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Summar

An achromatic system 18 one where the transfer
matrix elements for the transverse coordinates do not
depend on momentum. An isochronous system 1is one
where the transit time of a trajectory through the
system does not depend on the Initial coordinates.
It is well known that a first-grder achromatic system
ia also 1sochronous, execept Ffor pure momentium
dependence, The converse 13 also true. This result
13 entended to higher orders. Conditlions are found
so that for a aystem whose chromatic terms all vanish
up to 2 certain ovder the transli tlme will be
independent of the transverse coordinates up the same
order, Under the same conditions, the converse will
also be true.

Introduction

The location in phase space of a particle
passing through a maghetic optical system is usually
spenifled with respect to a reference trajectory.
The three spatial coordinates of a beam particle are
the two transverse c¢oordinates x and y and the

distance 3 along the referance trajectory.
Corresponding to these three coordinates are the
three conjugate momenta p_, and Pg- In a

field-free region, these three comgonents reduce o]
the three Cartesian compeonents of the mechanical
motentum.

Tn praniics, the two transverse momenta are
replaced by the two direction tangents or "angles" x!
and y'. The longitudinal position s is replaced by
the longitudinal separation L from the reference
particle. The sixth conptnent is the fractional
deviation 3§ of the momentum fwom the reference
momentum. The position and momentum of a pariicia at
any point in a beam line can be expressed in terms of
a six-componenit vactar X, where

The components of the vector at any point in the
beam 1line can be expressed as functions of the
components of the initial ray vector. Retalning only
linear terms yields

X, = RXO (2)
Defining matrix elements T, U, ete. with several
indices, and summing those indices also, the
expanaion may be extended to higher orders, so that

X, = R, + TX X, + Uxoxoxo o (3)
The matrix 2lenents of R are referred to as being of
first order; T is second order; U is third, etc.
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We may now define precisely what we mean by the
terms achrematic and isochronous. A system is
achromatic to a certain order i{f the final matrix
elements for the transverse coordinates x, x', y, and
y' have no dependence on § to that order. There may
still exist nonzero geometric matrix elements, where
the matrix element multiplies preodocts of initial
transverse coordinates. A system 1s isachronous to a
certain order if the transit time difference has no
dependence on the initial transverse coordinates to
that order. For an wultrarelativistic beam, egual
transit time is the same as equal path length. For
lower energies, veloaity differences must be
included. The differences between the two appear
first in second order. Qur result applies striectly
only to transit time differences. There may stilil be
a dependence on powers of 4§ unmixed with ather
coordinates.

First Opder

We may use a bra and ket notatlon te  indicate
any particular matrix element. The columna of the
First-order transfer matrix are also wknown as the
characteristic rays, sc that

(x|x0) = o (s) (x'fxo) = el(s) (4)

(xlx!) = s (s) (x'xl) = sl(s)

(x|8) = d_(a) (xt|8) = d;(s}
(ylyo) = Cy(S) (Y'|Y°} = c;(s)
(ylyé) = sf(s] fg'ly;) 2 3;(3)

The dispersion may be given in terms of the
transverse o2harazierisctie  rays, and the angle o of
the band magnets as

i r
= ’ e ! : - 3 3 A i
d((s) s{\s)J v{\s) da cx(s} J x(s e 145)
i g
dr = gt - ot /
x(s) sx{s) j CX(S) da cx(s)J sx(s) do

The longitudinal separation i3 Zlven as

= xq/ﬁx(s)da + xsf sx(s)da + ﬁjfdx(s)da (6)

From equations (3) and (6), we see that the
stated thecren connecting acnromaticeity and
1sochronicity is true in first order, The relation
between the coefficients can be written as

This form 1s highly suggestive of how the reault may
e extended to higher orders.



Relation to Cancnical Variables

In a ctarged particle beam or spectrometer, one
1g interested 4in the behavior at the end as a
function of the trajectory coordinates at the
beginning. Since the time of tranait may depend on
the initial coordinates, it 1is more convenlent to
parameterize the equations of motion in terms of a
coordinate which has a unique value at the end of the
system. For this purpose, we uge the diatance 3
along the reference trajectory.

Following Dragt‘, we may then regard the transit
time and the Hamiltonian as conjugate variables. A
new Hamiltonlan mnay be derived as the momentum
conjugate to the distance along the central
trajectory. It will be a function af three
ocoordinates and their conjugate momenta. The three
coordinates are the two transverse coordinates x and
¥, and the transit time t. The conjugate momenta are
the two transverse momenta and the original
Hamiltonian. In a static magnetic system, the value
of the Hamiltonian 1s equal to the kinetic energy of
the particle,

The new dependent variables are completely
canonical and satisfy Hamilton's equations of motion.
The Hamiltonian and the transit time now have no
special status and are Just one of three gets of
conjugate variables. By a canonliecal transformation,
they can be replaced by differences, T and e, with
respect to the raference trajectory.

Poisson Brackets

The complete set of wvariables for a particle
trajectory is now X, Dy ¥» P_» T, and . The symbols
— and ¢ indicate reapectivelyythe time separation of
an individual trajectory and the reference particle,
and the difference in energy for the same two
particles. Since the variables are canoaical and
satisfy Hamilton's equaticns, they also satlafy the
fundamental Poisson brackets

1
a

[qi’qj] = (8}

1
o

[pi.pj] =
[qi,pJ] =9y

Here we are interested in the Polsson brackets
netween © and the transverse variables. The brackets
involving ¢ and x and those involving « and y are
between different coordinates. Those between T and
p. and between T and p, are between a coordinate and
a non-conjugate momentﬁm. A1l equal zere. A further
simplification ocecurs since we are working with a
static system. The transverse coordinates then have
no explicit dependence on initial time difference,
and the derivative of final time difference with
respect to initlal time difference is unity.

The result can then be written as

x
Pt | Mmeoviey) ¥ (9
3e ; a(xo’pxo'yo’pyo) a(pxo’xo’pyo’yo)

We can define two vectors Tc and Lc’ and thereby
write equation (9) in the form

Tc = ML (10)

The vector T represents the left side of equation
{9), which 13 the derivative of the transverse
cancnical variables with reapect to g,. The vector L
represents the derivatives of T with respect to the
ipitial canonical transverse variables. The Matrix M
i3 the loeal linearization in canonical variables of
the mapping of the original apace of transverse
coordinates and momenta into the final space of the
same variables. By Liocuville's theorem, the phase
space volume is conserved and the determinant of M is
equal to one.

Belation to Transport Variables

Using the chain rule, the vectors T and L_, can
be expressed in terms of derivatives wifh reapéct to
the transverse coordinates given 4in equation {1).
The procedure is wmore atraightforward for the
longitudinal vector Lc. so we consider that firat,

We define a new vector L, which contains the
derivatives of T with reapect to the variables X
xé, Yor and yé. We now have

L, = ML (D

where N i3 a four-by-four matrix.
takes a particularly simple form

In lowest order N

1 6 o o0

0 /p. © 1]
=), 0% o (12)
0 Q Q 1/po

The matrix 13 nonsingular in lowest order, which is
its exact form when evaluated at the origin. By
continuity, 4t is then nonsingular in an open region
containing the origin.

The connection between L, the dependence of time
difference on initial tranaverse coordinates, and T ,
the dependence of the fipal canonical transverse
coordinates an €, is then made easily. From
equationa (10} and {11), we have

T, = ML (13

However, what we want is the dependence of final
transport variables x, x', ¥, and y' on initial e&.
From the standpoint of canonjcal variables a drift
space has chromatic dependence. If we held the
initial Py and p_ conatant, and vary the energy, the
final transversg posltion will be affected. This
gceurs because the longlitudinal mementum p is
changed and therefore the angles x' and y' are
affected. In atudying achromatictty, wa are
interested 1in the dependence on energy when the
initlal angles x' and ¥' are held fixed.

Ta convert to transport variables, we must wuse
the chain rule at both the initial and final points.
We use it at the final point simply to transform to
the desired varlables. We wuse 1t at the initial
polnt because a derivative with respeect to € holdlng
Py fixed is different from a derivative holding x*
rf%ed. we therefore have three sets of partial
derivatives. The first 1s the set of derivativea of
the final canonical variables with respect to the
final transverse transport variables. Then we have
the transfer functions giving the transformation of
the transport variables by the beam line. Finally,
Wwe muat express the initlal transport " variables in
terms of canonical varilables.



The energy difference € 43 unchanged by all
these transformations, but the functional dependence
on it is not. In order to be explicit about the
functional dependence, we add a subseript to the
varlable e, indicating the beginning or the end of
the system. Derivatives with respect to canoniecal
sets of coordinates are indicated by a aubseript e.
For the horizontal components of Tc, we then have

R -
3 = ' 3e t Fyr Je T Fe

o < 0 Q Q a Q

apx1 ) Bpx1 Bxi axé 3px1 Bxi ayé 3px1 ax;
e, T &) E?cgée—o*sx; F;—';Fé;*ﬁx; 3,

By 9] 3. ey A 8xp by,
R R

The derivatives of the transformations between
canonical and tranaport variables are purely
kinematic and can be expressed in terms of transport
variables. For an ultrarelativistic beam, they are
simpler in form, but the argument is unchanged. We
then get

apx o E’{.2
= - -z (15)
0 I (1ox12ey12)372
+X T4y
;55 . PRV
V! (1+x’2+y'2)3/2

%%L z - El (1+x'2+ y'a)

%El = - %i (1axr?e y12)

Incorperation of equaticns {15) into equattons
(14) produces quite a mess. However, 1f we consider
cnly the implications as they apply to each order,
some slmple c¢onclusions can be derived. To first
crder, we have

3)(1 ax1
o a o
apxi ~ Bx;
I3 =P 3
o e o

Isochronicity and achromaticity become equivalent
with no restrictions. WMoving to higher orders, other
terms begin to appear and more restrictions need to
be {mposed. At second order, we need to have a
first-order focds in both transverse planes, and the
planes need to be independent. In fourth order, we
muat have unity magniflcation in both planes.

The partial derivatives of the final transport
variables with respect to the initial transport
variables are not npecessarily the same as the
first-order transfer matrix elements. The transfer
matrix elements are the partial derivatives evaluated
on the reference traj)ectory. When consldering higher
orders of  achromaticity and isochronicity, the
restrictions must alsc be imposed to an appropriately
high order. For example, at third order, the focus
must be good to second order. There must be no
second-order geometric aberrations.

Now we return to the original theorem. We prove
it by 1induction, Since It is established in first
oprder, the firat part of our proof 1s done. Assume
that a beam 1line is isochronous up to order n-1.
Then the n'th order of the vector T_ will be given in
terms of the nth order of L and the’first-order terms
of ti1s aqatelx product MN., If the nth order terms of
L vanish, those of the s4ae order of T will alsc.
We define a vestor T to be the derivative of +the
transverse  Lranaport variables with respect to g.
Subject to the restrictions deserilbed above, then T
will vanish to nth order, and the beam line will be
achromatic. By the same reasoning, and subject to
the same restrictions, the vanishing to a given order
of T will imply the vanishing to the same order of L.

The longitudinal higher-order matrix elements
covered by this theorem include all except those
which are purely energy dependent. Thus terms of the
fora {1|en), which may also depend on the mass of the
particle, are not  included, Similarly, the
tranasverse matrix elements are only those which have
dome aomentum dependence, plus those necessary Ffor
the stated conditlons. Clearly, if all transverse
terma of a given order can be made to vanilsh, then
all the terms of L to that order will vanilsh also.

An example of thés theorem to second order has
been given by Brown . He has devised a ayatem whare
all second-corder transverse matrix elements can be
made toc vanish simultaneously. The longitudinal
seTogg-order termd then alsc vanlsh, except Ffor
{r]e™).
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