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ABSTRACT 

We present a complete calculation of the two loop 

contributions to the Higgs-Yukawa beta function, giving the 

evaluations of individual Feynman diagrams. We calculate in 

an arbitrary c-gauge, and in a range of subtraction schemes 

that includes MS and %. We compute the beta function 

explicitly for the Weinberg-Salam theory, but our results 

should be readily adaptable to the computation of the beta 

function in other theories. 
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INTRODUCTION 

The renormalization group evolution of Yukawa couplings 

is important in many contexts and in some cases one needs to 

know this evolution quite precisely. For instance we have 

recently carried out a complete two loop calculation of the 

bottom mass within the framework of the SU(5) 1 model. By 

computing to this accuracy we were able to set limits on the 

number of generations, and we found that three and four, but 

not more than four generations gave predictions consistent 

with the observed value of Mb' This conclusion disagreed 

with the results of an earlier partial two loop 

calculation. 2 

Limits on the number of generations have also been 

derived in this way for supersymmetric unified theories. 3 

Another example is the prediction of the masses of 

heavy fermions (5 300 GeV). We have calculated these 

quantities to two loops by making use of properties of the 

Yukawa renormalization group equations--the existence of 

so-called infrared pseudo fixed points. 4 Two loop precision 

is desirable here because the fermions are heavy, which 

means that their Yukawa couplings can be large. 

More recently in supergravity theories the Yukawa 

evolution has been found to be important in determining the 

low energy spontaneous symmetry breaking scale.' 
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The evolution of a Yukawa coupling is of course 

described by the corresponding beta function. For our SU(5) 

prediction of Mb we calculated the complete two loop beta 

function for this coupling in the Weinberg-Salam theory. 

This calculation included all strong, electroweak, Yukawa 

and scalar self coupling terms, and was performed in an 

arbitrary a-gauge, and in a range of subtraction schemes 

comprising MS and %?. We have briefly reported the results 

elsewhere. 6 

In this paper we present the details of our calculation 

of the Higgs-Yukawa beta function, giving the evaluation of 

individual Feynman diagrams. Though we compute the beta 

function within the context of the Weinberg-Salam theory, 

our results should be readily adaptable to the computation 

of SH-Y in other theories. Our explicit calculation of the 

gauge dependence should be particularly useful in any such 

computation as a check. For the Weinberg-Salam theory the 

requirement that the gauge dependence eventually cancel gave 

us a total of sixty-six additive checks on the correctness 

of our results. 

We also calculate the two loop anomalous dimensions for 

the Higgs and the fermions. The Higgs anomalous dimension, 

though gauge variant, will be useful in calculating Bx for 

the scalar self coupling. The anomalous dimensions have 

been in part calculated previously; we agree with the 

earlier results. 7 
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The organization of the paper is as follows. In 

Section I we describe the overall framework of our 

calculation, and give the Lagrangian we employ. In 

Section II we briefly explain how the beta function is 

extracted from a computation of the infinite parts of the 

diagrams. In Section III we describe our subtraction 

schemes and the way in which the scheme dependence cancels 

diagram by diagram. 

Finally in Section IV we present the contributions of 

the individual diagrams to the beta function, and our 

results for the Higgs and fermion anomalous dimensions. 

I. FRAMEWJRK 

We are interested in computing the Higgs-Yukawa beta 

function for the standard Weinberg-Salam theory. To 

calculate we work with a slightly generalized version of 

this theory, so as to gain additional checks on our results 

as well as broader applicability. 

1. We take the color gauge group to be SU(Nc), N&3, with 

fermions in either the fundamental or singlet 

representation (for quarks and leptons respectively). 

2. Left-handed fermions and also the Higgs are taken to be 

in N 2 dimensional representations of SU(2)weak, with 

N2z2. However we include just the usual pairs of suG3 

singlet right-handed fermions (e .4. top and bottom). 

[Thus N2-2 of the left-handed fermions in a multiplet 
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have no right-handed partner and remain massless.) 

3. The left-handed fermions are assigned arbitrary 

hypercharge y. Their right-handed partners then have 

hypercharge y+l (y-l) for an upper (lower) flavor. The 

Higgs have as usual hypercharge +l. 

4. We assume that there are NH Higgs, only one of which 

couples to the fermions. 

5. Ng denotes the number of generations. 

Also important are the following features of our 

calculation. It is carried out in an arbitrary a gauge, 

where the gauge propagator is -i/k2(g,,v- (l-e) kuk,/k2). W e 

use dimensional regularization, discussing a range of 

MS-type schemes. The second order term in 5 is both gauge 

and scheme independent for these schemes, but the explicit 

cancellation of the dependence in individual sectors gives 

us stringent checks on the validity of our results. There 

are in all 66 additive checks due to gauge invariance, and 

the sum of each diagram separately with its counterterms is 

scheme independent (for the range of schemes we consider.) 

Lastly, because we are concerned with the high energy 

evolution of coupling constants, we work with the high 

energy symmetric form of the theory. There are no 

unphysical Higgs particle and the W bosons are massless. 

Also we take the Higgs massless. As usual we ignore the 

hierarchy problem, assuming that quadratic divergences can 

simply be dropped. 
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For completeness we give below our working Lagrangian. 

We write down terms for a single generation only. The gauge 

coupling constants, gl, g2 and g 3' refer to the U(l), weak 

and colored groups respectively. X; and A: are matrices, 

elements of the Lie algebra, for the weak and colored 

groups. They are normalized so that in the fundamental 

representation Tr(X2)=1/2. 

The Higgs-Yukawa coupling constants are labelled gt and 

'b for an upper and lower flavor. The matrix io 2 is a 

generalization of the usual Pauli Matrix, and allows the 

complex conjugate Higgs field $+ to give mass to the 

t-quark. 
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it. = $,iy,(a" + igl 5 B' + ig2 WpSX2 f ig3G'*X3)QL 

+ F + igl w B' + ig G".X 3 3'Tr 

+G r iyu(ap + igl 9 Bp + ig G'*A 3 3jBr 

+ /(a 
1 

u + igl 2 BP + ig2Wp'x2 )$I2 

- gB(GL@ Br + H.C.) - gT($L(ia2)@+Tr + H.C.) 

- $ (F;"Ft;" + FE&F;" + F;"F;" ) - +& [ (allBu) 2+(apwur 2+(apcv)2i 

+ (apna+ 2 ) (6abaD - g2 c~~~w~)~T~ 

+ (a”na+ 3 1 (6abap - g3C;b’+n; (1) 

With this Lagrangian, then for a three-pint diagram 

with an incoming Br and an outgoing BL, the neutral higgs is 

incoming. 

Note that we choose the same gauge for all gauge 

fields. 
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II. EXTRACTING THE S FUNCTION 

The quantities actually computed are the l/s poles in 

the 2-point (higgs and fermion self-energies) and the 

three-point (Yukawa) green functions. (Here s=4-d, where d 

is the number of dimensions.) In an MS-type scheme these 

define the renormalization factors and 

z coupling where: 

"un 
L,r = zW L,r 

"L,r 
$ ren 

$ = z un 
m $ 
$ ren 

gunSunmun':n = ' 
-L 

couplinggren ren ren ren ' JI $ Jlr (2) 

For an MS-type scheme 8 can be obtained very simply from 

these quantities. 

Suppose we are interested in S for gT. The relevant Z 

is Z 
gT' 

defined by 

un 
gT = z 

gT 
g;en . 

If z 
gT 

is expanded as 

(3) 

Z = 1 + zs 
gT gT 

;+ . . . (4) 
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Then 8 is given by 8 

1 

i 

d 
'T = T gT gT d 

d 

gT 
+ gB G + f gi + + 2x G) Zi, . (5) i=l i 

(The expression in brackets is intended to represent a sum 

over all coupling constants, including those for fermions of 

other generations.) 

Now since Z = Z 
gT couplin expanding the Z's 

in l/s gives: 

S 
7, =z s 1 

gT coupling - Z ( 
z;, f z;, + z; . 

1 
(6) 

The superscript s indicates 

pole. Also, the operator 

simply on Z$ so that 

= gT 

for the Leading terms. 

the coefficient of the simple 

in brackets in Eq. (5) acts very 

$ (zips + ,;ts + z;+ 
L r 1 

B(2) = 29 
gT 

T 2igpling - 4 ‘z;Ls + 2;:” + zp)) (7) 

where z1 and 3 (1) , Z2 and 8(2) , are the first and second 

order terms of Z and 8. Thus 5 has been related to a simple 

combination of the l/E poles of the two- and three-point 

green functions. 
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By a similar argument, one can show that the two loop 

anomalous dimensions are: 

Y$, r = - z 
; 

L r I Y$ = - z 
i 

, , 
(8) 

Referring to equation 7, one sees that the anomalous 

dimensions are exactly the appropriate self-energy 

contributions to the 8 function. 

III. SCHEME AND GAUGE DEPENDENCE 

The 8 function through second order is gauge and scheme 

independent for the range of schemes we employ. Furthermore 

our Lagrangian contains several arbitrary parameters, and 

our result must be gauge invariant regardless of what values 

they have. Therefore individual terms of 6, e.g. the 

coefficients of N 2 3 
C’ N2r YI Y n Y , etc., will be gauge 

invariant by themselves. The 80 odd diagrams can be grouped 

into overlapping subclasses, where each subclass contributes 

to a different term and is separately gauge invariant for 

the correct combination of its diagrams. As mentioned 

earlier, we have then a total of 66 additive checks on our 

calculation. 

The scheme independence of the second order term of 8 

gives additional checks. It turns out that the sum of each 

diagram with its counterterms is individually scheme 

independent for our schemes. 
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The schemes that we utilize 9 can be described as 

minimal subtraction with a modified definition of 

d-dimensional integration. The counterterms are chosen as 

usual to exactly cancel the poles in l/s, but the standard 

formulas for integrals are multiplied by some smooth 

function of d that goes to 1 at d=4. For example we define: 

I ddk 1 
(2n)d (k2+m2) 

= & [standard definition] = 

1 1 l'(a-d/2) 
N(d) (4n)d/2 f(a)(m2)a-d'2 

(9) 

where N(d) is such a function. In this approach MS 

corresponds to chasing N(d)=l, and MS to 

N(d) = (4~) 4-d,'r(d-3). 

The great advantage of these schemes is that the simple 

expression for 3 derived earlier in Eq. (7) remains valid. 

Scheme independence then follows from the fact that 

when one computes in one of these schemes, say in MS, the 

coefficient of l/c2 for each diagram is -l/2 times the 

corresponding counterterm coefficient. It is easy to see 

how this relationship arises computationally. Crudely, it 

is due to the fact that when calculating a counterterm one 

is really computing two independent integrals: one to 

determine 'c'ne wunterterm insertion, and the second to 

evaluate a diagram with this insertion. On the other hand, 

for a two loop diagram the two integrations are linked by 

their dependence on a common momentum. 
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The relationship of l/s2 coefficients leads to the 

cancellation of scheme dependence as follows. The two loop 

diagram in our scheme has one l/N(d) factor for each loop 

integration--two in all. But for the counterterm one of 

these integrals is truncated. The pole part only of the 

counterterm insertion is used, and this is proportional to 

l/N(4) or 1. Thus the insertion is independent of the 

behavior of N away from d=4, and the whole counterterm is 

proportional to l/N(d) only. Then if a diagram is evaluated 

to be 

+ ; + O(1) = A + 
B-2NlA 

E2 
E + O(1) (10) 

with N=1+Nlr+O(s2) and the sum of its counterdiagrams is 

+ z + O(1) =-2A+ 
C+2NlA 

E2 E + O(1) (11) 

the total is 

-A+ B+C 
E2 

- + O(1). E (12) 

The simple pole, which alone contributes to 8, is 

independent of N. 

One would not expect cancellation of scheme dependence 

by this mechanism in higher loops. 
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IV. CONTRIBUTIONS OF THE DIACXAMg TO 8, 

In this section we give the contributions of individual 

diagrams to S, the beta function for gB (rather than the 

actual value of the diagrams.) Here gB represents the 

coupling of the 

can be obtained 

generation. 

Note that a 1 i 

Higgs to any down-type fermion. 6 for gT 

bY letting gB++gT and y +-y in each 

sted contribution represents the sum of - 

the illustrated diagram with its associated counterterm 

diagrams, where the latter are obtained by replacing a 

divergent subdiagram with minus its l/e pole part. 

1. 

2. 

3. 

We use the following notation: 

gH represents any Higgs-Yukawa coupling; gi any gauge 

coupling. 

N3=Nc for a quark, N3=1 for a lepton. D3621 is the 

dimension of the adjoint representation for SU(Nc) 

(SU(2) ) . Thus D3=Nz-1 and D2=3. 

We denote Casimirs as follows: 

R3(2) is the Casimir for the fundamental representation 

of SUWJ (SU(2) 1. Thus e.g. X;X;=R3b for X3 in the 

fundamental representation of SU(Nc). 

G3(2) is the Casimir for the adjoint representation of 

SU(Nc) (SJJ(2)). 

For the standard theory, with Nc=3: 
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4 3 R3 = 7, R2 = 7 , G3 = 3, G2 = 2. 

For a Lepton, we set R3=0. 

4. For diagrams with fermion loops, fermions of any 

generation can contribute. We use barred coupling 

constants, e.g. S B, to indicate that a sum over all - 

fermions with the corresponding T3 should be performed. 

Similarly, 7 or f13 signifies that in this sum the 

5. 

appropriate valjJes of y orN s 2 
For example: 

-2 i gB 3y z 9; NC + + g,2 

ould be substituted. 

1) (-1) 

+ G; N c + + g;(l) (-1) . . . (J-3) 

The gauge propagator is -i/k2(guv- (1-a)k,,k,,/k'). 

To obtain 8 for gT, take 4B%lT' ;jB -i T y-*-y, y+-y. 

In part A. we give the Higgs self-energy contributions 

and their total, the Higgs anomalous dimension. In B. we 

give the fermion self-energy contributions and anomalous 

dimensions, separating right-handed from left-handed, and in 

C. the three point results. 
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A. Higgs Self Energy .Zontributions 

The relevant diagrams appear in figures 1, 5, 7 and 

lO(a and b). All expressions should be multiplied by 

gB/(16n2) 2 to get the true contribution to S B' The gz 

contributions to 6, derive from the diagrams in Fig. 1: 

la) [ + (+-i$, (N2+l) + :;;;I g3 

lb) 

The g3g2 H i terms come from the diagrams in Fig. 5: 

5a) t - [g3R3(gB+gT) 2 -2 -2 I i3 - $ [g;R2(+$ I G3 

1 2 -2 -2 -- 
4 g1 (9, [Y -y + + 1 + ;2,[y2+Y + + l)R, 1 Ial 

(14) 

5b) 
t 
- + [g:R3(;;+g;)] G3 - $ rg~(g~ly2-yl+g~[y2+yl) 1 fi3 

x {-lo-2aj 

5c) 
t 
- + [g$2(9i+4$) 1 ii3 - i tg:(i~G~)l ii3 

t 
I-7+5al 
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- 
5d) - b2R2 2 (gB+gT) -2 -2 1 N3 - + [gf(i~+g~)l fi3 1 Il-3a} (15) 

Figure 7 contributes to terms in B, proportional to gBgt 

4 11 2 
7b) -2 [g2R2G21 

--G.- 
48 8 

7c) 4 
-2 1g2R2G21 

---a-a 2 

7d) -[g;R2g2N2/D21NH - & [gfN2NH I}{- 2) 

7e) + [g;R2E2N2/D2] i3 + & [g;(f2(N2+2)+2) 1 fi3 H I p 

- [g;R;l - + tg$+21 - &- ,,;I} {; 
2 

7f) -3a+J$- 
> 

7g) 4[g;(R; - J 4 R2G2)1 + 2[g:gzR21 f i [g:l}(z - s - a2} 

7h) 0 



-17- FERMILAB-Pub-83/24-THY 

7i) -2 4 2 [g, CR2 - $ R2G2)] - [g;g;R21 - $ [g;] 

7j) -[g;(R; - + R2G2) I - 4 [g$+21 - & +) {a 2 } + a - 2 a2 

(16) 
Contributions involving the four point coupling: 

10a) A2 - g- (N2 + 1) 

lob) 0 (17) 

The total contribution to 6 

gB/(16n2)2 
gB 

from the two loop Higgs 

self-energy diagrams is times: 

- + bj;+$) (N2+1)R3 + ; (<;$,fi, + 5g:R3(;;+g;)ti3 

5 2 + T g2R2(;;+;;‘“3 + ; g;[;;(2y2-2;+1)fi3+:;(2?2+2?+l) $1 

2 2 - 
+ 11 

a 
4% 

92 D2 
NH + 10 4 

c g2 
SN3 

D2 

2 2 0 3 10 4 -2 
+ glg2R2 4 + qg gl(y (N2+*) +*)N3 

+ 
11 4 

glN2NH + gl 4 3 qg 3 + X 2 (N2+1) 18 (1’3) 
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Equation 18 also gives the two-loop Higgs anomalous 

dimension. 

B. Fermion Self Energy Contributions 

The fermion self-energy diagrams appear in Figures 2, 4 

and 8. We give the results separately for the right- and 

left-handed self energies where these are different. A 

single listing represents as usual the sum of equal 

right-handed and left-hand contributions. A factor 

gB/ (16T2) 2 has been suppressed throughout. 

The gi contributions to 3 B derive from figure 2: 

2a) 0 

2b) - f2g.j + $9; + $1 N2 

2c) + (9; + 4;) (&N2+1) + g;)E3 

The gig: contributions derive from Figure 4: 

4a) 
Left Right 

{ 

2 2 2 
[g3R3 (gB+gT) 1 

+ + tg::(g~(Y-1)2-tg~(Y+1)2)l 
1-i ) 

; 

{ [g:R3+gZR2+g:Y2/41g~2} 
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4b) 
Left Right 

[g;R3+g;R2+g;Y2/41 (g;,;)} {tg:R3+gf(Y-U 2/41g$2} 

x (- a a} q-au} 

4c) 
[g2R2+ 2 4 12 g,l (gB+gT) 22 h2R2+ 2 3 12 gllgBN2 2 

x (2 + ;f ++;) 

4d) 

+ 9: rg; (Y+l) -9; (y-1) I {3- ; a) [g;R2+ $ g:y1g;N2(3- + a} 

(-2[g;R2(g;+g;) I+ + [+g;-$Yl} + [&$‘J2(Y-l) 1 (- ; - ;} 

-i 

3 x ---a 
4 4 > 
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4f) 
Left Right 

2 b3R3 2 (gg+gT) 2 2 I 2 [g 2 3R3gBN21 2 

+ + [g;(g;(Y2-Y)+g;(Y2+wl + + [g:g;N2(Y2-Y)l) 

x { -1+ ;) 

gBgf terms arise from figure 8: 

8a) 
R2 

-[g; 5 + +g g;Y21N2NH + 
2 0 

8b) 
+ [g;E3R3 (N2+2) /D,l N3 + [gg3g3 (N2+2)/D31 fi3 

1 4 2 + =j [g2R2N2/D21N3 2-J + & +f2(N2+2) +2) (y-1) lN3, 

1 4 -2 + 32 [gl(y W2+2)+2)y21g3 x 

8~) 

{ [g;R3G31 +[g;R2G21 1 (+ + $} [g;R3G31 (+ + $} 
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Ed) 
Left 

( $ [g;R3G31 + + b;R2G21) 

25 3 x 12 - - - 
4 2 

a- - a 
2 

Be) 

$- [g:R3G3+giR2G2] ; + F a+a2} 

Right 

+ [gtR3G3] (4 + ?$ a+a2} 

8f) 
2 g3 21 - W3- 7 G3R3) -2 

2 2 
[g2g3R2R31 2 

- g3 
21 

(R3- 7 G3R3) 

- + [g$$3y21-[+;- + G2R2)l - $ hf+3(y-l)21 

- 3 [#R2y21- & [g;y41 }(; - $} - & [g,4(y-l)41} 
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Left Right 

-[g;R;]-2[g;g;R2R3]- + [gfg;R3y21 (-Ig;R;]- ; [g:g$R3(y-l)2] 

- [+;I - + [g;g;R2y21- $ kI;Y41} - &j [g:(y-l) “){+ a2> 

x 1 I ;1 a2 
2 (21) 

The total left-handed fermionic self energy 

contribution is g,/(16n2)2 times: 
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- J - L 2 N H [g4R ii 222 /D 2 1N 2 32 N H [g4y2]N2-[g;R3E3(N2+2)/D3]i3 I 

- [g;R2E2N2/D21 fi,- & [gf (y2 (N2+2) +2)y21G3 

4 
+ 93 [ - ; R:+ (F +2a+ $) R3G3 1 -3[g;g;R2R31- $ [g$;R3y21 

4 
+ g2 

[ 
- T 3 Rg+ (g +2a+ F 2, R2G2 1 - t 1g;g;R2y21- & Is;y41 

-2 g;R3(g;+g;)+ e g;R2(g;+4;) + 9; 
[ 
g;(- + y2+ + Y+ g) 

-(' 8 gB+ 4 n 1 '&+ &, g;)N2 - ; (gB+gT) -2 -2 (9; (N2+1) 3;) E3 (22) 

2 2 The right-handed contribution is: gg/(16?r ) times: 
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- 
i 

1 g4+ A- g2g2+ L g4 
8 i N B 16 BT 16 T 2 - $ (;;+;;I (9; W2+1) +g;)fi3 

-2[g;R3g~21 + F [g$2g$21 +ig#J21 - $ y2+ jj y+ g 
> 

- & [g;N2(y-l) 21NH- [g;R3~3W2+2L’D31 N3 

- & [gf (y2 (N2+2) +‘J) (y-1) 21fi3 

4 
[ 

l + g3R3G3 ;i a2+2a+ 25 4 1 
- $ k#l - 2 [g;g$3(y-1) 2l 

- & [g$Y-l)41 (23) 

The expressions in (22) and (23) represent also the two-loop 

fermion anomalous dimensions. 

C. Three Point Contributions 

These arise from the diagrams of figures 3, 6, 9 and 

1Oc). A factor gB/(16*2)2 has been suppressed throughout. 

The gz contributions of figure 3 are: 

3a) 

-2[4;g;l 111 
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3b) 

2 [g; W2+1) +&;I 

3c) 
0 

3d) 

- (9;G;)9$31 -2 I 

3e) 

-2$l I-11 

The gig: contributions of figure 6 are: 

6a) 
0 

6b) 
2[g;R3(g;(N2+1)+g;)1+ + [g;(g;[N2y2+(y-1) 21+g;tY2-11)1 

6~) 

-4[g;R3g;1+2[g$2g;1- + [g;g;(2Y2-l) 1 13--N} 

6d) 
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6e) 

(2[g:R3+ i gf(y2-y)l (g~(N2+1)+g~)}{~ + i a} 

-2 [giR3g$l- + [g~g~(Y2-y) 1 Is+a} 

69) 

-2 [g;R3g;l- 4 [gfg$y2+y) I} {l+al 

6h) 

1-4 [g;R3g;l - [g;g;y21 1 I-2 1 

6i) 

2[g;R2(g;+s;)l- + [g:(g~2f~-l)-fg~+g~)Y)] 

6j) 
0 

6k) 
0 

61) 
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6m) 
2 

-2 [g2R2g;l- ; g;g; 

6n) 
2[g;R2++- + [+g;W2+1)+&) {- ;} 

60) 

4 [+g;N2y+f+;) (Y-1) ) I } 

6q) 

-2 [g;R2g;l- + [g;+Y+l) 1 {3-,x1 

6r) 
0 

- [g~R22(g~~~) lk3- 4 [gf(giec) Ifi3 > I-2a) 

The diagram of figure 9 contribute terms of the form gBgi: 

9a) 
4 

[g3R3G31 32 -- 
3 -4a-a 
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9b) 

2 [g3R3G31 4 -- 7 - _1 
12 4 

a2 

9c) 
4 2 [g3R3G3] { -12+a+a2} 

9d) 

-4 [g;R;l -2 [g;g:R2R31 - + [g;g;R3 ( 4y2-4y+l) I- 

- + [g;fY3fY-l)+(Y-1) 3Y) I 1 {-2al 

1 
7 [+;R2(Y 

1 -4 [g; (R;- + R3G3) J-2 [g;g;R2R31 - + Ig:g;R, (4y2-4y+l) 1 

- 3 h$?;R2fy2-y) I- $ [g; (y3 (y-1) +(Y-1) 3~) 1 { -6+2a} 

{-2[g~R:l-[gfg:R3(y2-y)l- $ [gty2(y-1) 21} {9+6a+a2} 

2 
-Y) 

-2 [g,4fR:- + R3G3) I- $g;R3(y2-y) I - 4 [g;y2 (y-1) 21 
> 

{ 3-6a-a2j 
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gh) 

- $ k+,NH(y2-y) 1 - ; 
i } 

9i) 
4- W2+2) 

g3R3R3 D3 fi,+ & [g; fy2 (N2+2) +2) (Y~-Y) lR3 

9k) 

[2glR2G21 {- t a2} 

91) 

[g;R2G21 {- 3 a2} 

9m) 
0 

9n) 

-2[g;R;l-[g;g;R21- $ [g$ {a+a2] 

90) 
0 
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9P) 

-2 [g;g;R2R31 - + b+;R31 - + t&g;R2 (y2-y) I- + [g;(y2-y) I] 

9q) 

-2 Ig,6jg$R2R31 - += [g;g$t31 - + 1gfg?jR2 (Y~-Y) I - ij 19: (Y~-Y) I} {-2a} 

9r) 
0 

9s) 
0 

gt) 

- [gfg$2fy-l) I- a [g! (y2-y) 1 Ia21 

-2[g;R;l -[g;g;R2yl- + [g$2Y2-2Y+1) 1 
> 

{3a-a21 

-2gi(Ri- + R2G2)- [gfg$21 - + [gjl ia21 

4 2 
[g2R2G21 - ; - $- 

I 
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[g$+2fy-1) I+ + [g$y2-y) I} {3+a2] 

92) 

4[g24(+ + R2G2)J+2[g;g;R2yl+ + b3;(2y2-2y+1)] 
> 

92’) 

4~~24(R;- $ R2G2) 1+2[g$;R21 + ; +> { + a+a2] 

92" ) 
0 (26) 

Diagram 10~) contributes 

1Oc) 
$ X&N2+1) ill (27) 

Finally, the complete two loop 8 function for gB is 

g B /‘(1fh2) 2 times: 

(N2+l) (c&c+- + &;+ ; fN2+1) (&+& 2 f++; 

-g,(F -2) -g;g;(> +l) +g$ N2+1) 
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+W;R3 fi;+g;) N3-16g:R3g;+4g;R3 (g; (N2+l) +g;, 

17 2 - + r 7 g2R2gBN2+ 2 5 g2R2 2 (g,+g,)Nj+ -2 -2 11 gzR2 2 (g,+9,) 2 2 
r 

-2g;R2g;+ 5 gf &j2-y + +j;(;2+$+ + ) 
[ 1 ii3 

12 2 - 7 g1 
[ 
gBN2(-2y2- ; y- g )+g;(-2y2+ g y- F )+g$(-2y2+ + y+ ; ) 1 

- $ g;g;(8y2+2y+l) 

- + g;( + y4-y3- + y2+y+l)- $ g;N2NH(- $ + F y- g y2) 

+ 1 4- 16 glN3(y -2 (N2+2)+2) f 2 - p y+ 9 y2) 5 

122 - 2 glg2R2( ; + 6y- ; y2)- 4 g$:R3f3y2-3y- ; 1 

+ $ g;R2ii2z2NH+ $ g;82R2ti2fi3-2g;[3R;+ 2 G2R21 

+9g;g;R2R3+g;(-3R;- F G3R3) 



-33- FERMILAB-Pu&83/24-THY 

10 4- 
+ 3 g3R3R3 2 (N2+2) 

2 
- $ Xg;(N2+1) + & (N2+1) (28) 

When the sum over the loop fermions is performed, l3B is 

g /(16n2)2x N2 - + Nc(N2+1)- 4 +2 1 [ g",+ Nc[l- N2 
B 4 N21- r -1 gig; 1 

- ; (N2+1)g;gf- 2 Nc(N2+D&&~) 
+g;g;R3(5Nc+4N2+4)+9;g;R2(N2 2 +NC z + y ) 

+ $ g;gz+ s g2(g2+q2)N +g2g2R (Nc5-12) 4 T S C c T33 

+g;g;R2(Nc 2 + -$ )+9;g;(Nc g - g )- ; gffW2+U 

+ $ g$;R2+ g g;g;+ + g;g 3% 
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- ; (g.$;)Nc(N2+1) 

2 (Nc(N2+2)NG) 2. 2 97 
- 2D3 3 -3 R3+R3G3(- F ) 1 

2 2 31 22 
+9g3g2R3R2+ E g3g1R3 

+g; [ R;(N2NH $ + (Nc+l)N2NG ; -6)-G2R2( g ) 1 
2 

-3g;g;R2- + Xg;(N2+1)+ b (N2+1) 

4 

- 91 
N 

+ 216 7NHN2-NG( $ (N2+20)+N2+4) - 101 11 (29) 

N 
g 

is the number of generations, and NH the number of 

Higgs. The gs, gcr and g, terms are intended to represent 

terms involving upper, lower, and leptonic couplings of 

other generations. Similarly, B, is gT/(16n2j2 times 
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4 
gT ; Nc(N2+1)- > +2]+g;g;[Nc(l- ; N2)- 2 -11 

- ; g;g;(N2+1)- 2 2 2 4 gT(gc++ WC) W2+1) +#R, ( 5Nc+4N2+4) 

2 2 
+gTg2R2 ( 

17 
N2 ;i- +Nc ;ii ' + y) +g;g:(N, g +N2 +& + E) 

4 1 
+'B No ?i [ ( 

- ; N2)+ ; N2+1] + $ g&f+ ; g;(g&&Nc 

+g,2gfR3(5Nc-12)+g2g2R B 2 ,(; NC+ 2) +&,2(N, +$ - $) 

- ; g;(N2+l)+ $ gfg;R2+ g gfg;- ; (g&$)Nc(N2+1) 

+ + gfg52Nc+5(gC2+gS2)g32R3NC+ ; lg&&g;R2Nc 



-36- FERMILAB-Pub-83/24-THY 

85 2 2 
+ i?- gCglNc+ 72 2s g;+, 

(NGNc(N2+2) 
2 D3 -3) +'3'3(- ?)I 

+9 g3g2R3R2+ 2 2 19 
n 

g3g1R3 22 

$ +N2NG(Nc+l) $ -6 
) (- E)] +G2R2 

2 2 
-g2glR2 

(N2+20)+N2+4 

2 
- F g;(N2+l)+ &3 (N2+1) (30) 

Finally, 6, for g= is g,/(16s212 times 
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N2 (N2+l)- 4 +2 1 - + g;(g&+Nc(N2+1)- J 2 2 4 grg,, (N2+1) 

+ +;R2 N2 g + e) + g:g+ N2+ 2) 
_ ; (g$-$)Nc(N2+1) + ; 4;4$c++-9;)g:R~Nc 

+ ; (+#R2Nc+ F gBgl c 25 22N+85 
72 'GgfNc 

- ; g;+ ; g;g;R2+ g g;g; 

4 + 92 
2 

+ ( Nc+l) N2NG 5 45) +R2G2 

(N2+20) 
+4+N c 9 1 

;" gf (N2+1)+ < (N2+1) -- (31) 

91-I represents the coupling for a lepton p of a different 

generation than T. 

The specialization of the above results to the standard 

theory (N3=2, N2=2, etc.) has already been given in 

reference [6]. 
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FIGURE CAPTIONS 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

4 
gH contributions to the Higgs anomalous 

dimension. 
4 

gH contributions to the fermion anomalous 

dimension. 

gi contributions to the Higgs-Yukawa 9. 
22 

'Hgi contributions to the fermion anomalous 

dimension. 
22 

'Hgi contributions to the Higgs anomalous 

dimension. 

gig: contributions to the Higgs-Yukawa 9. 

94 contributions to the Kiggs anomalous 

dimension. 

gf contributions to the fermion anomalous 

dimension. 

9; contributions to the Higgs-Yukawa 9. 

Contributions to 9 involving the scalar 

self-coupling. 
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