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ABSTRACT

We present a complete calculation of the .two loop
contributions to the Higgs-Yukawa beta function, giving the
evaluations of individual Feynman diagrams. We calculate in
an arbitrary a~gauge, and in a range of subtraction schemes
that includes MS and MS. We compute the beta function
explicitly for the Weinberg-Salam theory, but our results
should be readily adaptable to the computation of the beta

function in other theories.
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INTRODUCT ION

The renormalization group evolution of Yukawa couplings
is important in many contexts and in some cases one needs to
know this evolution quite precisely. For instance we have
recently carried out a complete two loop calculation of the
bottom mass within the framework of the SU(5) model.l By
computing to this accuracy we were able to set limits on the
number of generations, and we found that three and four, but
not more than four generations gave predictions consistent
with the observed value of Mb. This conclusion disagreed
with the results of an earlier partial two loop
calculation.2

Limits on the number of generations have also been
derived in this way for supersymmetric unified theories.3

Another example is the prediction of the ~masses of
heavy fermions {$ 300 GeV). We have calculated these
quantities to two loops by making use of properties of the
Yukawa renormalization group equations--the existence of
so-called infrared pseudo fixed points.4 Two loop precision
is desirable here because the fermions are heavy, which
means that their Yukawa couplings can be large.

More recently in supergravity theories the Yukawa
evolution has been found to be important in determining the

low energy spontaneous symmetry breaking scale.5
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The evolution of a Yukawa <coupling is of course
described by the corresponding beta function. For our SU(5)

prediction of M, we calculated the complete two loop beta

b
function for this coupling 1in the Weinberg-Salam theory.
This calculation included all strong, electroweak, Yukawa
and scalar self coupling terms, and was performed in an
arbitrary a-gauge, and in a range of subtraction schemes
comprising MS and MS. We have briefly reported the results
elsewhere.6

In this paper we present the details of our calculation
of the Higgs-Yukawa beta function, giving the evaluation of
individual Feynman diagrams. Though we compute the beta
function within the context of the Weinberg-Salam theory,
our results should be readily adaptable to the computation

of in other theories. Our explicit calculation of the

BH-—Y
gauge dependence should be particularly useful in any such
computation as a check. For the Weinberg-Salam theory the
requirement that the gauge dependence eventually cancel gave
us a total of sixty-six additive checks on the correctness
of our results.

We also calculate the two loop anomalous dimensions for
the Higgs and the fermions. The Higgs anomalous dimension,
though gauge variant, will be useful in calculating Bl for
the scalar self coupling. The anomalous dimensions have
been in part calculated previously; we agree with the

earlier results.7
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The organization of the paper 1is as follows. In
Section I we describe the overall framework of our
calculation, and give the Lagrangian we employ. In

Section II we briefly explain how the beta function is
extracted from a computation of the infinite parts of the
diagrams. In Section III we describe our subtraction
schemes and the way in which the scheme dJdependence cancels
diagram by diagram.

Finally in Section IV we present the contributions of
the 1individual diagrams to the beta function, and our

results for the Higgs and fermion anomalous dimensions,

I. FRAMEWORK

We are interested in computing the Higgs-Yukawa beta
function for the standard Weinberg-Salam theory. To
calculate we work with a slightly generalized version of
this theory, so as to gain additional checks on our results
as well as broader applicability.

1. We take the color gauge group to be SU(NC), Nci3r with
fermions in el ther the fundamental or singlet
representation (for quarks and leptons respectively).

2. Left-handed fermions and also the Higgs are taken to be
in N2 dimensional representations of SU(Z)weak, with
N,>2. However we include just the usual pairs of SU(2)
singlet right-handed fermions (e.g. top and bottom).

[ Thus N2—2 of the left-handed fermions in a multiplet
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have no right-handed partner and remain massless.]

3. The left-handed fermions are assigned arbitrary
hypercharge v. Their right-handed partners then have
hypercharge y+l (y-1l) for an upper (lower) flavor, The
Higgs have as usual hypercharge +1.

4., We assume that there are NH Higgs, only one of which
couples to the fermions.

5. Ng denotes the number of generations.

Also 1important are the following features of our
calculation. It is carried out in an arbitrary o gauge,

where the gauge propagator is —i/kz( - {1-a) kukv/kz). We

Tuv
use dimensional regularization, discussing a range of
MS~-type schemes. The second order term in B is both gauge
and scheme independent for these schemes, but the explicit
cancellation of the dependence in individual sectors gives
us stringent checks on the validity of our resudlts. There
are in all 66 additive checks due to gauge invariance, and
the sum of each diagram separately with its counterterms is
scheme independent (for the range of schemes we consider.)
Lastly, because we are concerned with the high energy
evolution of coupling constants, we work with the high
energy symmetric form of the theory. There are no
unphysical Higgs particle and the W bosons are massless.
Also we take the Higgs massless. As usual we ignore the
hierarchy problem, assuming that quadratic divergences can

simply be dropped.
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For completeness we give below our working Lagrangian.
We write down terms for a single generation only. The gauge
coupling constants, 91r 95 and I3 refer to the U(l), weak
2 and 12 are matrices,

2 3
elements of the Lie algebra, for the weak and colored

and colored groups respectively. A

groups . They are normalized so that in the fundamental
representation Tr(k2)=l/2.

The Higgs—-Yukawa coupling constants are labelled 9. and
Iy for an upper and lower flavor. The matrix ioc. is a

2
generalization of the usual Pauli Matrix, and allows the

. , . + .
complex conjugate Higgs field ¢ to give mass to the

t-quark.
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Efl = @Liyu(au + igg % sH &+ ig, w“-xz ¥ ig3Gu-A3)1bL

Lo . M . {(y+1) u . u,

b Tr lyu(a + 1g1 > B + 1gBG l3)Tr
= u . (v=1) L1 : M,

+ Br 1Yu(3 + ig, > B + 1g3G )\3)Br

1o o

t
o>

1 2
] ) = . -
+ ,(au + igy 3 13]J + lgéWu 12)¢|

- - . +
- gB(¢L¢ Br + H.C.) - gT(wL(102)¢ Tr + H.C.)

21 1 _uv 2 Suv 3 uv, _ 1 u, 2 B, 2 u,2
3 (vaFl + FquZ + Fqu3 ) 5a [(auB ) +(auw ) +(3UG )]
u_a+ _ abc, b, c
TN, ) (8,8, -9, Cy Woing
u_at+ _ abc.b, c
+ (37n, )(Gabau 94C5 Gu)n3 (1)

With this Lagrangian, then for a three-point diagram

with an incoming Br and an outgoing B the neutral higgs is

Lf
incoming.
Note that we choose the same gauge for all gauge

fields.
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II. EXTRACTING THE B FUNCTION

The quantities actually computed are the 1l/e poles in

the 2-point (higgs and fermion self-energies} and the

three-point (Yukawa) green functions. {Here £€=4-4d, where d
is the number of dimensions.) 1In an MS-type scheme these
define the renormalization factors 2, , 2, , Z and
bt T, ¢
Zcoupling where:
L,r _ ., 1/2 _L,r
Yan = Zw Yren
L,
1/2
¢>un - Z¢ cbren

r _ r

gunwund’un‘bun Zcouplinggrenwrenq’renwren ' (2)

For an MS-type scheme B can be obtained very simply from
these quantities.

Suppose we are interested in B for Ip - The relevant 2

is Zg , defined by

T
un ren
g =% 9 . {3)
T Ip T
If 7 is expanded as
EL
z_. =1+ 2° _€1_+ (4)
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Then B is given by 8

3
1 d d d d s
T 2 7T\ °T dgT B Ig j=p 4 dgi da I

(The expression in brackets is intended to represent a sum
over all coupling constants, including those for fermions of

other generations.)

i = . £ 4 = i '
Now since ZgT Zcoupllng/wwazwr?¢’ expanding the 2Z's
in 1/¢ gives:
73 = g% T B L L (6)
9m coupling 2 wL ¢r b

for the leading terms.
The superscript s indicates the coefficient of the simple
pole. Also, the operator in brackets in Eg. (5) acts very

simply on ZS, so that

1,8 _ 1,s _ 1 l,s 1l,s 1,s
B B gT(zcoupling 2 (2 ta *a ))

(2) 2,s 1 ,.2,s 2,s 2,s )
- Z r . —_ = r + r + r
BgT 2gT( coupling 2 (Z¢L Zwr Z¢ ) (7)
where Zl and B(l), 22 and 8(2), are the first and second

order terms of Z and B. Thus f has been related to a simple
combination of the 1/¢ poles of the two- and three-point

green functions.
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By a similar argument, one can show that the two loop

anomalous dimensions are:
Y = A Y, = Zs (3)
R , = -
by L b 6 6

Referring to equation 7, one sees that the anomalous
dimensions are exactly the appropriate self-energy

contributions to the B function.

III. SCHEME AND GAUGE DEPENDENCE

The B8 function through second order is gauge and scheme
independent for the range of schemes we employ. Furthermore
our Lagrangian contains several arbitrary parameters, and
our result must be gauge invariant regardless of_what values
they have. Therefore individual terms of B, e.qg. the
coefficients of Nc’ N2, v, y2, y3, etc., will be gauge
invariant by themselves. The 80 odd diagrams can be grouped
into overlapping subclasses, where each subclass contributes
to a different term and is separately gauge invariant for
the correct combination of its diagrams. As mentioned
earlier, we have then a total of 66 additive checks on our
calculation,

The scheme independence of the second order term of R
gives additional checks. It turns out that the sum of each

diagram with its counterterms is individually scheme

independent for our schemes.
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The schemes that we utilize9 can be described as

minimal subtraction with a modified definition of
d-dimensional integration., The counterterms are chosen as
usual to exactly cancel the poles in 1/e, but the standard
formulas for integrals are multiplied by some smooth

function of 4 that goes to 1 at d=4. For example we define:

d
J. d kd 21 — = N%d) [standard definition] =
{2m) {k™+m™)

1 1 I'(a-d/2) (9)
N{d) (4ﬂ)d/2 I.(m)(m.'z)ct~::1/’2
where WN({d) 1is such a function. In this approach MS
corresponds to chosing N(d)=1, and MS to
N@d) = (4m) " Yr@-3 .

The great advantage of these schemes is tha; the simple
expression for B derived earlier in BEg. (7) remains wvalid.

Scheme independence then follows from the fact that
when one computes in one of these schemes, say in MS, the
coefficient of ]./e:2 for each diagram is -1/2 times the
corresponding counterterm coefficient. It is easy to see
how this relationship arises computationally. Crudely, it
is due to the fact that when calculating a counterterm one
is really computing two independent integrals: one to
determine the ocounterterm insertion, and the second to
evaluate a diagram with this insertion. On the other hand,
for a two 1loop diagram the two integrations are linked by

their dependence on a common momentum.
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The relationship of l/e2 coefficients leads to the
cancellation of scheme dependence as follows. The two loop
diagram in our scheme has one 1/N(d) factor for each Lloop
integration--twoe in all. But for the counterterm one of
these integrals is truncated. The pole part only of the
counterterm insertion 1is used, and this is proportional to
1/N(4) or 1. Thus the insertion 1is independent of the
behavior of N away from d=4, and the whole counterterm is
proportional to 1/N(d) only. Then if a diagram is evaluated

to be

B—2N1A

€

m| W

1 (§—2+ +0(1) (10)

+ 0(1)) = 55 +
N2(e) \e e

with N=l+Nl€+0(€2) and the sum of its counterdiagrams is

C+2N. A
1 {-2a . C _ -2A 1 ‘
the total is
-4 B+C

The simple pole, which alone contributes to B, |is
independent of W.
One would not expect cancellation of scheme dependence

by this mechanism in higher loops.
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IV. CONTRIBUTIONS OF THE DIAGRAMS TO BB

In this section we give the contributions of individual

diagrams to the beta function for Ip (rather than the

8B
actual value of the diagrams.) Here Ip represents the
coupling of the Higgs to any down-type fermion. g for I
can be obtained by letting 9p I and vy -y 1in each
generation.

Note that a listed contribution represents the sum of
the illustrated diagram with 1its associated counterterm
diagrams, where the latter are obtained by replacing a
divergent subdiagram with minus its 1/¢ pole part.

We use the following notation:

1. gy represents any Higgs-Yukawa coupling; g; any gauge
coupling,

2. N,=N_ for a quark, N3=l for a lepton. is the

D3@2)
dimension of the adjoint representation for SU(NC)

2
(8U{2)). Thus D3=NC~1 and D2

3. We denote Casimirs as follows:

3.

R3(2) is the Casimir for the fundamental representation

of SU(N_) (SU(2)). Thus e.g. A3AJ=Ry L for A, in the

373
fundamental representation of SU(NC).

3

G3(2) is the Casimir for the adjoint representation of
SU(N,) (50(2)).

For the standard theory, with NC=3:
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For a lepton, we set R,=0.

3
4, For diagrams with fermion loops, fermions of any
generation can contribute. We wuse barred coupling

constants, e.qg. EB, to indicate that a sum over all

fermions with the corresponding T3 should be performed.

Similarly, ¥y or N, signifies that in this sum the

appropriate wvalues of vy or N, should be substituted.

For example:

-2 < - 2 1 2
9g N3 v = gg N, 3 + g, (1) {-1)
2 2
* Gy Ny 3+ 9 (1) (-1 ...

5. The gauge propagator is —i/kz(g —(l—a)kukv/kz}.

[IRY;

To obtain B for g, take ggy*gq, §Bﬂ+§T v -y, yr-V.
In part A, we give the Higgs self-energy contributions
and their total, the Higgs anomalous dimension. In B. we
give the fermion self-energy contributions and anomalous
dimensions, separating right-handed from left-handed, and in

C, the three point results.

(13)
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A, Higgs Self ®nergy Contributions

The relevant diagrams appear in figures 1, 5, 7 and

10(a and b). All expressions should be multiplied by
gB/(16w2)2 to get the true contribution to SB. The gg

contributions to BB derive from the diagrams in Fig. 1:
1L =4 -4 -2=-2, = J-3

1b)  (-353a] Wy (-2} (14)

The gggg terms come from the diagrams in Fig. 5:

-7 - — 2 -2 - -
5a) {—[9§R3(g§+g§)1 N, - 3 [95R,(35+30) ] N,

35 Iy -y -2 =2 = 1 ..
- % gi(gély2_y + % ] + 3y +y + 3 ])N3} {a]
-2 -2 . = S m o e o )
! {_ 7 RG] By - § 197G G-F1aR 67N N3}
x {-10-2a}
5¢) {' %‘ [9§R2(§§+§%)] ﬁ3 —% [9%(53@%)] ﬁ3}{-7+5a}
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2 -2 =2 5 1 2,=-2,=2 =
54) {—[ngzthﬂ;T)] Ny - 5 [9](@g*an)] N3}{1-3a} (15)

4

Figure 7 contributes to terms in BB proportional to 959

2
4 53 11 a
7a) -2 [g2R2G2] {"4’9— + '8-'— a + -i--— }

7b) -2 [gngGZ] {% -

019
[}
\‘w’

70) =2 [g5R,G,) {%% -5 - “2}
) {'[gngﬁzNz/Dzl Ny - g [979,Ny ]}{“ %l}

1 .45 7 = 1 4 =2 - ) {10
7e) {5-[g2R2R2N2/D2} N3 + 33 [gl(y (N2+2)+2)] N3}{§—}

2
4.2 1 4 9 o
7£) {‘[92R2] - 5 97958, - 1% [91]} {E - 3a ¢+ T}

79) {4[g;(R§ -5

RS e
[
e
H N
[fe]
N Mo
o
[N
+
o
Q
ok
el o’
|
|
|
o 2
I
Q
o
\-‘\/""

7h) 0
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|

S

1) {-2 195 (8] o)1 - tafelr,l - o1} {- 3 - %—}

. 4.2 1 1 14 3 7 2
73) {—[92(R2 ) RZGZ)] 3 [glg ] 16 [gl]} -{5 + 0 - 5 @ }
(16)
Contributions involving the four point coupling:
2
10a)y - %— (Nz + 1) {- %}
10b) 0 (17)

The total contribution to Bg from the two loop Higgs

B
self-energy diagrams is gB/(l6Tr2 2 times:

-4 - -1 =222 2. . =2,-2. =
(3p+dp) (N,+D)Ny + 2 (G232)F, + 592R;(32+52),

1
N[N

2p 5 272,422 ,= ooz =2,.=2 = . =
95 2(98+9T)N g 91 (9 (2y"-2y+1) Nadg {2y +2y +1) Ny

(116

4 4
9NNy +9) 33+ A g (18)
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Equation 18 also gives the two-loop Higgs anomalous

dimension.

B. Fermion Self Energy Contributions

The fermion self-energy diagrams appear in Figures 2, 4
and 8. We give the results separately for the right- and
lef t-handed self energies where these are different, A
single listing represents as wusual the sum of equal
right-handed and lef t-hand contributions. A factor
gB/(16w2)2 has heen suppressed throughout.

The g; contributions to BB derive from figure 2:

2a) 0
4 2 2 4 1
) =129 + 9ggg + 9pl N, {5}
1 =2 -2 2 2. = 3

The gégi contributions derive from Figure 4:
4a)
Left Right
2 2, 2 2 2 2 2

S S CHCHUS RV Y

4



-19-

4b)
Lef t

2 2 2 2 2,2
{[g3R3+92R2+91y /4](gB+gT)}

{14

4c)

2 1 2 2,2
[92R2+ Z gl] (gB+gT)

A

| Ln
+

iR

—

44)

1 2. 2 2
F9ltedwr-gy-11 {3-

B} b

de)

{-21a2r,a3vam 1+ 5 ta]al-adrv1)

X ——3--—
4

N e

|

f

FERMILAB-Pub-83/24-THY

Right

{ig§R3+gf<y-1)2/4lg§N2}

2 1 2.2
[95R,*+ 7 91195N,

g

W= [
+

(R

\-\,-'

20 .1 2.2
[95R* 2 q1Y]gBN2{3 2

ol
]
T——

1,22
3 l979gN, (v-1) ] {-

RN T
|
iR
\—v-/
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4f)
Lef t

{2t93R (9242 )

P RCHCHUEEM RS

x{_1+ %}

959, terms arise from fiqure 8:

R2
4 72 1 4 2 1
“l9; 5, * 16 91 ]NzNH‘{E}
8b)
1 [g4ﬁ R, (N_.+2)/D.IN
2 3737342 3°73

1 4.2 -
* 3 [9,RN, /Dyl Ny

1

* 33

8c)

2
[{g3R,G,] +[g5R,G, 1 ] {% *

‘BF

'

[gf(?z(N2+2)+2)y2]ﬁ3}{—2}

{

{

FERMILAB-Pub-83/24-THY

Right

2. 2
2[g3R39pN,]

1

* 3 loiagN, (v2-y11}

- 16 oy, (=D Aimg{3
1 1, = =
7 [93R3R3(Ny+2) /D3I N,

1 4 =2 =
+ 33 [97 (72 (N,+2) +2) (v-1) 21F,

1
J
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Left Right

25

1.4 2 _ 3,1
2 [93R3G3]{4 2 *7 2

8e)
1 4 4 9 .11 2| 1 .4 9 11 2
3 [93R363%9,R,6)] {5 tg e } 2 193R;365] {E * g o }
8f )

2,2 1 2 2
{" 93(R3= 3 G3R3)  ~219;93R,R;] {“ 93(R3= 3 G3Ry)

1,22 2, 4,2 1 1,22 2

= 5 [9795R3¥"1-[9,(R5- 5 G,R,) ] 5 [9793R5(y-1) ")
1 .22 2. 1 4 43¢3 o 1 4 4

-3 [919232}’ ]- 16 lgly 1}{5 - 'é—} - 16 [gl(Y"l) ]}
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89)
Lef t Right

a2 2 2 1 22 2. f_. 42 1 .22 2
{-t93r31-219303R R0 - 3 1a29%R,v) {-19%R31- § todaZR -1 2

e 402 1 2 2 2, 1 4 4 _ 1 4, L. 4141 2
1 2
The total lef t-handed fermionic self energy

contribution is gB/(16112)2 times:
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- 1 4 2 4. = _
3 NglgRoR, /DTN, 335 Nplg v 1N, -[94R4R, (N,+2) /D, N,

—[gngﬁ N./D.1R.- L [gi(§2(N2+2)+2)y2]ﬁ3

2
2. (25 o 2 2 3. 2.2 2
R3+ (7 +2a+ §) R3G3:| ~319593RRy1 - § [9793R;5y7)

+
Ivs)
RS
7
M| w

(YN}

2
4 2 25 n 3 2.2 2 3 4
+ gz[— R2+ (T +2a+ T) R2G2:] - Z [9192R2Y 1- 32 [gly4]

2 2. 2 11 2 2. 2 2[ 2,1 2,1 17
=2 33R3(9p*gp) + 7 IRy (ggtaq) 91[‘33( 3 Yt g Yt Tg)

2/ 1 2 1 17
+9T("§Y'§Y+T€)]
1 3

1 4 22 4 -2 =2 2 2 =
- (E 95t 15 9591t To gT)Nz - g (dp*dq) (Gg (N +1)+94) N, (22)

The right—-handed contribution is: gB/(lﬁﬂz)2 times:
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1 4,1 22 1 4 3 =22, , 2 2 =
- (§ 98" 16 991" Ts gT)Nz“ g (Ip*9p) (9g (Ny*1) +ap) Ny

=

ta?r P 1s 17 (a2 o2 20201 (21 o2s 7 oy 11
21a3Ry9pN, 1+ 77 [95R, 95N, ) +1979pN,] ( 2 YO+ g ¥t )

—~

1 4 2 4. =
—_i [glNz(Y_l) ]NH" [93R3R3 (N2+2)/D3] N3

(9]

2

|H

{qf(§2(N2+2)+2)(y—1) IN,

[
h

4 1 2 25
+ 93R3G3|:4 o +20+ 2 ]

3 4 .2 3 2 2 2
- 5 [93R3]— Z [g193R3(y-l) ]

35 91— (23)

w

The expressions in (22) and (23) represent also the two-loop
fermion anomalous dimensions.
C. Three Point Contributions

These arise from the diagrams of figures 3, 6, 9 and
10c). A factor gB/(lﬁﬂz)2 has been suppressed throughout,

The gg contributions of figqure 3 are:

3a)

-2[9594] (1}



-25- FERMILAB-Pub-83/24-THY

3b)

2{qT (N +l)+ngB] { }

3c)

3d)

- @2+32) 928, (2]

3e)

-2{g411-1}

The g;gi contributions of fiqure 6 are:

6a)
0
6b)
2 2 2 1 2,2 2 2 2, 2 1 o

{2[g3R3(qB(N2+l)+gT)]+ 5 Igl(gB[Nzy +(y-1} }+qTIy 1]”}12 - 2}

6c)
2 2 1 2 2 2
-4tadrpe214200R,020- § tader v ®- 11} (3-a)

6d)

{-to2r, 324320 18,- § 103 G252 1R,} (20}
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te)

IR e (R ICH{URBRRLS|

N

“f

6f)

{-2t93r;921- (9392 (v2-v)1} (540}

69}
2 1

{-2[9§R39T]- 5 Igfg.?.(yzﬂr)]} {1+a}

6h)

(-a193R, 021~ 19352y%1) (-2}

61)

{2ladr,y g1~ 5 19, v-n-ahadiv} {3 e

[N P
"—V'"

6J)

0
6k )

0
61)

{- 5 91[ 92N2y+qB (y- l)+gT(y+l) ]} {%}
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ém)

{retadnedi- § olod) O

6n)

{2tadr, 00421~ 5 ol gl vy w2t} - 5}

38

60}

1 2, 2 22
{3 to} el v+taZ-ad w-11}

N
+
MR
St e

5p)
{+2 (95R, 901~ 5 [gjz_g%(Zy-l)]} {a}
6q)
{—2 958,921~ 3 l9jgatzy+ 1} (3-3)
6r)
0
6s)

2 -2 =2 .= 1. 2, =2 =2, .=

4,

The diagram of figure 9 contribute terms of the form 9g9y ¢

Sa)

4 32
[g3R3G3) { T -4 CE}
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9b)

A 12
2193R4G4] {‘ i3 "1 ¢ }

9¢c)

4 2
2{g,R,G,]  {-12+a+a”}

94d)

4.2 2 2 I .22 2 1,22 2_
{—4[g3R3]-2[gzg3R2R3l— 3 [9793Ry(4y =4y+1) 1= 5 [g]g5R, (v ~y) ]

- 5 [gi(y3(y—l)+(y—l)3y)]} {-2a}

4,2 1 2 2 1,22 2.
{-ata5(R3- § Ry, 1-219397R,R,1- 3 19207R, (av2-ay+1))

- 3 (9795”2 1= § (a1 @ =D+ ty-1 Py} (-6+2a)

gf)
22 1 2

{—2[93R§]"[glg3R3(Y2"Y”“ 3 [‘Jiy (Y-l)zl} {9+6a+a’?}

9g)

{-219583- $ r;6,)1-19%0%R, (v

3R3(y —Y)]—% [giyz(y-l)z]} {3“6(1'-0.2}
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9h)
1 4 2 7.
- g LNy Pon1 {- 3}
9i)
(N,+2)
4= 2 = 1 4 =2 2 = 16
{95838 —5— Fy+ {5 9107 (0720 42) v -y)]N3}{§“}
93)

4 1 2
{g,R,G,] {5 * }

9k )

[zgngGz] {‘ % “2}

91)

4 12
[95R,G,] {' 3¢ }

9m }

9n)

{-21a3r]1-taledry0 - § 19f1} fave?)

90}
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%)

2 2 L 2.2 1 2 2 2 1 4 2
{-210305R,m50 - § tofelry1- 5 telalr, vPv - § e Pom)

x {2al

9q)

2_2 1 .22 1,22 2 1. 4 2
{-2{9293R2R3]— 5 [9793R;31= 5 [9{g,R, (y7-y) ]~ 5 (g (y ~y)]}{-2a}

9r)

0
9s5)

0
o9t)

{-tafadR,5-11- 4 193 2=y} (o?)

9u)

{—2[93R§]‘[gig§R2y]— % [gi(2y2—2y+l)]} {3a-a?)

9v)

4,2 1] 22 1 4 2

9w)

2
(95R,8,) {“ 7" %—}



9%)

{-2193 ®3-

9v)

{tglngZ

9z)

{ata3 =3-

9z*")

2

2

2

2

{4193 x2-

92")

10c)

3

1

1

4

1

2 2

2. 2

2.2

-31-

(y—-1) 1+ % [gf(yz-y)]}

2 R2G2)]+2{glg2R2y]+

FERMILAB-Pub-83/24-THY

§ lay v +ty-0 20} {-3a)

1

1

4

R2G2)]+2[glng2]+ i

Diagram 10c¢)

2

Finally, the complete two loop 8

2

gg/ (167%) 2

_N3

_ 4
9

{
(

2,
a4

times:

)

2 2

contributes

(

Agh 41y (1)

N
8

3 ~4 =4
7 (N,+1) (Gptdo)-

2

1 -2-2 3
%5 9g9pt 7
a(7

= +%) +g

T

(

8

o)

2

{3402}

2
97 (2v®-2y+1 1} -3 - &
a3} 1 3 ara’)
(26)
(27)
function for 9g is
-2 =2 2 5 =2 =2 2
N2+l) (gB+gT)gB_ '4_ (gB-I-gT)gT}
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2 2

2 -2 - 2 2 2
+593R3(gB+gT)N3—1693R39T+493R3(gB(N2+l)+gT)

2. 2 5 2
2Ro9pN>* 5 95R

2

11 2

-2 -2 = 2 2
(9g+dqpl N3+ 7= 9,R, {949 )

-1 gf[ggnzt—zyz- 7 v- g dap -2y 22y 3 ) aeliay? k
- % gig%(8y2+2y+l)

-3 9103 vy R faton - 24 1y 112,

+ g N P onen ey (2 - 10, 10,2,

- % qung( % + by- % y%)- % g§g3R3(3y =3y- 5 )

* 5 9Ro RNt § 3R,R N 20 132 37 R
+99595R R+ (=383~ 2 G.R,)
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N
0 4z, N
+ 3 93R3R3 D3 (N2+2)
- 2 a2 N+ + 13 N,+1) (28)
3 Mg (Ny*l)+ 73 (N

When the sum over the loop fermions is performed, BB is

g/ (161%) 2 {[f 3 N (N +1)- 23 +2]gg+[Nc[l~ % N, - gg -nggg%
- 3 (N+lyglel- 2 N_(N,+1)gl(gi+al)
+g§g§R3(5NC+4N2+4)+gég§R2(N2 %1 N g + %l )
solsd(n, 3 oy 35E e Bledfic 3 - Ings de]
+ % 9%93+ % 9%(q§+gé)Nc+g§g§R3(Ncs-lz)
*ap93Ry (Ve 3 + 3 )+9p01 (M 73 = 43 )= § 9 (L)

5 2 2 25 2.2 1 2
T3 9.9RY 5 9,91 3 gsgcz:Nc



~34- FERMILAB-Pub-83/24~-THY

2. 2.2 5 2. 2. 2 25 2 2 85 2 2
>(9gt9)g3Ry*t 5 (9gHg) g RN+ =5 9gq N+ =5 997N,

(Gg+ag)N_(N,+1)

2 2 31 2
+3939,R3Ry* 12 93

41,2 4 2 47
+92[R2(N2NH E) + (Nc+l)N2NC 9 —6)-G2R2(<I§ q

(& ]

2 2 2 2 Y
—Bgzgle— 3 kgB(N2+1)+ 18 (N2+1)
9y N,
+ 518 [?NHNZ-NG( 3 (N2+20)+N2+4) - 10]] (29)

Ng is the number of generations, and N, the number of

H
Higgs. The Jgr Yo and d. terms are intended to represent
terms involving upper, 1lower, and leptonic couplings of

other generations. Similarly, BT is gT/(16w2)2 times
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N,

al_ 3 3
gT[’ 2 N (Mot = 4= +2]+9TgB[Nc(l' T N F _l]

3 22 3 2,2,2 2 2
= § 979 (Np+l)= 3 9r(go+gg) (N,) (N,+1) +g7g3R, (SN_+4N,+4)

11 | 2 2
* E—) +ngl(Nc 72 N2 127 * 44)

o

2 2 17
+ng2R2(N2 - +N
ar, /1 3 7 5 22,5
+gB[Fc(2 - T N)t g N2+1] T2 99,7 7 I 9crIgIN,

2 2 2 2. (5 3 25 _ 43
*9593%3 5N 12’+9392R2(5 Ne* E) +ngl(Nc 72 T E‘)

!
N

4 5 22 . 25 22 4, 4
Ir (Np*l)+ 5 979,Ro*t g 9¢917 7 (9¢t9g) N (Ny*D)

1 22 2 2. 2 5 2 2.2
7 99N to (9et9gIg3RIN+ 5 (Iot9g) IR, N,
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85 2 2 25 2 2
73 909Nt 72 9591 Ne

(NN _(N,+2)
41,2 G c' 2 _ _ 97
+ g3[R3 ( > D3 3) +R3G3( 3 )]

+

2 2 19 2.2
+9 9395R3R*+ T35 939 R

af 2 4 2 47
+92[R2(N2NH 5 NG (N*h) 5’"6)+G2R2( 12)}

2 2
~9;91R,

29 4 (Nc
+ 5T% glNG g (N2+20)+N2+4)

2X
3

2 A2
g2(M,+1) + 2o (Ny41) (30)

Finally, B, for g. is gT/(lGWZ)2 times
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2,2, 2 3 22
I (GpHaqp) N (Ny+l) = 7 9.9, (Ny+1)

B

N2
(N2+l)-— T +2] -

[€o]

A s
|

(N1

2.2 17 . 21 2 2(13 153
* ng2R2(N2 T Z‘) * 9191(13 Mot 16 )

3 4 4 1 22 2 2.2
= 7 (GpTaqpI N (Ny+l)+ 5 gpgeN +5(94+95)93R N,
2 2.2 25 85 2 2
3 (9ptgg)g,R N+ 55 g ngc+ 75 979N,
3 4 2 2 25 2 2
4 gu+ 2 gugZR2+ 3 949

(N.+20)
2 2 4 2 11 13 3
+ 3g2glR2+gl[%G(Nc 5 +4+N2)_Z + NZNH 53 - §]
- 22 02 N+ 22 (N.+1) (31)
3 9¢ Wy 18 ‘™2

gu represents the coupling for a lepton u of a different
generation than T.

The specialization of the above results to the standard
theory (N3=2, N2=2, etc.) has already been given in

reference [6].
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FIGURE CAPTIONS

gg contributions to the Higgs
dimension.

4
%n
dimension.

gg contributions to the Higgs—Yukawa B,

gﬁgi contributions to the fermion

contributions to the fermion

dimension.

2 2 . . .
g9y contributions to the Higgs
dimension.

gggf contributions to the Higgs-Yukawa

gg‘ contributions to the Higgs
dimension.
qg contributions to the fermion
dimension,

gg contributions to the Higgs-Yukawa B.

Contributions to B involving the

self-coupling.
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