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ABSTRACT 

In addition to being bounded from below by the 

Prasad-Sommerfield limit, monopole masses are also bounded 

from above by the limit in which the scalar field variables 

are frozen to their vacuum values. This upper bound is 

close to the lower one: the single, ,double, and triple 

strength SU(5) monopoles are found to have their masses 

bound in: m 2 M -5 m x 1.7861, 2m ( M ( 2m x 2.0741, and - 

3m 2 M.5 3m x 2.3155, respectively, where m = 3Mx/8cr. - 

PACS numbers: 14.80.H~ ) 17.10 & 

5 Operaled by Universities Research Association Inc. under contract with the United States Department of Enerw 



-2- FERMILAB-Pub-83/19-THY 

It has long been recognized l-3 that, even though the 

classical masses of magnetic monopoles vary above their 

lower bound4 with the mass of the relevant Higgs particles, 

nonetheless their fractional variation is slow. This 

slowness finds expression in an upw r bound, which, in 

general, lies fairly close to the lower bound. The upper 

bound for the mass of each monopole may be directly obtained 

by freezing the Higgs variables to their vacuum value, 

through the limit of infinite Higgs self-couplings (and 

masses), and then simply solving the classical equations for 

the gauge field variables numerically.' As in the case of 

the lower bound, the upper one does not depend on particular 

details of the Higgs potential. 

We study here the sequence of monopoles of magnetic 

charge 1, 2, and 3, respectively, which are present in the 

prototype SU(S) mode1.6-8 We consider the standard SU(5) 

Lagrangian9 which contains gauge fields and scalars in the 

adjoint and fundamental representations: 

iit. = - $ TrWpvWpv + Tr(guO)2 + ID,,H12 - V(Bi,O,H) 

wP” = auwv - avwu + igWu,Wvl 

D,,H = apH + igWuH 

~2~0 = ape + ig[Wu,Ql 
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where Wu-WaFa, pa+,pa 
u I TrF F a b = l/2 gab. The canonical 

symmetry breaking pattern SU(S)+SU(~)XSU(~)XU(~)+SU(~)XU(~) 

is effected by the A and 24 Higgs vacuum values 

<H>=~(O,0,0,0,1)~, and <0>=v diag (l,l,l,-3/2,-3/2), 

respectively. The electric charge is 

Q=e diag (-l/3,-1/3,-1/3,1,0), and e=J578g; the mass of the 

leptoquark is Mx=(5/2) gv; for further convenience, we 

define: m:(4=/g2)Mx=3Mx/8a. 

We consider positive semidefinite Higgs potentials with 

the above vacuum values at the absolute minimum of every 

potential, normalized to zero. In the limit of all 

self-couplings going to infinity, all scalar functions are 

frozen to their vacuum values, except (for some of them) in 

vanishing region around the origin. 5 a Constraining these 

variables provides an uwe r bound for the variational 

problem, and the potential drops out, just as it does in the 

opposite limit (Prasad-Sommerfield:PS). 4,lO 

We investigate the simplest family of "spherically 

symmetric I, 11 SU(5) monopoles with asymptotic color fields 

stable against classical perturbations. 12-13 They have 

magnetic charges 1/2e,l/e, and 3/2e; and are characterized, 

respectively, by the spin l/2, 1, and 3/2 representations of 

the crucial SUf.2) embeddings in the quintuplet space of 

SU(5): 5+1+1+2+1 5+1+3+1 and 5+4+1. Note -----~----r that the last, --- 

triple strength monopole is colorless. 7 
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i) SINGLE STRENGTH MONOPOLE: The specifying 

representation of SU(2) is the two-dimensional one (&q/2), 

embedded in the subspace of 5. that mixes the 3rd and 4th 

components. 7 The appropriate Ansatz is: 

O(r) = $ 

I 

$2 
@2 

$0 
$0 

+$lP .% 
(2) 

-2 c+,++,) 

G(r) = i x S %” , H(r) = 4 (O,O,O,O,h(r))T. 

At infinity, the radial functions go to: h+gv; +2+g"; 

$0 +-gv/4: @l+5gv/2; K+O. In addition, the Ansatz is well 

defined only for $l vanishing at the origin. Moreover K+l 

at the origin, for the energy to be finite. The mass of the 

monopole is just the static energy M=-Id3xx, obtainable by 

substituting this Ansatz into (1): 

W2-1) 2 2 

2r2 
+ K2~~ + ~ "i2 + g2r2V + 

+ r + 8";$$ + 6@i2 )I . (3) 

The kinetic terms to the right of the potential terms in 

Eq. (3) contain variables that would only couple to the rest 

(here $,) through the potential. Hence, in the two limits 

considered here, they will decouple from the problem, and 
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setting them equal to their vacuum value and dropping them 

furnishes a bonafide solution. For instance, in the two 

limits discussed, the electroweak breaking scale v simply 

does not enter into the equations at all, and therefore it 

is not reflected in the monopole solutions--this will also 

be true in the two higher Ansaze below. 

In consequence, the particular problem at hand reduces 

to a solved one--the original 't Hooft monopole. 1 We 

complete the standard squares 4 to find: 

+ ar (,P,(l-K2)) 
I 

(4) 

In the PS limit, the squares may be nullified, and the 

surface term gets a contribution from infinity only: 

M=4x/g2(5/2 gv)=m. In the upper limit, after some resealing, 

the variational problem reduces to Eq. (5): 

2 2 2 
M=m K12 + (K -l) + K , 

2r2 I 
with K(O)=l, K(m)=O. 

(5) 

Numerical solution of this variational problem yields 

M=1.7867m. 

ii) DOUBLE STRENGTH MONOPOLE: We now use the triplet 

representation of SU(2), embedded in the subspace mixing the 

2nd, 3rd, and 4th components. 9 Ansatz Eq. (2), extends to: 
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i$ = 5 (Fx+(K-1.) + Kl{?*+,Fx$}) ,H = ; (O,O,O,O,h)T 

The coefficient of @2 is traceless, and both $1 and $2 must 

vanish at the origin. At infinity, h+gv, 4J3%l", +o+g"/6, 

@1+%l"/4, @2+-%"/4; K, Kl+1/2fi. As before, for V+O, the 

variables $. and e3 will decouple and are dropped. We 

define new variables K:(v1+v2)/a, and K1z(vl-v2)/fi. Thus, 

at infinity, v1+1/2, v2+0. We again complete the squares: 

f,,=ti -dr 
J [ g2 0 

4 (Vi+Vl($l+$2) ) 2 + 4(v~+v,(tp,))2 + 

+ 2r2i”i+ v:~~~-~2 + ~ (hi-I (V~~V~~~+ 

+ 4ar($l(l-v:-vg) + ~z(~~-~f)) 

I 

. 

,ion 2m The surface term for the PS limit gets a contribut 

from infinity only. The upper bound limit 

v~(O)=v~(O)=1/2, vl(m)=1/2, v2(m)=0, is: 

,, with 

(7) 

M = 2m 2 2(v' fV' 
1 

22) + 2v; + A- (3(v;-vy+ (vf+vi-1) 2, 
r2 1 

(8) 
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This is solved numerically to yield M=2m x 2.0741 

iii) TRIPLE STRENGTH MONOPOLE: The quartet 

representation of SU(2) is embedded in the upper four 

components of the SU(5) space. Ansatz Eq. (6), now extends 

to: 

$0 g@ = $0 

[ I/ $0 
$0 

+ ~,F.~ + o2 ( (a."T,2- z ) + $3(P."T,3 
-4@. 

(9) 

The coefficient of $2 is traceless, and a,, +,, "3 must 

vanish at the origin. We,drop the superfluous variables h 

and @On and define new linear combination variables: 

vl=Jt;(K1+K/2), v2=a((K1-K/Z), v3=2fi(K2-K/2), JI,=w,, 

$2=$lf13$3/4, $3=2$1+14$3/4. At infinity, vl+l, v2+0, v3+l, 

tJ1+-Sg"/4, Q2+5gv/4, aJ3+5gv/4. The mass of the monopole is: 
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+ ( r$; + v:+v;+)’ + (re; + $2) 

+ 2arcbl(v~-Yf) + 4~~(-~f-~~+~~+i) + ~1~(4+2)) 

I 

. 

(10) 

The surface term yields the PS value 3m. The wee r bound 

variational problem: 

1 2 22 
+ 2 ( (v1-v2) + 4-2) 

2 222 2 + (v1+v2-v3-1) ) 
I 

(11) 

with v;(O)=2,v~(O)=v;(O)=3/2, v2 (9 =o, vl(m)=v3(m)=l is 

solved to yield M=3m x 2.3155. 

Our preceding results have broader applicability. 

Consider spherically symmetric monopoles l1 in an SU(N) 

theory with an adjoint representation of scalars. If the 

monopole is in an embedding with SU(2) spin ¶,/2, we expect 

the essential variables to be--at most--k scalar and II gauge 

field radial functions, extending Eqs. (x), (X), and (M) in 
z 6 4 
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the regular pattern exhibited above. We expect the ratio of 

the upper %iZ lower limit to be a function of t-1 

variables: the frozen values of the !Z relevant Higgs 

variables minus an overall scale. At r=O the relevant 

boundary conditions of the gauge fields are fixed by 

finiteness of the energy: normally, for r+m, only part of 

their asymptotic values are constrained by finiteness 

requirements (i.e. DVQ-+O for r+=) , but the others are 

irrelevant.14 As a result, expressions (3), (7), and (10) 

can be used to calculate the masses of any SU(N) monopoles 

with &=1,2,3. If, moreover, the values of the scalar 

variables can be transformed into ours, by addition of a 

constant and/or resealing, the same numbers are obtained. 

This can be applied to some of the monopoles we have 

not discussed: e.g. the double strength monopole of Ref. 7 

(embedded in components 3-5 of SU(5)) turns out to have the 

same mass upper limit as the one derived from Eq. (8), apart 

from SU(2)w breaking effects. All other possible triple 

strength monopoles have the same mass upper limit as the 

purely electromagnetic one. 15 

We care to conclude with the following remarks: 

1) No fundamental understanding of the precise empirical 

values 1.7867, 2.0741, 2.3155 is available. 

2) Saturating the upper bound (infinite scalar 

self-coupling) is as physically inapposite as saturating 

the lower bound. However, if the actually prevailing, 

radiatively corrected, effective potentials fall within 
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the general class investigated, the physical answer will 

fall within the above bounds. (The bounds will only be 

meaningful if the quantum situation is not criticaly 

different than the classical background solutions). As 

a result, experimental determination of either Mx or M 

would allow constraining the other within roughly a 

factor of two. Order-of-magnitude calculations relying 

on the PS limit, common e.g. in cosmology, may thus be 

supported. 

3) The higher strength monopoles considered have sufficient 

energy for decaying to single strength monopoles, while 

preserving the overall topological number. The decay 

would be at threshold at the lower bound, while there is 

surplus energy at the upper bound.16 We have no 

statements to make, however, concerning local stability 

beyond Refs. 12-13. 

We gratefully acknowledge conversations with 

W. Bardeen, S. Dawson, L. Durand, E. Eichten, J. Ellis, and 

E. Weinberg. 
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