outside the monopole core.

We can probably get a clearer picture in the classical
analysis by giving the fermions a small mass. The mass term
will eventually drive the Qi and Qi fields at r=0 to be
integral multiples of t. In this case S, is not conserved,
and we may have final states of the form monopole+free
fermibns. But we are going to argue now that it is the
massless limit which is more relevant for the proton decay.
It is clear from the way we constructed Fig.5 from Fig.4,

that if we have incoming wlR, ¢2 separated by a distance,

R
we shall still get ¢1L, ¢2L in the final state, only the

final state solitons are now spread out over a distance (two



14

step solitons). This is true for any reaction of the form
two fermions + monopole -+ two fermions + monopole. Thus,
for example, in the reaction ulR+u2R+M+e£+d3§+M, even if the
two incoming u quarks have a small overlap in their
wavefunction, we still get a baryon number violating
process. If the quarks have mass m, we expect this to
happen so long as the two incoming u quarks are separated by
a distance less than m_l, since we expect the mass term to
become operative only if we wait for a time of order m—l.
This shows that the massless 1limit is probably a good
approximation for monopole induced proton decay, since the
radius of the proton is small compared to the Compton
wavelength of the quarks.

Let us now turn to study the effect of introducing
extra Coulomb interactions. What we mean by extra Coulomb
interactions is the following. 1In SU(5) gauge theory, for
example, we have three other diagonal generators, besides

the diagonal generator T3 belonging to the SU(2) subgroup in

which the monopole lies. They are,

-1 o o)

o O " o

L L
z z %

L { 4
2 2 2
<::> o & o -1

There are massless gauge bosons associated with these

generators. (The 1last generator does not have a massless

(13)
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gauge particle associated with it if the electroweak SU(2)
is broken. But we must include its effect at a distance <
mWEgé). The presence of these gauge bosons will introduce
new Coulomb energies in the Hamiltonian, and if they produce
an energy barrier that destroys the scatteriny solutions that
we constructed before, we may lose the baryon number
violating effect. We shall show below that this can never
happen.

Let us consider the Coulomb energy contribution from a
particular generator T. If A(r,t) be the total T charge

inside a sphere of radius r, the extra Coulomb energy

contribution to the Hamiltonian is given by,
2
c, (dv (ev k) /r? @9

Cl being a constant. A(r,t) may be calculated at any time t
by summing the total T charge lying between the origin and a
distance r from the origin, with the total T charge that has
flown into the origin in the time -« to t. Both can be

calculated in terms of the fields ®.,, 0., I,
i i

i and Pi’ using

the expressions for the charge densities and the radial
currents from Table I. The radial current at r=0 turns out
to vanish for all the three generators. The charge
densities, on the other hand, may be expressed in terms of

the fields @i, i, @i and éi’ Finiteness of the féiy f@iz,
fé? and fQiz terms in H requires that in the original

solution, without the extra Coulomb energies, any time or
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space derivatives of the fields are bounded by,
-3+€
K vt (1)

near the origin. € is a positive constant. Then A(r,t) is

bounded by,

ACYt) < K’ yEFE 2)

Which guarantees that the extra Coulomb energy (2¢) will
always be finite if we evaluate it using the original
solution for the fields. 1In other words, the extra Coulomb
energy cannot produce any infinite energy barrier to the
baryon number violating processes.

The key point to the above conclusion is the vanishing
of the radial T current at the core. This may be understood
as follows. From Table I and the boundary conditions (2),

we may conclude that,

(ﬁg Q’:; y/iL +'_x--il. ‘;\C—Y‘ x‘ik)l\‘=° =0 .

o 1=1,2
(Wie %5 Vir + Xig .5 xik)ly._.., =0
which implies that the total flow of fermionic current into
the origin for any SU(2) doublet must vanish independently
for the left handed and the right handed part. Loosely

speaking this implies that an ingoing ¢i into the core

L(R)

must be accompanied by an outgoing ¥,

iL(R) and vice versa.

Now, all the generators of the extra Abelian subgroups

commute with the full SU(2) subgroup in which the monopole

(23)
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lies. Hence, two members of the doublet must always carry
the same T charge, and the total T current into the origin
must necessarily vanish.

We may use the above result to find out which charges
can be violated by monopole catalysis. As we have just
seen, any charge, which commutes with the full 8U(2)
subgroup, must necessarily be conserved. On the other hand
if T3 is the diagonal generator of the SU(2) subgroup, then
the total T, charge must also be conserved (conservation of
S3). Thus, if any charge can be expressed as a linear
combination of T3 and another charge, which commutes with
the full SU(2) subgroup in which the monopole 1lies, then
monopole cannot catalyze the non-conservation of that
charge.

In conclusion, we may state the following results:

1) In the scattering of fermions from the monopole, the
conservation of Sl’ Sz, S3, S4, defined in Eq.(3) must be
satisfied. They imply conservation of total number of
particles of type 1 (e and dg), total number of particles
of type 2 (ul and ug), total T3 charge, where Ty is the
diagonal generator of the SU(2) subgroup in which the
monopole 1lies, and the total helicity carried by particles
of type 1 minus the total helicity carried by particles of
type 2. In counting the number of particles of a given
type, we should count -1 for antiparticles, whereas, in

counting the total helicity carried by particles of a given
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type, we should count =-1(+1) for 1left (right) handed
particles, irrespective of whether they are particles or

antiparticles. Some of the allowed reactions are,
+ [
Wg + Ugg +M = €L+ d5 + M

€L + Ug +M = W + dS +M
etc.
2) The non-trivial boundary conditions at the monopole core
are important for any scattering, including the helicity
flip amplitude ¢1R+¢2R+M*¢1L+¢2L+M. This process violates
the conservation of chiral charge S3, which is free from
anomaly, as well as the chiral charge Ll' defined in Eqg.5,
which is anomalous. Hence this process can take place only
if the charge S3 flows into the monopole core. In fact,
there exists helicity conserving processes like
e£+u2R+M+ul§+d3§+M, where anomaly does not play any role,
since the charge Ll is conserved in this process.
3) We have shown that processes like ulR+M+u2L+e£+d3§+M are
not allowed in the 1limit where the quarks are massless.
This does not imply the suppression of baryon number
violating processes, since in the massless limit, processes
like ulR+u2R+M+eZ+d3g+M do not have suppression, even if the
incoming uy and u, quarks do not have any appreciable
overlap in their wave-function.
4) We have shown that if any charge, free from anomaly, can

be expressed as a linear combination of the diagonal
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generator of the SU(2) subgroup, and another charge, which
commutes with the generators of the full SU(2) subgroup,
then the conservation of that charge cannot be violated by
monopole catalysis. (Here the SU(2) subgroup refers to the
subgroup in which the monopole lies.)

5) We have shown that the inclusion of the extra Coulomb
energy, due to the interaction of the matter fields with the
other diagonal massless vector fields of the full grand
unification gauge group, cannot qualitatively change the
results of Rubakov and Callan, although it may certainly
affect the quantitative result. This result is true for any
grand unified theory, Yo} long as the generators
corresponding to the extra Abelian gauge fields commute with

the full SU(2) subgroup in which the monopole lies.
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FOOTNOTES
FlI wish to thank S. Das for first pointing out to me that
the baryon number current is, in general, non-zero at the

origin as a consequence of the boundary conditions.

F2At any space-time point, the fields wi and X3 refer to the

eigenstates of the unbroken U(l) generator with eigenvalues
+1/2 and -1/2 respectively. In the standard spherically

symmetric gauge, ¥,

i and Xy may be expressed in terms of the

-
two component fieldg Ei(r,t) as,

W (F 1) =23 +5.3) T (Ft) X (Ft) =4 U-$.F)5, (¥,¢)
A ) 2 A
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FIGURE CAPTIONS
FIG.l: Solitons corresponding to various fields
FIG.2: Time development of the process Vjp+V,p+M>U i +V,, +M
FIG.3: Time development of the process wlR+xl§+M+¢2L+X2§+M
FIG.4: Classical scattering of A, B, C and D solitons from
the core

FIG.5: Classical scattering of wlR from the core
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