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I. GENERAL INTRODUCTION 

Em” 
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The effects of beam-beam collisions have received publicity in 
the last few years because of the disappointing performance of the 
latest generation of e+e- 
and CESR were each designed for a luminosity of 10 cm 

colliding-beam storage ri;!$z.-,s;zPI. ;;;'f; 

operates at about a factor of five 
about a factor of ten below.' 

below this;' CESR operates at 
The luminosity of PEP was for a long 

time comparable to that of CESR, 
increased 'a to about 3 x 10" ~rn-'~~~-~f~ haz 

recently been 

(specifically, 
Some of the measures 

changes in betatron tunes) taken to produce this 
increase were suggested by the results of a commuter simulation;'as 
nevertheless, the reasons for this improvement in performance are 
still not understood intuitively, 

Luminosity is defined as the number of interactions per second 
per interaction region, per unit of interaction cross section. Thus 
it is a direct indicator of the event rate that a single 
elementary-particle experiment can observe. The loh'er the 
luminosity, the longer it takes an experiment to accumulate enough 
data for a good result. 

To get a feel for what these luminosity shortfalls mean in 
practical terms, consider the following illustrative figures, taken 
frcm a recent report:' At present, the integral of CESR luminosity 
over one year (tines two for the number of instrumented interaction 
regions) is about 100 pb-' (00"*cm-*). A few tines 
needed to accomplish 

100 pb-' is 
a basic program of measuring the B meson mazz 

and width, and the rates of the dominant transitions between the 
upsilon and its known excited states. 1000 pb-' or so would be 
needed to obtain information on 
production and decay, 

processes like B-B mixing, 
and T? production the upsilon region. 

10,000 pb-* or so would be needed if on? sought 
nb 

information 
concerning rare but important processes such as CP violation in the 
BE system. 

It is by now widely recognized that design estimates and real 
performance can differ so because design estimates have been little 
more than very optimistic guesses.3 There is at orezent a --- reliable 
deductive or zemiphenomenological theory of the g 
beam-beam coiiisionz dexrade luminosity k storage rings. 

in which 
This is an 

urgent open problem in accelerator physics. 
The staff of CESR is presently contemplating modifications of, 

or variations on, that facility that could increase luminosity by 
factors of ten or even of one hundred.' It must be stressed that this 
will not necessarily -- Improve 
machine performance. 

agreement between design theory and - 

This paper presents a survey of the experimental and theoretical 
literature on colliding-beam effects in both leptonic and hadronic 
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storage rings. For the most part, this literature is rather 
technical and, to the novice, both obscurely written and hard to 
locate. -Although there have already been several 
subject,'*II 

symposia on the 

3,35,PLoy% as a number of reviews for 
specialists there has up till now been no unified and 
pedagogical exposition. The present work represents an attempt to 
fill this gap. Needless to say, there are undoubtedly source3 that 
have been overlooked or misrepresented here; to their authors I 
apologize in advance. 

The reader'of this review is assumed-to be familiar with the 
basic fact3 of linear strong-focusing 
theory;' but no 

single-beam storage-ring 
prior familiarity with any other details of 

colliding-beam physics is presupposed. 
Our material is grouped into four major areas: observational 

phenomenology, computer simulation, mathematical background, and 
theoretical models. 

Almost all the material in this review should be familiar to 
experts. There is, however, one exception: The second theoretical 
calculation discussed in detail in Chapter V--a critique of a 
mechanism proposed by Tennyson' to explain the beam-beam effect at 
SPEAR--is original. 

II. EXPERIMENTAL PHENOMENOLOCY 

1. Introduction 

For orientation, here is a list of the major colliding-beam 
storage-ring types, together with specific examples (past, present, 
and approved or proposed), as well as a few words of general 
description: 

1. Electron-positron single ring--AC0 (France), ADONE (Italy), 
DORIS (W. Germany), the VEPP series (USSR), CEA (US, terminated), 
SPEAR (US), CESR (US), PEP (US), PETRA (W. Germany), LEP (CERN, under 
construction). Counter-rotating bunched e+e- beams. Head-on 
collisions. 

2. Electron-positron, electron-electron, or positron- positron 
intersecting rings--Stanford-Princeton project (US, terminated, 
e-e-), VEP-1 (USSR, terminated, e-e-1, DORIS, DC1 (France). Two 
rings, intersecting tangentially (S-P, VEP-1, and DCI), or in several 
locations at a nonzero angle. Bunched beams. 

3. Proton-proton intersecting rings --ISR (CERN), ISABELLE (US; 
status uncertain). Two laced rings, intersecting in several 
locations at a nonzero angle. Unbunched ("coasting") beams. 

II. Proton-antiproton single ring--SPS collider (CERN), Fermilab 
Tevatron I (US, under construction); UNK (USSR, proposed). 
Counter-rotating bunched beams. Head-on collisions. 

For more detailed specification3 of these facilities, the reader 
can consult Refs. 6 and 7. 

These four types all differ in fundamental ways, and these 
difference3 are reflected both in observed machine behavior, and in 
the mathematical ideas that have traditionally been applied in 
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theoretical studies. These differences will be pointed out as we go 
along. 

Here is a schematic list of the colliding-beam-related problems 
that are typically encountered in storage ring operation: 

Particle loss at injection 
Particle loss (fast or slow) after injection 
Increase in range of tunes for which beam cannot stably be 

stored 
Expansion of beam size 
Impairment of luminosity 
Low maximum storable current 
Extreme sensitivity of beam characteristics to machine 

parameters. 

The last four of the these problems are most serious at 
electron-positron facilities. There have been attempts to induce 
comparable effects in hadronic storage rings (in order to probe the 
limits of such machines), but only under extreme and somewhat 
artificial conditions. 

In the next two sections we shall describe the beam-beam 
problems encountered in normal operation of leptonic and of hadronic 
storage rings, respectively. In Sec. 4 we describe colliding-beam 
behavior observed in exploratory ISR studies done several years ago 
in connection with the design of the SPS proton-antiproton collider. 

2. Colliding-beam effects in e+e- storage rine 

The issue of greatest concern--by far--to users of 
electron-positron storage rings is the discrepancy between the 
luminosity expected and the luminosity actually achieved. The issue 
is actually composed of two subissues, because there are really two 
major design expectations: Luminosity does not grow as rapidly with 
beam current as expected; and the maximum storable current is lower 
than expected. 

In this section, we explain the assumptions underlying the 
design expectations, and survey experimental tests of these 
assumptions. 

I covered much of this material in a lecture presented at last 
year's Summer School.' For the discussion here, that presentation has 
been reorganized somewhat, rephrased, and updated. Some of the 
information in Ref. 3 (most notably in the exercises) not carried 
over to the present discussion may be of interest to the reader who 
wishes to go more deeply into this subject. 

As will be explained later, proton-proton/antiproton colliders 
do not frustrate these assumptions to the same extent. Thus, when 
hadronic storage rings are discussed in the next section, the 
emphasis will be on different phenomena. 

Operators of the largest electron-positron storage rings report' 
great difficulty in adjusting these machines for optimum performance, 
primarily because the behavior of colliding e+e- beams is extremely 



4 

sensitive to small changes in machine parameters,. and the effects of 
such changes are often not reproducible. Moreover, operators are 
constrained to perform this optimization with a very small number of 
adjustments, for the following reasons: It takes a long time (as long 
as twenty minutes) to measure the luminosity that is to be optimized, 
because of the smallness cf electron/positron interaction 
cross-section3 at high energy; while the beams only last for a few 
hours because of the degrading effects of synchrotron radiation and 
gas scattering. 

Although extreme sensitivity of luminosity to machine parameters 
is an object of some attention, in the literature on computer 
simulations (see Chapter III), and has been noted in published 
reports on 1% exploratory studies (see this chapter, .Sec. 41, very 
little, if anything, has been written about it in the context of 
routine storage ring operation. Accordingly, this topic will not be 
discussed further in this section. 

We shall not be discussing the effects of beam-beam collisions 
on electron and positron spin polarization, although recent studies 
at PETRA and SPEAR indicate that polarization is very difficult to 
maintain in colliding-beam storage rings. The reader is referred to 
Ref. 9 for details. 

a. Luminosity vs. current 

Luminosity in e+e- storage rings, where the collisions are 
head-on, is quite generally defined by 

where f is the frequency at which a beam particle circumnavigates the 
ring; B is the number of bunches per beam: N1 and N, are the numbers 
of particles per bunch in the, two beams; A, and A, are the 
cross-sectional (transverse) areas of the two beams at an interaction 
point; and A is the transverse area in which the two beams overlap. 
By definition, A is necessarily less than or equal to the smaller of 
Al and A,. These are effective areas, defined by weighted averages 
when the beam distributions are not uniform. 
formula should 

The meaning of the 
be clear: N,(A/Al) is the fraction of particles in a 

bunch of beam one that actually collide with beam two; similarly for 
Nz(A/Asl. So [N,(A/A,)] [N~(A/A~)] is the number of particle 
collisions per bunch collision , per unit probability of interaction. 
Bf is the number of bunch-bunch collisions per unit time at a single 
interaction point. l/A is the probability of a 
particle-particle 

single 
collision, w= unit cross-section. 

Nl.N2kN). 
Typically 

The conventional design estimate of luminosity is based on the 
assumptions that A,=A2=A, and that A is equal to Ao, the 
current-independent natural electron beam area at an interaction 
point. Ao is calculated in a standard way' from the parameters that 

(fBNlNz1 
A 

AA' 
1 2 
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characterize synchrotron radi,ation and linear focusing; perturbations 
such as an opposing beam, interactions between particles in the same 
beam, beam-wall interactions, etc., are neglected. (In proton or 
antiproton storage rings, where synchrotron radiation is very weak, 
beam shapes and sizes are determined by the injection system.) 

The mathematical formula expressing the implication of the first 
of these nonperturbation assumptions for luminosity is 

L : I2 . (e:BfAl-I, (2) 

where N has been rewritten in terms of the more directly measurable 
I, the total electric current per beam. (eo is the magnitude of the 
electron's electric charge.) Together with the second 
nonperturbation assumption (A=Ao), Eq. (2) implies that luminosity is 
expected to be directly proportional to current squared, with a 
proportionality constant determined entirely by simple properties of 
single-particle motion in the storage ring. 

Empirically, expression (2) with A=Ae is observed to describe 
the current dependence of luminosity only for low currents. At any 
energy, at every e+e- storage ring, there is a turnover current 
beyond which L grows more slowly than I'. Exactly how much more 
310wly is not the same for all machines under all conditions, as we 
shall see. 

Correspondingly, the nonperturbation assumption is empirically 
observed to describe the areas Al, At and A only for low currents. 
For large currents, either Al or A2 (or both) exceed3 A,,. This 
results in the general expression (1) for luminosity falling short of 
Formula (2) because 

min(Al,Az) 1 
AA 1 2 = max(A,,A21 

This phenomenon is commonly referred to as "beam blowup." Typically, 
blowup is substantial only in the vertical direction. The natural 
horizontal width of an electron or positron beam is almost never 
significantly changed by the presence of an opposing beam. 

These trends will now be illustrated with data taken at various 
storage rings. 

Let us begin with measurements of luminosity vs. current. 
Figure 1 represents data taken at SPEAR,l' one bunch per beam. At 
the largest current (about 8m~), luminosity falls short of the 
quadratic curve, extrapolated from small current, by a factor of 
about three. Figure 2 shows data taken recently under various 
operating conditions at CESR," at about 5 GeV, and with one bunch 
per beam. The luminosities at the highest currents shown are between 
1.5 and 3 times less than would have been expected from quadratic 
extrapolation From small current. Note that these iuminosity 
vs. current curves turn over From quadratic to linear at large I. 

. Consider, by contrast, Fig. 3, which shows data From PEP," one curve 
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corresponding to one bunch per beam, the other correspondink to three 
bunches per beam.* The three-bunch curve increases like I" , even at 
small current. Figure 4 shows data taken recently at PETRA," with 
two bunches per beam. The y-axis corresponds to specific luminosity, 
defined as luminosity per bunch divided by the square of current per 
bunch, i.e., (L/21/(1/2)' = 2L/12. The x-axis corresponds to current 
per bunch, I/2. If the nonperturbation assumption were correct, the 
data points for the three energies shown would lie on three 
horizontal lines. Instead, each set of measured specific 
luminosities declines with current. The largest decline--from lowest 
to highest current--is 30% at 7 GeV, followed by slightly less than 
30% at 11 GeV, and about 8% at 17 GeV. 

This last Figure exemplifies a general trend: Colliding beams 
perturb one another less (at a given machine) as energy increases. 
We will see other examples of this phenomenon elsewhere in this 
review. One cannot account For this weakening trend solely in terms 
of the well-known tendency of electromagnetic scattering to weaken 
with increasing energy.'* Colliding beam effects in storage rings are 
cumulative results of many beam-beam encounters; it is necessary to 
understand why the weakening of individual encounters is not 
compensated somehow by prolonged repetition. This is often explained 
by naively identifying the synchrotron damping time with some sort of 
dynamical memory, and observing that the damping time decreases as 
energy increases+ (=1/E3). However, it is not really obvious that 
this is the right way to look at things. 

The CESR and PETRA data presented here were taken after 
"mini-beta insertions" had been installed. Mini-beta insertions are 
magnet configurations that lower the scale of vertical beta functions 
at interactions points From tens of centimeters (the standard when 
these machines were designed) to centimeters. In the case of CESR," 
the reduction was from 11 cm to 4 cm; at PETRA,13 it was from 20 cm 
to about 9 cm. These reductions increase luminosity because they 
increase focusing at interaction points, and therefore they decrease 
all the beam areas Al, AZ and A in formula (11, roughly in identical 
proportions. I mention this here in order to stress that these 
enhancements in the overall scale of luminosity (a factor of between 
two and three in each case11r13 ) have not significantly shrunken the 
range of currents within which the L vs. I curves are noticeably 
non-quadratic. The nonperturbation assumption appears to fail just 
as badly with mini-beta insertions as without them. (For a 
discussion of ultimate limits on the reduceability of 
interaction-point betas, the reader is referred to Chapter III, 
Subsection 2b.J 

We turn now to direct measurements of beam-blowup. The Figures 
discussed below were all obtained (directly or indirectly) from 
photographs of synchrotron radiation. Such a photograph is made by 

'This data was taken before the modifications that have recently 
increased PEP's peak luminosity by a factor of about three. At 
present, PEP luminosity at peak current is about 60% of the value 
that would Follow From the nonperturbation assumptions.lOg 
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pointing a television camera, or some other type of light monitor, 
along a tangent to a storage ring. Because synchrotron light is (to 
a good approximation) emitted tangent to the path of a circulating 
particle, the output from such a monitor gives a representation of 
the transverse profile of a beam, light intensity being proportional 
to beam density. 

(It should be noted that the blowups shown in the following two 
figures do not necessarily coincide exactly with what one would see 
if one observed the beams at an interaction region, where luminosity 
is measured. 'Beam profiles cannot in general be photographed at 
interaction points because little synchrotron radiation is emitted 
there--synchrotron radiation requires curved or accelerated motion, 
whereas the presence of collision detectors precludes the placement 
of bending magnets or RF cavities at interaction points.) 

Figure 5 shows such television images of electron and positron 
beams under various conditions at SPEAR'e (energy and current not 
specified). "Flip flop" refers to an effect that has so far been 
well documented only at SPEAR:" When the beams are in collision, the 
extent to which they blow up can be controlled by adjusting the 
relative phase between electromagnetic oscillations in two RF 
cavities: Move the phase one wa.y and the positron bunch shrinks while 
the electron bunch expands; move it the other way and the opposite 
happens. The caption "flip-flop balanced" indicates that the RF 
cavities are phased so that the two beams are blown up equally. (As 
it turns out, SPEAR luminosity is always highest when the flip-flop 
is balanced. The data in Fig. 1, and in Fig. 7, below, were taken 
under balanced conditions.") "With flip-flop effect" means that the 
RF cavities are not phased for balance. In either case one sees 
Clearly that at least one bean blows up when two beams collide. 

Figures 6a and 6b show intensity profiles of synchrotron light 
observed at ADONE" at two currents, one below the threshold for 
blowup and the other above. The energy is near 1 GeV. The eight 
peaks are to be read as follows: Let, for example, P(x,y) be the 
distribution function of electrons at the low current, in the plane 
perpendicular to the axis of a camera looking at the electron beam. 
(x and y refer to horizontal and vertical coordinates.) Then the 
lower left-hand peak in Fig. 6a is proportional to IP(x,y)dy, while 
the lower right-hand part is proportional to !P(x,y)dx. The other six 
peaks are interpreted similarly. The blowup of the electron beam at 
the higher current is evident in the widening of the lower right-hand 
peak in Fig. 65 relative to the upper right-hand peak in Fig. 6b, and 
to the two right-hand peaks in Fig. 6a. 

Note, as mentioned earlier, that both in Figs. 5 and 6, beam 
blowup is apparent only in the vertical dimension. 

Although convenient because human eyes can see it easily, beam 
Size of course only crudely indicates how particle distributions are 
altered when two beams are brought into collision. One can begin to 
form a more complete picture with the help of some measurements made 
at SPEAR:" Recall that in a linearly focusing e+ or e- single beam 
storage 
SPEAR re~:lt~~13 

bunch distributions are typically nearly Gaussian.' 
indicate that at high enough current, 'bunch 



distributions in an e+e- collider have tails that are much longer 
than would be the case if the distributions were Gaussian. it will 
be useful to bear this in mind when we discuss computer simulations 
in Part III. 

b. Maximum current; tuneshift 

The maximum luminosity that can be obtained at a given energy is 
determined in part by the luminosity vs. current curve, and in part 
by the maximum Current that can be stored, 'Maximum current per beam 
when there are two beams colliding in a storage ring is typically 
much less than maximum current at the same energy when only a single 
beam is circulating. For example, PETRA, at 7 GeV per circulating 
particle, can hold up to 20 mA when operated as a single-bunch 
single-beam storage ring, but only up to abouts? nA per bunch when 
operated as a collider with two bunches per beam; CESR at 5 GeV and 
one bunch per beam can hold up to 30 mA when operated with a single 
beam, but only up to lo-15 mA per beam when operated as a collider." 

The working definition of maximum current varies from storage 
ring to storage ring. At SPEAR,'l PEPZ1 and PETRA," maximum current 
is the point beyond which background in experimental detectors 
exceeds some pre-specified maximum tolerable level. The apparent 
arbitrariness in this criterion turns out to be of minor importance, 
since the rise in background as current approaches maximum is 
typically very sharp.'l Other laboratories have applied criteria 
based on beam lifetime.'8'22~2J 

The conventional procedure by which designers have traditionally 
predicted the maximum colliding current that can be accomodated in 
e+e- storage rings is based on two general hypotheses: (ij The 
destabilizing strength of the force that one beam exerts on the other 
beam is completely specified by the value of a single dimensionless 
parameter, the linear vertical beam-beam tuneshift per interaction 
(or simply "tuneshift," when no confusion is likely) felt by the 
second beam. The tuneshift will be defined shortly. The current in 
a beam that is assumed to have a Gaussian charge distribution is 
easily expressed in terms of the tuneshift it exerts, the beam 
energy, and the vertical beta function and the beam's dimensions at 
an interaction point, through a formula that we shall present later. 
(One can also define a horizontal tuneshift, although vertical 
tuneshift has traditionally been regarded as a much more important 
index of beam stability because, as we have seen, beams in e+e- 
colliders typically blow up vertically much more than they do 
horizontally. I an not aware of a more rigorous way of justifying 
this point of view.) (ii) A beam reaches maximum current when the 
tuneshift exerted on it by the other beam attains some maximum value 
that can be determined easily by a simple rule of thumb. 

To calculate naximum storable current in the conventional way, 
one substitutes tie naximum tuneshift dictated by the rule of thumb, 
together with the beam energy, the expected vertical beta function at 
an. interaction point, and the unperturbed (see footnote next page) 
interaction-point beam dimensions, into the formula just mentioned. 



The problematical parts of this procedure are the use of the 
unperturbed beam dimensions (as we have already seen) and the simple 
rule of thumb used to predict maximum tuneshift. At least three 
different versions of the rule of thumb have at various times been 
used seriously by storage ring designers to forecast maximum 
tuneshift. We will describe these variants, and compare them with 
the performance of the machines to which they were originally 
applied, after we have defined the tuneshift below. Sadiy, the rule 
of thumb--in any of its versions--has had little real suocess. 

In the future, if no convincing and flexible analytical theory 
of beam-beam effects emerges, it islikely that most important design 
predictions will be made on the basis of computer simulation. 

We now turn to the definition of horizontal and vertical 
beam-beam tuneshifts. In what follows, we shall restrict our 
attention to storage rings in steady state. Thus we may assume that 
the explicit time-dependence of the non-noisy part of the force felt 
by any beam particle is periodic, the period being the time it takes 
a beam particle to circle the ring once. It is possible to formulate 
definitions under more general circumstances, but this will not be 
necessary for our purposes. 

Horizontal and vertical tuneshifts felt by a beam in a storage 
ring are given by the following recipe: Isolate the non-noisy and 
non-dissipative forces-- due to focusing magnets and to the opposing 
beam-- acting on a test particle in the beam in question. Represent 
these forces as series' in powers of betatron and synchrotron 
coordinates and velocities, and then discard all but the linear 
terms. Evaluate the horizontal and vertical (we are neglecting x-y 
coupling) Courant-Snyder tunes characterizing oscillatory motion in 
the presence of such linear, time-periodic forces. Evaluate these 
tunes again, this time omitting the forces due to the opposing beam. 
Form two differences: between the two horizontal tunes just 
evaluated, and between the two vertical tunes just evaluated. The 
horizontal and vertical beam-beam tuneshifts per interaction felt by 
the beam in question are given by these two differences, divided by 
C, where C is the number of collision regions. (In the case of 
single-ring bunched-beam colliders, C is equal to twice the number 
(B) of bunches per beam.) 

One divides by C for this reason: Storage rings are often 
designed so that--ignoring inaccuracies in construction and 
control--the C regions between the C interaction points are 
identical. Thus a storage ring's natural periodicity is often 
naively expected to be C- I times its circumference. Instabilities in 
dynamical systems typically arise when a rational number of internal 
oscillations take place during a repeat period of the system's 

*Throughout this paper, we use the word "unperturbed" to label a 
quantity that is calculated ignoring interactions between particles 
in different beams, between particles in the same beam, and between 
real particles and image charges. For example: X0, defined earlier, 
is. the unperturbed beam area. (This footnote refers to preceding 
page. 1 



10 

time-dependent parameters. In the case of storage rings, we see that 
the number of horizontal or vertical betatron oscillations per 
machine period is the horizontal or vertical tune divided by C. This 
,is why it is considered desirable to include division by C in the 
definition of the tuneshifts. 

(To be complete, we must point out that there is a growing 
number of indications 
from real 

, primarily from computer simulation, but also 
experience with proton-proton and proton-antiproton 

colliders, that small, irregular departures from ideal storage-ring 
symmetries (for example, the C-'-periodicity mentioned above) play a 
major role in the observed behavior of colliding beams. This will be 
discussed more fully later in this chapter and in Chapter 111.1 

Here is how the tuneshift rule of thumb has evolved during the 
history of storage ring design: 

Version no. 1: The earliest expectation'+ was that the tuneshift 
could get as large as the difference between C-' times the vertical 
tune evaluated neglecting the opposing beam (i.e., C-' times the 
unperturbed vertical tune), 
(assuming C-' 

and the nearest integer or half-integer 
-periodicity). In other words, 

stable as long 
beams were expected to be 

as the linear approximation to the colliding system 
did not become linearly resonant. 

Version no. 2: The earliest e*e- storage rings were all 
characterized by limiting tuneshifts near .025, much smaller than the 
limits expected on the basis of Rule no. 1.25 It might have been 
natural at that point to try a tuneshift rule based on nonlinear 
resonance but to my knowledge this was not done 
proposed") 

(although it was 
. In the absences of theoretical guidance, designers 

adopted the assumption that--for reasons unknown--all e+e- 
rings must be characterized 

storage 
by the same maximum tuneshift, which, 

from earlier experience, was conjectured to be about .025. 
the figure used in the SPEAR design.'s 

This was 

Version no. 3: As it turned out, at high energy the tuneshift at 
SPEAR can approach .06. (The maximum tuneshift at AC0 was also .06.) 
Thus, in the mid-70's one expected that a storage ring of much higher 
energy could routinely reach .06 in the middle of its range. .06 was 
thus the maximum tuneshift assumed in the CESR," PEP" and PETRAze 
designs. 

Subsequent experience has shown this estimate to be much too 
favorable. The highest tuneshift observed so far at PETRAl' is close 
to .04; at CESR" the highest tuneshift seen so far is near .02. The 
highest tuneshift observed at PEP" before recent changesloe in 
magnet placement and beta functions was near .02; since the changes, 
PEP has achieved tuneshifts as high as about .05. The original LEP 
design" followed Rule 3 in assuming a maximum achievable tuneshift 
of .06 but on the basis of CESR, PEP and PETRA performance, this has 
since" been reduced to .03. This guess is likely to be replaced 
before long by expectations derived from computer simulations like 
the one recently developed for the LEP project by S. Myers.31 (Myers’ 
model and its consequences will be discussed in Chapter III.) 

We see, in sum, that tuneshifts have turned out to be much more 
difficult to predict than was originally conjectu-ed. Nevertheless, 
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perhaps For lack of anything better, the tuneshift has become one of 
the persistent themes in the literature on storage rings. With this 
in mind, let us proceed to develop the phenomenology of the beam-beam 
tuneshift in greater detail. 

In what Follows we make a number of standard simplifying 
assumptions: Ttte distribution of particles in a beam at a" 
interaction point, in the transverse plane, is assumed to be 
Gaussian, centered at the origin of the betatron oscillations of the 
opposing beam; the disturbance that a test particle suffers when it 
passes a bunch From the opposing.beam is assumed to be due entirely 
to the Coulombic interaction; the whole of this disturbance is 
assumed to be felt instantaneously. 

Let us comment briefly on these assumptions: 
-- We have already mentioned empirical indications that particle 

distributions in colliders are not Gaussian Far From the beam 
centers. However, this does not invalidate the above Gaussian 
assumption a priori, since the linear approximations required by the 
recipe defining the tuneshift are, strictly speaking, meaningful only 
close to beam centers. 

-- In reality, beam distributions are only approximately 
centered, not perfectly centered, as is assumed here. For a 
discussion of some effects specifically associated with off-center 
collisio"s, see the next section, as well as Section 2 of Chapter V. 

-- The assumption that the beam-beam interaction is entirely 
Coulombic means that one neglects inelastic (i.e., radiative) 
electromagnetic scattering, as well as hard processes (e.g., nuclear 
scattering in the case of proton/antiproton colliders). Inelastic 
electromagnetic scatter$g cannot be ignored in colliders of 
extremely high energy, but in existing storage rings it can be 
safely neglected (For an estimate, see Ref. 3, Problem 5). Ward 
processes can be ignored because they are generally of much shorter 
range than the interparticle spacing in a beam. Thus, a beam 
particle participates in hard processes only occasionally, while it 
responds to the combined Coulombic Force due to all the particles in 
every passing bunch in the opposing beam. 

-- Strictly speaking, the time elapsed during an encounter 
between a test particle and a bunch From the opposing beam is (in an 
ultrarelativistic storage ring) half the bunch length (see Fig. 17) 
divided by the speed of light. This is always very much shorter than 
the time between encounters. It is also usually much shorter than 
the time scale on which a beam particle sees variations in the 
storage ring structure (magnetic Fields, etc.) near the interaction 
region; although these time scales can be comparable if either the 
vertical or horizontal beta Functions at a" interaction point becomes 
less than the bunch length. The beta Functions are not that small in 
existing storage rings. (This point will be explored further in 
Chapter III. For a discussion of the manner in which rapid variation 
1" beta Functions can alter tuneshifts, see Ref. 111.) 

Under these assumptions, the tuneshift due to a beam in a 
single-ring bunched-beam collider satisfies the Following equation: 
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co= m (uy+Auy) z cos 27~ Y 
-2nSy 31" 2W . 

Y (3) 

(For a derivation, see Ref. 3.) 
tuneshift, and u is C-' 

In this equation, Au is the 

tune. The par&aeter 5 
times the unperturbed vertical storage ring 

is defined, For oppositely charged beams 
colliding head on (i.e., g'e- or pp), by 

(4) 

where E* is the vertical beta function at an interaction point; o* 
and o* a8e the horizontal and 
dis.trYbutions 

vertical half-widths of the be& 
at an interaction point; E is the energy of a beam 

particle; and all other symbols have been defined before. 
When collisions are not head on, Eq. (4) must be modified. For 

example, the Formula to be used in the case of the ISR, or of 
ISABELLE, is' 

6> 

Eu;tan(a/21 , 
('la) 

where a is the angle at which the beams cross. (Strictly 
speaking--since such machines involve two*rings each--E and 6 refer 
to one ring of a collider, while I and U refer to the other?) Note 
the signs of (4) and (ha): Tuneshifts areYpositive when the.colliding 
beams have charges of opposite sign; they are negative when the 
colliding beams have charges of the same sign. 

6 is Frequently 
parameeer." 

referred to as the "vertical space-charge 
For typical storage ring currents, 5 is quite small. 

In particular, For electron-positron storage ringsY operated under 
optimal conditions, 5 is generally a Few-times 10-a. At the ISR and 
the SPS, 6 is typically much smaller--between a Few times lo-' and a 
Few timesY lo-"; it is commonly supposed that this is why colliding 
beam effects are much less pronounced in the ISR and the SPS, than in 
e+e- storage rings. 

Thus, For most purposes, it is permissible to reduce Eq. (3) to 

by = 5 
Y’ (5) 

as long as l.l is not too close to an integer or a half-integer. 
AC0 and in ADBNE, with u close to an integer, Au 

(I" 

differ considerably:'12Y 
and 5 could 

In ACO, the largest valueYoF Au ~8s about 
.Og, while the largest value of 5 was about .04; in IDONE, the 
largest values of Au and 5 Y 

. similar Formula appliesYto Aux. y 
were .03 and .Og, respectively.) A 
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(Note that for 5 '0, Eq. (3) cannot be solved For real Au when 
P lies within anyY interval of the Form ([n/2 - (l/27) i(rccot 
(He )I n/2), where n 
Casey 1; proton-proton 

is an arbitrary integer. [For 5 (0, as is the 
colliders, the Forbidden inte?vals have the 

Form (n/2, [n/2 - (l/27) Arccot (Zac )]).I For such lJ the storage 
ring with colliding beams, in the yinear idealizatig;, is Forced to 
have a tune with a nonzero imaginary part. This means that 
small-amplitude oscillations of a stored particle about its bunch 
center, in the presence of the opposing beam, run away exponentially 
in time. From this, one concludes that e+e- or pp colliding-beam 
storage rings should not be operated wit6 single-beam tunes (per Cl 
that lie just below an integer or just below a half-integer. 
Proton-proton storage rings should not be operated witi single-beam 
tunes that lie just above an integer or a half-integer. 

A more sophisticated picture of linear instability leads one to 
conclude that e+e- and pp colliding beams should not be operated with 
single-beam tunes--not divided by C--that lie just below an 
integer.3e The mods of oscillation that are expected to become 
unstable when C x (U +Au ) is an integer that does not equal 0, +C/2, 
X, etc., are coh&en?--in such a mode, all the particles in each -- 
bunch oscillate in phase with one another, i.e., each bunch 
oscillates as a rigid body. By contrast, the instabilities that set 
in when p + A!J is an integer or half-integer, as discussed in the 
precedingY parxgraph,, are incoherent--the unstable modes are 
single-particle modes, i.e., the instabilities are not accompanied by 
special phase relationships between the particles involved. Although 
signatures of beam-beam induced coherent oscillation have been 
observed quite clearly in some computer studies,'0 coherent motion 
has been difficult to see in the behavior of real storage rings 
without resonant excitation by some external stimulus. Attempts to 
associate beam-beam collisions at the ISR with the existence of 
significant numbers of stored protons oscillating in phase are 
reported in Refs. ill and 42.) 

From (4) and (51, one obtains 

I= 2nBf. 
EU;+U;) 

e * by . 
0 6; 

This is the formula For beam current that was mentioned earlier, when 
we introduced the conventional procedure For predicting maximum 
colliding current. IO P lications to high-energy e+e- storage 
rings, the Factor U*(U +U ) is often replaced, Qy U U 
is usually much less t#anYone. The product U U isf $I 

because 0*/U* 
turn, P 0 ten" 

rewritten as A*/4n, where A* is the eFFe&.~ve area Filled by the 
Gaussian distribution (the Factor 4n accounts For the part of the 
distribution lying beyond the half-widths). With these changes, 
Eq. (6) becomes 
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(6a) 

Formula (62) is especially suited to calculations describing the 
collision of two equivalent beams (equal E's, equal A*'=, equal 
Au 'a). In particular, in this case, substitution of (6~) into (2) 
(sgtting A = A*) leads to the Following simple relation between 
luminosity and tuneshift 

L=Bf - EsA* 

4e b 
* (Auy)' . 

0 BL' 
(7) 

The design expectations For maximum storable current at CESR, 
PEP and PETRA were all obtained Erom Eq. (6a), using Aiy = .06 
(together with expected values of E, 8., and of unperturbed A (i.e., 
of A )). Maximum achievable luminositl .d s were predicted From Eq. (7), 
usink the same parameter identifications. 

In order to form a sense of how these predictions Fail, let us 
briefly consider them in detail For the case of PEP, prior to the 
modifications described in Ref. 108. (I choose PEP because its 
electron and positron beams happen to have roughly equal dimensions 
even when blown up,'" so that Eq. (7) is applicable, even when A* is 
not equal to Aa): At PEP, until recently, the maximum Au at the 
design energy of about 15 GeV was about .02, one third they design 
value." Furthermore, 
maximum current. ' ' 

the beam area A* exceeded Ao by about 50% at 
Thus, according to (6a), the overestimate of 

maximum current due to Failure of the second nonperturbation 
assumption, and to failure of the tuneshift rule of thumb used in 
design, was 2/3 x 3, or a Factor of two. Similarly, the overestimate 
of maximum luminosity due to the same causes was 2/3 x 3', or a 
Factor of six. (Differences between predicted and achieved maximum 
current and maximum luminosity also receive contributions From 
discrepancies between the design values of storage ring magnetic 
lattice parameters 2nd the lattice specifications achieved in 
practice, because B and A 
concerned with such c8ntributi8ns 

depend on the lattice. We are not 
in this paper, as they are due 

primarily to single-beam problems.) 
The easiest way to measure tuneshift is this: Measure current 

(using an inductive pickup enclosing the beam pipe) and luminosity 
(observing the rate of some well-understood hard scattering process), 
and then compute tuneshift From the formula 

6* L 
by = (2eo’) d l T 

. 

(8) 



15 

This relation is obtained by equating the left and right-hand sides 
;f Eqs. (6a) and (7). The virtue of (8) is that it does not refer to 

which cannot 
interaction point. 

easily be observed at a densely instrumented 

It is lnstructlve to consider the results of some 
maximum-tuneshift measurements of this kind: Figure 7 shows maximum 
achievable tuneshift vs. energy as measured at SPEAR." Figure 8 
shows tuneshift vs. current per bunch (two bunches per beam) For 
three energies, as measured at PETRA." The maximum achievable 
tuneshifts in the latter case are the values of P, at which the 5 
VS. I curves reach plateaus; no plateau is seen 1; the curve ax 
17 Ge B because at that energy it turns out that collision-unrelated 
factors destabilize the PETRA beams before the plateau can be 
reached. 

These Figures show very clearly that maximum tuneshift can 
depend significantly on energy at a given colliding-beam storage 
ring. This is important to bear in mind, because our discussion up 
to this point may have given the impression--and most of the 
literature on colliding beam theory definitely gives the 
impression--that one maximum tuneshift characterizes a storage ring 
for all energies at which it is designed to operate. This is simply 
not true. 

Note, incidentally, that in each of these Figures the maximum 
tuneshift rises with energy. This is another example of the general 
tendency, mentioned earlier, of colliding beams to perturb one 
another less (at a given machine) as energy increases. 

Figure 7 is perhaps the more interesting of these two graphs 
because it shows clearly the existence of two regimes in which the 
storage ring behaves in two qualitatively different ways: For energy 
less than about 2 GeVl.the maximum SPEAR tuneshift appears to grow as 
a power of energy (=E ), while for energy greater than 2,GeV, the 
maximum tuneshift appears to saturate at a value between .05 and .06. 

OF these two regimes, the one at low energy is so Far the more 
thoroughly studied phenomenologically: Wiedemannls and Cornacchia" 
have shown that other Functions characteristic of SPEAR can be fit to 
power laws For EC2 GeV. Such Functions include maximum luminosity 
VS. energy; and also luminosity vs. current at Fixed energy, or 
vs. energy at Fixed current, For currents that exceed the 
energy-dependent turnover point beyond which L grows more slowly than 
I'. Wledemann3' has also discovered a simple parametrization of SPEAR 
data in this regime of low energy and high current that appears 
successfully to describe the operating characteristics of other 
storage rings in similar regimes. His universal Formula is 

L = (4x10") l fi' El" * (I/B)"s, (9) 

where F and B are as defined Following Eq. (1). The plot in Fig. 9 
shows how close the Formula comes to experimental data taken at a 
number of different storage rings. (Note that SPEAR data taken at 
high energy and/or low current is not shown in this Figure.) A 
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discussion of power law fits applied by other workers to the behavior 
of other storage rings can be found in Ref. 35. 

Before the SPS was operating routinely as a proton-antiproton 
collider, there were attempts to use e+e- data of the kind shown in 
Fig. 7 in order to predict, by extrapolation, the maximum tuneshift 
that could be achieved in a zp storage ring. To carry out such an 
extrapolation, one had commonly to assume that there always exists 
some (typically low) energy at which a given e+e- storage ring 

behaves as a simple resealing of the high-energy sjp storage ring 
being designed or proposed. 

A careful analysis3a reveals that the parameters of two 
colliding-beam storage rings must satisfy a number of relations 
before one can properly consider the two colliders to be resealed 
versions of one another. In carrying out tuneshift extrapolations, 
it was commonly assumed1s that only one of these 
relations--specifically, equality of the number of bunch collisions 
in a radiation damping time--is sufficient to guarantee that two 
storage rings are equivalent up to overall scale. 

Let us determine the energy at which SPEAR is equivalent, 
according to this simplified criterion, to the 250 GeV SPS collider: 
The number of bunch collisions in a damping time T is equal to 2Bafr. 
'I depends on storage-ring circumference 9.0, particle mass m, and 
particle energy E asit, roughly, (constant) l (m4LoZ/E3); f depends on 
these parameters as (constant) * l/Lo. Thus, assuming equal numbers 
of bunches in the two storage rings, SPEAR and the SPS are equivalent 
according to the criterion above when 

E SPEAR = %PS 

c (250 GeV) . (1836)-"'* (29.5)-l" 

= .04 GeV . 

If one extrapolates the low-energy part of the curve shown in 
Fig. 7 down to this energy, one predicts for the SPS a maximum 
tuneshift of about 5~10~~. This turns out, with hindsight, to be a 
bad prediction: Tuneshifts at the SPS collider are routinely as high 
as a few parts per thousand." Thus, one should be wary of such 
extrapolations, and of the simple assumptions that go into them. 

One of the most serious weaknesses in such an extrapolation is 
the following: Electron-positron storage rings, from whose behavior 
one wishes to extrapolate, have radiation damping times that vary 
between a few milliseconds at very high energy and a few seconds at 
very low energy. Thus, a great deal of transient behavior has died 
away by the time measurements are made. BY contrast, 
proton-antiproton storage rings, to which one wishes to extrapolate, 
have radiation damping times of several months, so that the 
tranSientS that are not seen in observations of e+e- colliders are 
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necessarily fully present for any Practical Ep measurements made 
under normal circumstances. In other words: If there are 
characteristics of 
conditions, 

-& (or p?) storage a, operated under nor< 
that-can be predicted by extrapolation from + 
__- 

under normal conditions, 
ee 

machines, operated then one does not have -~ 
in. An interesting enough time to see such characteristics ----T ST& 

example of an extrapolation that goes the other way--from pp to 
e+e---and involves measurements made under abnormal conditions, will - 
be mentioned in Sec. 4. 

One quantity often mentioned in conjunotion with the (vertical 
or horizontal) tuneshift is the (vertical or horizontal) tunespread. 
Here is a brief schematic definition: Recall first the general form 
of the vertical betatron oscillation of a particle in a storage ring, 
when nonlinearities in the forces due to magnets, and to the opposing 
beam, are neglected: 

y(s) : J21yByW co3 @y + iz gd;;,, 
i 

. 
Y ) 

(11) 

s is the product of time and the speed of light, and I 
and 9, are artibrary independent constants of 
neither on I 
Chapter IV," 

nor on @, . In a sense that will be made 
the leadidg effect of the nonlinearities (due primarily 

to the opposing beam) neglected in (11) is that the form (11) is 
replaced by 

Y(S) = 1'21yBy(s) cos 

(12) 

where P,e is the storage ring circumference, and 6u is some function 
of I and I . In particular, in the presence of Konlinearities, 
tune 8f vertigal betatron oscillations--in 

the 
(12) given, per C, by 

!J + 6u (I ,I )--depends, 
or 0sciYlahoX. 

in a first approximation, on the amplitude 
The vertical tunespread is the difference between 

the largest and smallest values taken by this amplitude-dependent 
tune (i.e., by 6uX, since u is independent of 
Horizontal tunespread is definedYin a similar way. 

amplitude). 

(It may be of interest to note that a nonzero tunespread can 
contribute to beam stability. In particular, certain resonant 
instabilities, to which a single beam can be subject when its tune is 
very narrowly determined by the storage-ring hardware, can become 
less severe under the influence of beam-beam collisions, because they 
can spread out the range of tunes in the beams beyond the instability 
bandwidths. Such an effect has been observed at AC0.a') 
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In general, tuneshifts and tunespreads all have the same order 
of magnitude (in other words, the tuneshift sets the scale for both 
linear and nonlinear beam-beam perturbations). This rough equality 
can be quite useful. It tells us, for example, that one cannot use 
compensating magnets to cancel the nonlinear forces that cause beam 
blowup and limit storable coiliding current, because tunespreads as 
large as the beam-beam tuneshifts typical of e+e- storage rings are 
two orders of magnitude greater than can be practically reproduced by 
arrays of magnetic lense~.'~ A more promising method for cancelling 
these destabilizing forces is the subject of the next subsection. 

c. The DC1 project 

To the best of my knowledge, the French DC1 projecta represents 
the only significant attempt to develop a means of cancelling the 
nonlinear forces that cause beam blowup and limit current in 
electron-positron colliding-beam storage rings. 

DC1 consists of two e+e- storage rings (peak energy 1 GeV) with 
two regions of tangency, as shown in Fig. 10. In one ring, electrons 
travel clockwise and positrons travel counterclockwise; in the other 
ring, these directions of circulation are reversed. In the 
interaction regions, bunches from the two oppositely-charged 
counterclockwise beams can (when the timing is right) combine to form 
electrically neutral bunches that collide with electrically neutral 
combinations of positively and negatively charged clockwise bunches. 
The more complete the neutralization, the more complete the 
Cancellation of Coulombic beam-beam kicks; and therefore, presumably, 
the smaller the blowup and the higher the maximum colliding current. 

(This scheme makes the experimentalist's job harder, because he 
or she must be 
electron-electron, 

able to distinguish between electron-positron, 
and positron-positron collisions; but this would 

be a small price to pay for a large increase in luminosity.) 
The sucoess of this project has been limited. On the one hand, 

beam blowup has, under certainconditions, been suppressed; on the 
other hand, no increase of maximum colliding current has been 
achieved. 

The results of four experiments performed on DCI" are shown in 
Fig. 11. In one sXperiment ("e+e- lower ringtl) equal electron and 
positron currents were circulated in one ring, with the other ring 
vacant; the second experiment ("e+e- upper ring") was identical to 
the first, except that the two rings were interchanged. In the third 
experiment ("3 beams"), one ring contained a large current of one 
charge and a very small trace current of the opposite charge, while 
the other ring contained only a single beam, of current equal in 
magnitude to that of the strongly populated beam in the first ring, 
but of opposite charge. In the fourth experiment ("4 beams"), four 
beams of equal current were circulated at the same time. Neither 
beam could be neutralized in cases one and two; in case three, the 
high current beams could in principle neutralize one another; in case 
four, all beams could in principle be neutralized. 
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The abscissa of Fig. 11 refers to the current in any one of the 
two or four beams in the first, second or fourth case; in case three, 
the abscissa refers to the current in either of the two strongly 
populated beams. The ordinate of Fig. 11 refers to the 
cross-sectional area (measured at some fixed storage ring reference 
point) of the trace beam in the third case; the beam whose area is 
given by the ordinate in the other cases is not specified; in all 
cases, the area is normalized to the low-current area of a single 
isolated beam. 

In the first two cases, a strong current-dependent beam blowup 
iS clearly evident in Fig..ll. In the other two cases, 
neutralization has the desired effect of suppressing blowup. 
However, this success is offset in the realistic "4 beams" case by a 
low maximum current. 

3. Colliding-beam effects in pp and pp storage rings 

a. Introduction 

The beam-beam effects that dominate the literature on routine 
operation of e+e- storage rings do not figure in corresponding 
discussions of the ISR and the SPS: Under normal conditions, ISR and 
SPS beams do not generally blow up; and the ISR or SPS current per 
beam that can be stored with beams in collision is not generally 
smaller than the current that can be stored when only a single beam 
is present. (Observations made under abnormal conditions are 
discussed in Sec. 4.) 

For this reason, the literature on routine operation of the TSR 
and the SPS has never had a dominant theme. Although miscellaneous 
effects of beam collisions are easily detectable in normal 1% and 
SPS performance, these effects are generally too small, or too slow, 
to justify the kind of singleminded attention that is typically paid 
to blowup and to tuneshift shortfall in reports on electron-positron 
storage rings. 

In this section, we discuss four such small or slow effects that 
have been publicly documented, two at the 1.52 and two at the SPS. 
Where appropriate, we shall try to assess the importance of what has 
been seen. 

Three of these four otherwise diverse effects have this in 
Common: They occur most strongly when the orbital parameters of some 
beam particles come close to satisfying resonance conditions. The 
form of the most general such condition is 

nv XX +nV 
YY +I nifi/f, = n , (13) 

i 

or equivalently (redefining n) 
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nxWx + n v 
YY 

+Cni + :n . 
f I 

(14) 

In these equations, the n's are integers, VY and'v are the storage 
ring tunes (not divided by C), f. is the revolution Frequency of such 
a resonant particle, and the f. are frequencies of any periodic beam 
perturbations that are not syncftronized with f Such perturbations 
usually arise from coupling to longitudinal"~scillations, and from 
the interaction of beam particles whose orbital frequencies differ 
slightly because of slight differences in energy. Thus, neglecting 
longitudinal coupling (as is often done) f. and the fi are typically 
very close; for most purposes (but not for all--see below) one does 
not distinguish between them, and therefore the summation term in 
(13) or (14) is ignored. 

The resonant relations that have actually been correlated with 
beam-beam phenomena at the ISR or SPS involve n 73, n $9, and n.'s 
that are not larger in absolute value than 'aboutY ten. Sbch 
correlations would not be meaningful if a much wider range of 
integers were involved, since' any pair of tunes can be closely 
approximated by a Vx and a v7 satisfying a relation of the form (13) 
or (141, provided one uses su f ficiently large integer coefficients. 

The existence of discrete, often unstable, phenomena that are 
associated with small numbers of resonance conditions is a typical 
characteristic of sys terns with weak nonlinearities. When 
nonlinearitles are strong, it is often difficult to associate 
observed effects with specific resonances. For these reasons, one 
often identifies ISR and SPS tuneshifts/tunespreads (0(10-a)) with 
weak nonlinearity, and e+e- tuneshifts/tunespreads (O(lO~*)) with 
strong nonlinearity. 

The term n V is usually omitted in discussions of the ISR, 
because the IZ?RX beam-beam interaction hardly couples to horizontal 
oscillations. The reason for this is as follows: Recall that the ISR 
beams both lie in the horizontal plane, are both continuous, and 
cross at an angle. Thus a particle in one beam sees the other beam, 
at a crossing point, as a charge distribution that is nearly uniform 
in the horizontal coordinate (see Fig. 121, and therefore no kick 
that a particle gets from the opposing beam has an appreciable 
horizontal component. 

By convention, one usually writes resonance conditions using 
integers n (n 1 and n 
as we shallxAeenyA Chipier IV 

that have no common divisor. However, 
, there is a mathematical sense in which 

one might distinguish between a resonance indexed by (n , n 
n) and one indexed by (mn mn 
equal to one, zero, or m&s 0Xd. 

(ml I mn) with m an ?nte&r 
In,), 

not 
IA ihe discussions that follow, we 

shall assume that all resonances encountered are described by 
integers (n 
interpreted ~ciookng 

I" I 
tb 

n) that have no common divisor, even when 
{he mathematical formalism to which we have 

just alluded. When the integers nx and n are small (one or two), 
Y 
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this might lead to meaningful ambiguities. However, in this section 
we shall be discussing the effects of resonances for which either n 
or n is so large that it xould be diffl~ult to impute the same 
effegt to a resonance indexed by mn and mn with [ml '2. The effects 
associated with a resonance usuallyxdiminis8' rapidly -as 
(lnxl+lnyl) of the resonance grows. 

the order 

b. Colliding-beam effects in the ISR 

The effects to be discussed here are: loss of current (over and 
above the single beam loss rate) while two coasting ISR beams 
collide; and loss of current (over and above the single beam loss 
rate) while the ISR rings are being filled. The single beam loss 
rate is a few parts per million per minute;** it is primarily due to 
hard nuclear collisions uitn residual gas molecules that have not 
been removed by the storage ring vacuum pumps. 

In the context of the preceding discussion, the fundamental 
difference between these two effects is this: In the former case, all 
the forces on a circulating particle are synchronous with its 
reVOlutiOn frequency, and therefore there are no f. terms in the 
corresponding resonance conditions (14). In the latter case, 
circulating particles experience asynchronous perturbations, and 
therefore there are nontrivial fi terms in the corresponding 
resonance conditions. I_ L 

Current loss from coasting beams in collision: Guignard" 
reports that although the loss rate for ISR coasting beams in 
collision is usually comparable to the rate of single-beam current 
loss, colliding loss rates as high as 20-60 ppm per minute have been 
observed when the storage rings are operated in a standard 
configuration that places the vertical tunes near a fifth order 
by = 5) resonance. 

This particular rate enhancement turns out to be one of the few 
concrete numbers in colliding beam physics that has been plausibly 
explained by a theoretical calculation. This calculation is 
described in Chapter V. 

Even without a detailed calculation, one can immediately draw an 
important co"clusio" when beam loss is enhanced near an odd-order 
vertical resonance: Contrary to a common idealization, the beam 
distributions cannot be exactly symmetrical about the horizontal 
plane of the design orbit. (Indeed, in the case reported by 
Cuignard, the centers of the colliding beams were vertically 
misaligned by about .2 mm--about one-tenth the vertical size of a 
beam.) The reason: In a machine with perfect vertical symmetry, one 
expects (as will be explained in Chapter IV) to see enhancement of 
current loss only near vertical resonances of even order. We shall 
use a similar argument to draw a similar conclusion from one of the 
SPS effects described in the next subsection. 

Current loss during filling: According to Courber et al.," a 
persistent enhancement of current loss during storage ring filling 
was at one time a problem at the ISR. (The precise magnitude of the 
problem is difficult to abstract from the published reports--although 
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measurements of current loss are tabulated, the scales are 
suppressed. Beam blowup during filling is also mentioned, but in 
this case no quantitative measurement--with or without a scale--is 
cited.) The remedy that eliminated this effect was suggested by a 
qualitative theory that we explain below. 

Before we proceed, it should be pointed out that the ISR beams 
do not actually intersect while the storage rings are being filled. 
During filling, magnetic separators" keep a vertical distance of 
about 8 mm between beam centers at crossing points,'6 while, as 
mentioned earlier, the vertical thickness of a beam is only about 
2 mm. Thus, loss enhancement during ISR filling differs from the 
other phenomena discussed in this paper in that it arises from a long 
range Coulombic interaction between the two beams. 

Enhancement of current loss during ISR filling is understood+' 
to be a consequence of the beam bunching that necessarily accompanies 
the filling process. Let us briefly explain why filling--or 
"stacking"--a beam of uniform longitudinal distribution entails some 
bunching in intermediate stages of the process. We will then explain 
how this bunching provokes beam losses. 

A storage ring is filled with a coasting beam in the following 
way:*' An injecting accelerator deposits some particles into a 
storage ring orbit. The radius of the orbit is determined by the 
particles' energy, which is in turn determined by the characteristics 
of the injector. In order to make room for the next batch of 
injected particles, the batch already in the storage ring must be 
moved to a different radius. This is done by changing its energy, 
i.e., by accelerating it slightly, using RF cavities. After the next 
batch of particles is injected, acceleration takes place again, to 
make room for another batch, and so on. The bunching mentioned above 
is maintained by this periodic acceleration, as dictated in the usual 
vay by the theory of phase stability in circular accelerators.' 

Because of this bunching, a beam that is in the process of being 
filled has a complicated shape. The circling of the beam causes 
details in this shape to propagate around the storage ring--a feature 
at a given radius circles the storage ring at (roughly speaking) the 
orbital frequency of particles stored at that radius. As there is a 
range of orbital radii represented in the beam, there is a range of 
circulating frequencies represented in the beam's shape. 

With this in mind, consider now a test particle in the opposing 
beam, assumed to be already filled. It feels the beam that is being 
stacked as a superposition of periodic perturbations whose 
frequencies are given not only by the frequency with which the test 
particle itself circles its storage ring but also by the frequencies 
with which details in the stacking beam's shape circle the stacking 
beam's storage ring. In view of the foregoing paragraph, these 
frequencies are spread with nonzero bandwidth about the test 
particle's orbital frequency. 
occur during stacking because 

$hanced current loss is thought to 
some of these frequencies can serve 

as firs to the test particle's f 
form (14). Such resonances % 

in destabilizing resonances of the 
this context are called "two-beam 

overlap-knockout" resonances. When filling is completed and the RF 
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cavities are turned off, details of the beam distributions wash 
themselves out, only f is left to determine the periodicity of the 
beam-beam force, the' overlap-knockout rezonances disappear, and 
current loss settles down. 

Direct--although somewhat artificial--support for this picture 
come3 from the following type of experiment: Two low-current beams of 
nearly equal, narrowly defined energies are loaded into the ISR 
rings. One beam is allowed to coast (unbunchedl; the other 
beam--necessarily bunched--is accelerated slowly but steadily. The 
current in the.coasting beam is monitored throughout the acceleration 
cycle, and then graphed as a function -of the varying fractional 
difference between the energies of the two beams. Since the 
difference in the two beamz' revolution frequencies is proportional 
to the fractional difference between their energies (as long as that 
difference is small), one derives, from the picture above, the 
following qualitative expectation for this graph: It should show 
strong variation* at discrete values of AWE satisfying 

nyvy+n, E = n, 5 !E 
0 

(151 

where the n’s are integers', as before, and 5 is some numerical 
constant. 

One Such graph'3 is reproduced here as Fig. 13. 
the slope is 

As expected, 

difference. 
amplified at discrete values of the relative energy 

The labels at these points indicate n and n values 
that have been assigned by the experimenters. "F&t order"'mea"s n 
= 1, "second order" mea"3 n = 2. 
with all points having the game n . 

The same integer n is associate8 

It must be borne in mind thae such experiments exaggerate the 
effect that overlap-knockout rezonances have on current loss during 
routine filling. In routine filling the beam energies and 
frequencies are not 30 narrowly defined, and therefore the onzet of a 
resonant instability is not 30 distinct. 

The remedy for enhanced current 1033 and beam blowup during ISR 
filling turned out to be a simple modification of the RF system. 
This modification lengthened the bunches that are formed during 
acceleration. Loosely speaking, this smooths out the features in the 
shape of the beam that is being stacked, thereby reducing the 
asynchronous components of the perturbation felt by a particle in the 
opposing beam. 

c. Colliding-beam effects in the SPS 

We describe briefly two proton-antiproton effects that were 
highlighted in a recent report on the SPS by Evans and Gareyte:" 
Large variations of beam lifetimes that result from small variations 
in tune; and slow asymmetric particle losses that result in 

m quantitative theoretical prediction of the strength and shape of 
this variation is not available. 
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equalization of the emittances of two initially unequal-emittance 
colliding beams. 

Tune-dependence of beam lifetimes: Tune variations as small as 
about .Ol have been observed to result in large variations in beam 
lifetime. A sample measurement of antiproton beam lifetime, as a 
function of horizontal SPS tune, is shown in Fig. 14. This 
measurement was performed with one bunch per beam, and with v -v 
held fixed at about .02. One sees that the lifetime drops 8y g 
factor of about three between v : .71 and V : .72. 

It should be noted that al?hough the minimum lifetime--about two 
hours--reached by the curve in Fig. 14 is comparable to typical beam 
lifetimes (about five hours) in electron-positron storage rings, it 
is much shorter than is desirable at the SPS. Ideally,. beam lifetime 
should exceed the time needed for accumulating and collimating a 
replacement antiproton bunch. At the SPS, this replacement time is 
about twelve hour.?. The largest lifetimes observed at the SPS are in 
the range 40-50 hours. 

The experimenters have indicated, by the markings "7th order" 
and "10th order," that the curve in Fig. 14 zhowz structure at the 
resonance3 7Vx = 107 and low = 267 (V : 26.714 and V = 26.700, 
respectively). A3 in the sreceding &bsection, one ca6 immediately 
draw two important conclusions from these features: First, either one 
of the two bunch distributions is not left-right symmetric when 
viewed along its beam axis, or the horizontal alignment of the two 
bunches is not perfect when they collide (or both). Second, the two 
regions between the two interactions are not completely identical, 
contrary to one of the expectations articulated in Sec. 2b. 

The reasons for these conclusion3 are as follow3: In the 
behavior of a storage ring with left-right symmetric beams that 
collide horizontally centered, one expects to see tune-dependent 
structure only near horizontal rezonancez of even order; the 
resonance 7v = 187 violates this condition. In the behavior of a 
storage ring built of two identical sections, one expects to see 
tune-dependent structure only near resonances n V + V V = ” with ” 
even; this condition is violated by 7V = 184 $“d j6vy = 267. The 
mathematical basis for these symmetry exp&.ations will ge explained 
in Chapter IV. 

Emittance equalization: At injection, the antiproton beam in the 
SPS has mean emittances approximately 50% greater than those of the 
proton beam (i.e., transverse dimensions approximately 25% greater 
than those of the proton beam). In experiment3 involving two proton 
bunches and one antiproton bunch (~10” particles per proton bunch; 
sloy-lo’p particle3 per antiproton bunch"0) , it was observed that 
over a period of about Seven hours, antiprotons having emittances 
significantly larger than the, mean proton emittances were lost 
(absorbed by the pipe wall) faster than their counterpart protons, 
and faster than could be explained by encounters with residual gas 
left behind by the vacuum system. After about seven hours the 
transverse dimensions of the antiproton beam matched those of the 
proton beam. Thereafter (for the remaining -40 hour3 of storage), 
beam dimensions remained matched, and particle loss proceeded at a 
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rate adequately accounted for by gas scattering. The role--if there 
is one--of resonances in this phenomenon is not at all as apparent as 
the roles plsyed by resonances in the other ISR and SPS effects 
discussed in this section. 

4. Nonstandard ISR studies 

In this section, we discuss several experimental studies carried 
out at the ISR under nonstandard operating conditions. Some of these 
studies were in part conducted to help designers determine in advance 
how Ep colliders would perform, and what their limitations would be. 
In each study, an artifice was employed for the purpose of 
reproducing the operating conditions anticipated in a head-on 
bunched-beam collider. Every nonstandard study was also in part--if 
not entirely--conducted for the purpose of accumulating experimental 
information about the consequences of large nonlinearity. In each, 
some artifice was employed with the aim of substantially increasing 
the tuneshift felt by one of the beams. 

A priori, an ISR beam is a poor model of a beam in a head-on 
collider like the SPS, mainly because it is not bunched, and because 
the localized target (the opposing beam) in its path resembles 
Fig. 12b, rather than Fig. 123.. The ISR has on separate occasions 
been modified in two different ways to compensate for one or the 
other--unfortunately not for both--of these deficiencies: 
Experimenters have bunched one ISR beam, leaving the other 
continuous. (Because bunching substantially reduces beam current, 
the continuous beam in such an arrangement is hardly perturbed; thus 
the test beam is necessarily the bunched one.) In this caze, 
bunching is the characteristic being simulated. Experimenters have 
also placed a system of current-carrying bars (a "nonlinear lens") so 
that the bulk of its magnetic field lies in the path of an ""bunched 
ISR beam (the other beam is shut down). In such a study, the 
nonlinear lens is introduced to simulate the shape of the target in a 
head-on collider. 

In order to enhance the tuneshift felt by an ISR beam (bunched 
or unbunched) against which a second high-current beam is circulated, 
experimenters have on separate occasions tried decreasing its energy 
and increasing the value of its beta function at interaction points, 
in either case leaving the opposing beam's characteristics unchanged. 
The rationale for these measures is provided by Eq. (4a), according 
to which the tuneshift fe&t by the test beam is expected to vary in 
direct proportion to 6 and in inverse proportion to E. In 
nonlinear lens studies, t&eshift is increased by raising the current 
in the current-carrying bars. 

Energy-reduction experiments509s' (with and without bunching) 
have been inconclusive, because apparent single-beam instabilities 
turn out to limit the extent to which energy can be reduced 
practically. For this reason, I shall not comment further on studies 
involving energy reduction. 

Zotter53 used the high-beta technique on 
obtain tuneshifts between 

continuous beams to 
.005 and .02 in absolute value. At each 
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tuneshift, he measured the lifetime of the test beam. His data is 
reproduced in Fig. 15. According to the figure, the dependence of 
lifetime on tuneshift is approximately exponential, through two 
orders of magnitude in lifetime. As far as I know, this has not been 
theoretically explained. 

Zotter pointed outs2 that his data, extrapolated to a tuneshift 
of .06--SPEAR'S maximum--predicts a lifetime of a few 
milliseconds --the order of magnitude of SPEAR's zynchrotron radiation 
damping time. This coincidence is probably not significant, 
considering that at CESR'z maximum tuneshift, about .02, Zotter's 
data shows an ISR lifetime of about one tiour, Six orders of magnitude 
longer than CESR'z damping time. 

Hofman et al." used the high-beta technique on a bunched ISR 
beam and obtained tuneshifts as high as about .0035 in absolute 
value, comparable to current SPS values. Their main finding at this 
tuneshift concerned the effects of beam misalignment: They found that 
when the colliding beams were well-centered, test-beam lifetime was 
about 30 hours; but when the beam centers were separated vertically 
at crossing points by about half a beam thickness, test beam lifetime 
declined to about 1.5 hours. This is reminiscent of the SPS 
asymmetry effects mentioned in the preceding section. 

Keil and LeRoyS3 conducted a nonlinear lens study at the ISR and 
obtained tuneshifts as high as . 1 in absolute value. At each 
tuneshift, they measured the beam decay rate for a variety of storage 
ring tunes. They found that if, at high lens tuneshift, a machine 
tune (horizontal or vertical) was changed by as little as a few 
percent of the tunespread, the corresponding change in beam loss rate 
could be a few orders of magnitude greater than that which a similar 
tune change could cause with the nonlinear lens turned off. Keil and 
LeRoy give the following example: With the lens inactive they found 
that a tune change (horizontal or vertical) of .0025 changed the loss 
rate by at most a few time3 lo-' zec-' (i.e., the order of magnitude 
associated with beam-gas scattering); but with a lens tuneshift of 
about -.05, tune variations of about .0025 changed the beam loss rate 
by as much as about lo-' set-I. As far as I know, this extreme 
sensitivity has not been explained theoretically. 

Their data is represented schematically in Fig. 16. Each bar 
indicates the range of loss rates observed on several occasions at 
the corresponding tuneshift. The crozsez indicate arithmetic means 
of highest and lowest 1033 rates. Notice that the loss rates in this 
figure appear to saturate at tuneshifts above about .05 in absolute 
value. On the basis of a computer simulation, Keil and LeRoy 
interpreted this saturation as a symptom of "large-scale 
stochasticity"--a type of behavior phenomenologically similar to 
random motion, characteristic of strongly nonlinear systems. As far 
as I know, this interpretation has not been pursued more deeply. We 
shall say more about ztochasticity in Chapter III, Subsection 35, and 
in Chapter IV, Subsection 2~. 

A nonlinear lens study was later undertaken at the SPS.3' Since 
this work was not nearly as extensive or sy3tematic as in its ISR 
counterpart, we shall not discuss it further. 
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III. NUW?RICAL PHENO,MEIEE;OLOCY, 

As computing technology has developedss--and confidence in 
analytical theory has deteriorated--more and more effort has been 
invested in computer simulation of colliding-beam effects in storage 
rings. This kind of work serves a number of purposes: testing and 
refining mathematical models of beam-beam phenomena; determining in 
advance how proposed colliders will perform; exploring ways to 
enhance the performance of existing storage rings. 

All simulations of which I am aware have in common the same 
basic structure. This structure is described in Sec. 1, below, after 
which we discuss specific results from recent simulations of 
electron-positron storage rings (Sec. 21, and from recent simulations 
of proton-antiproton and proton-proton storage rings (Sec. 3). 

1. Basic structure of simulations 

As commonly understood at present, a storage ring simulation is 
a computer program that applies long sequences of a few types of 
linear and nonlinear transformations to the initial phase space 
coordinates of a small number of mathematical test particles, and 
then tabulates statistical properties of the resulting set of Final 
phase space coordinates. Each type of transformation idealizes the 
effects of a different physical process. The processes which have so 
far been included in beam-beam simulations are: passage through 
magnets, passage through RF cavities, radiation damping, radiation 
noise, and beam-beam encounters. Potentially important processes 
which, to my knowledge, have 30 far not appeared in simulations that 
involve colliding beams include: interactions between particles in 
the same beam, and interactions with image charges induced in the 
vacuum pipe. 

Although the parameters defining these transformations might be 
varied during the course of a simulation (see below), the program 
always applies them in a fixed, periodically repeating order. For 
example: magnet transport, RF transport, damping, noise, beam-beam 
encounter, magnet transport, RF transport, etc.... Separation of 
these effects into discrete sequential transformations is an 
idealization that one makes for convenience only. In reality, 
damping and noise, for example, carry on at the same time that 
particle3 travel through banks of magnets. In general, one 
transformation cycle is equivalent either to one revolution of a test 
particle around the storage ring, or to one passage of a test 
particle through a single interaction region and a single 
inter-collision storage-ring arc. 

A mathematical test particle is not always to be literally 
interpreted as a model of a single beam particle. 
beam, for example, 

A storage ring 
contains as many as a few times 10" particle3 per 

bunch, while simulations involving more than a few hundred test 
particles are impractically time-consuming. If N is the number of 
particles (charge ?e3, mass IO,,) in the real beam being modelled, and 
N is the number of test particles whose orbits one can afford to 
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digitally compute, then each test particle is defined to have charge 
e : It(N/M)e and mass m = (N/M)~ . 

The toeal number of transformation cycles in a sfmulation 
depends on the type of storage ring being simulated. If the beam 
consists of electrons and positrons, then the number of 
transformation cycles is usually chosen so that the length of the 
simulation is equivalent, in yeal time, 
radiation damping times. 

to a few (unperturbed) 
(The unperturbed damping time is generally 

assumed--rightly OP wrongly--to set the scale 
transients in 

for the decay of 
colliding beam distributions.) This number is a few 

thousands for large colliders such as CESR, PEP, PETRA and LEP, and a 
few tens of thousands for small colliders such as SPEAR. (For this 
,';;zml large e+e- storage rings are easier to simulate than small 

1 if the beams consist of protons and/or antiprotons, then the 
number of transformation cycles is generally set equal to the largest 
number that one can afford to program, 
slow in proton/antiproton colliders. 

since radiation damping is so 

The mainframe CPU time corresponding to these numbers of 
transformation cycles can range from a few minutes per model beam, 
for some electron-positron simulations,"' to a few hundred hours per 
model beam for some proton-antiproton simulations. 73 

One drawback of limiting the number of e+e- transformations to 
the equivalent of a few damping times is that one is thereby 
prevented from being able to derive values of maximum storable 
current from the outputs of simulations. The reason is this:56 In 
real storage ring operation, maximum current is determined by the 
maximum tolerable beam loss rate, 
thousand per damping time. 

which is usually about a part per 
This is too small a loss to observe in a 

statistically significant way in a model beam containing the usual 
number--a few hundred or less--of test particles. 

Let us now consider in detail the different types of 
transformations that are aoolied to the ohase-space coordinates of . . 
such test particles in the course of a typical simulation. 

Passage through magnets: The effects 
during 

of magnets encountered 
a single transit 'between two adiacent interaction regions are 

generally modelled by a linear transformation of the following form: 

cos2lrp 
Y 

-(l/BJ) sin2iwy (16) 

(similarly for x1. The input to this transformation consists of the 
betatron coordinates and conjugate momenta of a test particle 
immediately before passage through the magnets; the output consists 
of the coordinates and conjugate momenta just after passage 
the magnets. 

through 
As in Chapter II, 6' and 6* are the beta function 

val.ues at either interaction point (onexass"me %thesame6's at all 
interaction Points); Px and Uy are the amounts by which the betatron 
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phases advance between the two interaction points. 
nonlinearities are generally ignored. 

Magnet 

Programmers sometimes use u's that vary during the course of a 
simulation. Two types of variation are common: One type of variation 
is realized by terms in I! and F! that take the same pair of values 
every time the test $aticleg pass between the same pair of 
interaction regions, but which take different pairs of values when 
the particles pass between different pairs of interaction regions. 
Such terms are typically employed to model storage 
irregularities, 

ring 
The other type of variation is realized by terms in 

ux and u that depend on the amplitude and phase of a test particle’s 
longitudynal displacement with respect to the center of its bunch as 
it leaves an interaction region. (This type of term gives rise to 
u's that can be different for different test particles.) One 
rationale for such a term is the combined effect of longitudinal (or 
synchrotron or energy) oscillation and chromaticity (EaV/aE). Another 
rationale is this: A particle that oscillates longitudinally is 
sometimes near the head of its bunch, and sometimes near the tail. 
Thus, sometimes it encounters the opposing beam early, and sometimes 
late. Consequently, the distance it travels between interactions 
varies--sometimes greater than average, sometimes less. Because this 
distance is the interval over which one integrates l/B and l/B in 
order to obtain betatron phase advances, these advance: must &so 
vary. 

Programmers generally translate this into mathematical terms as 
follows: Let II be the longitudinal distance by which a test particle 
leads the center of its bunch. During a collision, this particle 
passes the center of an opposing bunch when the particle is a 
distance R/2 (see Fig. 17) past the center of the interaction region 
(where both bunch centers coincide). Thus, if AR~is the change in 9, 
during one transformation cycle, then the distance travelled by the 
test particle between collisions exceeds the average by A!Z/2. 
Accordingly, ttJe Consequent changes in u, and !.I PX he -approximated 

Y 
--.. -- 

by 112~ (A&/26 ) and 1/2v (All/2B*). 
(It should be noted thali this approximatign negaects the 

variation of 6 and 8 near an interaction point. 6 
beta-function 'minima? 

and 6 are both 
In general,4 if s meaSu?es loxgitudinal 

distance from the point then for 
small s 

where fly reaches its minimum B*, 
Y 

By = 6; (I + (17) 

and similarly for 6 This is a negligible effect when 6' and B* are 
much larger than theXEharacteristic value of s--one-quart& the 8unch 
length; but it could be a potentially important source of parameter 
variation in simulation transformations if either of the 6 1s becomes 
comparable to the bunch length.) 

Several of the studies that we discuss in the next two sections 
indicate that model beams become significantly less stable when the 
parameters defining storage ring transformations are made to vary 
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during the course of a simulation. This is in accord with a rule of 
thumb often articulated by analysts of nonlinear systems: Suppose one 
is given two nonlinear systems, the first having more degrees of 
freedom than the second, or having an externally modulated parameter 
that the second does not have; then the first is inherently less 
stable than the second, because (loosely speaking) it's behavior 
Involves a larger number of frequencies, and therefore there are more 
ways for it to be resonant (or near resonant). A more detailed 
exposition of this viewpoint can be found in Ref. 5. 

Damping of betatron oscillations, per interaction, is sometimes 
(e.g. see Ref. 57) modelled by a transformation of the form 

(18) 

(and similarly for y). Tx is the horizontal damping time. T is the 
(average) time it takes for an ultrarelativistic beam particle to 
travel around the ring--i.e., the ring circumference divided by the 
speed of light. Use of this transformation is almost equivalent to 
assuming that all damping takes place at a single point: When T 
T , Eq. (18) (together with its vertical counterpart) is an exzct 
ezpression for the effect that a single infinitely thin RF cavity has 
on transverse phase space.' A different transformation is used in 
Ref. 31: 

X 

0 
-e 

-T/Crx x 

X’ 0 X’ (19) 

(and similarly for yl. Use of this transformation is equivalent to 
assuming that damping is smoothly distributed along the region 
between interactions, and that T/CTx << u x (i.e., that oscillation is 
much more rapid than damping). 

Longitudinal motion: RF cavities and damping: A published report 
on a simulation almost never explicitly displays the transformation 
employed to model the effects that RF cavities and intercavity 
radiative energy loss have on the coordinates of longitudinal phase 
space. It iS most probably one time-step in a simple discretization 
of the system of differential equations that one finds in the 
standard textbook discussions' of damped synchrotron oscillation: 

de V(T)-U(E) 
x= T 

(20) 
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where: E is the difference between a test particle's energy and the 
energy, E, of a stable orbit synchronous with the RF system; T is the 
time by which a test particle leads the nearest synchronous orbit (T 
and a are related by !?. = CT, where c is the speed of light); V(T) is 
the net energy gained from all RF cavities upon one storage ring 
revolution, as a function of the test particle's timing; Ci is the 
momentum compaction factor; U(E) is the average energy lost to 
synchrotron radiation in the course of one revolution; and T is the 
revolution time. In most programs, V(T) - U(E) is approximated by a 
linear function of T and E. The simulation described in Ref. 31 uses 
a fully sinusoidal expression for V. 

In a proton-proton or proton-antiproton simulation, the program 
typically assigns the same time-dependent values of E and 1 to all 
test particles; in other words, all test particles are made to 
undergo synchrotron oscillations in phase, and with identical 
amplitude. This is done to save computing time, so that the number 
of transformation cycles can be made as large as possible. However, 
such a procedure makes simulation results difficult to interpret, for 
this reason: In a real storage ring, different particles undergo 
longitudinal oscillations with different amplitudes, and with 
different timing relative t0 orbital revolution. Thus, an effect 
which is conspicuous in a fixed amplitude, fixed-phase simulation may 
characterize only a small fraction of particles in a real collider. 

The typical electron-positron simulation does not suffer from 
this problem, because in evep{ transformation cycle the mapping that 
models quantum noise (see below) adds a different random vector to 
the longitudinal coordinates of each different test particle. 

Quantum noise is generally modelled by a transformation of the 
form 

(1) - (z ::.) (21) 

(similarly for (y, y') and (T, E)), where 6 and 6 are random 
variables. In the simulations described inXRefs. 31Xind 58-61, the 
6's are selected from Gaussian distributions; in the simulations 
described in Ref. 57, the &-pairs are selected from samples 
distributed smoothly along ellipses. The variances~of the Caussians, 
or the dimensions of the ellipses, are chosen so that the equilibrium 
test-beam distribution, after many transformation cycles, agrees with 
the distribution expected from unperturbed single-beam storage ring 
theory, when beam-collision transformations are ignored and the p's 
do not vary. 

Beam-beam encounters: The jolt that a test particle receives 
when it encounters an opposing bunched beam head-on is modelled by a 
transformation of the form 
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Ax = Ay : AT = AE = a 

Ax' = axF(x + (E/E) I?, y + (E/E) v;, 

AY' = ayF(x + (E/E) T):, Y + (E/E) $1 . (22) 

(AE can be "onzero when bunched beams cross at a nonzero angle. See 
Ref. 22.) The function F is defined in terms of the density, p, of 
charge in a bunch of the opposing beam per differential of area in 
the plane perpendicular to the path of the test particle, at an 
interaction point, by 

F(x,Y) = CO"Sta"t + F j. d;;dji p(~,~)log[(x-~)2+(y..7)*]"2 (23) 

or, equivalently, 

V2F z y 0. (24) 

In using this form, one assumes that the interactions involved in the 
collision are instantaneous, ultrarelativistic and entirely 
Coulombic.? The coefficients n* and n* are 
vertical dispersions at the inter&ion point. 

the horizontal and 

Note that the gradient of F at the origin is,directly related to 
the space-charge parameters: ay ~(0.0) = -4n 5 /8 , and similarly for 
X. Y Y 

One sometimes changes the Q*'S from cycle to cycle, employing 
the first type of variation described in connection with the u's, in 
order further to model the effects of storage ring irregularities. F 
can also be modulated in other, more situation-specific ways. One 
example will be described in Subsection 3b; another is discussed in 
Ref. 105. 

We note that when p describes a Gaussian bunch of N particles, 
each carrying charge et, 

(25) 

then the integral (23) can be simplified considerably' 

mquation (23) follows from Eq. (5) of Ref. 3. Note that there is a 
misprint in Eq. (5) of Ref. 3: the right-hand-side should be divided 
by P2 (not the same p as in (23) above). 
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m 
112 

Ftx,y) = F(O,O) + Fg ,f dt (a;* + t)- (0;' + t)-I'* 

(26) 

(For a" elementary proof, see Refc83.1 
When a" ultrarelativistic test particle croSse3 a continuous 

opposing beam at a" angle a, F depends only on y and is given by' 

F(y) = 2ae 
Ectan("/Z) .f 6 ~(7) IY-?I 

OP 

a2F he 
- = Ectan(a/2) W 

* P(Y) , 

(27) 

(28) 

where the density o(y) is defined in this context as follows: For 
small dy, p(y)dy is the total current in the opposing beam, between 
vertical levels y and y + dy. 

I am aware of three ways in which programmer3 have computed the 
potential F: 

Weak-strong method: F is given by a" approximation to the result 
of substituting a Gaussian density P into (23) or (27), and is held 
fixed for the entire length of the simulation. Physically, this is 
equivalent to assuming that all the test particles are contained in 
one beam whose current is so low ("weak") that it leaves the opposing 
("strong") beam completely unaffected. The other two 
("strong-strong") methods described below do not involve this 
assumption. They are accordingly more. realistic, but also more 
costly, because they require that many different F's--not just 
one--be computed during the course of a simulation. 

Although unrealistic, weak-strong simulations do help us sort 
out the physical phenomena that contribute to observed beam-beam 
phenomena. In particular, they indicate the extent to which observed 
phenomena can be understood in terms of the nonlinear dynamics of 
individual particles, because a weak-strong simulation makes no 
PrOViSiOn for cooperative effects--those that are associated with the 
simultaneous adjustment of two beams to one another. 

Thus it is in principle significant that considerable beam 
blowup has been observed in weak-strong simulations of PETRA58-6' and 
of SPEAR." In Chapter V, I shall argue that the blowup reported in 
Ref. 57 may, to a large extent, be a" artifact of a" approximation. 
As far as I know, this particular objection does not apply to the 
blowup reported in Refs. 58-61. 
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Strong-strong method, according to Reference 31: One divides the 
test particle3 into two equally populated model beams. The charge 
distribution in each beam is thus, literally, the sum of a small 
number of delta-functions. The beam-beam kick received by a test 
particle in a transformation cycle is computed from an approximation 
to (231 or (27), where the density function " is obtained by fitting 
a Gaussian (or something nearly Gaussian) to the delta-function sum 
that describes the opposing beam after the preceding cycle. One fits 
the true distribution with a smooth function so that a model beam 
with a small number of test particles can mimic a real beam that 
contains many closely packed real particles. 

Strong-strong method, according to Ref. 63: As before, one 
divides the test particles into two equally populated model beams. 
One also groups the transformation cycles into supercycles, each 
composed of some constant number, S, of ordinary cycles. (I" 
Ref. 63, S = 300.1 In a supercycle, the phase space coordinates of 
the test particles in one beam are held fixed; the test particles in 
the other beam are subject to S conventional transformation cycles, 
with the beam-beam kicks computed from an approximation to (23) or 
(27), where the density p is obtained by fitting a Gaussian to the 
delta-function sum corresponding to the positions in the fixed beam. 
In the next supercycle, the roles are reversed. One fixes the phase 
space coordinates of the particles that had just before been varying; 
their coordinates are fixed at the values they had at the end of the 
cycle just completed. One subjects the coordinates in the other beam 
(previously fixed) to S conventional cycles, with p computed by 
fitting a Gaussian to the delta-function distribution of the 
particles that are now fixed. And so on. 

The advantage of the second strong-stron 
8 

method is that it 
requires less computer time: A beam-beam kick F is fit 2S times less 
often than with the first strong-strong method. I do ,not know 
whether or not there are important physical effects that might be 
Well simulated by the first method and missed by the second. 

In either method, charge distributions are fit to Gaussian3 
primarily for convenience. Although this should be a good 
approximation when currents are low, one should be aware that it may 
have a number of drawbacks. Here are two possibilities: First, as 
mentioned in Chapter II, real beam distributions are not Gaussian at 
high current in real colliders; however, the extent to which the 
GaUSSian approximation distorts simulation results on this account 
depends on the extent to which details in p are washed out by the 
integral transform (23) or (27) that defines F. Second, the use of a 
Gaussian artificially imposes an inversion symmetry on the function 
F; if there are important effects related to asymmetries, this 
procedure may wash some of them out.3' 

2. Specific electron-positron simulations 

In this section, we discuss four recent simulations of 
electron-positron storage rings. In order of decreasing complexity, 
they are: A strong-strong simulation of LEP,31 a strong-strong 
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simulation of CESR,63 a weak-strong simulation of PETRA,58-6'* 
weak-strong simulation of SPEAR.s's* 

and a 

These all merit our attention because each showed behavior 
similar to that seen in real storage rings. In particular, all four 
exhibited substantial beam blowup at large current. 

To my mind, the LEP, PETRA, and STEAR simulations are especially 
notable for their authors' 
their observations. 

attempts to identify causes underlying 
The authors both of the LEP and of the PETRA 

simulations were able to identify storage ring irregularities as 
major contributors to beam blowup. The author of the SPEAR 
simulation discovered a resonant effect ("resonance streaming") that 
appeared to be entirely responsible for the blowup evident in his 
results. As mentioned in the preceding section, we shall argue in 
Chapter V that the blowup seen in this SPEAR study may have been, to 
a large extent, an artifact of one of the approximations used. 
Nevertheless, we will devote some time to this work because, despite 
its problems, resonance streaming represents one of the more sensibly 
conceived attempts to deduce an intuitive explanation 
beam phenomena from first principles. 

of colliding 

a. LEP" 

This computer study is unique in two major respects: 
First, the program was'used to simulate an uncommonly wide range 

of operating conditions. During the course of this study, beam 
energy, beam currents, numbers of bunches per beam, B"3, 
storage 

ll”‘S, 
ring tunes, beam-center separations, and storage ring 

irregularities were all varied in small steps. 
Second, the output (after all transformation cycles are 

completed) was analyzed in an uncommonly large number of different 
ways, and the analysis documented in an 
The circulated reportal 

unusually thorough manner. 
contains many graphs showing luminosity, beam 

dimensions, tuneshifts, and beam distributions as functions of the 
parameters listed in the preceding paragraph. 

The model beams in this study behave like real ece- beams in 
some familiar ways. For example: The beams blow up vertically, but 
not horizontally; luminosity grows linearly with current at large 
current (Fig. 181, as is the case, for example, at CESR; beam-beam 
effects intensify as energy decreases time 
increases--Fig. 19); 

(i.e., as damping 
beam distributions (when smoothed, but not fit 

to standardized P's) are visibly not Gaussian in their tails. 
As one expects from Eq. (81, the tuneshift saturates when L 

becomes proportional to I. The largest such saturation value 
observed in this study--and, accordingly, 
F 

this study's prediction for 
at LEP--is between .03 and .035. 

ymaxThese results were all obtained under a common set of 
assumptions regarding the total storage ring tunes, the dispersions 

'A strong-strong simulation of PETRA (using Ref. 63'3 formalism) is 
mentioned in Ref. 60, but only very briefly. 
**An earlier, less conclusive simulation is described in Ref. 65. 
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and beta functions at intersection regions, the unperturbed bunch 
length, the way that the u's vary due to storage-ring irregularities, 
etc. We may form an impression of the extent to which the beam 
behavior is sensitive to changes in these assumptions by considering 
Figs. 20, 21, and 22. 

Figure 20 shows a graph of simulation luminosity versus the 
total unperturbed vertical tune that the storage ring would have if 
there were no irregularities. In this simulation, irregularities 
contribute additional, randomly chosen increments to the total tune 
that are, per interaction, equal to .0125 in root-mean-square. The 
horizontal tune (defined in the same way), the energy per et or e-, 
the number of bunches per model beam, and the tuneshifts that either 
beam would generate in the absence of the other beam.(a measure of 
beam currents and dimensions) are indicated at the top of the figure. 
Luminosity at fixed current is evidently a very erratic function of 
storage ring tune. This is reminiscent of what real storage ring 
operators report, as discussed briefly in the preamble to Chapter II, 
Section 2. Other e+e- simulations show similar tune-dependence when 
large enough tune irregularities and/or dispersions are assumed. 
(The (randomly generated) r*'s used in obtaining Fig. 20 were equal, 
in root-mean-square, to 5 cm (horizontal) and 5 mm (vertical).) The 
data shown in Fig. 19 (reap. Fig. 18) was obtained by setting all 
parameters (reap. all parameters except current) equal to those 
corresponding to the luminosity maximum in Fig. 20. 

Figure 21 shows a graph of simulation luminosity as a function 
of the rms irregularity-related variation in u,,(all other parameter3 
taking values corresponding to maximum luminosity in Fig. 20). 
Simulation luminosity apparently increases by about 60% when (Au ) 
Is reduced to zero from the value--.0125--actually expected r&? 
characterize real LEP. (In this chapter, Au refers to time-dependent 
tune variation, not to tuneshift.) 
ingreases by a comparable amount when (Au 

Simulation lumi$osity also 
) or the (n )‘a, or the 

(n )‘a are reduced to zero from their nomYn~!?3$alues. Th?s suggests 
thzt systematic reductions in dispersions and irregularities might 
enhance the performance of real storage rings as Well. We shall 
consider more support for this possibility when we discuss the PETRA 
simulation, below. 

Figure 22 shows graphs of luminosity versus the value taken by 
the vertical beta function at interaction points, for five different 
assumptions (1.2, 2.k, 3.6, 4.8, 6.0 cm) concerning the unperturbed 
length (E) of a model beam bunch. (As before, all other parameters 
are given values that correspond to maximy luminosity in* Fig. 20.) 
In each case, luminosity rises as 8 falls, until 6 = X, when 
luminosity drops to sero (the test particles are rapidly dyspersed). 

One's naive *expectation is that lumi"osity should 
Indefinitely as 6 shrinks, 

risg 
since in single-beam theory,' smaller 8 

means stronger foc&ing, i.e., denser beams. Indeed, this is thg 
traditional rationale for using "low-beta insertions@' to enhance 
luminosity in storage rIngs.66 In view of the widespread use of low 
beta sections, it is important to understand the instability 
threshold seen in this simulation at 6* = 7t. Unfortunately, there is 
no good quantitative theory of this c&off. 
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The most obvious way to estimate this threshold does very 
poorly. One argues as follows: For a typical particle! the 
longitudinal distance 9. by which it leads its bunch center satisfies 
II = (E/2) cos (fit + phase) (at least For times so short that damping 
and noise can be neglected), where S-l is the angular frequency of 
synchrotron oscillations. Thus the variable AII used to compute the 
variation in lI is typically comparable, in order of magnitude, to 
(Q/CF)'L/2. C&I this context, (Cf)-' 1s the time between beam-beam 
interactions.) Thus,one is erroneously led to expect luminosity 
problems only when 6 is as small as 1/2n (R/CF) 112 << 1,. 

If Eq. (171 wer;! taken into account 'in this simulation--it is 
not--then one might argue as Follows:67 The vertical beta functiop 
seen by $he iypical particle at mid-coflision is given roughly by g 
+* (E/41 6 -' 
6 = E/4, afe ' 

which decreases as g decreases, until a minimum ax 

de curves 
er which it increases. T%is would crudely explain why 
in Fig. 22 have maxima where they do, but it would not 

explain why the luminosity falls to zero so precipitously just below 
the maxima. 

In electron-positron storage rings, E* = E typically means B* = 
a few centimeters; in bunched proton-photon and proton-antiprgton 
colliders, it typically means R = a few meters.s* 

A modified version'06 of t8is program was the simulation to 
which the recent improvement in PEP luminosity was in part due. 

b. ,CESRss 

The computer program used in this work differs From t'nat used in 
the LEP study primarily in the strong-strong methodology employed (as 
explained in the preceding section), and in the use of u's that do 
not vary during the course of the simulation. 

One should bear in mind that the authors of this simulation 
approximate the horizontal component of the collision transformation 

b%di$te?' 
expression that is independent of the vertical 
A similar approximation is made in the SPEAR simulation 

that we describe later. We shall argue in Chapter V that this 
approximation can greatly exaggerate the beam blowup exhibited by the 
SPEAR simulation. I do not know whether the same thing is true in 
the case at hand. 

The only results shown explicitly in the published reports3 are 
reproduced here in Figs. 23 and 24. In either case, one bunch per 
beam is assumed; 
electron.s9 

the beam energy is equivalent to 5.5 GeV per 

Figure 23 shows a graph of simulation luminosity versus 
simulation current. This is superimposed on a scatter of data points 
accumulated in the course of actual CESR operation: a quadratic curve 
extrapolated from small current is also shown. The agreement between 
the real and simulated data seems to be. reasonable. The threshold 
labelled "maximum current" is deFinedog as the current at which one 
test particle (out of an initial sample of 200) is lost during the 
course of the simulation (typically equivalent in real time to three 
damping periods). In this simulation, as in the LEP study, a test 



particle was considered "lost It when either its vertical or horizontal 
coordinate exceeded a certain pre-determined "aperture" value. As 
far a3 I am aware, there was no serious attempt to calculate maximum 
currents From the results of the LEP simulation. As explained in 
Section 1, one particle in two hundred per three damping times is 
actually much more rapid than the loss rate that one usually 
associate3 with maximum current; therefore, either maximum current 
does not depend sensitively on maximum tolerable loss rate (above 
sane threshold), or this particular point of agreement between 
simulation and experiment is somehow Fortuitous. 

Figure 24 shows a contour plo t of simulation luminosity as a 
function of horizontal and vertical unperturbed storage ring tunes. 
The beam currents are such that the vertical tuneshift due to either 
beam, if unperturbed, would be 5 = .08. The luminosities displayed 
in this plot were, For convenience: computed with dispersions set 
equal to zero, and with the horizontal components of the collision 
transformations (22) also summarily set equal to zero. Presumably, 
this is why luminosity seems to be a much less erratic function of 
tune per interaction in this Figure than it is in Fig. 20. (Tune per 
interaction is equal to tune divided by two in the present case, and 
divided by eight in the ca3e of Fig. 20.) 

C. PETBA 's-a1 

Only one property of this simulation's output ha3 been graphed 
or tabulated in publicly circulated reports: the rms height of the 
weak beam, i.e., the test particles' root-mean-square vertical 
displacement from the center of the strong beam. Published report3 
have 30 far not discussed beam distributions, horizontal beam widths, 
loss rates, etc. 

Beam height in this simulation ha3 been computed for a large 
number of closely-spaced storage ring tunes, as well as For small 
numbers of energies, strong-beam tuneshifts, numbers of bunches (B) 
per beam, and patterns of irregularities and dispersions. In an 
early phase of this project,'* beam height was also computed a3 a 
function of time, for different values of various parameters, among 
them the decay time of the voltage initially applied to separate the 
beams. 

Some features seen in the results of this simulation have been 
at least partially confirmed by real measurement3 made on PETRA 
itselF.60~62 We shall discuss these measurements shortly. 

The graphs reproduced in Figs. 25, 26, and 27 are typical of the 
data generated by this simulation. FromFigs. 25 and 26 one sees 
that simulation blowup increases with decreasing energy and with 
increasing (strong beam) current, just as real blowup does. The data 
show" in these Figures were computed using nonzero Au's and "*Is 
lO(.Oll and O(1 cm), respectively]. The importance of such 
irregularities and dispersions is strikingly demonstrated in Fig. 27, 
the left half of which shows beam height3 calculated with Au's and 
"*'3 set equal to zero., while the right half shows beam heights 
computed with Au's and n*' 3 that have orders of magnitude similar to 
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those just quoted. Notice the erratic nature of the curves shown in 
the right half of Fig. 27, and in Figs. 25 and 26. This is similar 
to the behavior Seen in the graph of luminosity vs. tune generated by 
the LEP simulation. 

It should be stressed that the blowup associated in Fig. 27 with 
the presence of nonzero dispersion is much larger than can be 
accounted For by the usual energy contribution, (n.0 /E)' to the 
megn sqyare unperijurbed ra$$ar;ive be"! height. 
(11 o /E) is about (lcmxl0 ) = 10 

In ehg 0s: at hand, 

meXnEsquare beam height is about' 1o-s c?.' 
while the unperturbed 

The right side of Fig. 27, corresponding to realistic 
irregularities, has this intriguing feature: There are "magic tunes" 
at which the beam does not blow up (at some it even shrinks). At 
present, it is not known how general this phenomenon might be. A3 
far as I am aware, magic tunes have not been observed in the outputs 
of other simulations. It is conceivable that other effects not 
included in this PETRA model might eradicate magic tunes, or might 
shift them in an erratic and essentially unpredictable Fashion. 

In an attempt to reproduce in viva the operating conditions that 
correspond most closely to this simulation, a number of real 
weak-strong experiments--i.e., experiments in which one (weak) beam 
has very low current--have been performed on PETRA.s** According to 
the published report, these experiments confirm that beam blowup 
decreases when dispersions are reduced. It is also claimed that the 
dependence of weak beam height on storage ring tune as measured in 
these experiments has a number of features in common with the tune 
dependence as computed by the simulation program. 

Here are sample experimental results, obtained with two bunches 
per beam, a beam energy of 7 GeV per particle, and a 
strong-beam-induced tuneshift of 5 = .015: with the tunes held fixed 
at V = 25.2 and V 5 23.1, 3 we k beam vertical 
from ?x to 2x when thg mean horizontal nf 

blowup was reduced 
was reduced by special 

magnetic correction from 15 mm to 3 mm. With horizontal tune held 
Fixed at 25.2, and the dispersions left ""reduced, weak beam vertical 
blowup was reduced in a similar way when the vertical storage ring 
tune was shifted From 23.3 to 23.1. 

It is claimed6* that both these reductions were predicted by the 
sim"latio". Unfortunately, as far as I can tell, the documentation 
in Refs. 58-61 is not complete enough to permit one to evaluate the 
q"2ntit2tiVe agreement between experiment and simulation for oneself. 
In view of the simulation data that is available, these measured 
effects seem rather large For such a relatively small tuneshift. 

Similar results have been obtained in strong-strong measurements 
performed on PETRA. An example6' of such data, in this case showing 
enhanced luminosity instead of decreased blowup, is reproduced in 
Fig. 28. 

rAn early effort to coordinate weak-strong simulation (of DORIS, in 
this case) with in vlvo weak-strong measurement is discussed in 
Ref. 22. 
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This is by Far the simplest of the Four e+e- simulations that we 
discuss: No provision is made for storage ring irregularities; and 
longitudinal coordinates--and therefore dispersions--are completely 
ignored. 

In order further to simplify computation, this simulation 
employed an approximation in which both strong and weak beams were 
idealized as flat, and vertical focussing at interaction points was 
idealized as infiniteii strzng.. I.e., at1 computaiio: was done in 
the followiyg Jim$t:" U *O, @ +&I, '$+O, y/a fixed, By/oy Fixed. 
real SPEAR, 0 /u 1 l/38, andY6 /f? = l/10! 

In 

In this lymit, the last twoyeq6ations in (22) become 

2 Imdu (~+l)-~" u-I" exp -x2 
0 [ 1 2(l+u) ' 

(29) 

expc-X2/2)) 

where we have used the Gaussian Formula (26) for F (with e : -et), 
neglected gispersion, and introduced the reduced variables x ! x/O 
and y. = y/O . The two expressions on the right-hand side of (9) ar& 
e3peCi2lly Convenient For numerical approximation because--unlike the 
full expression (26) For P--each can be factored into a product of 
single-variable functions. In particular, lim Ax' is a function of x 
alone, and lim Ay* is the product of exp(-x2/2) and a Function of y 
alone. 

Despite omissions and simplifications, the data generated by 
this simulation--like that generated by other simulations--shows 
substantial (weak) beam vertical blowup. This is illustrated in 
Fig. 29, which shows root-mean-square values of weak beam y's as 
computed by this simulation program for various model operating 
conditions. 

In order to determine why the model beam was blown up, an effort 
was made to examine the shapes of phase-space paths that individual 
test particle3 Follow during the course of this simulation. Because 
phase space in this case is four dimensional, and therefore not 
readily visualized, the decision was made to view only the 
projections of these paths on a plane (to be called the normalized 
amplitude plane) whose axes correspond to the variables a and 
where X =Y' 

ay = & (y2 + Ry 
Y 

l 2yr2)“2 = (2’ + Y’*(B;/a;)~)“~, (30) 



and similarly for ax. (For reasons that will be explained in Chapter 
IV, Subsection 2a, a. and a are often used as approximations to 6 x 
and cx, respectivefy.) Yhis is a rather novel step, because 
authors of e+e- simulations are usually concerned only with gross 
statistical properties of their model beams. 

This kind of analysis has revealed an interesting pattern: 
During a run of this simulation, the normalized amplitudes of most 
test particles trace out erratic paths that, for the most part, 
remain within or close to a quarter-circle of radius q centered at 
the origin. (When there is no strong beam, all the test particles 
behave this way.) However, there is a small number of test 
particles, each of whose erratic motion is interrupted by a more 
ordered segment in which it travels a long distance in a short time. 
The nature of this ordered interlude is the same for all these 
exceptional particles: rapid streaming up a nearly vertical curve 
(the same curve for all such particles), on which is superposed a 
rapid and noisy oscillation transverse to the curve. The location of 
this curve, as well as the number of test particles that are 
attracted to it, depends on simulation parameters such as strong beam 
tuneshift, etc. Beam blowup in this simulation is due to these 
streaming particles--the large a 's to which they streem dominate the 
average that defines the beam helght.'e The vertical orientation of 
the streaming segment seems to explain in a natural way why no 
horizontal blowup is observed. 

An example of a trajectory with such a streaming segment is 
illustrated in Fig. 30, reproduced from Ref. 5. The strong beam 
tuneshifts in this case were 5 r .06 and the beam energy was 
2.2 GeV per electron. The "oFb?e -show; represents about 75,000 
revolutions of SPEAR (=three damping times). One does not see any 
oscillations transverse to the streaming curve (close to the line 
a z 2.8) because the oscillations have been averaged awa~.~e 
pith shown in this plot is 

(The 
interpolated between points that are 

obtained by averaging the normalized amplitudes that correspond to 
the results of 250 successive transformation cycles, i.e., 125 
successive revolutions.) The time spent travelling along a = 2.8 is 
about 8,000 revolutions." 5% of the test particles i$! this run 
behaved as shown in this figure. 

Tennyson observed5 that the curve a = 2.8 is close to the 
resonance 3v + V = 21 (as we shall gxplain in Chapter IV, a 
resonance canXbe aYset of points in amplitude space, as well as a 
relation alllOng unperturbed stora e ring tunes), and also provided a 
succinct mathematical explanation 77 of how such a resonance can 
channel the motion of test particles, under appropriate conditions. 
We shall present our own, somewhat more detailed form of this 
explanation in Chapter IV. 

The possibility that resonance streaming might account for all 
blowup in all e+e- storage rings is an attractive one. However, we 
shall argue in Chapter V that the flat beam/infinite-focusing 
approximation can cause the distance covered by a particle streaming 
in ~a resonance to be exaggsrated. We shall argue that when this 
approximation is corrected, the blowup due to streaming 'in the 
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simulation of Ref. 57 is substantially reduced, if not eliminated 
altogether. 

3. Proton-antiproton and proton-proton simulations 

In this section we discuss two weak-strong simulations of the 
Fermilab Tevatron Fp coliider,'"-'* and a weak-strong simulation of 
ISABELLE (operated as a bunched-beam collider).7s 

The common objective of these exploratory studies was 
information concerning strong in,stabilities to which pp and/or Ep 
storage might be prone near their operating limits. 
special attention 

In each case, 
was paid to stochastic instabilities, which we 

already mentioned briefly near the end of Chapter II, and which 
currently constitute one of the main themes in the modern theory of 
strongly nonlinear dynamical systems.'e Designers of 
proton/antiproton storage rings have traditionally been particularly 
fearful of stochastic effects," because such effects are primarily 
long-time phenomena, and proton/antiproton storage rings lack obvious 
rapid relaxation mechanisms (such as the radiative processes that 
dominate e+e- machines) that might cut off such phenomena before they 
become fully developed. As. indicated in Chapter II, 
inconclusive 

Sec. 4, 
attempts were made to interpret the results of 

nonstandard 1% studies in terms of stochastic behavior. The 
flexibility and precision of the digital computer make it a much more 
appropriate setting for pursuing such interpretations. 

(nor, 
Note that neither storage ring irregularities, nor dispersions 

of course, radiative damping and noise) are included in any of 
the simulations to be discussed-below. Realism has been 
computing time, in order to maximize the number of 
revolutions simulated. 

traded for 
storage ring 

a. Tevatron "-" 

The main difference between the two Tevatron 
discussed here is this: One included no provision for 

simulations 
longitudinal 

effects; the other provided for them in a limited way, 
in each u a 

by including 
term that varies sinusoidally with time, at the 

synchrotron frequency. For simplicity's sake (as explained in 
Sec. 1) the amplitude and phase of this oscillation were assumed to 
be the same for all test particles. It was also assumed that a test 
particle encounters 
Crl). 

the strong beam only once per revolution (i.e., 

(It should be mentioned that these two simulations are part of a 
more extensive series that also includes models in which the 
horizontal coordinate is neglected. (See for example Refs. 77 and 
80.) The two models that we discuss here have generated the most 
interesting results.) 

In each case, 
beta-functions 

2 reu d strong beam (cr::o*Zg) 

elliptical strong(!~~~Y'i~ i?~rog~~~~' at this uri~~~g."). 
k ?A 

and symmetric 
simulation using 

ThFi 
implies equal horizontal and vertical tuneshifts (c,=&$%<), according 
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to Eq. (4). Note that for round beams, the derivative of (26) can be 
expressed directly in terms of elementary functions 

aF 2Ne*x . -(1/2)(xz+y* 

xi=- 
(l-e 

E(x2+y2) 

and similarly for aF/ay (we have set e' = -e 
pp c011isi0*s).' 

/u+2 
1, (31) 

as is appropriate for 

The variable-tune simulation was carried out for only one value 
C.01) Of 5, and only one pair of storage ring tune time-averages, but 
for several values of the amplitudes and phases of the oscillatory 
term3 in II and u . In all cases, the oscillatory terms in P and u 
were equal ?n amplxtude (ranging from .OOl to .Ol), and diffgred iX 
phase only by zero or 71. The tuneshift was deliberately chosen high 
so that one might get a feel for the worst possible beam-beam effects 
that might be encountered in the Tevatron. All modulation amplitudes 
used--even the low ones--were also deliberately chosen to be larger 
than those actually expected for the real collider. The other 
simulation (no tune modulation1 was carried'out for several values 
C.005, .Ol, and .02) of 5, and for many values of the storage ring 
tunes. 

These simulations are especially noteworthy in two respects: 
First, each test particle was subject to an unusually large 

number of transformation cycles--6x106 in the case of the 
modulated-tune simulation, and, on separate occasions, lo5 and 6~10~ 
in the case of the constant-tune simulation. This is equivalent, in 
real time, to two minutes, two seconds, and. twenty minutes, 
respectively. 

Second, the action of each transformation on the transverse 
phase-space coordinates of each test particle was calculated to 
extremely high accuracy--twenty-eight decimal places (double 
precision) in x and y, measured in millimeters, and in x1 and y', 
measured in milliradians. (The natural scales, set by the strong 
beam, are U* = .0816 mm, and U*/@* = .0416 mrad.1 This was done to 
facilitate the identification of stochastic effects, which are 
typically characterized by orbital behavior that depends very 
sensitively on initial conditions. 

(In hindsight, this level of accuracy may have been far more 
exacting than was actually necessary, because, as explained below, 
much of the observed stochastic behavior turned out to be apparent on 
a rather coarse scale. It has also been pointed outs0 that it is 
unphysical to pursue such classical calculations to an accuracy that 
exceeds five decimal places, because of quantum-mechanical 
uncertainty.) 

Here are the main conclusions that the authors have draw" from 
the results of these simulations: 

1. The emittances of the weak beam do not grow--or grow only 
very slowly--when tune modulation is absent. When tune modulation is 
included (at least for 180' phase difference between the oscillations 



in U and 11 and oscillation amplitudes greater than about .0031 the 
emittance c& grow very noticeably, doubling in as little real time 
as a fraction of a minute (a few hundred thousand transformation 
cycles). 

Inasmuch as storage ring irregularity as modelled in e+e- 
simulations is just a very rapid tune modulation, it is tempting to 
conjecture that the ability of slow tune modulation to trigger 
time-dependent emittance growth in this pp simulation is related to 
the ability of storage ring irregularity to enhance the blowup seen 
in e+e- simul&tions. However, there -are at present no concrete 
arguments to support such a contention. 

2. When conditions are such that emittances grow noticeably, 
every test particle that, by the end of the simulation, reaches x,y, 
x't?a or y'ge substantially larger than (5 * does so by travelling along 
a "chaotic (or stochastic) trajectory." 

The operational definition of "chaotic" employed by the authors 
of these simulations is as follows. Subject a quadruple of initial 
phase space coordinates to 100,000 transformation cycles, and then 
apply the inverses of these same iOO,OOO transformations, in reverse 
order. Evaluate the distance, in (x, y, x18*, y'B*)-space, between 
the initial coordinates and. the coordinates that result from the 
forward-backward process just described. This distance provides a 
measure of tie degree to which the orbit beginning at the initial 
coordinates in question is sensitive to very small perturbations--the 
small perturbations are provided by computing inaccuracies. If the 
distance is greater than lo-'"mm, the trajectory that begins with the 
initial coordinates in question is defined to be chaotic. 

The cutoff 10-l' is actually rather arbitrary. According to 
Refs. 72 and 74, for most initial conditions, the result of this 
"reversibility" test turned out, in the simulations at hand, to be 
either close to lo-", or close to unity. 

It may be difficult for the reader to form a mental picture of 
stochasticity from this definition alone, especially since phase 
space in this case is four-dimensional. Examples of stochastic 
orbits that are much more easily visualized will be considered in the 
next subsection. 

3. Properties of chaotic orbits are correlated with resonance 
conditions in several ways. For example: 

-- Suitably defined "effective tunes" of divergent orbits (i.e., 
those orbits that reach large x,y, x16* or y-g* when substantial 
emittance growth is observed) lie close to tunes that satisfy low 
order (~6) resonance conditions. "Effective tunes" in this context 
are defined'* as (2x)-' times the changes per transformation cycle, 
in the angles tan-' (x'~+/x) and tan-'(y'B*/y), averaged over the 
first one thousand transformation cycles. (One thousand cycles was 
the period of synchrotron oscillation in this model.) 

-- When tune modillation is omitted, a high percentage of 
weak-beam orbits are chaotic (none are divergent when modulation is 
omitted) only when the unperturbed storage ring tunes lie near tunes 
that satisfy two low-order resonance conditions simultaneously. 
Specifically, in the simulation of Ref. 72, more than ten percent of 



the test particles followed chaotic orbits when the tunes lay near 
the intersections of fourth-and sixth-order resonances; one or more 
out of the one hundred test particles followed chaotic orbits when 
the tunes lay near intersections of resonances of order less than of- 
equal to ten. No chaotic orbits were observed otherwise. These 
percentages were observed to apply to all three tuneshift values (5 = 
.005, .Ol, .02) studied. According to modern nonlinear theory, such 
a correlation between stochasticity and the overlap of resonances is 
a common occurrence. For details, see Ref. 76. 

b. ISABELLE " 

This highly idealized model was formulated in order to simulate, 
in a schematic way, 'he operation of ISABELLE as a bunched-beam 
collider. As usual when protons are involved, the model does not 
include radiative noise and damping; nor does it include tune 
variation or dispersions; nor does it include the horizontal 
phase-space coordinates x and x'. This model has only one nontrivial 
feature: T‘ne function F that describes the kicks due to the strong 
beam is multiplied by a time-dependent factor of the general form 
a+bcos2nt., where Sl is the angular frequency of synchrotron 
oscillations, and the coefficients a and b take the same pair of 
values for all test particles in the weak beam. The physical 
motivation for this particular mathematical structure is explained in 
Ref. 75. The advantage of bunching proton beams that cross at a 
nanzero angle (11.88 mrad in the case of ISABELLE') is discussed in 
Ref. 81. 

We introduce this model here in order to supplement the 
discussion of stochasticity presented in the preceding subsection. 
Inasmuch as its phase space is only two-dimensional, this simulation 
provides a much more accessible picture of chaotic orbits than one 
could have derived from the four-dimensional Tevatron studies. 

Some representative output from this ISABELLE simulation is 
reproduced in Fig. 31. The .different pictures correspond to 
different values, ?W of the average 
modulation period Y&e modulation 

of the tuneshift over one 
period here corresponds to 200 

beam-beam encounters). Note that in each case the modulation is 
quite severe, because the parameters a and b have been set equal. 
The horizontal axis in each picture represents the vertical 
cgordinate y; the vertical axis (labelled "V/We") represents y' times 
6 . Each picture is an overlay of from 1000 to 5000 "snapshots" of 
t$e phase-space locations of precisely ten test particles; the 
snapshots are taken once every modulation period, in order to ensure 
that all points in each picture have been recorded under identical 
conditions. 

In the overlays corresponding to m = .0095 and .0102, particle 
orbits lie on simple closed curves. C&es that do not encircle the 
origin indicate the general outlines of the resonance regions to be 
discussed at length in the next chapter. When m = .0115, the 
Overlay contains fuzzy structure that cannot be resolvedYinto closed 
curves. This structure, which appears to fill a two-dimensional 
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piece of phase space? is precisely three chaotic orbits. When x = 
.0127, the space-filling 
when Av = 

structure comprises seven,chaotic orbieg. 
.0318, only two orbits are nonchaotic for 

less th& 2. The sixth picture in Fig. 31 shows the Tk', :a;&:z! 
plane on a larger scale, revealing that gross chaotic %tructure can 
extend to very large amplitude. 

When all of phase space, with the exception of small isolated 
islands, is filled with chaotic structure, one says that a 
"stochastic transition" has occurred. 
lore,76 a 

According to the conventional 
colliding beam model that has passed a stochastic 

transition is unstable in the following sense: The area, in phase 
space, that lies outside the small isolated islands is dense with 
points whose distances from the origin can be made arbitrarily large 
by the application of appropriate numbers of transformation cycles. 
I.e., in time, most of the beam strikes whatever aperture might be 
set up to contain it, even without external sources of noise. 

For weak-strong beam-beam models that omit noise, damping, 
modulation of any kind, and horizontal phase space, the stochastic 
transition takes place at 5 S .25; when horizontal phase space is 
restored, the limit can ybe as low as x.125, depending on the beta 
functions, and on the transverse dimensionsof the strong beam." In 
either case, the limit is much higher than any tuneshift presently 
accessible at real storage rings, either e+e-, or Fp, or PP. 

Figure 31 suggests that the stochasticity limit can be 
significantly reduced when some parameter is externally moduiated. 
However, it is not clear that even this reduced limit has a 
meaningful impact on real storage ring behavior. According to 
Ref. 75, the threshold for a stochastic transition is significantly 
reduced only when modulation (generally proportional to the amplitude 
of synchrotron oscillation) is strong; and in a real beam, only a 
small fraction of the particles actually undergo synchrotron 
oscillation with a very large amplitude. 

IV. TOPICS IN THEORY--BACKGROUND 

1. Overview 

Although more than a few published papers on beam-beam phenomena 
have been devoted to analytical theory (as opposed to computer 
simulation),* I have chosen--for reasons to be explained below--only 
two theoretical ideas for detailed discussion in the present report. 
These ideas will be worked out in the next chapter. In the present 
chapter--specifically, in Sections 2 and 3--we discuss some 

*A listing of theoretical papers, pre-1980, that do not discuss 
stochasticity, can be found in Ref. 80. Papers--especially ones 
written in the Soviet Union--on theories of chaotic phenomena in 
storage rings are listed in Ref. 5. Theoretical studies can also be 
found among the articles contributed to Refs. I and II, and cited in 
Ref. 35. Some additional theoretical papers will be cited later in 
this section. 



mathematical prerequisites. Sefore we proceed; however, let us 
briefly survey the thecretical literature as a whole. 

Most published work on colliding beam theory falls under one of 
two headings.** They are: efforts to use elementary properties of 
resonant or stochastic instabilities in order to deduce the maximum 
currents storable in colliding beam rings ; and efforts to "se 
elementary properties of resonant and collective effects in order to 
establish that above some minimum current, colliding beams are not 
stable unless they are blown up beyond their unperturbed sizes. (The 
first category is by far the more popular.) 

We describe these lines of research below; however, we shall not 
discuss them at great length, for the following two reasons: First, 
the goals of these kinds of work are very limited, and--at least in 
part--are removed from questions of immediate observational 
importance. Efforts of the first kind might in principle tell us 
about the currents beyond which colliding beams cannot be stored, but 
they have not yet shown how to predict the behavior of colliding 
beams at normal operating currents, below the maxima. Efforts of the 
second kind might in principle tell us if beams necessarily blow "P, 
but they have not yet shown how quantitatively to evaluate the size 
of the blowup. Second, even within these limitations, neither 
direction has produced a clear success. Research of the first kind 
(which is always conducted entirely in the weak/strong 
approximation), where it has yielded specific results at all, has 
generally overestimated maximum colliding currents; research of the 
second kind has so far not yielded concrete predictions. 

Here are capsule sketches of these theoretical mainstreams: 
Maximum current theories: Authors who attempt to attribute 

storage limitations to resonant instability calculate maximum current 
by substituting tuneshifts plus unperturbed storage ring tunes into 
resonant conditions of the form (13). As mentioned in Chapter II, in 
the course of our discussion of rules of thumb for c this kind 
Of procedure in its simplest form was ya%croduced--and 
discredited--about twent years ago. 

61 
Later variations, involving 

coherent oscillation, have also been unsuccessful. (It has 
recently been suggested, however, that such 
reconsidered.") 

calculations be 

Authors who attempt to attribute storage limitations to 
stochastic transitions calculate maximum 
"resonance overlap" criterion'6 

currents by applying a 
that we shall describe briefly in the 

next section. As we have already mentioned, 
calculations can be made to yield maximum 

stochasticity 
tuneshifts comparable t0 

those observed in real storage rings, but onlv at the exoense of 
artificial assumptions regarding the strength - of 
oscillations. 

longitudinal 

~~~;a;c~F; ;f;$L;;;;,of course. The theory of overlap-knockout 
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This general approach to colliding-beam physics suggests a 
"umber of possibilities that, as yet, have either not been 
considered, or have been considered only superficially: 

It is possible that even though these ideas incorrectly predict 
the precise current at which beam is lost too rapidly for practical 
storage, some such mechanism might be able to account for the rate at 
which such rapid loss takes place. (Reference 86 proposes a 
calculation of the loss rate due to a resonant instability; however, 
in this calculation the function F of Eq. (22) is approximated by a 
low-order polynomial in x and y, which, as we shall see in the next 
section, can badly distort particle behavior at large x and y, where 
losses actually take place.) 

It is also possible that the maximum tuneshifts observed in real 
storage rings have more to do with the approach to a" instability, 
than with the instability itself. Stochastic beam loss below the 
stochastic transition, known as "Arnol'd diffusion,"76 has been 
investigated in the abstract by various authors, but as yet there 
have been no phenomenological calculations that can be meaningfully 
compared with observation. 

Finally, it is also possible that radiative noise somehow lowers 
the threshold for the stochastic transition. However, the interulay 
between chaotic and radiative effects has received very little 
attention. (Kheifets3s9*7 and Ruggiero's have proposed similar 
approximate mathematical formalisms in which these two kinds of 
effects are both incorporated naturally; however, neither of these 
formalisms has predictive power, since each involves an unknown 
parameter h whose dependence on energy and current can only be 
determined from experimental data. An earlier version of such a 
formalism, proposed by Hereward and by LeDuff, is described in 
Section IV of Ref. 16. For a related attempt (unsuccessful) to model 
a" SPS beam-beam effect as the result of a" effectively random 
nonlinear process, see Ref. 37. In this connection, see also 
Ref. 113.) 

Blow-up onset theories: Several authors*9'90 have attempted to 
explain the tendency of colliding beams to blow up as a coouerative 
phenomenon involving simultaneous unstable oscillations of the charge 
distributions of both beams. (This type of analysis employs 
mathematical techniques from Plasma Physics.) In view of computer 
simulations in which weak beams blow up considerably even when strong 
beams do not vary at all, it is likely that cooperative mechanisms 
can at best account only for a fraction of the blowup observed in 
real storage rings. 

It has been suggestedg' that the nonlinear resonances 2u -211 
integer play an important role in the onset of vertical be& g&t.; 
(at least in weak/strong systems) because they can facilitate 
transfer of particles from large horizontal amplitude to large 
vertical amplitude. This is supported, in the absence of dispersions 
and irregularities, by data from the PETRA simulation of Refs 
as one can easily see in the left half of Fig. 27; however,58~~~~ 
dispersions and irregularities are present, as in the right half of 
Fig. 27, the situation is not so clear. The role of this resonance 



may be exaggerated by the analysis of Ref. 91, which employs the same 
polynomial approximation to F as is employed in the loss rate 
calculations of Ref. 86, mentioned above. 

The calculations that will be highlighted in Chapter V lie 
outside these mainstreams, but in my view represent the most complete 
attempts so far to co"fro"t issues of immediate phenomenological 
significance in colliding beam physics on the basis of first 
principles. They are: a calculation of collision-related beam loss 
during routine operation of the ISR; and a calculation" of beam 
blowup at SPEAR, by application of.a theoretical correction to the 
results of the computer simulation described in Sec. 26 of the 
preceding chapter. 

Let us now proceed to the mathematical preliminaries. 

2. Resonant behavior in weak-strong systems--basics 

Each of the two calculations in Chapter V will refer to 
weak-beam test particles that circulate through a storage ring having 
the following idealized characteristics: The distance, %0/C, between 
adjacent interaction regions is also a repeat-period of the storage 
ring in the absence of the strong beam; longitudinal effects, 
including dispersion, are not present; the only nonlinearities are 
those in the strong-beam kicks, idealized as in Eq. (22). In one of 
the calculations (the ISR model) the storage ring will be idealized 
further--radiative damping and noise will be absent. In the present 
section we derive some basic properties of such an idealized 
noiseless, undamped, weak/strong system. In the next section we 
shall explore some ways in which these properties are modified when 
radiative damping is taken into account. 

a. Action and angle variables 

In what follows, we shall find it more convenient to represent 
the motion of a test particle by ,the action (or amplitude) and~angle 
variables 11 I , 9 b ) of unperturbed betatron oscillations, than 
by its Car&i& p&eYspace coordinates (x,y, x', Y'). The action 
(oramplitude) and angle variables are defined in terms of the 
Cartesian variables by 

XdQ-pj cos@x(s) + exl 

B.Js)x* - W2Q¶) x = -J21xBxkd sin Px(s) + yJ, 

(32) 

and similarly for y. The azimuthal parameter s is, as usual, equal 
to the product of time and the speed of light. The beta functions g 
and 5 are periodic in s, with period to/C. The periodic functions 
are derined by 

8 
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s mcu 
ax(s) z I Bd;;,) - * * s 9 

0 x 
(33) 

and similarly for y. (For simplicity of normalization, we assume in 
what follows that s = 0 is an interaction point.)* Between beam-beam 
kicks, the I's and 0's satisfy 

d1 
x=0 
ds 

(34) 

and similarly for y. This is well-known.gZ . 
In certain contexts, the quantities x and 

VET)), or x 
m (or y and 

int&8hangeably, 
and r6?- (or y and Jr) 

thgugh, according toy Y3;) 
% often used 

even they are not 
identically equal. 
oscillates rapidly, 

The reason is that the cosine fn (32) enerally 
so that x quickly swings between ? f?+ and 

the average (at a fixed (mod Lo/C) value of s) of x2 over ti&8'short 
compared to the scale on which I varies, is I B . Thus, for example, 
if the half-width of a beam pipg is W, it is so&on to conclude that 
a test particle is effectively lost as soon as r/2I> W; similarly 
it is COIOmOn to eqUate the average Of 6 I Over th$ test parti2les i: 
the weak beam with the beam's mean-sqxaye half-height. We shall 
adopt these conventions in what follows, because it is often easier 
to derive the behavior of the I's (by averaging--when one ‘can--over 
rapidly 
directly. 

varying angles) than it is to derive the behavior of x and y 

b. The colliding-beam Hamiltonian; resonant amplitudes 

encou;;;u;i;;z ,i$2i and (32) imply that when' a test particle 

change according to 
interaction region (l<k<C), its actions and angles -- 

AIx = -aFk/aCx + O((F'os) 

hex = +aFk/aIx + O((Fkjn), 
(35) 

*The n*rmalized amplitudes a and a 
to I 

&?"~;te 
as follows:xa 

&mensions of 
2Y B /a 

here thexs&ong 

dgfip$d in !q;I(;Q;o#;e related 

seaa.' aY YY Y' 
The a**s 
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and similarly for y. Fk(I I , @ 
Eq. (32) for x and y, an8'su&tit&ingythe results into F (x,y) (F 

8 ) is obtained b$ solvinfi 

is the integral defined in (23), evaluated using the distribution of 
the strong beam as seen at region k). For convenience, we shall--as 
is customary--neglect the terms of quadratic and higher order in the 
right-hand-side of Eq. (35).* Note, however, that we shall not make 
additional truncations of this kind in cumulative effects of many 
beam-beam encounters. More precisely: In what follows, we employ 
approximate dynamical equations that omit terms of O(F') and higher, 
but we do not systematically omit higher-order terms in solutions to 
these approximate equations. 

This approximation permits us to combine the two parts, (34) and 
(35), of the equations of motion of the I's and 8's in the following 
simple way 

“I 

x an 
ds =-s- x 

d8 
x aH 
ds =+aI 

X 

(36) 

(and similarly for y), where the Hamiltonian H is defined by 

C +o) 
H = wxIx + w I + 2 

YY 
Fk(I x' ex' IY' 

By) z G(s-nils-k(WC)) . (37) 

k=l *m-m 

(By allowing H to depend explicitly on s (beyond the dependence in 
the 6-functions), one can use the same type of system of equations to 
describe models in which external parameters (such as tunes)- vary 
with time.) 

Because the 8's are periodic variables, it is appropriate to 
expand H in a Fourier series 

+ 6; n(I)). (38) f 
H&z) z&i + 1 

+- 

a0 c F;,n(?)cos(~*8+n(~ls 
a0 

n n II=-- 
*, Yt 

'Let us estimate, for example, the remainder AI-, + aFk/86 
we quote 

. To begin, 
estimates, given, either explicitly or &licitly, in 

Problem 4 of Ref. 3: For a typical test particle at an interac t1oT: 
point (where 81 = 0) ..-. Ay'/y--4~[~/6*, where by' is defined by (22) 
and 5' is the ve&ical'tuneshift &x2 Fegion 
Thug, 
O(F )ye~$~&on, -2xSk 

=(1/G) [Jf;(lk-4xl ) - 
k (similarly for x). 

J2], to be compared with the 

exceeds the former by &0?2$f.= 
?06 (SPEAR's maximum), the latter 
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The vectors 3, 3, ;, and z represent the pairs (I , I ), (8 0 ) 
(W W ), and (n n ). The numbers n 
Th8'co8fficientsX~+ y n n and phases &+" "*ire defined by "Y 

and n arg aY1 InGgeYsI 

f f 

Fk (T,B) =- ix 
I 

k-1 

%,"(?I f Arg 
de 'de 

z e-2rrik"'C $2 $2 Fk (?,8) e -ix . 

1 

(39) 

I%z%z;4stp (39) implies that, in general, the amplitudes F+ and 
n n have the properties *,* 

t 

F-c -",-n Ci, : F+ ","(l) . 

6+ -",-n 

(40) 

because the functions Fk are real. The integer n and the multiplier 
l/%0 in Eq. (38) arise from Fourier decomposition of the sum of delta 
functions in (37): 

+a +- 

c G(s-“.&) :: ;, 2 ein(2n/eo)s . (41) 

"=-CO *z-m 

Note that when all the Fk 
then F+ 

(x,y) are even functions of x and y, 
is zero unless both n and n are even. Ngte also that if 

all int%~ction regions are idenifical, ?.e., if all F are equal to 
the same function F, the" F+ is 
multiple of C, in which case "9" 

zero unless n is an integral 

(42) 

Also,+whe" the Fk are all even, and all equal, F-c e '91 n is real for 
all n and n (i.e., 6+ 
not zero). 

n n is an integral multipfe"of "1 when F", n is 
9 , 

Define 
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Ho Z $3 ' + Q~F;,~ (?I , 

and HI : H - Ho. It is conventiona15'"' to replace H by Ho, in 
Eq. (36), in order to obtain a simple first approximation to the 
trajectory of a test particle.* With this replacement, 3 is 
independent of time, and 2 varies at a constant angular rate 

i:o 

i = 9 Ho(f). 
(44) 

The effective tunes of such a trajectory are the components of 
@0/2x) ifHa (3). (This is the leading effect to which we referred in 
the discussion surrounding Eq. (12). The function 6u appearing in 
Eq. (12) is equal 

An fo(s) and 
0 @o/L?vZ) x (+AJ +aHo/aI ) and similgrly for &.I 
O(S) that satisfy (44) asproximate a solution 

(361 as closely as can be expected, provided the cosines that 
constitute Hl(&(s), ?i,(s)) oscillate rapidly enough. (The 
quantitative meaning of "rapidly enough," and of "far enough" and 
"near enough," below, will be made explicit in the next subsection.) 
I" this case--as a perturbative calculation in powers of HI 
indicates--the corrections to 20 and 80 also oscillate, and are O(F) 
in amplitude, where F is any parameter (for example, vertical 
tuneshift) describing the overall scale of the Fk. 

If ?a and ifo satisfy (441, the angular rate at which a cosine in 
HI oscillates is 

d 2n”S 
zi 

+ Ilo E z-3 Ho (fo) + g , (45) 

for some integral: and n. HI oscillates "rapidly enough" when the 
expression above is far enough away from zero for all integers n,, 
n 
1. 

Y’ 
and 

An o for which the right-hand-side of (44) vanishes is f' 

A 

called 
"resonant" (see footnote next page);the set of all fa for which the 
right-hand-side of (44) vanishes is called "the ('l,n) resonance curve 
in the action plane." Near a resonant action, perturbative 

'It is "ot obvious that H = Ha + H, is the only systematic 
decomposition of H that permits an analysis similar to that developed 
in the remainder of this chapter. It is the only one that I have 
encountered. 
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calculations in powers of H, are ill-defined because they yield 
expressions that contain factors of the form (45) in denominators. A 
more careful calculation, to be carried out in the next subsection, 
shows that when ?a is near enough to resonant(and Jo is appropriate) 
the corrections 
as 0((F)'). 

to ‘f. and $0 can oscillate with amplitudes as largd 

Note that when t e strong beam is symmetric about the design 
orbit--i.e., when F k (x,y) is an even function of x and y for all k, 
so that F+ 
0scillatiW 

= 0 for odd n or odd ny--there are large resonant 
only for eBen n and n- . This is the origin of the 

expectations, expressed in Chaptgr II, zection 3, concerning the 
constraints that beam symmetries impose on observable effects in 
circular colliders. 

Note also that when the storage ring, m the strong beam, 
has repeat period As/C--i.e., when all the F are equal, so that 
F-c = 0 when n is not an integral multiple of 
r?&nant oscillations only when n/C is integral. 

C--there are large 
This is the origin 

of the expectations, also expressed in Chapter II, Section 3, 
concerning the constraints that storage ring periodicity imposes on 
observable effect in circular colliders. 

Resonant actions play central roles in'each of the calculations 
to be discussed in the next chapter. Accordingly, the remainder of 
the present chapter is devoted to the theory of oscillations about 
resonant actions. 

C. Nearly-resonant motion: resonance overlap; frequency and width 

In this subsection we derive and analyze a simple approximation 
to the behavior of nearly resonant solutions to ,Eq. (36). Most of 
the discussion in this subsection will refer explicitly to models in 
which provision 
freedom. 

is made for both horizontal and vertical degrees of 
Near the end of this subsection, we shall point out some 

simplifications that arise for models--such as the ISR .model 
discussed in the next chapter--in which the horizontal degree of 
freedom is omitted. 

Thus, let? and !$ represent actions and angles that solve 
let jr be a constant vector such that 

(36); 

~*~Ho(f,j + ; n = 0, 
0 

for some integers n 
"Y' and n ; and let f S ?-? 

For small 1, if'is conventional""' 
modifying H = Ha + H, as follows 

to approzimate Eq. (36) by 

q*te that this differs From the standard accelerator-physics usageg' 
Of wresonant,n which most often refers to conditions of the form 
(131, to be satisfied by storage -ring tunes, 
phase-space coordinates. 

rather than by 
(This footnote refers to preceding page.) 
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H + Ho (fr) + T-3 H& + l/2 (l*i5)% (?J , 
0 0 

(47) 

A, + 2k -' F+ 
0 "," 3,) cos [xi + F s + 6 ","(*!.)I ' (~48) 

0 

where, among all triples of integers (associate< with nonzero Fourier 
coefficient F) in t$e same ratios, the triple (n,n) is one of the two 
(the other is (-n,n)) with the smallest common divisor. This is 
usually sufficient to guarantee that, in (48), one approximates HI b 
the largest of th$ Foyrier terms that would be slowly varying if g 
satisfied (43) with I = I . 
terns corresponding to (??yn) 

The facior of two is present because the 
and i-n,-") are identically equal. (48) 

contains no i-dependence because i is assuned small. 
gradients in (47) do not act on 1. 

Note that the 

The rationale for approximating H, by the first three terms in 
its expansion in powers of 1 is this: If one retains only the first 
term, then substitution into (36) (using (48)) gives 31 z 0, which is 
far from the starting premise g* - $Ho(3 ) (a prime indicates 
differentiation with respect to s). If one ret&s only the f rst 
two terms, then substitution into (36) (using (48)) gives an 1(s) 
that grows linearly with s, i.e., 1 
this i 

+f 

n4t reasonahle, because if y-o-- without limit; howeferl 
deviates considerably from 1 

then n* Ho(1 ) + n(2lr/&o) deviates considerably from zero, and so t.& 
resonant suktitution (48) becomes inappropriate. Three is the 
smallest number of power-series terms needed to avoid these 
difficulties (see footnote next page). 

With modifications (47) and (48), Eq. (36) becomes 

: F;,n(?J sin&% + L; s + &+n(i )], r 

(49) 

3' = 3 Hdf,) + (?-if, $'Hc(f& 

To simplify this, we recombine the variables: Let $ be a fixed 
vector tangent to the (z,n) resonance curve at 1, (in particular, 

C&i51 &i)) Ho(?,) = 0 1, (50) 

and define i a' h' 
e a, and et by 

fEit;:+iaE, 
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(%dHo!fr) 
(51) 

+ ea (b-if, is Ho(?r). 

The subscripts "$" and+"t" stand for "along" and "transverse:" By 
definition of c, iac+, is 2 small displacement along the resonance 
curve, a$--as long a3 n and c are linearly independent (i.e., as 
long as (n*T)* Ho(1 ) t 0)--i g is a small displacement transverse to 
the resonance curves similarli, the vectors (g*v)$He(lr) and (G*?)' - 

*Some authorsea's model resonant effects by making the replacements 

Ho 4 Ha C&O) + 1.3 He&O) + l/2 IkIlakal Ho(?=O), 

H1 + 2&,-‘~+ 
“,“IX 

lnxl/2 lnyl/2 
I 
Y (4ga) 

The expression on the right-hand-side of (47a) is the sum of the 
first three terms in the Taylor expansion of He in powers of ‘f; the 
expression on the right-h "d-side of (48a) is the same Fourier term 
as in (481, but with F+ e' 8+ n,n replaced not by its value at 
but by its leading "Bghavior 

?:I 
as ?+O. These are the power-serie; 

approximations mentioned in Section 1 of this chapter. Let us 
briefly sketch the main weaknesses in these approximations. 

The quadratic app:oximation (47a) z$mplifies the procedure of 
solving Eq. (46) for I . however, the I 's so obtained are likely to 
be much smaller than tge correspondingr exact solutions, for the 
following reason: The approximation to if Ho derived from (47a) grows 
linearly with ? for large ?; 
constant ZJ as 1 

however, in reality, 3 Ho a proaches the 
+m, because (roughly speaking) for large 4 a weak beam 

particle is--on the average--far from the strong beam, and therefore 
can only suffer small pertgrbations because of the strong beam. 
Thus, (47a) overestimates VH,, for most f, and therefore 
underestimates solutions to ?i.ifHe + (2nn/I10) = 0 for most G,n). 
I.e., if one uses approximation (47a), one is likely to conclude that 
a given resonant effect is important for smaller actions--and 
therefore for more particles--than is really the case. 

For In 1 + In 1 > 4, and for large I, (48a) overestimates H 
much more sadly than (47a) overestimates Ho, but for essentially thk 
same reason. Thus, if one uses (48a), one is likely to conclude that 
resonant effects extend to larger actions--and therefore transport 
weak beam particles to larger distances from the beam center--than is 
really the case. (This footnote refers to preceding page.) 
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vHe(? 1 indicate 
were T.n force, 

thf direction in which br would change if Eq. (44) 
and I suffered a small displacement along the 

resonance curve and acFoss the resonance curve, respectively. 
In terms of I a, it, Ra, and et, Eq. (49) is 

I;:- g F; &J singt , 
0 , 

8; = it (:*6)* H+ , (52b) 

ii = 0 , (52~) 

e; : i a . (52d) 

One obtains a" equation involving only 8 by differentiating both 
sides of (525) with respect to s, and then usting (52a). The result 
iS 

where 

WE E ;, FQ?,) [d*ij)' Ho+]. (54) 

(I” what follows, we assume, for convenience, that w*>O. No 
generality is sacrificed in this way, because the two cases ' A0 
and we<0 can be transformed into one another by the shift 8 -4 +n.S 

Equation (53) is familiar from elementary mechakc&94--it 
describes the angular 
"energy" is 

Ez; (R;p - w; 

coordinate of a simple pendulum. The conserved 

CO&~= $ [(z*V)'H (?r)]2itz- W~COS~ 
0 t * (55) 

For E&, S 
EWJ* er 

oscillates regu$arly about 2nm, for some integer m. 
Atates 

For 
i.e., e 

oscf~lakes, but with no"zerot 
(and therefore also ret(s) - s<B;>l) 

mea" value. Ice >I monotonic 
function of E, approaching & for large E. +he f%t?o" et(s) is 
completely determined by <e > and ~8 -G? >s>. 

Substituting Eqs. bearing in mind the 
foregoing 

(52btd) into 1514: and 

about 1 
discussion, we see that 1 and 3 oscillate periodically 

c and Bc (the subscript "c" stands for "center"), given by 
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‘Bc = s$Ho(IJ + ia (S-S,) (:% ?H~(ir) 

+ [;;$-;;;;=j (:'6) " H&r 

= s~H (3 +T ) - i s O.r c a a (:*?I $He$) 

+ [~,;,~~~~r)] (:-?I $Ha (2,) + "(if), 

for a& ,., and by 

I 0 E <it> ': + ia: ) 

gc E s it H$r) + <it> (s-st) (:*i5) gHO (;r) + 

+ ia b-s,) C-h?, ? He@ 

= s ifHo C?r+lc) + Jc(s:O) + O(iiI, 

(56) 

(57) 

for e&. The coefficients i 
constanFs of 

<i>, s and s 
integration. a+he o&illae&-y remai fi 

are, +nd;q;n~~~t. 
ders 1-1 

are determined entirely b 
e (s), of Eq. Y and by a 'solution: 

<I+,> and s 
(53). For E>Wr' 

i,, <it>, s , s 
et is, in &rn:'entirely determined by 

Expre&ions (56) and (57) are both of the same general 

and the component of 

phase space that, at some fixed time, is centered on the locations of 
resonant trajectories that have in common the same index m and 
resonance numbers (g,n), and satisfies ECU:, will 
"resonant region.” 

be called a 
As time evolves, resonant regions follow resonant 
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trajectories through phase space. 
where E = w2 

The boundary of a resonant region, 
will be called a "separatrix." 

The mar: conceptual difference between solutions of (36) inside 
and outside resonant regions is this: For Ed there is a one-to-one 
correspondence bet;ieen solutions of Eq. (36) 'irhodified 
(47) and (48)) and the solutions 

according to 

oscillate; i.e., 
to Eq. (44) about which they 

in this case, solutions to (36) are 
deformations of solutions to (44). For E<W2 by contrast, the:?:: 
more solutions to Eq. (36) than there are sof:tions to Eq. (44) about 
which they oscillate; a two-dimensional set (labelled by the initial 
conditions it(s = 0) and 0,C.s = 0)) of solutions to 
oscillates about each resonant trajectory. 

Eq. (36) 

Thus, resonant trajectories are 
centers of stable oscillation) 

stable configurations (i.e., 
in phase space; the domains of 

stability (i.e., the sets that oscillate about the stable centers) 
are the resonant regions. This is why resonance figures prominently 
in each model that we discuss in the next chapter--a resonant region 
CT3" compete with the neighborhood of the design orbit for a share of 
the beam population. If a very stable resonant trajectory is located 
far enough from the beam center, the observational consequence can be 
expansion of the beam size, or enhancement of the rate at which 
particles strike the containing pipe walls, or both. 

When, in the preceding section, I referred to phase space points 
that are "near 
(equivalently, 

enough" to resonant, or "far enough" from resonant 
for which the cosines in HI oscillate "rapidly 

enough") I was trying loosely to characterize phase space points that 
are, respectively, inside and outside resonant regions. 

I" 
It should be noted that resonant regions also figure prominently 
the theory of stochastic behavior, 

overlap"'a criterion: 
through the "resonance 

Subsets of phase space in which two resonant 
regions overlap are especially likely to contain many points that lie 
on chaotic orbits. Since neither calculation in Chapter V will 
require an application of this criterion, we shall not consider it 
further here. A very detailed treatment can be found in Ref. 76. 

In the next chapter we shall need to refer to results obtained 
using formulae for the frequency of small oscillations in a resonant 
region, and for the width of such a region's projection onto T-space. 
Let us derive these formulae and comment briefly on some of their 
features. 

Frequency: The behavior of small oscillations is determined by 
Eq. (531, 1ineaGized about et =.O. The angular frequency of the 
corresponding harmonic vibrations IS clearly w . 

The reader may find it instructive to seeran order-of-magnitude 
estimate of wr, For this purpose, 
Wr entirely in tens of 10 and the F 

te rewrite t‘ne definition (54) of 
, using the definition 

Ho: 
(42) of 

wr = To ' +%," q.m~*~)2~,o(fr)l. (58) 
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We may estimate C5$, as follows: Let CJ be a rough common 
approximation to both u and (J*, the strong 
weak beam) Gaussian ha13 widthg, 

beam (and unperturbed 
at the i$teractJon points: and let B 

be a rough common approximation to both $‘ and B . According to the 
definitions (23) and (39) of the Fk and o? F+ 'the fgllowing simple 
estimates follow from dimensional considerat?d%, for Ir-O(o'/B), an 
amplitude typical of most particles in the beam: 

F; n , (1,) - o(i.$) - 0 (g) , 

(Z-Q)* F;;,o(fr) - op-y @)I - o [(FJ ($)I . 
(59) 

As In Chapter II, the variables N, I, f, E refer, respectively, to, 
the number of particles of charge e in the strong beam, the current 
in the strong beam, the storage ring revolution frequency, and the 
energy per beam particle. In formylating (59) we have 
neglected--among many other things--any n-dependence. When (59) is 
substituted into (581, we obtain 

w 
r 

_ o 1 eI8 - 

[( )I 
a' Efc? 

- O(2nw.o). (60) 

The motivation for the second approximate equality in (60) is 
provided by the form of the equation, (4), that defines the 
.tuneshifts; 5 is a rough common approximation to the tuneshifts E; 
and 5 . 

YA similar estimate, W - O(d%h) applies to storag: 
rings--e.g., 
angle. 

the IS--in whi:h continuous ieams cross at a non-zero 
In such cases, Eqs. (27) and (4a), rather than (23) and 

must be used in defining and estimating F+ 
(4), 

Let us compare this order of 
(;*6)' F+ , and 5.) 

m~&~tude to "&her rates 
characteristic of storage rings, for the case of e+e- colliders: The 
rate of betatron oscillations 
beam-beam crossing; 

is typically 50(10) vibrations per 

measure of the angular frequency (per azunuthal distance , 
time) of either 

thus (l/27) ws -f(lO/Lo), where Us isnEtro;eghp 

vertical or horizontal betatron oscillations. 
transverse damping time y-' 

The 

crossings; thus y-0(10-* 
is typically 

-lo-'/a01 
-0(103-10') beam-beam 

for 5 -oc10-2). 
(per azimuthal distance s). I.e., 

lw 1 
al 8 : 5 wp : y - 10s : 102 : l-10 . 

Width: The projection of a resonant region onto the f-plane is a 
tube that surrounds the corresponding resonance curve. According to 
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(51), the width of tt$s tuJe+at 7 , along the direction z, is equal (51), the width of this tube at 7 along the direction z is equal 
to the "roduct of 1:1 (3':*:) ang'the lenath of the intekval defined to the product of InI (E/n*") an5 the length of the interval defined 
by all values of by all values of i for which E<W ' i 'for which.E<W ' can be satisfied for some can be satisfied for some real real 
value of @,. value of @,. Ackording to the definition (55) of E, the inequality Ackording to the definition (55) of E, the inequality 
EIWr’ is equivalent to 

litI 2 
q cosetl 

< ar 

(:.$)2H0'fr, - (;.d)'HOJ~r) : 

Thus, the resonance width W, along "n, is equal to 

wr : 

(62) 

(63) 

(perpendicular) width of the tube is 

An order-of-magnitude estimate similar to that described above 
would give W -0(0*/g) -O(l ). If taken literally, such an estimate 
would cast do& on much of tile picture that we have just derived, 
since that picture is based on the assumption that x is small. 
However, the rough comparison W -O(? ) is an overestimate, since" 
in fact the Fourier coefficignts Fi n 
139 for 3 -0(a2/E). 

fall rapidly with increasing 
, 

Let ug note some simplifications that arise when the analysis 
described in this subsection is applied to models--such as the ISR 
model discussed in the next chapter--in which no provision is made 
for the horizontal variables x and x'; 

In such cases, ihe vectors 7, I r' I, 3, %, etc. have only 
y-components, and c is irrelevant. Thus, the general resonance 
condition (46) becomes 

and the general expression (56) for a resonant trajectory becomes 

i 
YC 

EO, 

dH 
e 

YC = s -$ (Iyr) + L [mm - 6 
Y nY nysn 

(I,,)1 

(64) 

(65) 
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z-9 = r+l[mm-d 

11o nY *Y nY’ 
pyr)l. 

It follows from (65) that resonant trajectories with m's that 
differ by n are identical, 
period 287; ehus, 

because the angular variable C has 
there are precisely n resonant trajec&ies 

associated with n and n at I . For the &me reason each of these 
trajectories is peryodic in s w?Fh.period at most* (n ;d)c,,, where d 
is the greatest common divisor of the integers n an8 n. Neither of 
these statements is true in general when the gtorage ring model 
involves both vertical and horizontal degrees of freedom. 

To make the discussion in this subsection more concrete, a 
schematic representation of the two-dimensional phase space of such 
an x-independent model is shown in Fig. 32. In this figure one sees 
the locations (at one value of 
(corresponding to ny 

5) of four resonant trajectories 
= II), and the separatrices of the associated 

resonant regions. A movie of such a phase plane would show that as 
time (:s/c) passes, the points within each resonant region swirl 
about the resonant trajectory at the region’s center, and the whole 
"island chain" of resonant regions revolves--with some periodic 
deformation--about the origin. The revolution and deformation are 
such that the pattern of resonant trajectories and separatrices 
repeats in a time interval At = &/c--the island that occupies 
position number p in the chain at time t evolves smoothly into the 
island that occupies position number p + n at time t + go/c. 

3. Resonant behavior in weak-strong systems-damping included. 

In this section we derive some basic properties of nearly 
resonant behavior in damped systems. For convenience, we shall 
assume, in what follows, that the rates of vertical and horizontal 
damping are exactly equal. 
close, but not identical.' 

In. real storage rings, they are very 

We shall largely ignore noise processes, although, in passing, 
we shall indicate the way in which they modify the conclusions 
derived here. The theory of noise effects in the present context is 
not well developed. In the next chapter, when we shall need to take 
radiative noise into account quantitatively, we shall have to do so 
semiphenomenologically. 

*One might have naively expected that the period is always (n /n)E,. 
However, in obtaining the physical orbital coordinates y and y1 from 
I and 6 , one must use Eq. (321, which depends explicitly on s with 
pgriod Xs : &O/C. Thus--unless, for some special reason, the period 
of 8 (s) and @ (s) is actually less than &o/C--the true period of a 
resoxant trajgctory is the smallest common integral multiple of Ils/C 
and (ny/n)ko, i.e., (ny/d)!Lo. 
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We shall see that the damped case is similar to the undamped 
case in that there is a subset of phase space wilhin which the vector 
separation, parallel to the resonance direction n, between 7 and some 
given resonance curve oscillates about zero. However, the damped and 
undamped cases also differ in several respects. The moat important 
such difference is this: Without damping, resonant-region oscillation 
centers, when projected onto the action plane, are (according to 
Eq. (52~)) stationary points on the resonance curve. With damping, 
the oscillation centers, when projected onto the action plane, also 
lie on the resonance curve, but they are no longer 
stationary--instead, they drift steadily toward resonant actions f 
that satisfy r 

I n 
-rE=x. 
I 

=Y nY 
(66) 

The precise point at which a particle's orbit stops drifting in this 
way is determined by noise. If noise were absent, such a drift would 
persist indefinitely, gradually slowing as the oscillation center 
approaches (66). 

This drift--"resonance streaming"--is the mathematical 
phenomenon introduced by Tennyson' in an attempt to interpret the 
ordered, nearly vertical normalized-amplitude motion associated with 
the beam blowup observed in the SPEAR simulation discussed in the 
preceding chapter. Tennyson was led to this interpretation by 
comparing such ordered trajectories with maps that show a number of 
resonance curves in the a -a plane*, calculated from the flat-beam 
equations of motion u&d 'in his simulation. In all cases, the 
ordered parts of trajectories were observed to follow resonance 
curves. The resonance map for 2.2 GeV per particle and 5 :5 z.06 
is reproduced here (from Ref. 5) as Figure 33, for directX com);arison 
with the test-particle trajectory shown in Fig. 30. One sees clearly 
that the long vertical segment in Fig. 30 lies along the resonance 
(nx, n , n) = (3, 1, -21). 

TKe work of this section is organized as follows. In subsection 
3a, we shall show how one modifies the 3-3 equations of motion (36) 
in order to include the effects of radiative damping. In subsection 
3, we shall use the approximate techniques introduced in subsection 
2c in order to analyze the modified equations of motion obtained in 
subsection 3a. In particular, we shall derive the existence of the 
streaming effect.** We shall also derive--among other things--the 
followi"g approximate formula for the rate at which streaming 
proceeds (as long as noise can be neglected): Let I,(s), lying o" a 

4~:8~~~,$l~~~z~~~~~~~~~"~"otation used in this chapter, 

y of g&earning, due to Tennyson,5Y7' 
involved a geometrical argument that we shall not reproduce here. 
The analytical treatment presented in Subsection 3b enables one to be 
more quantitative. 
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resonance curve, be the time-dependezt aCtiOn of the center of some 
resonant-region oscillation; 
the resonance vector ;: 

let p be a fixed vector orthogonal to 
let v be the common value of the horizontal 

, ~~ ~~~~ 

and vertical radiative damping rates (per azimuthal distance); then 

T*Tr(s) = (constant)~e-aS . (67) 

This formula will play an important 
be discussed in the next chapter. 

partin the SPEAR calculation to 

Note that Eq. (66) is a consequence of Eq. (67). 
(671, if--E approaches 

Aczording to 

equivalent= to (661, 
zero as 2 Jecomes infinite: but p*I = 0 is 

because n-p : 0, and because--fgr our 
purposes--action space is two-dimensional. 

a. 3-3 equations of motion in the presence of damping. 

In terms of Cartesian phase space coordinates, the equations 
that describe the damped linear motion of test particles between 
strong-beam encounters are . 

(681 

dz' 
- = KZb)z - r,(sW, ds 

where !z represents x or y. The function K=(s) measures the focusfing 
strength of quadrupole magnets; it is related to 6s(s) as follows 

(69) 

The damping coefficient F ($1 is in general s-dependent--typically, 
it takes its largest valuessin RF cavities.4 The average, <P > of F 
over one repeat period (Ilo) of the model storage ring is zqljlal* tg 
twice the transverse damping rate y. 

To write (681 in terms of ? and 3, one substitutes the 
definition (32) of the actions and angles into (681. After some 
algebra (that we shall not reproduce here), in the course of which 
Eq. (691 must be used, one obtains the result 

e; : w z - cz (S 7. - -J 6;cz) rz , 

(701 
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;here Cs and S, represent the cosine and sine, respectively, of 

7. +a 
Tfik 7 - if equations of damped motion in the presence of a 

counter-rotating strong beam are obtained by combining (701 and (351, 
just as we combined (34) and (35) in deriving the undamped equations 
(36). The result is 

aH 
I&q 2 I* s, (S, - ; I+ ri ; 

(71) 

e:;+g - cz (S, - 
z 

G 6’,c,) rz , 

where H is defined in Eq. (37). 
As In Subsection 2b, it is appropriate to expand not only H, but 

also the damping terms in (‘fl), as Fourier series in powers of the 
periodic variables exp(hiis/&,,), exp(iS r, and exp(i8 ). For 
simplicity, we shall, in what follows, Hetain only terms xf zeroth 
order in the Fourier expansio?s of the damping corrections. 
the damping term in 

Thus, 

-2yIz; 
the Is equat$on will be replaced by -<rz'I = 

and the damping term in the 0 eqyation will be replaced 'by 
the s-independent number &w : 114 < r 6 >. 

With these reductions, 'Eq. (71) bhgmes 

ai 
Ii=-- 

aez 
-wz g 

e;.+g, 
z 

(72) 

where H is defined by 

In what follows, a resonant action? 
solution of Eq. (46), 

will always be defined as a 
with fl substi[uted for H. (However, since the 

r's are generally small, this substitution should shift the 3 's only 
slightly.) 
and FI satisfy 

Note that the zeroth Fourier components, HO and 60, of H 

ii,- - Ho L H - H. 

. Thus the remainders HI and i, are equal. 
- 
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b. Streaming, etc.. 

Let us now apply the resonance approximations (47) (with i,, 
replacing Ha) and (48) to Eqs. (72). In terms of the variables 
defined in (51) (with Fio again replacing Ha), Eqs. (72), in this 
approximation, are equivalent to 1; : - io F%,n(fr) =inet - 2~1~ - 2yIt , (73a) 

e; = it Gi4)* ii0 0,) , (73b) 

1; = -2yi, - 2y I, , (73c) 

e; = ia . (73d) 

The parameters I and it 9 re obtained 
and it are obtaized from I, 

from? 
i.e., 

r in the same way that ia 

(74) 

As in Subsection 2c, one can obtain an equation involving only 6 : 
Differentiate both sides of (73b), and then insert (73a), as well 2s 
(73b) itself. The result is 

e;’ = w * 
r 

sine 
t- 2~ ~&if~*Ho~lr)i I~ - ae;. (75) 

If the initial values of 7 and ?$ lie in a resonance 
region--appropriately deformed because of the damping terms in 
(75)--then et and (because of (73b))i s becomes 
infinite, 0 

oscillate; and, as t t approaches one of the static values 

2-f - Arcsin {- 
wr2 

(76) 

and 1 approaches zero. (We shall not derive an 
expres&on--to replace E = 0 '--for the 

analytical 

region in a damped 
boundary of a resonance 

system, begauze we shall not need such an 
eXpresSiOn in the calculations to be discussed in Chapter V.) 

Within a resonance region, the center of oscillation in the ? 
plane is 1 +Gi . Thus, 
resonance c&e be?ause, 

the oscillation center streams along the 

yhere streaming stops. 
according to (73c), 1 t 0, unless i : -I,, 

Note that 
n It, i.e., that Eq. (66) is satisfied. 

ia : -1: means that Ipa+ :la = 
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Unless I is small, however, 1 = -1 violates the small-? 
assumption th?t underlies the resonancg apprkmations (47) and (48). 
When analyzing long-range streaming, one should modify this 
assumption and these approximations. Here is an appropriate set of 
Such modifications: Write 

f = jr (3) + 1 , (77) 

where f is located on a resonance curve 
time-de;endent dynamical 

but is now a 

constrained--~ must 
variable, a term I c would be redundant. As for (471rand (481, 
leave them unchanged ?n form (except for the replacement Ho + 20) 
but reinterpret the variables on which they depend, according to thd 
ansstze symbolized by the decomposition (77). 

These modified approximations have this in common with 
In either case, 1' + rif is proportional to Z. 

the 
original ones: This 
means that 

+ ty(5-i) = 0, (78) 

for&? q 0. Upon integration, Eq. (781 yields Formula (67). 
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V. TOPICS IN THEORY-CALCULATIONS 

In this chapter, we discuss two calculations of quantitatively 
measurable phenomena in colliding-beam 
collision-enhanced beam loss at the ISR,g5-g7 

storage rings: 
and beam blowup at 

SPEAR. In each case, we shall choose input parameters so that the 
results can be compared directly with published experimental data. 

These calculations are similar in that, in each case, the 
phenomenon in question is attributed to the transfer of some fraction 
of the beam from the beam center to a single distant stable resonant 
region.* However, they differ in the mechanism by which this transfer 
takes place. 

In Section 1, below, we introduce and contrast these two 
transfer mechanisms. The details of the calculations will be 
presented in Sections 2 and 3. 

1. Comparative discussion of transfer mechanisms 

In the SPEAR model,' a particle reaches large amplitudes in the 
following way: Radiative noise transports the particle to the 
low-amplitude end of a resonance curve, and then (if the particle 
enters the corresponding resonant region) radiative damping causes it 
to stream towards the high-amplitude end. 

There is no such pathway available to ISR particles, for two 
reasons. First, there is no damping process to drive streaming. 
Second, as explained in Chapter II (Section 3a), the horizontal 
coordinates x and x* do not couple through the beam-beam 
interactions, so that action space may be regarded as effectively 
one-dimensional; in particular, a "resonance curvel' is nothing more 
than an isolated point--it has no "near end" or "far end." 

In the ISR, according to the calculation that we present in the 
next section, noise drives particles to large amplitude in a less 
direct wa 
scattering 

gg,s~ecause of noise (due primarily to intrabeam 
1, a particle's energy diffuses. Because a particle's 

unperturbed storage-ring tune is a function of its energy !EdV/dE = 
2.8 in the ISR at 26 GeVg31 the tune also diffuses. As the tune 
diffuses, the locations of resonant regions.in phase space diffuse as 
well, because Ho--which, through (461, determines the values of 
resonant actions--itself depends explicitly on the unperturbed tune, 
according to definition (43). A proton then reaches large amplitude 
by first becoming trapped in a resonant region when the tune is such 
that the region is close to the beam center; and then by being swept 
away as the center of the resonant regions diffuses outward. We 
shall explain "trapping and sweeping" more precisely in the next 

*One can probably generalize either of these calculations in order 
simultaneously to take into account the effects of more than one 
well-separated resonant region. I do not know how one would proceed 
if the main resonant regions overlapped. 



69 

section.' 
It is hard to see how a similar process could be responsible for 

important effects in an electron-positron storage ring (although this 
;;;fz;gest.ed in Ref. 971, because phase stability (due to the RF 

prevents the electrons' and positrons' energies--and 
therefore also their tunes--from wandering very far from the energies 
and tunes of the e- and e+ synchronous orbits. 

2. ISR beam ~oss~~-~' 

In this section, we estimate beam loss at the ISR, operated near 
the fifth-order 
indicated in the 
attributed to the five resonant repions associated with the 
(time-dependent) resonant action I 
-43(27/P.“, 5 0. Y= 

defined by 5(dHo(Iyr)/dIyr) 
-. _. -- 

Similar calculations have also been done for operation near 
other, higher order resonances. We shall confine ourselves to the 
fifth-order case in order to avoid certain complications that would 
otherwise be present. 

Note that the calculation.will apply td times soon (a few tens 
of minutes) after injection, because, as yet, there are no adequate 
techniques for predicting the long-time behavior of beams--such as 
those in proton storage rings--that are not acted on by a fast 
relaxation process, such as radiative damping. 

We shall compare the result of our calculation with published 
ISR datag3 taken at 26 GeV per proton, and about 8-9A of current per 
beam. Under those conditions, a loss rate of about 20-60 parts per 
million has been observed in at least one of the beams. This is 
roughly ten times the loss rate that is registered when only one beam 
circulates.44 

The work of this section will be presented in three parts. In 
Subsection 2a, below, we explain the basic starting assumptions. In 
Subsection Zb, we explain in detail how moving isolated resonant 
regions can sweep particles out of a storage ring beam. 
Subsection Zc, 

Finally, in 
we combine the material covered in 2a and 2b, in order 

to complete the calculation. 

a. Basic premises 

We shall carry out this calculation as If the ISR were a 
weak-strong system, even though the experimental situation involves 
beams of roughly equal currents. This is permissible because the 
tuneshifts are very small (about < = -.0004 per interaction, for the 
operating conditions in question hgre) so that the changes that beam 
number one induces in beam number two make a negligible contribution 
to the changes that beam number two induces in beam number one, and 
vice versa. 

* Intrabeam noise can also act directly on a particle's transverse 
coordinates, without a resonance as 

* rapidly, according to Ref. 96. 
intermediary, but much less 

- 
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In the course of this calculation, we shall require an ansatz 
for the distribution of an 1% beam. both in transverse DhaSe sDace 
and in energy, immediately following injection. For the . transverse 
distribution, we shall assume the Gaussian expression 

l d1 d6 
6(Y,Y',s) dy dy' Z (e 

-1 /I y y) 42 
I zrr 
Y 

(79) 

for the normalized probability that a test particle can be foupd in 
the differential area dy dy' about (y,y'). The constant I is 
related to, the Qeta-&unction and b$F-half-height at an interaxtion 
point, by I 5 (U )*/S . At the ISR 
with whichY we &all Xe concerned,'o* 

under the opefating conditions 
is 1 mm and 8 is 14 m. Also, 

the largest vertical amplitude that 1 proton can 'have before it 
strikes the beam pipe is* 

I 
ymax = lo IYi 

(80, 

(i.e., the laggest possible vertical displacement from the beam 
center is v% I %4.5 times the rms beam half-height). 

For they @lability in energy space, immediately after 
injection, we shall assume a uniform distribution over an interval of 
finite size. For a 26 GeV ISR beam of 8-9 A, I estimate the width, 
A E, of this interval to be given by** 

Correspondingly, the unperturbed storage ring tunes are distributed 
uniformly in an interval whose width AU is given by 

A A 
A" q E g $ = (2.8) $ = .03. 

As indicated in the preceding section, we shall assume that p, 
the probability distribution in tune space, evolves in time, after 
injection, according to a diffusion equation 

*I have taken this estimate from Ref. 93. Reference 96 uses the 
comparable estimate /I /I =3. According to Ref. 97, however, 
the maximum amplitud?% gxven by /I /I -= 7. I do not know the 
origin of this disagreement. I expecty!z?. 33, a CERN report, to be 
more reliable on this point. 
**This has been obtained by extrapolation from 
discussiona of a 30 Amp beam. 

Guignard's 
According to our description (Chapter 

II). of the manner in which the ISR is filled, AR should roughly scale 
with the first power of the beam current. 
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D !?ze=zE 

v ad at 

(i.e., 
small 

the individual values of V execute random walks with very 
steps"'), where the diffusion constant D 

approximately, by* V 
is given, 

DV = 5 x lo-" see-'. (84) 

We assume that immediately following injection (t = 01, the 
distributions 5 and ii are independent. 

Finally, let us discuss some assumptions that we shall make 
concerning the Fourier coefficient, Fs,-+~, that sets the scale for 
the resonant effects to be analyzed below. 

We begin by noting that F, -,,a is nonzero because the ISR beams 
collide slightly off-center-& typic21 vertical offset isg3 2 
.2 mm--and because the offsat is not the same at all interaction 
points. If the functions F describing beam-beam encounters were all 
symmetric under p-y, or if all interaction regions were 
then F5,-bf 

identical, 
would vanish identically because five is not even, and 

forty-three is not divisible by eight (the number of ISR interaction 
points). 

In order to model the dependence of Fs, E+~ on the beam offsets 
6Yk, we assume that all the strong-beam F are related to a single 
"master" function F (symmetric under y-t-y) via 

Fk (~1 5 F(y-6~~) = F(Y) - F'(y)Gyk , 

where the prime in (85) indicates differentiation with respect to . 
We shall take F to be given by Eq. (27), for o(y)--following tie 
fpregoing discussion--a Gaussian, centered at 7 = 0, with half-width 

"Y' 
and with total integrated weight equal to the beam current 8-9A. 

*I have taken this number from Ref. 93. In Refs. 96 and 97, numbers 
an order of magnitude smaller are quoted. I can account for the 
shortfall in Ref. 97. 
D 

In Ref. 97 the figure quoted for D was really 
the diffusion constant 

d%tribution in energy; 
(with (26 GeV)' factored gut) for the 

this is clear because the results in Ref. 97 
do not follow from the input unless the factor D /D : (E dv/dE)' 2 8 
is inserted in the appropriate places. The numbgr &oted in Ref. 93, 
extracted from Ref. 98, corresponds to a beam intensity of 30A. For 
SimpliCity, we shall ignore the variation of D with current (a 
proper analysis of the relevant formulae in Refs? 98 or 99 is beyond 
the scope of the present review). One should be aware that the 
derivations in Ref. 98 do not actually refer explicitly to diffusion. 
As .far as I can tell, diffusion is an appealing, but not rigorous 
interpretation of the theory of intrabeam scattering. 
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It follows from (85) and (39) that Fs,-ra is given by 

Fg,-,,g = 6Yk e2Tik(+43’8)l 
de 
2 F'(&-$;-Cos~y)e 

(86) 

For future reference, we.note that if all 6y, have the same 
magnitude sy, but arbitrary signs, the largest val(ue that the first 
factor (to be called h) in (86) can take is 

max h E max Ii, 6yk e2nik(43'8)1 : [8(2+~)]"'6y=(5.2)6y. 

(871 

(This can easily be derived by directly enumerating the 
possibilities.) Under the same constraint, the average of ha, over 
all independent choices of the signs of the 6yk, is easily seen to be 

<ha> = 8 (6~)' . (881 

In what follows, we shall neglect the dependence of Ho on the 
6Yk. 

b. Trapping and sweeping 

In this subsection, we discuss in detail how ISR protons are 
swept to large amplitude by (5, -43)-resonant regions that move 
outward because the protons' unperturbed tunes wander. 

For most of this discussion, we shall focus on (the vanishingly 
small population of) protons associated with only a single wandering 
tune V (tl. The loss rate for the 'full beam will be obtained by 
insert&g the appropriate results of this analysis into an integral 
over the initial distribution of tunes. 

Before we proceed, we shall need to make explicit some 
qualitative features of the relation between the 
strong-beam-independent unperturbed storage ring tune V and the 
resonant action, I yr, defined by Y 

0 : 5 Ho'(Iyr) - 43(2n/Qo) = 5(2n/Qo) + (5/Qo)F;, o(Iyrl - 43(2rr/Qo). 
t 

(89) 

(The primes in (89) indicate differentiation with respect to I.=.) 
For this purpose, we show, in, Fig. 34, a graph (reproduced +rom 
Ref. 97) of (85 1-l (2x)-' FO,O (I 1, as a function of JI. It 

. follows from Fig.'34 that (Qe/2n)Ho '&ways lies between qy Y 85 
Y' 

- 
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corresponding to I = 0 (recall that 5 
interaction, and thae there are 

is the tuneshift per 

"x 
+ 45 

eight IXteraction regions), and 

a cessil(;e 
corresponding to I = I = 101 . Thus, there is no 
resonant action unle Y s v 

8.6 - 45 
l!%" betwee (43/5) - 45 

and 8.6 - 86 
decreaseg'(recal1 that E eo) 

IKcreases from zero to I 
i$?&x 8.6 - 85 to 8.6 -45 . ymax 

Let us now begin by'examining the ti&e-dependentY changes that 
the mobile (5, -43) resonant regions make in the initial transverse 
distribution (79), under the special assumptions that v (t) is 
greater than 8.6 - 85 
monotonically thereaftery 

when t = 0, -2nd that v (t) d&creases 
We make this assumpti9n only for 

simplicity, so that the main 
technical complications. 

conclusions will not be obscured by 
We shall indicate later how the conclusions 

are modified when these assumptions are removed. 
As indicated above, there are no (5, -43) resonant regions in 

transverse phase space until V (t) reaches 8.6 - 8< As soon as 
V (t) passes 8.6 - 8S an "islandYchain" of five reso&nt 
glows out of the origin I 

regions 
= 0. Any proton caught in such a region 

swirls about the region's cexter, while the center itself revolves 
about the origin. 

Because of this swirling, many protons originally on the 
low-amplitude 
sides, 

sides of these regions are moved to the high-amplitude 
and many protons originally on the high-amplitude sides are 

moved to the low-amplitude sides. Since the initial transverse 
distribution (79) becomes more rarified as I 
high-low 

increases, this 
interchange 

larger amplitude.* 
produces a net movement of srotons outward, to 

When v is still close to 8.6-85 
small, be&se 

this net movement is very 
the resonant regionx'are close to I = 0, where the 

initial Gaussian distribution (79) is nearly unifor&i.e., where the 
number of protons that are available to be displaced from higher to 
lower action is nearly equal to the number of protons that are 
available to be displaced from lower to higher action. 

I 
This net moyement begins to be appreciable when V is such that 
= (l/2) I because that is where the inigial transverse 

dY:tribution (ex&essed in Cartesian coordinates) has its 
gradient. Note that, 

steepest 

8.6 - 75 . 
according to Fig. 34, this corresponds to v = 

Y 
As 3 moves beyond 8.6 - 75 

I = (Y/211 
, the resonant regions q ovs beyond 

into a domaix of phase space in which the initial 
dYgtribution is'sparse. Thus, because of the continuing interchange 
of high and low amplitude particles within the moving resonant 

*Note that this interchange can take place only if the resonant 
regions move outward very slowly. Otherwise, the time spent by a 
proton inside a resonant region cannot be long enough for swirling to 
have a significant effect. A discussion (in terms of the frequency, 
W , of reSOnant oscillation) of the maximum value of d1 /dt beyond 
Y ich K the distribution of protons is largely unaf%cted by the 
pSSSing resonances has been given by Chao and Month in Ref. 95, with 
some refinement in Ref. 97. 

* here. 
We shall not consider this point further 



regions, as in a game of leapfrog, the 
them, to large amplitude, a substantial 
contributed to the original net outward 

moving regions carry with 
fraction of the protons thst 
movement at I =(1/211 

without PickinR UP many new vrotons. When v reachxs 8.6 - 4EY: 
corresponding to I = I - this population strykes the beam pi& 
and is lost. Yr ymax' 

This transport mechanism is what we have referred to as 
"trapping and sweeping." For direct evidence that this phenomenon 
can actually take place, the reader is referred to the computer 
studies described in Ref. 95. 

In accordance with the picture* we have just described, Chao and 
Month" propose the following recipe for obtaining a crude estimate 
of the number of protons that are swept out of the beam in this way: 
Multiply the total (infinitesimal) number of protons associated with 
U (tl by the total integrated weight assigned by the initial 
p?obability distribution (79) to the five (5,-43) resonant regions 
corresponding to v = 0.6 - 75 We shall employ this estimate in 
what follows. Y Y' 

We may easily determine how this integrated weight depends on 
the beam offsets: As we saw in the preceding subsection, the resonant 
Fourier amplitude Fs,-+a depends on the offsets through the 
multiplicative factor h. Thus, according to Eq. (631, the width of 
the (5, -43) resonance in action space is proportional to 6 When 
the offsets are small--so that h, and therefore the action-space 
width, is small--the radial widths of the resonant regions in 
Cartesian (y,y') coordinates are proportional to the action-space 
width, and are therefore also proportional to 6. (The angular widths 
are always 2a/5.) When the Cartesian widths are small, the integrated 
probability is approximately proportional to th,e Cartesian area 
occupied by the resonant regions; and since, for small width, the 
area scales with the width, one finally concludes that the integrated 
probability is approximately proportional to /h, for small offsets. 
According to Ref. 97, the proportionality constant** is about 
t.o6)/fi . 

ForYtypical values of h (substituting 6y = .2 mm into Eq. (98)) 
this probability is quite small, about .05, although (using (87)) it 
could be as high as about .08. We shall use .05 in the rough 
estimates that follow. 

A nearly identical informal analysis (which we need not 
reproduce here) can be applied when the tune trajectory uy(t) does 

*Actually, this picture, and the recipe that follows, are somewhat 
oversimplified. However, the subtleties that have been omitted here 
are only relevant to the higher-order resonances with which we are 
not concerned here. For more details, see Ref. 97. 
**This number is extracted from Ref. 97's Fig. 6, which shows a graph 
Of 
(h/&p2 

integrated as a f"nctso;y$=yfy ,~~,"~",~&~~"'~,,~~,""~'"c,~~ 
larggr than this by an order ofYhag&tude; this can be attributed to 
an ,incorrect replacement of (dZF 
terms in their expansions in PO&~ 

/dI*) and Fs,-~+a 
ofYIy. 

by the leading 



not satisfy the assumptions imposed at the beginning 
subsection. The general conclusion is this: Whenever 
8.6 

v (t) 
- 45 after having 

encountey with 8.6~4:.. in 
earlier oassed 8.6 - 7E~~. with 
the interim. 

protons associated wifh Vy(t) are lost 
then approx&tely 5X 
from the beam. 

C. Total loss rate 

of this 
reaches 

no other 
of the 

We now estimate the number R(t)dt 
(a) have encountered the point 8.6 - 

of random-walking tunes that -w 7li at least once between time 
zero and time t, and (b) have not reachedY8.6 - '15 between time t 
and the last encounter with 8.6 - 75 
between times t and t + dt (for small dtr: 

and ?c) reach 8.6 - 45 
Our estimate for thg 

75 

total rate at which protons are lost will then be five percent of our 
estimate of R. 

For this purpose, let us divide the initial tune interval into 
two subintervals A and 3, defined by 

8.6 - 7Sy + AA 1. vy 2 8.6 - 7sy , 

8.6 - 7Cy > vy 2 8.6 - 7Sy -AB , (89b) 

where the positive numbers A A and A B satisfy 

AA + $ = Av . (90) 

,The initial tune probability distribution a takes the value 
inside the union of these intervals, and zero outside. 

l/Av 

Let us also decompose R into the infinite series 

R = RtA + RIB + Rt 
A 9 +Rz +..., (91) 

where RA(t)dt (RB(t)dt) is the number of random-walking tunes, 
initially in thg interval A(B), that (a) have encountered 8.6 - 75 
precisely n times between times zero and t,.and (b) have not reaches 

45 between time t and the last (n'th) such encounter with 
'and (c) reach 8.6- 45 between times t and t + dt. 

see t&t it is easier to evaluate the constLtuent rates R 1 B e shal 
and R 

than it is to evaluate their sum. In any case, we shall also se"e 
that the sum is dominated by its first two terms, at least for t I: a 
few tens of minutes. 

Let us also define 

P(V v, t) z 
1 

- exp 
-(\)-Wg)2 

09 JltnDYt [ 1 4DVt ' (92) 
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As a function of v, P solves the diffusion Eq. (831, with boundary 
condition 

P(uo,V,t = 0) = 6(V-V(J). (93) 

Thus, PdV is the probability that a tune v located initially at 
v =wg, 

r; 
will, because of random walk, lie YA an interval of width dv 

a out v : V at time t. 
WeYnow proceed to determine R. 

A The most easily constructed contribution to R is the first term, 
RI , in the right-hand-side of (911. Because every tune initially in 
intervalAA,must pass8.6 - 75. before it encounters 0.6 - 45 even 
once, RI 1s simply the rate At which tunes, initially in inte&fal A, 
reach 8.6 - "5, for the first time, without ever having reached it 
before. 

It is easy to convince oneself that this is equal to the rate at 
which tunes, initially in A, would be lost altogether if a 
fictitious , perfectly absorbing wall were placed at v 
This is a productive way to rephrase the definitiox OF RI" 

a,5 - 45". 
because 

the problem of random walk in the presence of an absorbing barrier is 
a standard one in the theory of probability."' 
treatment of absorbers in Ref. 100, RIA is given by 

Following the 

RI A= 1 dVa[NG(Va)l [2DV & P(vo, v=8.6-4Sy,t)l 

8. 6-7Sy 

-2ND 
8.6-7Sy+AA 

q v 
Av I dv o 

8. 6-7Cy L 

& p(vo, 8;6-Kyrt,) 
I 

2NDV 
= - 

A 
[P(8.6-75 

v 
y, 8.6-4cy,t) - Pt8.6-7Sy+AA, 8.6-4Cy,t)l 

2ND 
= -;c’ [P(-3S,,O&) - HAA-3C,,O,t)l, 

where N Is the total number of particles in the beam. 

(94) 
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note that 
consists of 
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proceed to the construction of R1 B . 
every random walk that contributes 

For thl3 purpose, 
to R1 at time t 

these two parts: an initial trajectory that starts in B _r at time zero, and ends with its first arrival at 8.6 - 74 at some 
intermediate time; and a final trajectory that starts withYE. - 75 
at the Intermediate time and ends with its first arrival at 8.6 - 4.5' 
at time t. Note also that the same decomposition, characterized bj: 
the same length scales, applies to the paths that contribute to the 
rate at which diffusing tunes, initially in the fictitious interval 

8.6 - 75 +A >v 
Y El- Y 

>8.6-75. 
Y - 

(95) 

encounter 8.6 - 45 f&J r the first time, without having encountered 
It before. Thus, 'RI and the latter rate are equal. 
latter rate corresponds 

Since thg 
to the same kind of process to which RI 

corresponds, we may evaluate it in the same way. The result is 

B 2ND 
Rl = 2 rP(-3Sy’0,t) 

Av 
- P(AB-Xy,O,t)l . (96) 

In a similar fashion, one obtains 

RA 
2ND 

n = -2 CP(-3Sy(2n-1),o,t1 - 
Av 

p(AA-3Cy(2d,0,t)l 9 

(97) 

RD 
2ND 

n = --!! [P(-3!+2n-l),O.t) - P(AB-3Sy(2r+1),o,t)l . 
Av 

In order to estimate R numerically, let us assume that 

(35,)*/4 Dyt 2 O(l), (98) 

i.e., (using the data provided in subsection 2a) t L a few tens of 
minutes. This guarantees that the exponents obtained when (92) iS 
inserted into (97) are much larger forAn > 1Bthan they are for n : 1, 
so that we may approximate R by RI + RI . 
both AA and A , like A 

If we also assume that 
, are much larger than 35 then in addition 

we mayAneglec & the se&d terms in each of the f&mulae (94) and (96) 
for RI 

B 
and RI . As a result of these assumptions, we have 

R - hA + R,* - 
2NDu 

A”- 
exp (-9cy2/4 DVt) . 

- 

(99) 
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Finally, following Month,g6vg7 we estimate R by the maximum 
value of the approximation (99) 

Rr2 
ND 
-% -N(l.4~lO-~)sec-'. 

3 5 A (100) 
YV 

(This maximum is attained when (35 )'/4 D t = l/2, i.e., when t = 24 
minutes. ) Thus, our estimate for txe fra&onal beam loss rate is 

. 

- ; .J- C.05) $ 
0 

5 7 x 1o-6 set-' 

S 40 parts per million per minute . (101) 

This appears to be in rough agreement with the observed rates of 
20-60 ppm per minute quoted in the prologue to this section. 

It should be noted that although the bound (101) refers 
explicitly only to times comparable to half an hour, the observed 
loss rates quoted above can persist for longer than ten hours (see 
Flg. 35 for an example of releva&time-dependent experimental data). 
Presumably, this is due to the R with n>l, which are not " counted 
in (101). 

3. SPEAR beam blowup 

In this section, we shall attempt to estimate beam height at 
SPEAR by applying a (semiphenomenological) theoretical correction to 
results of the computer simulation" described in Chapter III, 
Section 26. Our aim is to obtain more information about the role of 
resonance streaming in storage ring behavior. Accordingly, the 
correction, to be derived from Eq. (671, will be based on the 
assumption that all beam enlargement observed in the simulation is 
due to streaming up the resonance CWVB (n ,n ,n) = (3,1,-21) that 
appears to determine the ordered structure seb Yn Fig. 30. As will 
be explained later in more detail, a correction of some sort is 
necessary in order to 
ipheFent 

compensate for large diskortiops that, are 
in the particular flat-beam limit-4 '0, f3$0, y/cry and 

6 /U fixed--in which the simulation was carried o8t.s 
' 'Our beam height estimate relies on extrapolation from the 

results of a computer simulation because, as yet, there is no 
adequately self-contained theory of resonance streaming in the 
presence of noise. 

The work of this section will be presented in two parts: In 
Subsection 3a, below, we discuss in detail how the results of our 
correction are to be compared with published experimental data from 

. *In this section, we continue to use the symbols (J* and 0* for the 
half-widths of the Gaussian strong beam at interactlo; pointg. 

- 
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SPEAR. In Subsection 3b, we explain the flat-beam distortion and 
calculate the correction itself. 

a. Scheme of comparison with experiment 

The correction to be calculated in the next subsection will be 
applied only to flat-beam simulation data corresponding to 
weak/strong operation at 2.2 GeV per particle, and with horizontal 
and vertical strong-beam tuneshifts both equal to .06. These are 
operating conditions for which 
available5"' 

the _ simulation output made 
to me has been the most detailed. The corrected 

results will describe weak/strong operation at the same energy, with 
the same tuneshifts, and also with 

a’ p2-E 6. 6); 6* 5 6* -IT- o* :+ c ) 6;: 

:Y 
6: 

--31_fO. 
X 6 X 

5, 6: 

(102) 

(In the third equality above , we have used Eq. 14) and its horizontal 
counterpart, together with the inequality U <<u .) 

The parameter r should be determined by thYe experimental data 
with which we want to compare the results of our calculation. 
However, both the choice of data for comparison, and the assignment 
of a specific value to r, are problematical, for the following 
reasons. 

(i) Strictly speaking, there is no value of r for which the 
conditions enumerated above reproduce conditions under which 
published SPEAR data has been obtained, because all published SPEAR 
measurements have been made during strong/strong operation, with 
equal currents in the two beams. If the experimental observations 
had revealed that !at least for E = 2.2 GeV) one of the two strong 
beams was not significantly enlarged, then we might have been able to 
interpret the situation as effectively weak/strong. But, as 
explained in Chapter II, most SPEAR measurements are taken only after 
the RF phases have been adjusted so that both beams are blown up 
equally. 

(ii) Moreover, even if weak/strong experimental data were 
available, a single value of r could not consistently be agsigned 
because the dimensions of unperturbed beams at QPEAR satisfy o Q = 
1130, while the beta functions satisfy 6 /8 = l/12 = (Z.$joy~o~, 
contradicting (102). Y 7. 

Our strategy for dealing with these problems is as follows: 
(i) There is some indication" that if the RF phases are 

readjusted 30 that the enlargement of one of two strong SPEAR beams 
is eliminated, then the vertical dimension of the other SPEAR beam is 
between one and two times as great as it is when (at the same energy 
and current) the two beam sizes are matched (see footnote next page). 
Accordingly, we shall guess that at 2.2 GeV, with a strong-beam 
tuneshift of 5 

Y = .06, the height of a weak beam at SPEAR lies 
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somewhere between these two values: On the low side, the height that 
either one of two matched 2.2 GeV beams has when the current is such 
that the vertical tuneshift due to either beam would be .O6 if it 
were not blown up; and on the high side, twice this low value. 

Let us determine these values from the SPEAR data shown in 
Fig. 1. (Although the energy--l.94 SeV per particle--at which this 
data was taken is not exactly equal to the energy--Z.2 GeV--with 
which we are immediately concerned, it should be close enough for the 
rough estimates that we formulate here.) We begin by observing that 
Fig. 1 has been marked to indicate that the tuneshift .023 
corresponds to a current--2.2 mA--at 
low-current I* law, 

which luminosity follows the 
and therefore at which neither matched beam is 

blown up. Since (following (4)) tuneshift would be proportional to 
the first power of current if the beam dimensions were not to blow 
up, the current that a beam would have if it gave rise to a vertical 
tuneshift of .06 without being blown up is (2.2 mA)*(.06/.023) 
5.7 mA. From the ratio of unperturbed quadratic luminosity to the 
actual luminosity shown in Fig. 1 (i.e., according to Eq. (Z), from 
the ratio of actual area to unperturbed area, recalling that 
horizontal blowup is negligible) one finds that t‘ne matched-bean 
vertical blowup at 5.7 mA is about 1.6. 
5 = .06 

Thus, we shall guess that at 
and E : 2.2 GeV, the vertical dimension of a weak beam at 

S%EAR is between about 1.6 and 3.2 times as great as it is when the 
strong beam is absent (see first footnote next page). 

(ii) As for r: In the next subsection, we shall present the 
results of our l correction 
value, l/30, of 0 /u 

for all values of r betw$en*the actual 
and the actual value, l/12, of 8 /6 . Ye will 

be guessing (fey ?!:ok of a better procedyrei thgt ff we could 
properly extrapolate the simulation output to 8 /R = (2.5)0*/U' x, the 
resulting blowup would lie somewhere between th&extwo extrees. x 

b. Distortion and correction 

In order to understand how the flat beam limit can distort beam 
enlargement associated with resonance streaming, let us first rewrite 
the fundamental streaming equation (67) in terms of the normalized 
amplitudes a an? ay, because, unl$ke,the I'S, they remain finite in 
the limit UFs, B;O, y/a" fixed, @ /u fixed. The result is 

Y Y Y 

px (';E) + py bi; ) = constant x e-ays , (103) 

*One reaches a stronger conclu3ion from data generated by the LEP 
simulation discussed in Chapter III. Figure 36 (reproduced from 
Ref. 31) shows how the height (normalized to the unperturbed height) 
of a simulation beam varies as a function of the beam's current, when 
the current in the opposing beam is held fixed. One sees that when 
one. beam has very low current , its height is about twice the height 
of either beam when the two currents are matched. (This footnote 

. refers to preceding page.) 
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where $ is orthogonal to the vector ?i that, together with the number 
n, defines the resonance curve on which "a is constrained to lie. In 
the flat-beam limit, the second term onrthe left-hand side of (103) 
vanishes, so that this equation may be simplified further, becoming 

axr(s) = axrho) * emys . (104) 

We can now see that the flat beam limit distorts blowup when 
there are resonance curves--such as the one associated with (n ") 
E (3,1,-21) in Fig. 33--that are nearly vertical. I" such %:&&a, 

::,e:tt:??h::~;:k:" ;;%4,, 
accompany small changes in axr, a streaming 

makes no explicit reference to a 
describes test particles that move very rapidly to very lar$.g 
vertical amplitudes, dominating the averages that determine beam 
heights. 

In order to predict, for the particular sase of interest here, 
how this distortion is reduced when on and 8* become "on-zero, we 
shall have to assume that a number of thir?gs (inItile model used in 
the simulation) which at present can only be determined by computer, 
change very little when r departs very slightly from zero, with z, 
and 5, fixed at 2.2 GeV, .06, and .06 respectively. 

5, 
They are 

-- The location of the (3,l,-21) resonance curve in the 2 
plane. When r:O, this is, approximately, the vertical line 
a xr = 2.8, according to Fig. 33. 

-- The percentage of all test particles that are streaming 
up the (3,?,-21) resonance curve at any moment. liken r = 0, 
this is" about 5%. 

-- The time that a typical streaming particle actually 
spends streaming up the (3,l,-21) resonance curve in any one 
stretch. When r = 0, this is" about one third of the 
transverse damping time. 

Let us now use these assumptions to estimate weak beam height as 
a function of r. 

We begin by computing the largest value of a typically reached 
by a particle that streams up the (3 I,-21) re&ance curve. 
this, we argue as follows: Let z1 and if be the points at 

To do 
which the 

particle begins and ends, respectively 
According to the assumptions above, ai p a' 

an episode of streaming. 

(ail2 
= 2.8. We shall set 

WY 
- 2** because we expect that &en aXparticle first gets caught 

the resonance, its vertical amplitude is typical of the 

mm closer to 3.2 than to 1.6, if one can generalize from the 
LEP simulation. (This footnote refers to preceding page.) 
**I" Fig. 309 ai is approximately equal to 4, not to VZ Rowever, in 
view of unpublished data" that we shall not reproduce here, this 
appears to be a" exception. In any case, our final upper bound 

. (following inequality (10711 for SPEAR blowup will not be very 
sensitive to a 

Y' eve" for ay as large as 4. 
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unperturbed dynamics (there is no reason for it to be otherwise, when 
one assumes, as we do, that the main effect of the strong fbeam is 
localized in the+(3,1,-21) resonance curve). To determine a 
Eq. (103) (with p = Cl,-31) and the assumption that the y~a~&~~~ 
streams only for a time interval At satisfying ycAt = l/3: 

(2.8)%*z 
X 

3(af)20*2 

28: - 26. 
Y 

I (e-2,3) (2.8)20:2 _ 3.2’0;~ 

2Bf 
3 Y - 

(105) 

I.e., using eS213 = l/2, 

0 l 2 

(a;P = 1 + (1.2) -z ( >( c- 

cr* 
Y c ) 

El+ (1.2)/r. (106) 

(It should be pointed out that the apparent singularity at r : 0 is 
an artificial consequence of our having assumed that the resonance 
ourve is exactly vertical. A more careful analysis'07 reveals that 
the l/r singularity washes out when r becomes comparable to the 
square of the typical true slope (=1/20 from Fig. 

33h 
of the 

resonance curve, i.e., r = l/400.), According to (1061, (a )’ lies 
between about 15 and 37 when r lies between about l/30 and 1712. 

Finally, to obtain the contribution of resonance streaming to 
the rms weak beam blowup itself, we argue as follows: According to 
Eq. (301, the mean square b$owup (i.e., the mean square weak beam 
height, normalized to (U,)') is equal to one-half the mean squarz 
value of a . According to tie assumptions, the value of 
should beY close to its unperturbed value (=2)““fz”r 95% of the &t 
particles, because, at any time, 95% of all 

4 articles are not 
participating in streaming. The mean v?lye of ay for the remaining 
5% should be somewhere between two and cay) . Thus we have 

<Y ’ * *%J; 2 C(95%) * 1 + (5%) * l/2 * (a~)Zl"2 . (107) 

When r lies between l/30 and l/12, the right-hand side of (107) 
lies between about 1.2 and 1.4 (a significant reduction from the 

- 



blowup of about 4.5, observed in the simulation's when r q 0.) Note 
that this interval does not overlap the interval C1.6, 3.21, towards 
the high end of which we guessed that the experimental blowup would 
lie. This suggests that resonance streaming does not make the 
dominant contribution to the beam blowup seen in real 
electron-positron colliders. 
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FIGURE CAPTIONS 

Fig. 1. Luminosity vs. current per beam at SPEAR, from 
Fief. 10. The letter 5 refers to 5 

Y' 
Fig. 2. Luminosity vs. current per beam at CESR for four 
values of f3* 

Y' 
from Ref. 11. 

Fig. 3. Luminosity vs. current 
P 

er bunch at PEP, from Ref. 12. 
The symbols ax and By refer tb Bx and B'. Y 
Fig. 4. Specific luminosity vs. current per bunch at PETRA, 
for several energies, from Ref. 13. 

Fig. 5. Television photographs of beam cross-sections at 
SPEAR, from Ref. 16. 

Fig. 6a. Horizontal (R, for "radial") and vertical (V) beam 
density profiles at ADONE, for beam current below the blowup 
threshold, from Ref. 18. 

Fig. 6b. Same as in 6a, but for beam current above the blowup 
threshold. 

Fig. 7. Maximum vertical beam-beam tuneshift vs. energy at 
SPEAR, from Ref. 10. 

Fig. 8. Vertical beam-beam tuneshift vs. current per bunch at 
PETRA, for several energies, from Ref. 13. The subscript z 
corresponds to y in the present review. 

Fig. 9. Phenomenological fit (solid line) to experimental data 
from various e+e- storage rings. Redrawn from unpublished plot 
due to H. Wiedemann (1980). 

Fig. 10. Schematic drawing of the DC1 system, from Ref. 43. 
The crosses indicate collision points. 

Fig. 11. Results of several experiments performed at DCI, from 
Ref. 43. The parameter 3 refers to the (equal, in this case) 
fractional parts of the unperturbed storage ring tunes: vx = 
3.73, vy I 1.73. 

Fig. 12. Schematic representation of an ISR beam (a) as viewed 
head-on, and (b) as viewed at a nonzero crossing angle. 

Fig. 13. Results of an ISR overlap-knockout experiment, from 
Ref. 46. 

‘beam refers 
(AP/P), refers 

to the current in a coasting beam. 
to the fractional difference between the 

momentum of a counter-rotating bunched beam and some reference 
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momentum. CAP/P) decreases with time; the absolute value of 
its time deriva ive Is indicated in the figure. (Ap/p) k is the 
fractional momentum spread in the coasting beam. VRF 'is the 
peak voltage in the bunching RF cavities. Q is the unperturbed 
vertical storage ring tune. The energy is not specified. 

Fig. 14. Antiproton beam lifetime vs. unperturbed horizontal 
tune at the SPS, from Ref. 49. 

Fig. 15. ISR current loss rate and beam lifetime vs. vertical 
beam-beam tuneshift, as measured during a high-B* experiment, 
from Ref. 52. The subscript z is as in Fig. 8. ' 

Fig. 16. ISR current loss rate vs. vertical beam-beam 
tuneshift, as measured during a nonlinear-lens experiment, from 
Ref. 53. The subscript v is as in Figs. 6. 

Fig. 1'7. Schematic representation of a head-on collision of 
two identical bunches. The points c1 and cs are the centers of 
the two colliding bunches: cg is midway between the two 
bunches; p lies in the horizontal midplane of bunch no. 1, and 
is located a distance L in advance of the bunch center c,. (a) 
shows the bunches before contact. (b) shows that the point p 
reaches the center of bunch no. 2 when it is a distance g/2 (or 
a time !?JZc) beyond the collision center CO. 

Fig. 18. Luminosity vs. current per beam at LEP, according to 
numerical simulation, from Ref. 31. 

Fig. 19. Luminosity and vertical beam-beam tuneshift 
VS. vertical damping time at LEP, according to numerical 
simulation, from Ref. 31. The subscript a is as in Fig. 8. 

Fig. 20. Luminosity vs. unperturbed vertical tune at LEP, 
according to numerical simulation, from Ref. 31. Q is the 
unperturbed horizontal tune. K is the number of bun%es 
beam. 5 and 5 B Per 

are the horizontal and vertical tuneshifts 
that eit%r beam w&d generate if the opposing beam were 
absent. The subscript z is as in Fig. 8. 

Fig. 21. LEP luminosity vs. root-mean-square irregularity in 
horizontal tune per interacton region, according to numerical 
simulation, from Ref. 31. The symbol ux used in this figure is 
equivalent to 271 times the u x used in the present review. 

Fig. 22. LEP luminosity vs. vertical interaction-point beta 
function (measured in meters), for different bunch lengths, 
according to numerical simulation, from Ref. 31. "Bunch 
lengthening factor = nn means that the bunch length is equal to 
(1.2)n cm. The expected LEP bunch lengthening factor is four." 
The subscript a is as in Fig. 8. 
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Fig. 23. Luminosity vs. current per beam at CESR according to 
numerical simulation, from Ref. 63. 

Fig. 24. Contour plot of luminosity vs. the fractional parts 
of unperturbed tunes at CESR, according to numerical 
simulation, from Ref. 63. The numerals along the contours 
indicate luminosity values, in units of 10"' cm-2sec-1. Other 
markings in this figure are explained in Ref. 63. 

Fig. 25. 'Weak beam height (normalized to unperturbed beam 
height) vs. vertical unperturbed storage ring tune at PETRA, 
according to numerical simulation of weak-strong operation, for 
various energies, from Ref. 60. "41P" means 4 interaction 
points (C = 4). The subscript z is as in Fig. 8. 

Fig. 26. Weak beam height (normalized to unperturbed beam 
height) vs. vertical unperturbed storage tune at PETRA, 
according to numerical simulation of weak-strong operation, for 
various tuneshifts, from Ref. 60. "4IP" is as in Fig. 25. The 
subscript a is as in Fig. 8. Q s ,refers to the tune of 
synchrotron oscillations. 

Fig. 27. Weak beam height (normalized to unperturbed beam 
height) vs. unperturbed storage ring tunes at PETRA, according 
to numerical simulation of weak-strong operation, with (right) 
and without (left) dispersions and tune irregularities, from 
Ref. 61. The subscript z is as in Fig. 8. Q . Fig. 26. 
The energy is 17.9 GeV per particle, the s?rit%ez tuneshift 
is .04, and C I 4. 

Fig. 28. Luminosity vs. current per bunch as measured at PETRA 
(strong-strong) under three different operating conditions, 
from Ref. 60. Curve (a) corresponds to an unperturbed vertical 
tune of 23.3. Curve (b) corresponds to an unperturbed vertical 
tUne of 23.1. Curve (c) correspogds to V : 23.1 and, in 
addition, to a special reduction of n,'s. In all cases, v : 
25.2. X 

Fig. 29. Weak beam height (normalized to unperturbed beam 
height) vs. vertical strong beam tuneshift at SPEAR, according 
to numerical simulation of weak-strong operation, from Ref. 57. 
The parameters D x and Dy are explained in Ref. 57. 

Fig. 30. A streaming trajectory from the SPEAR simulation of 
Ref. 57. Reproduced from Ref. 5. 

Fig. 31. Orbits in an ISABELLE simulation, from Ref. 75. 

Fig. 32. Schematic representation of fourth-order stable 
resonant trajectories (large dots) and separatrices 
(football-shaped enclosures) at a single time, in a system with 
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one degree of freedom. The lon& arrow indicates that the 
trajectories and separatrices revolve about the origin as time 
progresses; the short arrow indicates that phase space flows 
around the resonant trajectory within each resonant region. 
Revolution of resonant trajectories is clockwise 
(counterclockwise) if dH,,/dI is positive (negative); flow in 
resonant regions is cloclcwiseYCcounterclocitwise) 
is positive (negative). 

if d2Ho/dIyG 

Fig. 33. Resonance curves from the SEAR model used in the 
simulation of Ref. 57, from Ref. 5. (Note: Based on a 
comparison between this figure and Fig. 6 of Ref. 57, it seems 
to me that the labels "2V + 6~ : 2" and "1OV = 2" should be 
replaced by "2V +6'~ : 5X and KlOV = 6," rezpectively. The 
variables 'Jx azd V &.ed in this Figure are what we would call 
U -2 and kJ -2 in thz present report. 
tile symbols 

In terms of out- usage of 
V and v, (V : 2p and v = 21-I at SPEAR), these 

replacements arZ equiv&enE to vx + 3v y: 21' and 5V 
respectively. These replacementsYare agsumed in the tezt.7 

26, 

Fig. 34. (16nS )-' dF /dI (D(U) in the figure) vs. v'?? 
(0 in the f&e), ?d? t.hg ISR model discussed in Chaptey Vy 
from Ref. 97. 

Ref. 35. Current loss rates (and beam height) vs. time near a 
fifth-order resonance in the ISR, from Ref. 45. 

Fig. 36. Heights (normalized to unperturbed height) of two 
colliding LEP beams vs. the current of one of them (A), the 
current of the other (8) being fixed, according to numerical 
simulation, from Fig. 31. All fixed parameters--except 
horizontal and longitudinal damping times--assumed in this 
graph are identical to those tiiat correspond to the luminosity 
maximum in Fig. 20. The horizontal damping time is half that 
used in generating Fig. 20; the longitudinal damping time is 
25% greater than that used in generating Fig. 20. 
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