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THE EFFECTS OF BEAM-BEAM COLLISIONS ON
STORAGE-RING PERFORMANCE--A PEDAGOGICAL REVIEW

Jonathan F. Schonfeld
Fermi National Accelerator Laboratory, Batavia, Illinois 60510

I. GENERAL INTRODUCTION

The effects of beam-beam collisions have received publicity in
the last few years because of the disappointing performance of the
latest generation cf e"e” colliding-beam storage rings. PEPi PETRA
and CESR were each designed for a luminosity of 10°%cm~%see=’. PETRA
operates at about a factor of five below this;1 CESRE operates at
about a factor of ten telow.! The luminosity of PEP was for a long
time com?arable to that of CESR, but it has recently been
increased'®® to about 3 x 10°! cm%sec”!. Some of the measures
{specifically, changes in betatron tunes) taken to produce this
increase were suggested by the results of a computer simulation;”s
nevertheless, the reasons for this improvement in performance are
still not understood intuitively.

Luminosity is defined as the number of interactions per sececnd
per interaction region, per unit of interaction cross section. Thus
it 1is a direct indicator of the event rate that a single
elementary-particle experiment can observe. The lower the
luminosity, the longer it takes an experiment to accumulate enough
data for a good result.

To get a feel for what these luminosity shortfalls mean in
practical terms, consider the following illustrative figures, taken
from a recent report:2 At present, the integral of CESR luminosity
over one year (times two for the number of instrumented interaction
regions) is about 100 pb™' (#10*%em™2). A few times 100 pb~' 1is
needed to accomplish a basic program of measuring the B meson mass
and width, and the rates of the dominant transitions between the
upsilon and its known excited states. 1000 pb~! or so would be
needed to obtain information on processes like B-F mixing, N
production and decay, and TT production in the upsilon region.
10,000 pb™! or so would be needed if one sought information
concerning rare but important processes such as CP violation in the
BB system,

It is by now widely recognized that design estimates and real
performance can differ so because design estimates have been little
more than very optimistic guesses.® There is at present no reliable
deductive or semiphenomenological theory of the way in which
beam-beam collisions degrade luminosity in storage rings. This is an
urgent open problem in accelerator physies,

The staff of CESR is presently contemplating modifications of,
or variations on, that faeility that could increase luminosity by
factors of ten or even of one hundred.? It must be stressed that this
will not necessarily improve agreement between design theory and
machine performance.

This paper presents a survey of the experimental and theoretical
literature on colliding-beam effects in both leptonic and hadronic




storage rings. For the meost part, this 1llterature 1is rather
technical and, %o the novice, both obscurely written and hard to
locate. TAlthough there have already been several symposia on the
subject, LIl as well as a number of reviews for
specialistsa'”'”l“”"’112 there has up till now been no unified and
pedagogical exposition. The present work represents an attempt to
fill this gap. Needless to say, there are undoubtedly sources that
have been overlooked or misrepresented here; to theilr authors I
apologize in advance. .

The reader of this review is assumed.to be familiar with the
basic facts of 1linear strong-focusing single-beam storage-ring
theory;* but no prior familiarity with any other details of
colliding-beam physics is presuppecsed.

Qur material is grouped into four major areas: observational
phenomenology, computer simulation, mathematical background, and
theoretical models.

Almost all the material in this review shcould be familiar to
experts. There 1is, however, one exception: The second theoretical
calculation discussed in detail in Chapter V--a critique of a
mechanism proposed by TennysonS to explain the beam-beam effect at
SPEAR--i2 original. '

I¥. EXPERIMENTAL PHENOMENOLOGY

1. Introduction

For orientation, here is a 1list of the major colliding-beam
storage-ring types, together with specific examples (past, present,
and approved or proposed), as well as a few words of general
description:

1. Electron-positron single ring--ACO (France), ADONE (Italy),
DORIS (W. Germany), the VEPP series (USSR), CEA (US, terminated),
SPEAR (US), CESR (US), PEP (US), PETRA (W. Germany), LEP (CERN, under
construction). Counter-rotating bunched e‘e™ beams. Head-on
collisions.

2. Electron-positron, electron-electron, or nositron- positron
intersecting rings--3tanford-Princeton project (US, terminated,
¢"e”), VEP-1 (USSR, terminated, e"e”), DORIS, DCI (France). Two
rings, intersecting tangentially (S-P, VEP-1, and DCI), or in several
locations at a nonzero angle. Bunched beams.

3. Proton-proton intersecting rings--ISR (CERN), ISABELLE (US:
status uncertain}. Two laced rings, intersecting in several
locations at a nonzero angle. Unbunched ("coasting") beams.

4. Proton-antiproton single ring--SPS collider (CERN), Fermilab
Tevatron I (us, under construction); UNK (USSR, proposed).
Counter-rotating bunched beams., Head-on collisions.

For more detajled specifications of these facilities, the reader
can consult Refs. 6 and 7.

These four types all differ in fundamental ways, and these
differences are reflected both in observed machine behavior, and in
the mathematical ideas that have traditionally been applied in



theoretical studies. These differences will be pointed out as we go
along.

Here 13 a schematic list of the colliding-beam-related problems
that are typically encountered in storage ring operation:

Particle less at injection

Particle loss (fast or slow) after injection

Increase in range of tunes for which beam cannot stably be
stored

Expansion of beam size

Impairment of luminosity
Low maximum storable current

Extreme sensitivity of beam characteristics to machine
parameters.

The last four of the these problems are most serious at
electron-positron facilities. There have been attempts to induce
comparable effects in hadronic storage rings (in order to probe the
limits of such machines), but only under extreme and somewhat
artificial conditions.

In the next twe =sections we shall deseribe the beam-beam
problems encountered in normal operation of leptonic and of hadronie
storage rings, respectively. In Sec. 4 we describe colliding-beam
behavior observed in exploratory ISR studies done several years ago
in connection with the design of the SPS proton-antiproton collider.

2. Colliding-beam effects in e*e” storage rings

The issue of greatest concern--by far--to users of
electron-positron storage rings is the disecrepancy between the
luminosity expected aznd the luminosity actually achieved. The issue
is actually composed of two subissues, because there are really two
major design expectations: Luminosity does not grow as rapidly with
beam current as expected; and the maximum storable current is lower
than expected.

In this section, we explain the assumptions underlying the
design expectaticns, and survey experimental- tests of these
assumptions.

I covered much of this material in a lecture presented at last
year's Summer School.’ For the discussion here, that presentation has
been reorganized somewhat, rephrased, and updated. Some of the
information in Ref. 3 (most notably in the exercises) not carried
over to the present discussion may be of interest to the reader who
Wlshes to go more deeply intec this subject.

As will be explained later, proton-proton/antiproton c¢olliders
do not frustrate these assumptions to the same extent. Thus, when
hadronic storage rings are discussed in the next section, the
emphasis will be on different phenomena.

Operators of the largest electron-positron storage rings reportB
great difficulty in adjusting these machines for optimum performance,
primarily because the behavior of colliding e*e™ beams 1is extremely



sensitive to small changes in machine parameters, and the effects of
such changes are often not reproducible. Moreover, operators are
constrained to perform this optimization with a very small number of
adjustments, for the following reasons: It takes a long time (as long
as twenty minutes) to measure the luminosity that is to be optimized,
because of the smallness of electron/positron interaction
cross-sections at high energy; while the beams only last for a few
hours because of the degrading effects of synchrotron radiation and
gas scattering.

Although extreme sensitivity of luminosity to machine parameters
is an object of some attention- in the literature on computer
simulations (see Chapter III), and has been noted in published
reports on ISR exploratory studies (see this chapter, .Sec. 4}, very
little, if anything, has been written about it in the context of
routine storage ring operation. Accordingly, this topiec will not be
discussed further in this section.

We shall not be discussing the effects of beam-beam collisions
on electron and positron spin polarization, although recent studies
at PETRA and SPEAR indicate that polarization is very difficult to
maintain in colliding-beam storage rings. The reader is referred to
Ref. 9 for details.

a. Luminosity vs. current

Luminosity in e%e™ storage rings, where the collisions are
head-on, is quite generally defined by

A A 1 A
L =fB (N1 -A—-) (Nz A_) 1° (fBN;N;) A3’ (1

1 2 1 2

where f is the frequency at which a beam particle circumnavigates the
ring; B is the number of bunches per beam; N; and N, are the numbers
of particles per bunch in the two beams; A, and A, are the
eross-sectional (tranaverse) areas of the two beams at an interaction
point; and A is the transverse area in which the two beams overlap.
By definition, A is necessarily less than or equal to the smaller of
Ay and A,. These are effective areas, defined by weighted averages
when the beam distributions are not uniform. The meaning of the
formula should be clear: N;(A/A;) is the fraction of particles in a
bunch of beam one that actually collide with beam two; similarly for
Na(A/A,)., So [Ny(A/A1)] [N2(A/A;)) 1is the number of particle
collisions per bunch collision, per unit probability of interaction.
Bf is the number of bunch-bunch collisions per unit time at a single
interaction point, 1/A is the probability of a single
particle-particle ¢ollision, per unit cross-section. Typically
Nl:Nz(EN) .

The conventional design estimate of luminosity 1s based on the
assumptions that Ayz=A,=4, and that A 1s equal to Ay, the
current-independent natural electron beam area at an interaction
point, A9 1s calculated in a standard way" from the parameters that



characterize synchrotron radiation and linear focusing; perturbations
such as an opposing beam, interactions between particles in the same
beam, beam-wall interactions, ete., are neglected. {In protcn or
antiproton storage rings, where synchrotron radiation is very weak,
beam shapes and sizes are determined by the injection system,)

The mathematical formula expressing the implication of the first
of these nonperturbation assumptions for luminosity is

L=1%" (eiBf‘A)"l, (2)

vhere N has been rewritten in terms of the more directly measurable
I, the total electric current per beam, {e¢ is the magnitude of the
electron's electric charge.) Together with the second
nonperturbation assumption (A=Ap), Eq. (2) implies that luminosity is
expected to be directly proportional to current squared, with a
proportionality constant determined entirely by simple properties of
single-particle motion in the storage ring.

Empirically, expression (2) with AzAp is observed to describe
the current dependence of luminosity only for low currents. At any
energy, at every e*e” storage ring, there is a turnover current
beyond which L grows more slowly than IZ. Exactly how much more
slowly is not the same for all machines under all conditions, as we
shall see,

Correspondingly, the nonperturbation assumption is empirically
observed to describe the areas A,, A; and A only for low currents.
For large currents, either A; or A; (or both) exceeds A,. This
results in the general expression (1) for luminosity falling short of
formula (2) because

A min(A,,Az2) 1 < 1
AA A A max(A ,A ) A .
1 2 12 1772 o

—

A

This phenomenon is commonly referred to as "beam blowup." Typically,
blowup 1s substantial only in the vertical direction. The natural
horizontal width of an electron or positron beam is almost never
significantly changed by the presence of an opposing beam.

These trends will now be illustrated with data taken at various
storage rings.

Let us begin with measurements of luminosity vs. current.
Figure 1 represents data taken at SPEAR,10 cne bunch per beam. At
the largest current (about 8mA), luminosity falls short of the
quadratic curve, extrapolated from small current, by a factor of
about three. Figure 2 shows data taken recently under various
operating conditions at CESR,11 at about 5 GeV, and with one bunch
per beam. The luminosities at the highest currents shown are between
1.5 and 3 times less than would have been expected from quadratic
extrapolation from =mall current. Note that these luminosity
v3. current curves turn over from quadratic to linear at large I.

. Consider, by contrast, Fig. 3, which shows data from PEP,'? one curve



corresponding to one bunch per beam, the other correspondin to three
bunches per beam.* The three-bunch curve inereases like ! y €ven at
small current. Figure & shows data taken recently at PETRA,13 with
two bunches per beam. The y-axis corresponds to specific luminosity,
defined as luminosity per bunch divided by the sguare of current per
bunch, i.e., (L/2)/(I/2)% = 2L/I*. The x-axis corresponds to current
per bunch, I/2. If the nonperturbation assumption were correct, the
data peoints for the three energies shown would 1lie on three
herizontal lines. Instead, each set of measured specifie
Juminosities declines with current. The largest decline--{rom lowest
to highest current--is 30% at 7 GeV, followed by =lightly less than
30% at 11 GeV, and about 8% at 17 GeV.

This last figure exemplifies a general trend: Colliding beams
perturb one another 1less (at a given machine) as energy increases,
We will see other examples of this phenomenon elsewhere in this
review. One cannot account for this weakening trend solely in terms
of the well-known tendency of electromagnetic scattering to weaken
with increasing energy.!™ Colliding beam effects in storage rings are
cumulative results of many beam~beam encounters; it is necessary to
understand why the weakening of individual encounters is not
compensated somehow by prolonged repetition. This 1s often explained
by naively identifying the synchrotron damping time with some sort of
dynamical memory, and observing that the damping time decreases as
energy increases® (=1/E%). However, it is not really obvious that
this is the right way to leook at things.

The CESR and PETRA data presented here were taken after
"mini-beta insertions" had been installed. Mini~beta insertions are
magnet configurations that lower the scale of vertical beta functions
at interactions points from tens of centimeters (the standard when
these machines were designed) to centimeters. In the case of CESR,11
the reduction was from 11 cm to 4 cm; at PETRA, 13 it was from 20 em
to about 9 cm. These reductions increase luminosity because they
increase focusing at interaction points, and therefore they decrease
all the beam areas A;, A, and A in formula (1), roughly in identical
proportions. I mention this here in order to stress that these
enhancements in the overall scale of luminosity (a factor of Dbetween
two and three in each case‘l’ls) have not significantly shruniken the
range of currents within which the L wvs. I curves are noticeably
non-quadratic, The nonperturbation assumption appears to fail Jjust
as badly with mini-beta insertions as without them. (For a
dlscussion of ultimate limits on the reduceability of
interacticn-point betas, the reader is referred to Chapter III,
Subsecticon 2b.)

We turn now to direct measurements of beam-blowup. The figures
discussed below were all obtained (directly or indirectly) from
photographs of synchrotron radiation. Such a photegraph is made by

*This data was taken before the modifications that have recently
increased PEP's peak luminosity by a faector of about three, At
present, PEP luminosity at peak current is about 60% of the value
that would follow from the nonperturbation assumptions.”9 '



pointing a television camera, or some other type of 1light monitor,
along a tangent to a storage ring. Because synchrotron light is (to
a good approximation) emitted tangent to the path of a circulating
particle, the output from such a monitor gives a representation of
the transverse profile of a beam, light intensity being proportional
to beam density.

(It should be noted that the blowups shown in the following two
figures do not necessarily coincide exactly with what one would see
if one observed the beams at an interacticn region, where luminosity
i1s measured, Beam profiles cannot in general be photographed at
interaction points because little synchrotron radiation is emitted
there--synchrotron radiation requires curved or accelerated motion,
whereas the presence of collision detectors precludes the placement
of bending magnets or RF cavities at interaction points.)

Figure 5 shows such television images of electron and positron
beams under various conditions at SPEAR!® (energy and current not
specified)., "Flip flop" refers to an effect that has so far been
well documented only at SPEAR:'? When the beams are in collision, the
extent to which they blow up can be controlled by adjusting the
relative phase between electromagnetic oscillations in two RF
cavities: Move the phase one way and the positron bunch shrinks while
the electron bunch expands: move it the other way and the opposite
happens. The caption "flip-flop balanced" indicates that the BRF
cavities are phased so that the two beams are blown up equally. (As
it turns out, SPEAR luminosity is always highest when the flip-flop
is balanced. The data in Fig. 1, and in Fig. 7, below, were taken
under balanced conditions.lo) "With flip-flop effect" means that the
RF cavities are not phased for balance. In either case one sees
clearly that at least one beam blows up when two beams collide,

Figures 6z and 6b show intensity profiles of synchrotron light
observed at ADONE!? at two currents, one below the threshold for
blowup and the other above. The energy is near 1 GeV. The eight
peaks are to be read as follows: Let, for example, p{x,y) be the
distribution function of electrons at the low current, in the plane
perpendicular to the axis of a camera looking at the electron bean,
(x and y refer to horizontal and vertical coordinates.) Then the
lower left-hand peak in Fig. 6a is proportional to fp(x,y)dy, while
the lower right-hand part is proportional to (p(x,y)dx. The other six
peaks are interpreted similarly. The blowup of the electron beam at
the higher current is evident in the widening of the lower right-hand
peak in Fig. 6b relative to the upper right-hand peak in Fig. 6b, and
to the two right-hand peaks in Fig. 6a.

Note, as mentioned earlier, that both in Figs. 5 and 6, beam
blowup is apparent only in the vertical dimension.

Although convenient because human eyes can 3ee it easily, beam
slze of course only crudely indicates how particle distributions are
altered when two beans are brought into collision. One can begin to
form a more complete picture with the help of some measurements made
at SPEAR:'? Recall that in a linearly focusing e* or e~ single bean
storage ring, bunch distributions are typically nearly Gaussian."'
SPEAR results‘® indicate that at high enough current, bunch



distributions in an e%e™ collider have tails that are much longer
than would be the case if the distributions were Gaussian. It will
be useful to bear this in mind when we discuss computer simulations
in Part III.

b. Maximum current; tuneshift

The maximum luminosity that can be obtained at a given energy is
determined in part by the luminosity vs. current curve, and in part
by the maximum ¢urrent that can be stored, Maximum current per beam
when there are two beams colliding in a storage ring is typically
much less than maximum current at the same energy when only a single
beam is ecirculating. For example, PETRA, at 7 GeV per circulating
particle, can hold up to 20 mA when operated as a single-bunch
single-~beam storage ring, but only up to about2§ mA per bunch when
operated as a collider with two bunches per beam; CE3R at 5 GeV and
one bunch per besam can hold up to 30 mA when operated with a single
beam, but only up to 10-15 mA per beam when operated as a eollider,'?

The working definition of maximum current varies from storage
ring to storage ring. At SPEAR,21 PEP?! and PETRA,2° maximum current
is the point beyond which background in experimental detectors
exceeds some pre-specified maximum tolerable level. The apparent
arbitrariness in this criterion turns ocut to be of minor importance,
since the rise in background as current approaches maximum is
typically very sharp.21 Other laboratories have applied eriteria
based on beam lifetime.!®7%%»23

The conventional procedure by which designers have traditionally
predicted the maximum colliding current that can be accomodated in
ete” storage rings is based on two general hypotheses: (i) The
destabllizing strength of the force that one beam exerts on the other
beam is completely specified by the value of a single dimensionless
parameter, the linear vertical beam-beam tuneshift per interaction
{or simply "tuneshift," when no confusion is 1likely) felt by the
second beam. The tuneshift will be defined shortly. The current in
a beam that is assumed to have a Gaussian charge distribution is
easily expressed in terms of the tuneshift it exerts, the beam
energy, and the vertical beta function and the beam's dimensions at
an interaction point, through a formula that we shall present later.
(One can also define a horizontal tuneshift, although vertical
tuneshift has traditionally been regarded as a much more important
index of beam stability because, as wWe have seen, beams in ete”
colliders typically blow up vertically much more than they do
horizontally. I am not aware of a more rigorous way of Jjustifying
this peint of view,) (ii) A beam reaches maximum current when %he
tuneshift exerted on it by the other beam attains some maximum value
that can be determined easily by a simple rule of thumb,

To calculate maximum storable current in the conventional way,
one substitutes the maximum tuneshift dictated by the rule of thumb,
together with the beam energy, the expected vertical beta function at
an . interaction point, and the unperturbed (see footnote next page)
interaction-point beam dimensions, into the formula just mentioned.




The problematical parts of this procedure are the use of the
unperturbed beam dimensions {(as we have already seen) and the simple
rule of thumb used to predict maximum tuneshift, At least three
different versicns of the rule of thumb have at various times been
used sericusly by storage ring designers to forecast maximum
tuneshift. We will describe these variants, and compare them with
the performance of the machines to which they were originally
applied, after we have defined the tuneshift below. 3adly, the rule
of thumb-~in any of its versions--has had little real success.

In the future, if no convinecing and flexible analytical theory
of beam-beam effects emerges, it is likely that most important design
predictions will be made on the basis of computer simulation.

We now turn to the definition of horizontal and vertical
beam-beam tuneshifts. In what follows, we shall restrict our
attention to storage rings in steady state. Thus we may assume that
the explicit time-dependence of the non-noisy part of the force felt
by any beam particle is periodie, the period deing the time it takes
a beam particle to cirele the ring once. It is possible to formulate
definitions under more general circumstances, but this will not be
necessary for our purposes.

Horizontal and vertical tuneshifts felt by a beam in a storage
ring are given by the following recipe: Isolate the non-noisy and
non-dissipative forces--due to focusing magnets and to the opposing
beam-~ acting on a test particle in the beam in question. Represent
these forces as series' In powers of betatron and synchrotron
coordinates and velocities, and then discard all but the linear
terms. Evaluate the horizontal and vertical (we are neglecting X~y
coupling) <Courant-Snyder tunes characterizing oscillatory motion in
the presence of such linear, time-periecdie forces. Evaluate these
tunes again, this time omitting the forces due to the opposing bean,
Form two differences: between the two horizontal tunes just
evaluated, and between the two vertical tunes just evaluated. The
horizontal and vertical beam-beam tuneshifts per interaction felt by
the beam in question are given bty these two differences, divided by
C, where C is the number of c¢ollision regions. {In the case of
single~-ring bunched-beam colliders, C is equal to twice the number
(B} of bunches per beam.) . ,

One divides by C for this reason: Storage rings are often
designed 30 that--ignoring inaccuracies in construction and
control--the C regions between the  interaction points are
identical, Thus a =storage ring's natural periodicity is often
naively expected to be C7! times its circumference. Instabilities in
dynamical systems typically arise when a rational number of internal
oscillations take place during a repeat period of the system's

¥Throughout this paper, we use the word "unperturbed™ to label a
quantity that is calculated ignoring interactions between particles
in different beams, between particles in the same beam, and between
real particles and image charges., For example: Ay, defined earlier,
is  the wunperturbed beam area. (This footnote refers Lo preceding
page.) -
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time-dependent parameters. In the case of atorage rings, we see that
the number of horizontal or vertical betatron oscillations per
machine period i1s the norizontal or vertical tune divided by C. This
is why it is considered desirable to include division by C 4in the
definition of the tuneshifts.

(To be complete, we must point out that there 1is a growing
number of indications, primarily from computer simulation, but also
from real experience with proton-proton and proton-antiproton
colliders, that small, irregular departures from ideal storage-ring
symmetries (for example, the C'l-periodicity mentioned abave) play a
major role in the observed behavior of colliding beams. This will be
discussed more fully later in this chapter and in Chapter III.)

Here is how the tuneshift rule of thumb has evolved during the
history of storage ring design:

Version no. 1: The earliest expectation2" was that the tuneshift
could get as large as the difference between C~! times the vertical
tune evaluated neglecting the opposing beam (i.e., ¢! times the
unperturbed vertical ‘tune), and the nearest integer or half-integer
(assuming C'l-periodicity). In other words, beams were expected to be
stable as long as the linear approximation to the colliding system
did not become linearly resonant.

Version no. 2: The earliest e‘e~ storage rings were all
characterized by limiting tuneshifts near .025, much smaller than the
limits expected on the basis of Rule no. 1.2° Tt might have been
natural at that point to try a tuneshift rule based on nonlinear
resonance& but to my knowledge this was not done (although it was
pr-oposed2 ). In the absences of theoretical guidance, designers
adopted the assumption that--for reasons unknown--all e*e” sStorage
rings must be characterized by the same maximun tuneshift, which,
from earlier experience, was conjectured to be about .025. This was
the figure used in the SPEAR design.26

Version no. 3: As it turned out, at high energy the tuneshift at
SPEAR can approach ,06. (The maximum tuneshift at ACO was also .06.)
Thus, in the mid-70's one expected that a storage ring of much higher
energy could routinely reach .06 in the middle of its range. .06 was
thus the maximum tuneshift assumed in the CESR,2’ PEP?® and PETRAZ®
designs.

Subseguent experience has shown this estimate to be much too
favorable. The highest tuneshift observed so far at PETRA'? is close
to .04; at CESR'! the highest tuneshift seen so far is near .02. The
highest tuneshift observed at PEP'? before recent changes!®® in
magnet placement and beta functions waas near .02; since the changes,
PEP has achieved tuneshifts as high as about .05. The original LEP
design29 folloewed Rule 3 in assuming a maximum achievable tuneshift
of .066 but on the basis of CESR, PEP and PETRA performance, this has
since®’ been reduced to .03, This guess is 1likely to be replaced
before long by expectations derived from computer simulations like
the one recently developed for the LEP project by S. Myer's.31 {Myers'
model and its consequences will be discussed in Chapter III.)

We see, in sum, that tuneshifts have turned out to be much more
difficult to predict than was originally conjectured. Nevertheless,
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perhaps for lack of anything better, the tuneshift has become one of
the persistent themes in the literature on storage rings. With this
in mind, let us proceed to develop the phencmenclogy of the beam-beam
tuneshift in greater detail.

In what follows we make a number of standard simplifying
assumptions: The distribution of particles in a beam at an
interaction point, in the <%ransverse plane, 1is assumed to be
(Gaussian, centered at the origin of the betatron oscillations of the
opposing beam; the disturbance that a teat particle suffers when it
passes a bunch from the opposing. beam 13 assumed to be due entirely
to the Coulombic interaction; the whole of this disturbance is
assumed to be felt instantanecusly.

Let us comment briefly on these assumptions: .

-- We have already mentioned empirical indications that particle
distributions in colliders are not Gaussian far from the beam
centers. However, this does not invalidate the above Gaussian
assumption a priori, since the linear approximations required by the
recipe defining the tuneshift are, strictly speaking, meaningful only
close to beam centers.

-- In reality, beam distributions are only approximately
centered, not perfectly centered, as is assumed here, Fer a
discussion of scme effects specifically associated with off-center
collisions, see the next sectlon, as well as Section 2 of Chapter V.

-- The assumption that the beam-beam interaction is entirely
Coulombie means that one neglects inelastic (i.e., radiative)}
electromagnetic scattering, as well as hard processes {e.g., nuclear
scattering in the case of proton/antiproton colliders). Inelastice
electromagnetic scattering cannot be ignored in colliders of
extremely high energy, but in existing storage rings it can be
safely neglected (for an estimate, see Ref. 3, Problem 3). Hard
processes can be ignored because they are generally of much shorter
range than the interparticle spacing in a beam. Thus, a beanm
particle participates in hard processes only occasionally, while it
responds to the combined Coulombic force due to all the particles in
every passing bunch in the opposing beam.

-= Strietly speaking, the time elapsed during an encounter
between a test particle and a bunch from the opposing beam is {(in an
ultrarelativistic storage ring) half the bunch length (see Fig. 17)
divided by the speed of light. This is always very much shorter than
the time between encounters. It is also usually much shorter than
the time scale on which a beam particle sees variations in the
storage ring structure (magnetic fields, etec.) near the interaction
region; although these time scales can be comparable if either the
vertical or horizontal beta functions at an interaction point becomes
less than the bunch length, The beta functions are not that small in
existing storage rings. ({(This point will be explored further in
Chapter III. For a discussion of the manner in which rapid variation
in beta functions can alter tuneshifts, see Ref. 111.)

Under these assumptions, the tuneshift due to a beam in a
single-ring bunched-beam collider satisfies the following equation:
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cos 21 (U_.Au 3y - ™ _2ng ™,
vt y) cos 2 y 2 y sin 2 y (3)

(For a derivation, see Ref. 3.) In this equation, Au_ is the
tuneshift, and §_ is C~' times the unperturbed vertical storage ring
tune. The pargmeter £ i3 defined, fer oppositely charged beams
colliding head on (i.e., *e” or pp), bY

g, = ¢ Y

y 2nBf (h

W oW &

] *
Ecy(o +0y) ’

where. B* iz the vertical beta function at an interaction peointj c;
and 0 abe the horizontal and vertical half-widths of the beal
distributions at an interaction point; E is the energy of a beam
particle; and all other symbols have been defined before,

When collisions are not head on, Eq. (4) must be modified. For
example, the formula to be wused in the case of the ISR, or of
ISABELLE, is’

%
B I
£, =~ — — (4a)
¥ vYemne Ecytan(a/2) ’

where «a is the angle at which the beams cross. (Strictly
speaking--since such machines involve two rings each--E and g* refer
to one ring of a collider, while I and O_ refer to the otheri) Note
the signs of (4) and (La): Tuneshifts areypositive when the.colliding
beams have charges of opposite gign; they are negative when the
colliding beams have charges of the same sign.

£ 1is frequently referred to as the "vertic¢al space-charge
parameter." For typical storage ring currents, £ is quite small.
In particular, for electron-positron storage rings”’ operated under
optimal conditions, § is generally a few times 102, At the ISR and
the SPS, £ is typically much smaller--between a few times 10” ' and a
few times”’ 107 it is commonly supposed that this is why colliding
beam effects are much less pronounced in the ISR and the 8PS, than in
e*e”™ storage rings.

Thus, for most purposes, it is permissible to reduce Eq. (3) to

A =
wo= L, (5)

as long as U_ is not too close to an integer or a half-integer. (In

ACO and in AD6NE, with U close to an integer, AU and & could

differ considerably:llzy In ACO, the largest valueof Ay, wis about

.06, while the largest value of & was about .04; in ADONE, the

largest values of Ay and £ Yuere .03 and .08, reapectively.) A
- similar formula appliesyto Aux.



13

(Note that for £ >0, Eq. (3) cannot be solved for real 8  when
Y. lies within any’ interval of the form ([n/2 - (1/2T) ¥recot
(27 )1, n/2), where n is an arbitrary integer. [For £ <0, as is the
case” in proton-proten colliders, the forbldden intefvals have the
form (n/2, [n/2 - (1/27) Arceot (27E }7).] For such ¥, the storage
ring with colliding beams, in the Xinear idealizatign, is forced to
have a tune with a nonzero imaginary part. This meana that
small-amplitude osciliations of a stored particle about its bunch
center, in the presence of the opposing beam, run away exponentially
in time. From this, one concludes that e*e™ or pp colliding-beam
storage rings should not be operated with single-beam tunes (per C)
that lie Jjust below an integer or Just below a half-integer.
Proton-proton storage rings should not be operated with single-beam
tunes that lie just above an integer or a half-integer.’®

A more sophisticated picture of linear instability leads cne to
conclude that e¥e™ and pp colliding beams should not be operated with
single~beam tunes--not divided by C--that 1lie Just below an
integer.38 The modes of oscillation that are expected to become
unstable when C x (1 +Au ) is an integer that does not equal ¢, #C/2,
*C, ete., are cohgrqgﬁf-in such a mode, all the particles in each
bunch oscillate in phase with one another, i.e., each bunch
oscillates as a rigid body. By contrast, the instabilities that set
in when U + AP is an integer or half-integer, as discussed in the
preceding paragraph, are incoherent-~the unstable modes are
single-particle modes, i.e., the instabilities are not accompanied by
apecial phase relationships between the particles involved. Although
signatures of beam-beam induced c¢oherent oscillation have been
observed quite c¢learly in some computer studies,“° coherent motion
has been difficult to see in the behavior of real storage rings
without resonant execitation by some external stimulus. Attempts to
associate beam-beam collisions at the ISR with the existence of
significant numbers of stored protons oscillating in phase are
reported in Refs. U1 and 42.)

From (4) and (5), one obtains

R
onBf Ea, (o +0y

% B

. Auy . (6)

W oMW W

This is the formula for beam current that was mentioned earlier, when
we introduced the conventional procedure for predicting maximum
colliding current. . In gpplications to high-enerzy e*e™ storage
rings, the factor 0 (0 40 ) is often replaced py O O _, because o*/c;
i3 usually much les¥ than’one. The product 0 C_ isy in turn, opfen
rewritten as A®*/4r, where A* is the effedt¥ve area filled by the
Gaussian distribution (the factor 4m accounts for the part of the
distribution 1lying beyond the half-widths). With these changes,
Eq. (6) becomes
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(6a)

Formula (6a) is especially suited to calculations describirng the
collision of two equivalent beams (equal E's, equal A¥*'s, equal
Ay _'s), In particular, in this case, substitution of (6¢) into (2)
(sgtting A = A%) leads to the following simple relation between
luminosity and tuneshift y

2, % .
L=32 . ETAT L oapy?, 7
e * B*2 Y
0 y

The design expectations for maximum storable current at CESR,
PEP and PETRA were all obtained from Eq. {(fa), using AR = .05
(together with expected values of E, B‘, and of unperturbed A “(l.e.,
of A )). Maximum achievable luminositils were predicted from Eq. (T},
usin& the same parameter identifications.

In order to form a sense of how these predictions fail, 1let us
briefly consider them in detail for the case of PEP, priocr to the
modifications described in Ref. 108. (I choose PEP because its
electron and positron beams happen to have roughly equal dimensions
even when blown up,’’ so that Eq. (7) is applicable, even when A¥ is
not equal to Ag): At PEP, until recently, the maximum Au_ at the
design energy of about 15 GeV was about .02, one third the? design
value,'? Furthegmore, the beam area A% exceeded Ap by about 50% at
maximum current,’’ Thus, according to (ba), the overestimate of
maximum current due to failure of the second nonperturbation
assumption, and to failure of the tuneshift rule of thumb used in
design, was 2/3 x 3, or a factor of two. Similarly, the overeatimate
of maximum luminosity due to the =same causes was 2/3 X 32, or a
factor of =six. (Differences between predicted and achieved maximum
current and maximum luminosity also receive contributions from
dlscrepancies between the design values of storage ring magnetic
lattice parameters nd the lattice specifications achieved in
practice, because B and A depend on the lattice. We are not
concerned with such contributidns in this paper, as they are due
primarily to single~beam problems.)

The easiest way to measure tuneshift is this: Measure current
(using an inductive pickup enclosing the beam pipe) and luminosity
{observing the rate of some well-understood hard scattering process),
and then compute tuneshift from the formula

. sy ¥ , L
Auy-(Zeu )*E—:"- T (8)
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This relaticn 1s obtained by equating the left and right-hand sides
of Eqs. (6a) and (7). The virtue of (B) is that it does not refer to
A*, which cannot easily be observed at a densely instrumented
interaction point.

It is Instructive to consider the results of some
maximum-tuneshift measurements of this kind: Figure 7 shows maximum
achievable tuneshift vs. energy as measured at SPEAR.!'? Figure 8
shows tuneshift vs. current per bunch (two bunches per beam) for
three energies, as measured at PETRA.'® The maximum achievable
tuneshifts in the latter case are the values of £ at which the &
vs. I curves reach plateaus; no plateau is seen inh the curve ag
17 Ge because at that energy it turns out that collision-unrelated
factors destabilize the PETRA beams before the plateau can be
reached.

These figures show wvery clearly that maximum tuneshift can
depend significantly on energy at a given colliding-beam storage
ring. This is important to bear in mind, because our discussion up
te this point may have given the impression--and most of the
literature on colliding beam theory definitely gives the
impression-~that one maximum tuneshift characterizes a storage ring
for all energies at which it is designed to operate. This is simply
not true,

Note, incidentally, that in each of these figures the maximum
tuneshift rises with energy. This is another example of the general
tendency, mentioned earlier, of colliding beams to perturb one
another less (at a given machine) as energy increases.

Figure 7 is perhaps the more interesting of these two graphs
because it shows clearly the existence of two regimes in which the
storage ring behaves in two qualitatively different ways: For energy
less than about 2 GeVi the maximum 3PEAR tuneshift appears to grow as
a power of energy (®E“*"), while for energy greater than 2 GeV, the
maximum tuneshift appears to saturate at a value between .05 and .06.

Of these two regimes, the one at low energy is so far the more
thoroughly studied phenomenologically: Wiedemann'® and Cornacchial!®
have shown that other functions characteristic of SPEAR can be fit to
power laws for E<2 GeV. 3uch functicns include maximum luminosity
vs., energy; and also luminosity vs. current at fixed energy, or
vs, energy at fixed current, for currents that exceed the
energy-dependent turnover point keyond which L grows more slowly than
I2. Wiedemann®" has also discovered a simple parametrization of SPEAR
data in this regime of low energy and high current that appears
successfully to deseribe the operating characteristics of other
storage rings in similar regimes. His universal formula is

L= (4x10%%) « /T » E}* « (1/B)!*5, (9)

where f and B are as defined following Eq. (7). The plot in Fig. 9
shows how close the formula comes to experimental data taken at a
number of different storage rings. (Note that SPEAR data taken at
high energy and/or low current is not shown in this figure.) A
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discussion of power law fits applied by other workers to the behavior
of other storage rings can be found in Ref. 35,

Bef'ore the SPS was operating routinely as a proton-antiproton
collider, there were attempts to use e'e” data of the kind shown in
Fig. 7 in order to predict, by extrapolation, the maximum tuneshift
that could be achieved in a Ep storage ring. To carry out such an
extrapolation, one had commonly to assume that there always exists
some (typically 1low) energy at which a given e*s™ storage ring
behaves as a simple rescaling of the high-energy pp storage ring
being designed or proposed.

A careful analysis35 reveals that the parameters of two
colliding-beam storage rings must satisfy a number of relations
before one can properly consider the two c¢olliders to be rescaled
versions of one another. In carrying out tuneshift extrapolations,
it was commonly assumed!® that only one of these
relations--specifically, equality of the number of bunch c¢ollisions
in a radiation damping time--i=s sufficient to guarantee that two
storage rings are equivalent up to overall scale.

Let us determine the energy at which SPEAR is equivalent,
according to this simplified criterion, to the 250 GeV SPS collider:
The number of bunch collisions in a damping time T is equal to 2B2ft.
T depends on storage-ring circumference fL&p, particle mass m, and
particle energy E as", roughly, (constant) * (m*L¢2/E%}; f depends on
these parameters as (constant)} + 1/%s. Thus, assuming equal numbers
of bunches 1n the two storage rings, SPEAR and the 3PS are equivalent
according to the criterion above when

4/3 1/3
B - "SPEAR *o5pEar
SPEAR = “sPS %o

fsps SPS

n

(250 Gev) + (1836)~*/%« (29.5)~1/?

11

.0l GeV . (10)

If one extrapolates the low-energy part of the curve shown in
Fig. 7 down to this energy, one predicts for the SPS a maximum
tuneshift of about 5x10™%, This turns out, with hindsight, to be a
bad prediction: Tuneshifts at the SP3S collider are routinely as high
as a few parts per thousand.®’ Thus, one should be wary of such
extrapolations, and of the simple assumptions that go into them.

One of the most serious weaknesses in such an extrapolation is
the following: Electron-positron storage rings, from whose behavior
one wishes to extrapolate, have radiation damping times that vary
between a few milliseconds at very high energy and a few seconds at
very low energy. Thus, a great deal of transient behavior has died
away by the time measurements are made. By contrast,
proton-antiproton storage rings, to which one wishes to extrapolate,
have radiation damping times of several months, 30 that the
transients that are not seen in observations of e%e™ colliders are
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necessarlily fully present for any practical DPp measurements made
under normal c¢ircumstances. In other words: If ‘there are
characteristics of EE (or pp) storage rines, operated under normal
conditions, that can be predicted by extrapolation from e a
machines, operated under normal conditions, then one does not have
enough time to see such characteristics set in. An interesting
example of an extrapolation that goes the other way--from pp to
e'e --and involves measurements made under abnormal conditions, will
be menticned in See. 4.

One quantity often mentioned in conjunétion with the (vertical
or horizontal) tuneshift is the (vertical or horizontal) tunespread.
Here is a brief schematic definition: Recall first the general form
of the vertical betatron oscillation of a particle in a storage ring,
when nonlinearities in the forces due to magnets, and to the opposing
beam, are neglected:

s das!
y(s) = VzIyBy(s) cos(%y + Io E;TETT> . (11)

s is the product of time and the speed of light, and I (nonnegative)
and ¢ are artibrary independent constants of integrat{on; B depends
neitheér on I , nor on ¢ . In a sense that will be made précise in
Chapter IV, the leadiﬁg effect of the nonlinearities (due primarily
to the opposing beam) neglected in (11) is that the form (11) is
replaced by

] . 3 gs
yi{s) = #2Iy8y(s) cos (21T<M)Guy(1x’1y) + ¢y + f ))’

o By(S'

(12)

where L9 is the storage ring circumference, and &p is some function
of I and I . In particular, in the presence of honlinearities, the
tune 3f vertifal betatron oscillations—-in (12) given, per C, by
uoo+ 6 (1_,I )--depends, 1in a first approximation, on the amplitude
o¥ oseiglagio . The vertical tunespread is the difference between
the largest and smallest values taken by this amplitude-dependent
tune (i.e., by &8u_, since u_ is independent of amplitude).
Horizontal tuneSpreaé is definedyin a similar way.

(It may be of interest Lo note that a nonzero tunespread can
contribute to beam stability. In particular, certain resonant
instabilities, to which a single beam can be subject when its tune is
very narrowWwly determined by the storage-ring hardware, can become
less severe under the influence of beam-beam collisions, because they
can spread out the range of tunes in the beams bevond the instability
bandwidths. Such an effect has been observed at AC0.°%)
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In general, tuneshifts and tunespreads all have the same order
of magnitude (in other words, the tuneshift sets the scale for both
linear and nonlinear beam-beam perturbations). This rough equality
can be quite useful. It tells us, Ffor example, that one cannot use
compensating magnets to cancel the nonlinear forces that cause beam
blowup and limit storable colliding current, because tunespreads as
large as the beam-~beam tuneshifts typical of ete” storage rings are
two orders of magnitude greater than can be practically reproduced by
arrays of magnetic lenses.?® A more promising method for cancelling
these destabilizing forces is the subject of the next subsection.

¢. The DCI project

To the best of my knowledge, the French DCI project39 represents
the only significant attempt to develop a means of cancelling the
nonlinear forces that cause beam blowup and 1imit current in
electron-positron colliding-beam storage rings.

DCI consists of two e*e” storage rings (peak energy 1 GeV) with
two regions of tangency, as shown in Fig. 10. 1In one ring, electrons
travel clockwise and positrons travel counterclockwise; in the other
ring, these directions of <¢irculation are reversed. In the
interaction regions, bunches from the two oppositely~charged
counterclockwise beams can (when the timing is right) combine to form
electrically neutral bunches that collide with eleetrically neutral
combinations of positively and negatively charged clockwise bunches.
The more complete the neutralization, the more complete the
cancellation of Coulombic beam-beam kicks; and therefore, presumably,
the smaller the blowup and the higher the maximum colliding current.

{This scheme makes the experimentalist's job harder, because he
or she must be able to distinguish between electron-positron,
electron-electron, and positron-positron collisions; but this would
be a small price to pay for a large increase in luminosity.)

The success of this project has been limited. On the one hand,
beam blowup has, under certain conditions, been suppressed; on the
other hand, no increase of maximum c¢olliding current has been
achieved.

The results of four experiments performed on DCI"? are shown in
Fig. 11. In one experiment ("eYe™ lower ring") equal electron and
positron currents were circulated in one ring, with the other ring
vacant; the second experiment ("ete~ upper ring") was identical to
the first, except that the two rings were interchanged. In the third
experiment ("3 beams"), one ring contained a large current of one
charge and a very small trace current of the opposite charge, while
the other ring contained only a single beam, of current equal in
magnitude to that of the strongly populated beam in the first ring,
but of opposite charge. In the fourth experiment ("4 beams"), four
beams of equal current were circulated at the same time. Neither
beam could be neutralized in cases one and two; in case three, the
high current beams could in principle neutralize one another; in case
four, all beams could in principle be neutralized.
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The abscissa of Fig. 11 refers to the current in any one of the
two or four beams in the first, second or fourth case; in case three,
the abscissa refers to the current in either of the ¢two strongly
populated beams. The ordinate of Fig. 11 refers to the
cross-sectional area (measured at some fixed storage ring reference
point) of the <trace beam in the third case; the beam whose area is
given by the ordinate in the other cases is not =specified; in all
casesd, the area 1s normalized to the low-current area of a single
isolated beam.

In the first two cases, a strong current-dependent beam blowup
is clearly evident in Fig. 11. In the other two cases,
neutralization has the desired effect of suppressing blowup.
However, this success is offset in the realistic "4 beams" case by a
low maximum current.

3. Colliding-beam effects in pp and pp stcrage rings

a. Introduction

The beam-beam effects that dominate the literature on routine
operation of e*e” storage rings do not figure in corresponding
discussions of the ISR and the SPS: Under normal conditions, ISR and
SPS beams do not generally blow up; and the ISR or SPS current per
beam that can be stored with beams in ecollizion i3 not generally
smaller than the current that can be stored when only a single beam
is present. (Observations made under abnormal conditions are
discussed in Sec. 4,)

For this reason, the literature on routine operation of the ISR
and the BSPS has never had a dominant theme. Although miscellaneocus
effects of beam collisions are easily detectable in normal ISR and
SPS performance, these effects are generally too small, or too slow,
to Justify the kind of singleminded attention that is typically paid
to blowup and to tuneshift shortfall in reports on electron-positron
storage rings.

In this section, we discuss four such small or slow effects that
have been publicly documented, two at the ISR and two at the SPS.
Where appropriate, we shall try to assess the importance of what nas
been seen.

~ Three of these four otherwise diverse effects have this 1in
common: They occur most strongly when the orbital parameters of some
beam particles come close to satisfying resonance conditions. The
form of the most general such condition is

BeVe *+ 0V + T nyr/r = n (13)
1

or equivalently (redefining n)
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fi-fo
AY Vv = .
nxx+nyy+zni . n (114)
i o}

In these equations, the n's are integers, v_ and'Vv_ are the storage
ring tunes (not divided by C), £ 4is the revofution ¥requency of such
a resonant particle, and the f, are frequencies of any periodic beam
perturbations that are not syncﬁronized with f ., Suech perturbations
usually arise from coupling to longitudinal oscillations, and from
the interaction of beam particles whose orbital frequencies differ
slightly because of slight differences in energy. Thus, neglecting
longitudinal coupling (as is often done) f and the £, are typiecally
very close; for most purposes (but not for all--see below) one does
not distinguish between them, and therefore the summation term in
{13) or {14) is ignored.

The resonant relations that have actually been correlated with
beam-beam phencmena at the ISR or SPS involve n_'s, n 's, and n,'s
that are not larger in absolute wvalue than *about? ten. steh
correlations would not be meaningful if a much wider range of
integers were inveolved, since ' any pair of tunes can be closely
approximated by a V_and a V_ satisfying a relation of the form (13)
or (14), provided one uses sufficiently large integer coefficients.

The existence of discrete, often unstable, phenomena that are
associated with small numbers of rescnance conditions is z typical
characteristic of systems with weak nonlinearities, When
nenlinearities are strong, it 1is often difficult to associlate
observed effects with specific resonances. For these reasons, one
often identifies ISR and SPS tuneshifts/tunespreads (0(107%)) with
weak nonlinearity, and e%e”™ tuneshifts/tunespreads (0(1072)) with
strong nonlinearity.

The term n V_ is usually omitted in discussions of the ISR,
because the ISR™ beam-beam interaction hardly couples to horizontal
cacillations, The reason for thig is as follows: Recall that the ISR
beams both lie in the horizontal plane, are both continuous, and
cross at an angle. Thus a particle in cne beam sees the other beam,
at a crossing peint, as a charge distribution that is nearly uniform
in the horizontal coordinate (see Fig. 12), and therefore no kick
that a particle gets from the opposing beam has an appreciable
horizontal component.

By convention, one usually writes rescnance conditions using
integers n_, n_, {n,}, and n that have no common divisor., However,
as we shall’”see in Cn pter IV, there is a mathematical sense in which
one might distinguish between a resonance indexed by (n_, n_, {ni},
n) and one indexed by (mn_, mn_, {mn,}, mn), with m an %nteger not
equal to one, zero, or mihus ofle. I% the discussions that follow, we
shall assume that all resonances encountered are described by
integers (nx, n,, {ng}, n) that have no common divisor, even when
interpreted accoréing td the mathematical formalism to which we have
Just alluded. When the integers n, and ny are small (one or two),
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this might lead to meaningful ambiguities. However, in this section
we shall be discussing the effects of rescnances for which either n
or n_ is so large that it would bpe difficult ¢to impute the samg
effegt to a resonance indexed by mn_ and mn_, with |m|>2. The effects
assoclated with a resonance usually diminisﬁ rapidly Tas the order
(Inx|+|ny|) of the resonance grows.

b. Colliding-beam effects in the ISR

The effects to be discussed here are: loss cof current (over and
above the single beam 1loss rate)} while two coasting ISR beams
collide; and loss of current (over and above the single beam 1loss
rate) while the ISR rings are being filled. The single beam loss
rate is a few parts per million per minute;““ it is primarily due to
hard nuclear collisions with residual gas molecules that have not
been removed by the storage ring vacuum pumps.

In the context of the preceding discussion, the fundamental
difference between these two effects is this: In the former case, all
the forces on a circulating particle are synchronous with its
revolution frequency, and therefore there are no £, terms in the
corresponding resonance conditions (14). In the atter case,
circulating particles experience asynchronous perturbations, and
therefore there are nontrivial . terms in the corresponding
resonance conditions. *

Current loss from coasting beams in collision: Guignard“s
reports that although the loss rate for ISR ceoasting beams in
collision is usually comparable to the rate of single-beam current
losa, colliding loss rates as high as 20-60 ppm per minute have been
observed when the storage rings are operated in a atandard
confilguration that places the vertical tunes near a fifth order
{n_ = 5) resocnance.

This particular rate enhancement turns out to be one of the few
concrete numbers in colliding beam physics that has been plausibly
explained by a theoretical calculation. This caleculation is
described in Chapter V. '

Even without a detailed calculation, one can immediately draw an
important conclusion when beam loss is enhanced near an odd-order
vertical resonance: Contrary tc a common idealization, the beam
distributions cannot bhe exactly symmetrical about the horizontal
plane of the design orbit. (Indeed, in the case reported by
Guignard, the centers of the colliding beams were vertically
misaligned by about .2 mm--about one~tenth the vertical size of a
beam.) The reason: In a machine with perfect vertical symmetry, one
expects (as will be explained in Chapter IV) to aee enhancement of
current loss only near vertical resonances of even order. We shall
use a similar argument £o draw a similar coneclusion from one of the
3PS effects described in the next subsection.

Current loss during filling: According to Gourber et al.,“'ﬁ a
persistent enhancement of current loss during storage ring filling
was at one time a problem at the ISR. (The precise magnitude of the
problem is difficult to abstract from the published reports--although
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measurements of current loss are tabulated, the scales are
suppressed. Beam blowup during filling is also mentioned, but in
this case no quantitative measurement--with or without a 3cale--is
cited,) The remedy that eliminated this effect was suggested by a
qualitative theory that we explain below.

Before we proceed, it should be pointed cut that the ISR beans
do not actually intersect while the storage rings are being filled.
During filling, magnetic separators*7 keep a vertical distance of
about 8 mm between beam centers at crossing pointa,"s while, as
mentioned earlier, the vertical thickneas of a beam is only about
2 mm, Thus, loss enhancement during ISR filling differs from the
other phenomena discussed in this paper in that it arises from a long
range Coulombic interacticon between the two beams.

Enhancement of current loss during ISR filling is wunderstoo
to be a consequence of the beam bunching that necessarily accompanies
the filiing proceas. Let us Dbriefly explain why fillinge-or
fstacking"--~a beam of uniform longitudinal distribution entails some
bunching in intermediate stages of the process. We will then explain
how this bunching provokes beam losses.

A storage ring is filled with a coasting beam in the following
way:“s An injecting accelerator deposits some particles into a
storage ring orbit. The radius of the orbit is determined by the
particles' energy, which is in turn determined by the characteristics
of the injector. In order to make room for the next batch of
Injected particles, the bateh already in the storage ring must be
moved to a different radius. This is done by <changing 1its energy,
il.e., by accelerating it slightly, using RF cavities. After the next
batch of particles is injected, acceleration takes place again, to
make rocm for ancther batch, and so on. The bunching mentioned above
is maintained by this periodic acceleration, as dictated in the usual
way by the theory of phase stability in c¢ircular accelerators.”

Because of this bunching, a beam that is in the process of being
filled has a complicated shape. The circling of the beam causes
details in this shape to propagate around the storage ring--a feature
at a given radius circles the storage ring at (roughly speaking) the
orbital frequency of particles stored at that radius. As there is a
range of orbital radii represented in the beam, there is a range of
circulating frequencies represented in the bzam's shape.

With this in mind, consider now a test particle in the opposing
beam, assumed to be already filled. It feels the beam that is being
stacked as a superposition of periodic perturbations whose
frequencies are given not only by the frequency with which the test
particle itself circles its storage ring but also by the frequencies
with whieh details in the stacking beam's shape circle the stacking
beam's storage ring. In view of the foregoing paragraph, these
frequencies are spread with nonzero bandwidth about the test
particle’s orbital frequency. Enhanced current loss is thought to
oceur during stacking because"® some of these frequenciles can serve
as fi'a to the test particle's f_ in destabilizing resonancesz of the
form™ (14), Such resonances In this context are called "two-beam
overlap-knockout™ resonances. When filling is completed and the BRF

d‘!S
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cavities are turned off, details of the beam distributions wash
themselves out, only f is left to determine the periodicity of the
beam-beam force, £he® overlap-knockout rescnances disappear, and
current lcss settles down.

Direct--although somewhat artificial-~support for this picture
comes from the following type of experiment: Two low-current beams of
nearly equal, narrowly defined energies are loaded into the ISR
rings. One beam is allowed to coast (unbunched); the other
beam--necessarily bunched--is accelerated slowly but steadily. The
current in the .coasting beam is monitored threoughout the acceleration
¢ycle, and then graphed as a function “of the varying fractional
difference between the energies of the two beams. Since the
difference in the two beams' revolution frequencies iz proporticnal
to the fractional difference between their energies {(as long as that
difference is small), one derives, from the picture above, the
following qualitative expectation for this graph: It should show
strong variation®* at discrete values of AE/E satisfying

AE
ny\)y+n1C(E) = n, (15)

where the n's are integers, as before, and { is some numerical
constant.

One such &gr-aphl'5 is reproduced here as Fig. 13. As expected,
the slope is amplified at discrete values of the relative energy
difference. The labels at these points indicate n and n values
that have been assigned by the experimenters. "First order"’means n
= 1, "second order"” means n_ = 2, The same integer n is associated
with all points having the fame n ,

It must be borne in mind tnag such experiments exaggerate the
effect that overlap-knockout resonances have on current loss during
routine filling. In routine filling the beam energies and
frequencies are not so narrowly defined, and therefore the onset of a
rescnant instability is not so distinct.

The remedy for enhanced current loss and beam blowup during ISR
filling turned out to be a simple modification of the RF system.
This modification lengthened the bunches that are formed during
acceleration. Lcosely speaking, this smooths out the features in the
shape of the beam that is being stacked, thereby reducing the
asynchronous components of the perturbation felt by a particle in the
opposing beam. .

¢. Colliding-beam effects in the SP3

We describe briefly two proton-antiproton effects that were
highlighted in a recent report on the SPS by Evans and Gar*eytc:'::'+9
Large variations of beam lifetimes that result from small variations
in tune; and slow asymmetric particle 1losses that result in

"R quantitative theoretical prediction of the strength and shape of
this variation i3 not available, :
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equalization of the emittances of two initially unequal-emittance
colliding beams.

Tune~dependence cf beam lifetimes: Tune variations as small as
about .01 have been observed tc result in large variations in beam
lifetime. A sample measurement of antiproton beam lifetime, as a
function of horizontal SPS tune, 138 shown 1in Fig. 14, This
measurement was performed with one bunch per beam, and with v _v
held fixed at about .02. One sees that the lifetime drops Ey 4
factor of about three between v. = .71 and v = .72,

It should be noted that al%hough the miﬁimum lifetime~-about two
hours--reached by the curve in Fig. 14 is comparable to typical beam
lifetimes (about five hours) in electron-positron storage rings, it
is much shorter than is desirable at the 3PS. Ideally, beam lifetime
should exceed the time needed for accumulating and c¢ollimating a
replacement antiproton bunch. At the 3PS, this replacement time is
about twelve hours. The largest lifetimes observed at the SPS are in
the range 40-50 hours,

The experimenters have indicated, by the markings "7th order®
and "10th order," that the curve in Fig. 71U shows structure at the
resonances 7\’x = 187 and 1va = 267 (\)x = 26,714 and \’X = 26,700,
respectivelyl}’, As in the Preceding Subsection, one cafl immediately
draw two important conclusions from these features: First, either one
of the two bunch distributions is not left-right symmetric when
viewed along its beam axis, or the horizontal alignment of the two
bunches 1is not perfect when they collide {or both). Second, the two
regions between the two interactions are not completely identical,
contrary to one of the expectations articulated in Seec. 2b.

The reasons for these conclusions are as follows: In the
behavior of a storage ring with left.right symmetric beams that
collide horizontally centered, one expects to see tune-dependent
structure only near horizontal resonances of even order; the

resonance 7Ux = 187 violates this condition. In the behavior of a
storage ring built of two identical sections, one expects to see
tune-dependent structure only near resonances n V. 4+ VV = n with n

even; this condition is violated by 7v_ = 18% &nd 18vY = 267. Tnhe
mathematical basis for these symmetry expectations will be explained
in Chapter IV,

Emittance equalization: At injection, the antiproton beam in the
SPS has mean emittances approximately 50% greater than those of the
proton beam (i.,e., transverse dimensions approximately 25% greater
than those of the proton beam). In experiments involving two proton
bunches and one antiproton bunch (wr1018 particles per proton bunchs
w10%-1010 particles per antiproton bunch11°), it was observed that
over a periocd of about seven hours, antiprotons having emittances
significantly larger than the mean proton emittances were lost
(absorbed by the pipe wall) faster than their counterpart protons,
and faster than could be explained by encounters with residual gas
left behind by the vacuum system. After about seven hours the
transverse dimensions of the antiproton beam matched those of the
proton beam. Thereafter {(for the remaining ~40 hours of storage),
beam dimensions remained matched, and particle loss proceeded at a
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rate adequately accounted for by gas scattering. The role--if there
is one--of resonances in this phenomenon is not at all as apparent as
the roles played by resonances in the other ISR and B3SPS effects
discussed in this section.

4, Nonstandard ISR studies

In this section, we discuss several experimental studies carried
out at the ISR under nonstandard operating conditicns. Scme of these
studies were in part conducted to help designers determine in advance
how pPp colliders would perform, and what their limitations would be.
In each study, an artifice was employed for the purpose of
reproducing the operating conditions anticipated in a head-on
bunched-beam collider. Every nonstandard study was also in part--if
not entirely--conducted for the purpose of accumulating experimental
information about the consequences of large rnonlinearity. In each,
some artifice was employed with the aim of substantially increasing
the tuneshift felt by one of the beams,

A priori, an ISR beam is a poor model ¢f a beam in a head-on
collider 1like the SPS, mainly because it is not bunched, and because
the localized target (the opposing beam) in its path resembles
Fig. 12b, rather than Fig. 72a. The ISR has on separate occasions
been modified in two different ways to compensate for one or the
other--unfortunately not for both--of these deficiencies:
Experimenters have bunched one ISR beam, leaving the other
continuous. (Because bunching substantially reduces beam current,
the continuous beam in such an arrangement is hardly perturbed; thus
the test beam 1is necessarily the bunched one.) In this case,
bunching is the characteristic being simulated. Experimenters have
also placed a system of current-carrying bars (a2 "nonlinear lens") so
that the bulk of its magnetic field lies in the path of an unbunched
ISR beam {the other beam 1is shut down). In such a study, the
nonlinear lens is introduced to simulate the shape of the target in a
head-on collider.

In order to enhance the tuneshift felt by an ISR beam (bunched
or unbunched) against which a second high-current beam is circulated,
experimenters have on separate occasions tried decreasing its energy
and increasing the value of its beta function at interaction points,
in either case leaving the opposing beam's characteristics unchanged.
The rationale for these measures is provided by Eq. (l4a), according
to which the tuneshift fe;t by the teat beam is expected to vary in
direct proportion to B , and in inverse proportion to E. In
nonlinear lens studies, tdneshift is increased by raising the current
in the current-carrying bars.

Energy-reduction experiments (with and without bunching)
have been inconclusive, because apparent single-beam instabilities
turn out to 1limit the extent to which energy can be reduced
practically. For this reason, I shall not comment further on studies
inveolving energy reduction.

. Zotter®? used the high-beta technique on continuous beams to
obtain tuneshifts between .005 and .02 in absclute value. At each

50,51
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tuneshift, he measured the lifetime of the test beam. His data is
reproduced in Fig. 15. According to the figure, the dependence of
lifetime on tuneshift 1is approximately exponential, through two
orders of magnitude in lifetime. As far as I know, this has not been
theoretically explained,

Zotter pointed out®? that his data, extrapolated to a tuneshift

of +06--SPEAR'S maximum--predicts a lifetime of a few
milliseconds-~the order of magnitude of SPEAR's synchrotron radiation
damping time. This ceincidence is probably not significant,

considering that at CESR's maximum tuneshift, about .02, Zotter's
data shows an ISR lifetime of about one hour, six orders of magnitude
longer than CESR's damping time,

Hofman et al.®! used the high-beta technique on a bunched ISR
beam and obtained tuneshifts as high as about .0035 in absolute
value, comparable to current SP3 values, Their main finding at this
tuneshift concerned the effects of beam misalignment: They found that
when the colliding beams were well-centered, test-beam 1lifetime was
about 30 hours; tut when the beam centers were separated vertically
at crossing points by about half a beam thickness, teat beam lifetime
declined to about 1.5 hours. This 1is reminiscent of the SPS
asymmetry effects mentioned in the preceding section.

Keil and LeRoy53 conducted a nonlinear lens study at the ISR and
obtained tuneshifts as high as .1 in absolute value. At each
tuneshift, they measured the beam decay rate for a variety of storage
ring tunes. They found that if, at high lens tuneshift, a machine
tune (horizontal or vertical) was changed by as 1little as a few
percent of the tunespread, the corresponding change in beam loss rate
could be a few orders of magnitude greater than that which a similar
tune change could cause with the nonlinear lens turned off. Keil and
LeRoy give the following example: With the lens inactive they found
that a tune change (horizontal or vertical) of .0025 changed the loss
rate by at most a few times 107 gec™! (i.e., the order of magnitude
associated with beam-gas scattering); but with a lens tuneshift of
about -~.05, tune variations of about .0025 changed the beam loss rate
by as much as about 10™* sec™'. As far as I know, this extreme
sensitivity has not been explained theoretically.

Their data is represented schematically in Fig. 16. Each bar
indicates the range of loss rates observed on several occasions at
the corresponding tuneshift. The crosses indicate arithmetic means
of highest and lowest loss rates. Notice that the loss rates in this
figure appear to saturate at tuneshifts above about .05 in absolute
value. On the basis of a computer simulation, Keil and LeRoy
interpreted this saturation = as a symptom of "large-scale
stochasticity"--a type of behavior phenomenologically similar to
random motion, characteristic of strongly nonlinear systems. As far
as I know, this interpretation has not been pursued more deeply. We
shall say more about stochasticity in Chapter III, Subsection 3b, and
in Chapter IV, Subsection 2Zc.

A nonlinear lens atudy was later undertaken at the SPS.%" Since
this work was not nearly as extensive or systematic as in its ISR
counterpart, we shall not discuss it further. .
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III. NUMERICAL PHENOMENOLOGY

A computing technology has developedss—-and confidence in
analytical theory has deteriorated--more and more effort has been
invested in computer simulation of colliding-beam effects in storage
rings. Thiz kind of work serves a number of purposes: testing and
refining mathematical models of beam-beam phenomena; determining in
advance how proposed cclliders will perform; expleoring ways to
enhance the performance of existing storage rings.

All simulations of which I am aware have in common the same
basic structure. This structure is described in Sec. 1, below, after
which we discuss specifie results from recent simulations of
electron-positron storage rings (Sec. 2), and from recent simulations
of proton-antiproton and proton-proton storage rings (Seec. 3).

1. Basie structure of simulations

As commonly understood at present, a storage ring simulation is
a computer program that applies long sequences of a few types of
linear and nonlinear transformations to the initial phase space
coordinates of a small number of mathematical test particles, and
then tabulates statistical properties of the resulting set of fipal
phase space coordinates. Each type of transformation idealizes the
effects of a different physical process. The processes which have 3o
far been included in beam-beam simulations are: passage through
magnets, passage through RF cavities, radiation damping, radiation
noise, and beam-beam encounters. Potentially important processes
which, to my knowledge, have s0 {ar not appeared in simulations that
involve colliding beams include: interactions between particles in
the same beam, and interactions with image charges induced in the
vacuum pipe. ‘

Although the parameters defining these transformations might be
varied during the course of a simulation (see below), the program
always applies them in a fixed, pericodically repeating order. For
example: magnet transport, RF transport, damping, noise, beam-beanm
encounter, magnet transport, RF transport, etc.... Separation of
these effects into discrete sequential transformations is an
ldealization that one makea for convenience only. In reality,
damping and noise, for example, carry on at the same time that
particles travel through banks of magnets. In general, one
transformation c¢yecle is equivalent either to one revolution of a test
particle arocund the storage ring, or to one passage of a test
particle through a single interaction region and a single
inter-collision storage-ring are,

A mathematical test particle is not always to be literally
Interpreted as a model of a single beam particle. A storage ring
beam, for example, contains as many as a few times 10! particles per
bunch, while simulations involving more than a few hundred test
particles are impractically time-consuming. If N is the number of
particles (charge te,, mass my) in the real beam being modelled, and
M is the number of test particles whose orbits one can afford to
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digitally compute, then each test particle is defined to have charge
e = ¥{N/M)e and mass m = (N/M)m .

The tofal number or trandformation cycles in a simulation
depends on the type of storage ring being simulated. If the beam
consists of electrons and positrons, then the number of
transformation c¢ycles is usually chosen so that the length of the
simulation is equivalent, in real time, to a few {unperturbed)
radiation damping times. (The unperturbed damping time is generally
assumed--rightly or wrongly--to set the scale for the decay of
transients in colliding beam distributions.) This number is a few
thousands for large colliders such as CESR, PEP, PETRA and LEP, and a
few tens of thousands for small colliders such as SPEAR. (For this
reasogI large e¥e” storage rings are easier to simulate than small
ones.” ") If the beams consist of protons and/or antiprotons, then the
number of transformation cycles is generally set equal to the largest
number that one can afford to program, since radiation damping is so
slow in proton/antiproton colliders.

The mainframe CPU time corresponding to these numbers of
transformation cycles can range fromga few minutes per model beam,
for some electron-positron s:'m:ulations,“6 to a few hundred hours per
model beam for some proton-antiproton simulations,’?

One drawback of limiting the number of e*e”™ transformations to
the equivalent of a few damping times is that one is thereby
prevented from being able to derive values of maximum storable
current from the outputs of simulations. The reason is this:>® Tn
real storage ring operation, maximum current is determined by the
maximum tolerable beam loss rate, which is usually about a part per
thousand per damping time. This is too small a loss to observe in a
statistically significant way in a model beam containing the usual
number--a few hundred or less--of test particles.

Let us now consider in detail the different types of
transformations that are applied to the phase-space coordinates of
such test particles in the course of a typical simulation.

Passage through magnets: The effects of magnets encountered
during a single transit between two adjacent interaction regiona are
generally modelled by a linear transformation of the following form:

»
cos2T bl
y uy By sing uy y
*
J -{1/ in2m 27 '
y ( By) sin uy cos uy y {16)

(similarly for x). The input to this transformation consists of the
betatren coordinates and conjugate momenta of a test particle
immediately before passage through the magnets; the output consiasts
of the coordinates and conjugate momenta just after passage through
the magnets, A3 in Chapter II, 8" and 8* are the beta function
values at either interaction point (oneassume$ the same B's at all

interaction points); M, and uy are the amounts by which the betatron
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phases advance between the two interaction points. Magnet
nonlinearities are generally ignored.

Programmers scmetimes use U's that vary during the course of a
simulation. Two types of variation are common: One type of variation
i3 realized by terms in U_ and ¥ that take the same pair of values
every time the test paticleg pass between the same pair of
interaction regions, but which take different pairs of values when
the particles pass between different pairs of interaction regions.
Such terms are typically employed to model storage ring
irregularities. The other type of variation is realized by terms in
Ux and U that depend on the amplitude arid phase of a test particle's
longitudYnal displacement with respect to the center of its bunch as
it leaves an interaction region. (This type of term gives rise to
u's that can be different for different test particles.) One
rationale for such a term is the combined effect of longitudinal (or
gynchrotron or energy) oscillation and chromaticity (E3v/3E). Another
rationale is this: A particle that oscillates longitudinally 1is
sometimes near the head of its bunch, and sometimes near the tail.
Thus, sometimes it encounters the opposing beam early, and sometimes
late. Consequently, the distance it travels between interactions
varies--sometimes greater than average, sometimes less. Because this
distance is the interval over which one integrates 1/B  and 1/BR in
order to cbtain betatron phase advances, these advance® must 1s0
vary.

Programmers generally translate this into mathematical terms as
. follows: Let £ be the longitudinal distance by which a test particle
leads the center of its bunch. During a collision, this particle
passes the center of an opposing bunch when the particle is a
distance L/2 (see Fig. 17) past the center of the interaction region
(where both bunch centers coincide). Thus, if AL is the change in %
during one transformation cycle, then the distance travelled by the
test particle bvetween collisions exceeds the average by AL/2.
Accordingly, the consequent changes in U_ and H_ can be approximated
by 1/2m (AL/2B ) and 1/2m (AR/2R7). x ¥

(It shoufd be noted thal this approximation neglects the
variation of B and B_ near an interaction point. B_ and B are both

beta-function *minima¥ In general,* if s measufes lngitudinal

. #
distance from the point where B reaches its minimum B, then for
small s Y 4

8, = B; (1 + (s/B;)ZJ, . (17)

» ]
and similarly for B_, This is a negligible effect when B and 8 are
much larger than the characteristic value of s-~one-quartér the gunch
length; but it could be a potentially important source o; parameter
variation in simulation transformations if either of the £ 's becomes
comparable to the bunch length.)

Several of the studies that we discuss in the next two sections
indicate that model beams become significantly less stable when the
parameters defining storage ring transformations are made to vary
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during the course of a simulation. This is in accord with a rule of
thumb often articulated by analysts of nonlinear systems: Suppose one
is given two nonlinear syatems, the first having more degrees of
freedem than the second, or having an externally modulated parameter
that the second does not have; then the firat is inherently leas
stable than the second, because (loosely speaking) it's behavior
involves a larger number of frequencies, and therefore there are more
ways for it to be resonant (or near resocnant). A more detailed
exposition of this viewpoint can be found in Ref. 5.

Damping of betatron oscillations, per interaction, is sometimes
{e.g. see Ref. S57) modelled by a transformation of the form

X X
2T,
x? (1-2=)x (18)

(and similarly for y). T, is the horizontal damping time. T is the
(average) time it takes for an ultrarelativistic beam particle to
travel around the ring--i.e., the ring circumference divided by the
speed of light. Use of this transformation is almost equivalent to
assuming that all damping takes place at a single point: When T <
T, Eq. (18) (together with its vertical counterpart) is an exgct
expression for the effect that a single infinitely thin RF cavity has
on transverse phase space.' A different transformation is used in
Ref. 31:

(x ) -T/Ct, X
——
xt x') {19)

(and similarly for y). Use of this transformation is equivalent to
assuming that damping is smoothly distributed along the region
between interactions, and that T/CT << o {i.e., that oscillation is
much more rapid than damping).

Longitudinal motion: RF cavities and damolng- A published report
on a simulation almost never explicitly displays the transformation
employed to model the effects that RF cavities and intercavity
radiative energy 1loss have on the coordinates of longitudinal phase
space. It is most probably one time-step in a simple discretization
of the system of differential equations that one finds in the
standard textbook discussions" of damped synchrotron oscillation:

de _ V(1)-U(e)

dat T
(20)

mim



where: € 1s the difference between a test particle’'s energy and the
energy, E, of a stable orbit synchronous with the RF system; T is the
time by which a tesat particle leads the nearest synchronous orbit (Tt
and % are related by £ = et, where ¢ i3 the speed of light); Vi(T) is
the net energy gained from all RF cavities upon one storage ring
revolution, as a function of the test particle's timing; @ is the
momentum compaction factor; U(e) is the average energy lost to
synchrotron radiation in the course of one revolution; and T is the
revolution time. In most programs, V{T) - U(€) is approximated by a
linear function ¢f T and £. The simulation described in Ref. 31 uses
a fully sinusoidal expression feor V.

In a proton-proton or proton-antiproton simulation, the program
typically assigns the same time-dependent values of € and T to all
test particles; in other words, all test particles are made to
undergo synchrotron oscillations in phase, and with identiecal
amplitude. This is done to save computing time, 30 that the number
of transformation cycles can be made as large as possible. However,
such a procedure makes simulation results difficult to interpret, for
this reason: In a real storage ring, different particles undergo
longitudinal oscillations with different amplitudes, and with
different timing relative %to orbital revoluticn., Thus, an effect
which is conspicuous in a fixed amplitude, fixed-phase simulation may
characterize only a small fraction of particlesa in a real collider.

The typical electron-positron simulation does not suffer from
this problem, because in every transformation cycle the mapping that
models quantum noise (see below) adds a different random vector to
the longitudinal coordinates of each different test particle.

Quantum noise is generally modelled by a transformation of the
form

x x +8
X

x' x' o+ Gx' : (21)

(similarly for (y, y') and (T, €)), where 6  and §_, are random
variables. In the simulations described in*Refs. 31xand 58-61, the
8's are selected from Gaussian distributions; in the simulations
deacribed in Ref. 57, the &-pairs are selected from samples
distributed smoothly along ellipses. The variances of the Gaussians,
or the dimensions of the ellipses, are chosen sco that the equilibrium
test-beam distribution, after many transformation cycles, agrees with
the distribution expected from unperturbed single-beam storage ring
theory, when beam-cellision transformations are ignored and the p's
do not vary.

Beam-beam enceounters: The jolt that a test particle receives
when 1t encounters an opposing bunched beam head-on is modelled by a
transformaticon of the form
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Ax = Ay = AT = Ae =0

Ax' = 3 F(x + (E/E) N, y + (€/E) n)
x x! ¥

Ay' = 9 F(x + (€/EY N, v + (€/E) ') (22)
y x’ y

(Ac can be nonzeroc when bunched beams cross at a nonzero angle. See
Ref. 22.) The function F is defined in terms of the density, o0, of
charge 1in a hunch of the cpposing beam per differential of area in
the plane perpendicular to the path of the test particle, at an
interaction point, by

F{x,y) = constant + %E-I dxdy D(i,ir'}log[(x-§)2+(y—17)2]1/2 (23)
or, equivalently,
Ve = 5%3 p. (24)

v

In using this form, one assumes that the interactions involved in the
collision are instantaneous, ultrarelativistic and entirely
Coulombic.* The coefficients nN%* and nN® are the horizontal and
vertical dispersions at the interaction poXnt.

Note that the gradient of F at the origin is,direectly related to
the space-charge parameters: By F(0,0) = =um Ey/By, and similarly for

One sometimes changes the n*'s from cycle to e¢ycle, employing
the first type of variation described in connection with the u's, in
order further to model the effects of storage ring irregularities. F
can also be modulated in other, more situation-specific ways. One
example will be described in Subsection 3b; another is discussed in
Ref. 105,

We note that when p describes a Gaussian bunch of N particles,
each carrying charge e',

p = '—Nf——; exp - 'é' —}:"2‘ - —z'z- (25)
210 0 a a ,
Xy X y

then the integral (23) can be simplified considerably’

¥Equation (23) follows from Eq. (5) of Ref. 3. WNote that there is a
misprint in Eq. (5) of Ref. 3: the right-hand-side should be divided
by p? (not the same p as in (23) above). '
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t 1/2
F(x,y) = F(0,0) + &£ Nioat CA P (0;2 + t)"V/2
Q
2 2
* {=1 + exp - 1 *x + .y . (26)
21g%2,¢t o it
X y

(For an elementary proof, see Ref. 83.)
When an ultrarelativistic test particle crosses a continuous

opposing beam at an angle ¢, F depends only on y and is given by7

21ne - - -
FOY) = gotantara) [ &e® [v-9| (27
or
2
3°F . 4me . oy) (28)

Byz Ectan{a/2)

where the density o(y) is defined in this context as follows: For
small dy, p(y)dy is the total current in the opposing beam, between
vertical levels v and y + dy.

Y am aware of three ways in which programmers have computed the
potential F:

Weak-strong method: F is given by an approximation to the result
of substituting a CGaussian density p into (23) or (27), and is held
fixed for the entire length of the simulation. Physically, this is
equivalent to assuming that all the test particles are contained in
one beam whose current is so low ('"weak"™) that it leaves the opposing
{("strong") beam completely unaffected,. The other two
("strong-strong"”) methods described below do not involve this
assumption, They are accordingly more . realistic, but also more
costly, because they require that many different F's--not just
one--be computed during the course of a simulation.

Although unrealistic, weak-strong simulations do help us sort
out the physical phenomena that contribute to observed beam-beam
phenomena. In particular, they indicate the extent to which observed
phenomena can be understood in terms of the nonlinear dynamics of
individual particles, because a weak-strong simulation makes no
provision for cooperative effects--those that are associated with the
simultaneous adjustment of two beams to one ancther.

Thus it is in prineciple =ignificant that considerable beam
blowup has been observed in weak-strong simulations of PETRA® %~ %! ang
of SPEAR.®7 In Chapter V, I shall argue that the blowup reported in
Ref. 57 may, to a large extent, be an artifact of an approximation.
As far as I know, this particular objection does not apply to the
blowup reported in Refs. 58-61.
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Strong-strong method, according to Reference 31: One divides the
test particles into two equally populated model beams. The charge
distribution in each beam is thus, literally, the sum of a small
number of delta-functions. The beam~beam kick received by a test
particle in a transfecrmation cycle is computed from an approximation
to (23) or (27), where the density function p is obtained by fitting
a CGaussian {or something nearly Gaussian) to the delta-funetion sum
that describes the opposing beam after the preceding cycle. One fits
the true distribution with a smooth function so that a wmodel beam
with a amall number of test particles can mimic a real beam that
contains many closely packed real particles.

Strong-strong method, acceording to Ref. 63: As before, one
divides the test particles into two equally populated model beams.
One also groups the transformation cyeles into supercycles, each
composed of some constant number, 35, of ordinary c¢ycles. {(In
Ref. 63, 3 = 200.) 1In a supercycle, the phase space c¢oordinates of
the test particles in one beam are held fixed; the test particles in
the other beam are subject to S conventicnal transformation cycles,
with the beam-beam kicks computed from an approximation to (23) or
{27}, where the density p is obtained by fitting a Gaussian to the
delta~function sum corresponding to the positions in the fixed beam.
In the next supercycle, the roles are reversed. One fixes the phase
space coordinates of the particles that had just before been varying;
their coordinates are fixed at the values they had at the end of the
cycle just completed. One subjects the coordinates in the other beam
{previously fixed) to S conventional cycles, with p computed by
fitting a Gaussian to the delta-function distribution of the
particles that are now fixed. And so on.

The advantage of the second strong-stron method 1is that it
requires less computer time: A beam-beam kick VF is fit 285 times less
often than with the first strong-strong method. I do not know
whether or not there are important physical effects that might be
well simulated by the first method and missed by the =econd.

In ejther method, charge distributions are fit to Gaussians
primarily for convenience. Although this should be a good
approximation when currents are low, one should be aware that it may
have a number of drawbacks. Here are two possibilities: First, as
mentioned in Chapter II, real beam distributions are not Gaussian at
high current in real colliders; however, the extent to which the
Gauasian approximation distorts simulation results on this account
depends on the extent to which details in p are washed cut by the
integral transform (23) or (27) that defines F. Second, the use of a
Gaussian artificially imposes an inversion symmetry on the function
F; if there are important effects related to asymmetries, this
procedure may wash some of them out.%*

2. Specific electron-positron simulations

In this section, we discuss four recent simulations of
electron-positron storage rings. In order of decreasing complexity,
they are: A strong-strong simulation of LEP,31 a strong-strong
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simulation of CESR,%? a weak-strong simulation of PETRA,* %~ %% ang a
weak-strong simulation of SPEAR.S37s#

These all merit our attention because each showed behavior
similar to that seen in real storage rings. In particular, all four
exhibited substantial beam blowup at large current.

To my mind, the LEP, PETRA, and SPEAR simulations are especially
notable for their authors' attempts to identify causes underlying
their observations. The authors both of the LEP and of the PETRA
simulations were able to identify storage ring irregularities as
major contributors to beam blowup. The author of the SPEAR
simulation discovered a resonant effect ("resonance streaming”)} that
appeared to be entirely responsible for the blowup evident in his
results. As mentioned in the preceding section, we shall argue in
Chapter V that the blowup seen in this SPEAR study may have been, to
a large extent, an artifact of one of the approximations used.
Nevertheless, we will devote some time to this work because, despite
its problems, resonance streaming represents one of the more sensibly
econceived attempts to deduce an intuitive explanation of colliding
beam phenomena from first principles.

a, LEpY!

This computer study is unique in two major respects:

First, the program was'used to simulate an uncommonly wide range
of operating conditions. During the course of this study, beam
energy, beam currents, numbers of bunches per beam, BRrg, nErg,
storage ring tunes, beam-center separations, and storage ring
irregularities were all varied in small steps.

Second, the output (after all transformation cycles are
completed) was analyzed in an uncommonly large number of different
ways, and the analysis documented in an unusually thorough manner.
The circulated repor‘t31 contains many graphs showing luminosity, beam
dimensions, tuneshifts, and beam distributions as functions of the
parameters listed in the preceding paragraph.

The model beams in this study behave like real e%e”™ beams in
some familiar ways. For example: The beams blow up vertically, but
not horizontally; luminosity grows linearly with _current at large
current (Fig. 18), as 1is the case, for example, at CESR; beam-beam
effects intensify as energy decreases {(i.e., as damping time
increases--Fig. 19); beam distributions (when smoothed, but not fit
to standardized p's) are visibly not Gaussian in their tails.

As one expects from Eq. (8), the tuneshift saturates when L
becomes proportional to 1I. The largest such saturation value
observed in this study--and, accordingly, this study's prediction for
Eymax at LEP--is between .03 and ,035.

These results were all obtained under a common set of
assumptions regarding the total storage ring tunes, the dispersions

WA strofg-strong simulation of PETRA (using Ref. 63's formalism) is
mentioned in Ref. 60, but only very briefly.
®*An earlier, less conclusive simulation is described in Ref. 65.
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and beta functions at interseetion regions, the unperturbed bunch
length, the way that the U's vary due to storage-ring irregularities,
ete, We may form an impression of the extent teo which the beanm
behavior i3 sensitive to changes in these assumptions by considering
Figs. 20, 21, and 22.

Figure 20 shows a graph of simulation luminosity versus the
total unperturbed vertical tune that the storage ring would have if
there were no irregularities. In this simulation, irregularitiea
contribute additional, randomly chosen increments to the total tune
that are, per interaction, equal to .0125 in root-mean-square. The
horizontal tune (defined in the same way), the energy per e* or e~,
the number of bunches per model beam, and the tuneshifts that either
beam would generate in the absence of the other beam {(a measure of
beam currents and dimensicns) are indicated at the top of the figure.
Luminosity at fixed current is evidently a very erratic function of
storage ring tune. This is reminiscent of what real storage ring
operators report, as discussed briefly in the preamble to Chapter II,
Section 2. Other e'e” simulations show similar tune-~dependence when
large enough tune irregularities and/or dispersions are assumed.
(The (randomly generated) n*'s used in obtaining Fig. 20 were equal,
in root-mean-square, to 5 om {horizontal) and 5 mm (vertical).) The
data shown in Fig. 19 {(resp. Fig. 18) was obtained by setting alil
parameters (resp. all parameters except current) equal to those
corregponding to the lumincsity maximum in Fig. 20,

Figure 21 shows a graph of simulation luminosity as a Ffunction
of the rms irregularity-related variation in y_ (all other parameters
taking values corresponding to maximum luiminosity in Fig. 20).
Simulation luminosity apparently increases by about 60% when {An )
is reduced to zero from the value--,0125--actually expecteﬁ re3
characterize real LEP. (In this chapter, Ay refers to time-dependent
tune variation, not to tuneshift.) Simulation lumipnosity also
ingreases by a comparable amount when (Au ) 4 or the (n_J)}'s, or the
{n._)'s are reduced to zero from their nomingTsvalues. This suggests
that systematic reductions in dispersions and irregularities might
enhance the performance of real storage rings as well, We shall
consider more suppert for this possibility when we discuss the PETRA
simulation, below.

Figure 22 shows graphs of luminosity versus the value taken by
the vertical bheta function at interaction peoints, for five different
assumptions (1.2, 2.4, 3.6, 4.8, 6.0 cm) concerning the unperturbed
length (¥) of a model beam bunch. (As before, all other parameters
are given values that correspond to maximum lumineosity in_ Fig. 20.)
In each case, luminosity rises as 8 falls, until 8* = ¥, when
luminosity dropas te zero (the test partic¥es are rapidly dispersed).

One's naive 'expectation is that luminosity should ris
indefinitely as 8. shrinks, since in single-beam theory,® smaller 8
means stronger focusing, i.e., denser beams. Indeed, this is th
traditional rationale for using "low-beta insertions” to enhance
luminosity in storage rings.ss In view of the widespread use of 1low
beta sections, it is important t¢o understand the instablility
threshold seen in this simulation at 8 = X, Unfortunately, there is
no good quantitative theory of this cu%off.
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The most obvious way to estimate this threshold does very
poorly. One argues as follows: For a typical particle, the
longitudinal distance % by which it leads its bunch center satiafies
L = (%/2) cos (St + phase) (at least for times so short that damping
and noise can be neglected), where € 1is the angular frequency of
synchrotron oscillations. Thus the variable AL used to compute the
variation in 4 is typically comparable, in order of magnitude, to
(/¢r)*%/2. (fn this context, (C£)”™' is the time between beam-beam
interactions.) Thus_one is erroneously led to expeet luminosity
problems only when 8 is as small as 1/27 (Q/Cf) L/2 << 2,.

If Eq. (17} weré taken into account in this simulation--it 4is
not--then one might argue as follows:®7 The vertical beta functio
seen by the ;ypical particle at mid-co;lision is given roughly by B8
+y (I/uJZ B —l, which decreases as B decreases, until a minimum a
B = I/h, affer which it increases. TEis would crudely explain why
the curves in Fig. 22 have maxima where they do, but it would not
explain why the luminosity falls to zero so precipitously just below
the maxima. * s

In electron-positron storage rings, 8 = ¥ typically means 8 =
a few centimeters; in tunchegd proton-pgoton and proton-antiprgton
colliders, it typically means B = 3 few meters.

A modified version!®® of tHis pregram was the simulation to
which the recent improvement in PEP luminosity was in part due.

b. CESR®S

The computer program used in this work differs from that used in
the LEP study primarily in the strong-strong methodology employed (as
explained in the preceding section), and in the use of u's that do
not vary during the ccurse of the simulation. ’

One should bear in mind that the authors of this simulation
approximate the horizontal component of the collision transformation
(22) by an expression that is independent of the vertical
coordinate.®® A similar approximation is made in the SPEAR simulation
that we describe later. We shall argue in Chapter V that this
approximation can greatly exaggerate the beam blowup exhibited by the
SPEAR simulation. I do not know whether the same thing is true in
the case at hand.

The only results shown explicitly in the published report53 are
reproduced here in Figs. 23 and 24. In either case, one bunch per
beam is assumed; the beam energy 1is equivalent to 5.5 GeV per
electron,®?

Figure 23 shows a graph of simulation Iluminosity versus
aimulation current. This is superimposed on a scatter of data points
accumulated in the course of actual CESR coperation; a quadratic curve
extrapolated from small current is also shown. The agreement between
the real and simulated data seems to be_  reasonable. The threshold
labelled ™maximum current® is defined®? as the current at which one
test particle (out of an initial sample of 200) is lost during the
course of the simulation (typically equivalent in real time to three
damping periods). 1In this simulation, as in the LEP study, a test
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particle was considered "lost" when either its vertical or horizontal
coordinate exceeded a certain pre-determined '"aperture" value. As
far as I am aware, there was no serious attempt to calculate maximum
currents from the results of the LEP simulation. ha explained in
Section 1, one particle in two hundred per three damping times is
actually much mcre rapid than the 1loss rate that one usually
associates with maximum current; therefore, either maximum current
does not depend sensitively on maximum tolerable loss rate (above
some threshold), or this particular point of agreement between
simulation and experiment is somehow fortuitous.

Figure 24 shows a contour plot of simulaticn luminosity as a
function of horizontal and vertical unperturbed storage ring tunes.
The beam currents are such that the vertical tuneshift due to either
beam, if unperturbed, would be §& = .08, The luminosities displayed
in this plot were, for conveniencej computed with dispersions set
equal to =zero, and with the horizontal components of the collision
transformations (22) also summarily set equal to zero. Presumably,
this is why Iluminosity seems to be a much less erratic function of
tune per interaction in this figure than it is in Fig. 20. (Tune per
interaction is equal to tune divided by two in the present case, and
divided by eight in the case of Fig. 20.)

c. PETRA ¥8-%!

Only one property of this simulation's output has been graphed
or tabulated in publiecly circulated reports: the rms height of the
weak beam, i.e., the test particles' root-mean-square vertical
displacement from the center of the strong beam. Published reports
have so far not discussed beam distributions, horizontal beam widths,
loss rates, etec.

Beam height in this simulation has been computed for a large
number of closely-spaced storage ring tunes, as well as for small
numbers of energies, strong-beam tuneshifts, numbers of bunches (B)
per beam, and patterns of irregularities and dispersions. In an
early phase of this pr-oject,58 beam height was also computed as a
funetion of time, for different values of various parameters, among
them the decay time of the voltage initially applied to separate the
beams.

Some features seen in the results of this simulation have DbDeen
at least partially confirmed by real measurements made on PETRA
1tseif.%%7%2 ye shall discuss these measurements shortly.

The graphs reproduced in Figs. 25, 26, and 27 are typical of the
data generated by this simulation. From Figs. 25 and 26 one sees
that simulation blowup increases with decreasing energy and with
increasing (strong beam) current, just as real blowup does. The data
shown in these figures were computed using nonzero Au's and n¥%'s
{o{.01) and 0(1 cm), respectively]. The importance of such
irregularities and dispersions is strikingly demonstrated in Fig. 27,
the left half of which shows beam heights calculated with Ap's and
n%*'s set equal to zero, while the right half shows beam heights
computed with Au's and n¥*'a that have orders of magnitude similar to
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those just quoted. Notice the erratic nature of the curves shown in
the right half of Fig. 27, and in Figs. 25 and 26, This is similar
to the behavior seen in the graph of luminosity vs. tune generated by
the LEP simulation.

It should be stressed that the blowup associated in Fig. 27 with
the presence of nonzero dispersion is much la;ger than can be

accounted for by the usual energy contribution, (n o /E)z, to the
megn sqgare unper%urbed rad%a%ive bea% he%ght. In ¥hé case at hand,
(n 0./E)" is about’ (1emX10”°)° = 107° em”, while the unperturbed

medn square beam height is about’ 10”° cm?2.

The right side of Fig. 27, corresponding to realistie
irregularities, has this intriguing feature: There are "magic tunes"
at which the beam does not blow up (at some it even shrinks). At
present, it is not known how general this phenomenon might be. As
far aa I am aware, magic tunes have not been observed in the outputs
of other simulations. It 1is conceivable that other effects not
included in this PETRA model might eradicate magic tunes, or might
shift them in an erratic and essentially unpredictable fashion.

In an attempt to reprcduce in vivo the operating conditions that
correspond most closely to this simulation, a number of real
weak-strong experiments--i.e., experiments in which one (weak) beanm
has very low current--have been performed on PETRA.%Z# According to
the published report, these experiments confirm that beam blowup
decreases vwhen dispersions are reduced. It is also claimed that the
dependence of weak beam height on storage ring tune as measured in
these experiments has a number of features in common with the tune
dependence as computed by the simulation program.

Here are sample experimental results, obtained with two bunches
per beamn, a beam energy of 7 GeV per particle, and a
strong-beam-induced tuneshift of £ - ,015: with the tunes held fixed
at v =252 and Vv = 23.1, weak beam vertical blowup was reduced
from §x to 2x when th¥ mean horizontal n* was reduced by special
magnetie correction from 15 mm to 3 mm. With horizontal tune held
fixed at 25.2, and the dispersions left unreduced, weak beam vertical
blowup was reduced in a similar way when the vertical storage ring
tune was shifted from 23.3 to 23.1.

It is claimed®? that both these reductions were predicted by the
simulation. Unfortunately, as far as I can tell, the documentation
in Refs. 58-61 is not complete enough to permit one to evaluate the
quantitative agreement between experiment and simulation for oneself.
In view of the simulation data that is available, these measured
effects seem rather large for such a relatively small tuneshift.

Similar results have been obtained in strong-strong measurements
performed on PETRA. An example5° of such data, in this case showing
enhanced luminosity instead of decreased blowup, is reproduced in
Fig. 28,

¥Ain early effort to coordinate weak-strong simulation (of DORIS, in
this case) with in vivo weak-strong measurement is discussed in
Ref. 22.
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d. SPEAR °7

This is by far the simplest of the four e%e” simulations that we
discusa: No provision 1s made for storage ring irregularities; and
longitudinal coordinates--and therefore dispersions--are completely
ignored.

In order further to simplify c¢omputation, this simulation
employed an approximation in which both strong and weak beams were
idealized as flat, and vertical focussing at interaction points was
idealized as infinitex; strong.- I.e., all computatlon was dene in
the following }imjt:’® o7+0, BT o 70 v/0" fixed, B8 /0 fixed, In
real SPEAR,’ /0" = 138, anaVB /8% = 17107

In this l¥mi§, the last twoyeqﬁatlons in (22) becone

Ne? e -3/2 =1/2 ﬁ&z
(ﬁai)'z Io du (u+1) u axp FIErT] '

Ne -3/2 -y? 2
(EU*) {fdu(u+1) exp [ETT:ET]] exp(-x“/2}),

where we have used the Gaussian formula (26) for F (with e = -e!')
neglected glspersion, and introduced the reduced variables x = x/C
and y = y/0_. The two expressions on the right-hand side of (29) ar§
especially fonvenient for numerical approximation because--unlike the
full expression (26} for F--each can be factored into a product of
single-variable functions. In particular, 11m &x' is a funection of X
alone, and lim Ay' is the product of exp(-x /2) and a functiori of vy
alone. -

Despite omissions and =simplifications, the data generated by
this simulaticn--like that generated by other simulations-~shows
substantial (weak) beam vertical blowup. This 1is illustrated in
Fig. 29, which shows root-mean-square values of weak beam y's as
computed by this simulation program for various model opéFéting
conditions.

In order to determine why the model beam wasz blown up, an effort
was made to examine the shapes of phase-space paths that individual
test particles follow during the course of this simulation. Because
phase space in this case 1s four dimensional, and therefore not
readily visualized, the decision was made to view only the
projections of these paths on a plane (to be called the normalized
amplitude plane) whose axes correspond to the variables a and a_,
where x y

1lim Ax'

(29)

lim Ay'

= 1 2 B2 2,172 _ 2 v2.%, ®#.2,1/2
o {y* + By y'e) = (y" +y (Bylcy) )He, (30)

y
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and similarly for a. (For reasons that will be explained in Chapter
IV, Subsection 2a, 3_ and 2 are often used as approximations to 2 x
and /E'x, respectivefy.) fnis is a rather novel step, because
authors of ete” simulations are usually concerned only with gross
statistical properties of their model beams.

This kind of analysis has revealed an interesting pattern:
During a run of this simulation, the normalized amplitudes of most
test particles trace out erratic paths that, for the most part,
remain within or close to a quarter-circle of radius vZ, centered at
the origin. (When there is no strong beam, all the test particles
behave this way.) However, there 1is a asmall number of test
particles, each of whose erratic motion is interrupted by a more
ordered. segment in which it travels a long distance in a short time.
The nature of this ordered interlude is the same for all these
exceptional particles: rapid streaming up a nearly vertical curve
(the same curve for all such particles), on which is superposed a
rapid and noisy oseillation transverse to the curve. The location of
this curve, as well as the number of test particles that are
attracted to it, depends on simulation parameters such as gtrong beam
tuneshift, etec. Beam blowup in this simulation is due to these
streaming particles--the largze a 's to which they stream dominate the
average that defines the beanm height.70 The vertical orientation of
the streaming segment seems to explain in a natural way why no
horizontal blowup is observed.

An example of a trajectory with such a streaming segment is
illustrated in Fig. 30, reproduced from Ref., 5, The strong beam
tuneshifts in this case were £, = £ = ,06, and the beam energy was
2.2 GeV per electron. The “orbif shown represents about 75,000
revolutions of SPEAR (=three damping times). One does not see any
oscillations transverse to the streaming curve (close to the line
a_ = 2.8) because the oscillations have been averaged away.70 {The
path shown in this plot is interpolated between points that are
obtained by averaging the normalized amplitudes that correspond to
the results of 250 successive transformation cycles, i.e., 125
successive revolutions.) The time spent travelling along a = 2.8 is
about 8,000 revolutions.’® 5% of the test particles in this run
behaved as shown in this figure. -

Tennyson observed® that the curve a = 2.8 is eclese to the
resonance 3V 4+ V = 21 (as we shall explain in Chapter IV, a
resonance can be a’set cof points in amplitude space, as well as a
relation among unperturbed stora%e ring tunes), and also provided a
succinct mathematical explanation’ of how such a resonance can
channel the motion of test particles, under appropriate conditions.
We shall present our own, somewhat more detailed form of this
explanation in Chapter IV.

The possibility that resonance streaming might account for all
blowup in all e*e” storage rings is an attractive one. However, we
shall argue in Chapter V that the flat beam/infinite-focusing
approximation can cause the distance covered by a particie streaming
in a resonance to be exaggerated. We shall argue that when this
approximation 1is corrected, the blowup due to streaming in the
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simulation of Ref. 57 is substantially reduced, if not eliminated
altogether.

3. Proton-antiproton and proton-proton simulations

In this section we discuss two weak-strong simulations of the
Fermilab Tevatron pp collider,72'7“ and a weak-strong simulation of
ISABELLE (operated as a bunched-beam collider).’>

The common objective of these exploratory studies was
information concerning strong instabilities to which pp and/or bp
storage might be prone near their operating limits. In each case,
special attention was paid to stochastic instabilities, which we
already mentioned briefly near the end of Chapter II, and which
currently constitute one of the main themes in the modern theory of
strongly nonlinear dynamical systems.’® Designers of
proton/antiproton storage rings have traditionally been particularly
fearful of stochastic effects,’'’® because such effects are primarily
long-time phenomena, and proton/antiproton storage rings lack cbvious
rapid relaxation mechanisms {such as the radiative processes that
dominate e*e” machines) that might cut off such phenomena before they
become fully developed. As. indicated in Chapter 1II, Sec, 4,
inconclusive attempts were made to interpret the results of
nenstandard ISR studies in terms of stochastic behavior. The
flexibility and precision of the digital computer make it 2 much more
appropriate setting for pursuing such interpretations.

Note that neither storage ring irregularities, nor dispersions
(nor, of course, radiative damping and noise) are included in any of
the simulations to be discussed below. Healism has been traded for
computing time, in order to maximize the number of storage ring
revolutions simulated.

a. Tevatron 72-7%

The main difference between the two Tevatron simulations
discussed here is this: One included no provision for longitudinal
effects; the other provided for them in a limited way, by including
in each u a term that varies sinusoidally with time, at the
synchrotron frequency. For simplicity's sake (as explained in
Sec. 1) the amplitude and phase of this oscillation were assumed to
be the same for all test particles. It was also assumed that a test
particle encounters the strong beam only once per revolution (i.e.,
C=1)}.

(It should be menticned that these two simulations are part of a
more extensive series that also includes models in which the
horizontal coordinate is neglected. (See for example BRefs. 77 and
80.) The two models that we discuss here have generated the most
interesting results,)

_#n_%

In each case, a roupd strong beam (0_=0 =0) and x-y symmetric
beta-functions (B*-g*=8) were  used, A simulation using an
elliptical strong beam is in progress at this writing.?gl This
implies equal horizontal and vertical tuneshifts (£x=€y§§), according
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to Eq. (#). Note that for round beams, the derivative of (26) can be
expressed directly in terms of elementary functions

2 ~(1/2) (x24y2)/0%?
Fo.o.Hex . e ), (31)
X E(x2+y2)
and similarly for 3F/3y (we have set e' = -e, as is appropriate for

Bp collisions). .

The variable-tune simulation was carried out for only one value
(.01) of £, and only one pair of storage ring tune time-averages, but
for several values of the amplitudes and phases of the oscillatory
terms in M and ¥ . In all cases, the oscillatory terms in H_ and U
were equal {n amplXtude (ranging from .001 to .01), and diff8red id
phase only by zerc or T. The tuneshift was deliberately chosen high
s0 that one might get a feel for the worst possible beam-beam effects
that might be encountered in the Tevatron. All medulation amplitudes
used--even the low ones--were also deliberately chosen to be larger
than those actually expected for the real c¢ollider. The other
simulation (no tune mcdulation) was carried out for several values
(.005, .01, and .02) of £, and for many values of the storage ring
tunes,

These asimulations are especially noteworthy in two respects:

First, each test particle was subject to an unusually large
number of transformation cycles-—6><106 in the case of the
medulated-tune simulation, and, on separate occasions, 10° and 6x107
in the case of the constant-tune simulation. This is equivalent, in
real time, to two minutes, two seconds, and twenty minutes,
respectively.

Second, the action of each transformation on the transverse
phase-space coordinates of each test particle was calculated to
extremely high accuracy--twenty-eight decimal places (double
precision) in x and y, measured in millimeters, and in x' and y°',
measured in milliradians. (The natural scales, set by the strong
beam, are o* = ,0816 mm, and o%/B¥ - 0416 mrad.) This was done to
facilitate the identification of stochastic effects, which are
typically characterized by orbital behavior that depends very
sensitively on initial conditions,

(In hindsight, this level of accuracy may have been far more
exacting than was actually necessary, because, as explained below,
much of the observed stochastic behavior turned out to be apparent on
a rather coarse scale, It has also been pointed out®? that it is
unphysical to pursue such classical calculations to an accuracy that
exceeds five decimal places, because of quantum-mechanical
uncertainty.)

Here are the main conclusions that the authors have drawn from
the results of these simulations:

1. The emittances of the weak beam do not grow-~or grow only
very slowly--when tune modulation is absent. When tune modulation is
included (at least for 180° phase difference between the oscillaticns
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In ¢ and ¥ _, and cseillation amplitudes greater than about .003) the
emitﬁance oin grow very noticeably, doubling in as little real time
as a fraction of a minute (a few hundred thousand transformation
cycles).

Inasmuch as storage ring Irregularity as modelled in e%e”
simulations 1is Jjust a very rapid tune modulation, it is tempting to
conjecture that the ability of slow tune modulation to trigger
time-dependent emittance growth in this Pp simulation is related to
the abtility of storage ring irregularity to enhance the blowup seen
in e%e”™ simulations. However, there .are at present no concrete
arguments to support such a contention.

2. When conditions are such that emittances grow noticeably,
every test particle that, by the end of the simulation, reaches x,y,
x'B* or y'B* substantially larger than O* does so by travelling along
a "chaotic (or stochastie) trajectory.m

The operational definition of "chaotic"™ emploved by the authors
of these simulations is as follows. Subject a gquadruple of initial
phase space coordinates to 100,000 transformation cycles, and then
apply the inverses of these same 700,000 transformations, in reverse
order. Evaluate the distance, in (x, y, x'B*, y'B%).space, between
the initial coordinates and, the coordinates that result from the
forward-backward process just descriped. This distance provides a
measure of the degree to which the orbit beginning at the initial
coordinates in question is sensitive to very small perturbations--the
small perturbations are provided by computing inaccuracies. If the
distance is greater than 10"1°mm, the trajectory that begins with the
initial coordinates in question is defined to be chaotiec.

The cutoff 107!° is actually rather arbitrary. According to
Refs, 72 and 74, for most initial conditions, the result of this
"reversibility"™ test turned out, in the simulations at hand, to be
either close to 1072%, or close to unity. :

It may be difficult for the reader Lo form a mental picture of
stochasticity from this definition alone, especially since phase
apace in this case i3 four-dimensional. Examples of stochastic
orbits that are much more easily visualized will be considered in the
next subsection.

3. Properties of chaotic orbits are correlated with resonance
conditions in several ways. For example:

-~ Suitably defined "effective tunes" of divergent corbits (i.e.,
those orbits that reach large x,y, x'B* or y'B* when substantial
emittance growth is observed) lie close to tunes that satisfy low
order (<8) resonance conditions. "Effective tunes" in this context
are defined’? as (21)”! times the changes, per transformation cycle,
in the angles tan™!'(x'B%*/x) and tan~'(y'B%/y), averaged over the
first one thousand transformation c¢ycles., (One thousand cycles was
the period of synchrotron cscillation in this model.)

-~ When tune modulation i3 omitted, a high percentage of
weak-beam orbits are chaotic (none are divergent when modulation is
omitted} only when the unperturbed storage ring tunes lie near tunes
that satisfy two low-order resonance conditions simultaneously.
Speciflcally, in the simulation of Ref. 72, more than ten percent of
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the test particles followed chaotic orbits when the tunes lay near
the intersections of fourth-and sixth-order resonances:; one or more
out of the one hundred test particles followed chaotic orbits when
the tunes lay near intersections cf resonances of order less than or
equal to ten. No chaotic orbits were observed otherwise. These
percentages were observed to apply te all three tuneshift values (& =
+005, .01, .02) studied. According to modern nonlinear theory, such
a correlation between stochasticity and the overlap of rescnances is
a common occurrence, For details, see Ref, 76.

b. ISABELLE 73

This highly idealized model was formulated in order to simulate,
in 2 schematic way, the operation of ISABELLE as a bunched-beam
collider. As usual when protons are involved, the model does not
include radiative noise and damping; nor does it include tune
variation or dispersions; nor does it include the horizontal
phase-space coordinates x and x'. This model has only one nontrivial
feature: The function F that describes the kicks due to the =trong
beam is multiplied by a time-dependent factor of the general form
a+bcos2lt, where § is the angular frequency of synchrotron
oseillations, and the coefficients a and b take the same pair of
values for all test particles in the weak bean. The physical
motivation for this particular mathematical structure is explained in
Ref. 75. The advantage of bunching proton beams that e¢ross at a
nonzero angle (11.88 mrad in the case of ISABELLE’) is discussed in
Ref, 81,

We introduce this model here in order to supplement the
discussion of stochasticity presented in the preceding subsection.
Inasmuch as its phase space is only iwo-dimensional, this simulation
provides a much more accessible picture of chaotie orbits than one
could have derived from the four-dimensional Tevatron studies.

Some representative output from this ISABELLE simulation is
reproduced in Fig., 31. The -different pictures correspond to
different values, BV = of the average of the tuneshift over one
modulation period one modulation period here corresponds to 200
beam-beam encounters). Note that in each case the modulation is
quite severe, because the parameters a and b have been set egual.
The horizontal axis in each picture represents the vertical
cgordinate y; the vertical axis (labelled "V/Wg") represents y' times
B . Each picture is an overlay of from 1000 to 5000 "snapshots" of
t¥e phase=space locations of precisely ten test particles; the
snapshots are taken once every modulation period, in order to ensure
that all points in each picture have been recorded under identical
conditions.

In the overlays corresponding to BV = .0095 and ,0102, particle
orbits 1lie on simple closed curves. Cufves that do not encircle the
origin indicate the general outlines of the resonance regions to be
discussed at 1length in the next chapter. When 3V = 0115, the
overlay contains fuzzy structure that cannot be resolved! into closed
curves, This structure, which appears to fill a two-dimensional
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piece of phase space, is precisely three chaotic orbits. When AV .
.0127, the aspace-filling structure comprises seven‘chaotic orbigg'
when Av = ,0318, only two orbits are nonchaotic for ill and |y'B
less thin 2. The sixth picture in Fig. 31 shows the AV = ,0318 phafe
plane on a larger scale, revealing that gross chaotic tructure can
extend to very large amplitude.

When all of phase space, with the exception of small isolated
islands, is filled with chaotie structure, one says that a
"stochastic transition" has occurred. According to the conventicnal
lor-e,76 a colliding beam model that has passed a stochastic
transition is unstable in the following sense: The area, 1in phase
space, that lies outside the small isolated islands is dense with
points whose distances from the corigin can be made arbitrarily large
by the application of appropriate numbers of transformation cycles,
I.e., in time, most of the beam strikes whatever aperture might be
set up to contain it, even without external sources of noise.

For weak-strong beam-beam models that omit noise, damping,
modulation of any kind, and horizontal phase space, the stochastic
transition takes place at £ v ,25: when horizontal phase space 1is
restored, the 1limit c¢an Ybe as low as v, 125, depending on the beta
functions, and on the transverge dimensions of the strong beam.®? 1In
either c¢ase, the 1limit is much higher than any tuneshift presently
accessible at real storage rings, either e+e-, or pp, or pp.

Figure 31 suggests that the stechasticity 1limit can be
significantly reduced when =some parameter is externally modulated.
However, it 1is not c¢lear that even this reduced 1limit has a
meaningful impaet on real storage ring behavior. According to
Ref. 75, the threshold for a stochastic transition is significantly
reduced only when modulation {generally proportional to the amplitude
of synchrotron oscillation) is strong; and in a real beam, only a
small fraction of the partiecles actually undergo synchrotron
oscillation with a very large amplitude.

IV. TOPICS IN THEORY--BACKGROUND
1. Overview

Although more than a few published papers on beam-beam phenomena
have been devoted to analytical theory <{as opposed to computer
simulation),* T have chosen--for reasons to be explained below--only
two theoretical jdeas for detailed discussion in the present report.
These ideas will be worked out in the next chapter. In the present
chapter-~specifically, in Sections 2 and 3--we discuss some

¥§ 1isting of theoretical papers, pre-1980, that do nrot discuss
stochasticity, can be found in Ref. 8L, Papers--especially ocnes
written in the Soviet Union--on theories of <chaotic phenomena in
storage rings are listed in Ref, 5. Theoretical studies can alsoc be
found among the articles contributed to Refs. I and II, and cited in
Ref. 35. Some additional theoretical papers will be cited later in
this section. ' )
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mathematical prerequisites. Before we proceed, however, let us
briefly survey the thecretical literature as a whole.

Most published work on colliding beam theory falls under one of
two headings.** They are: efforts to use elementary properties of
resonant or stochastic instabilities in order to deduce the maximum
currents gstorable in colliding beam rings; and efforts to use
elementary properties of resonant and collective effects in order to
establish that above some minimum current, colliding beams are not
stable unless they are blown up beyond their unperturbed sizes. (The
first category is by far the more popular.)

We describe these lines of research below; however, we shall not
discuss them at great length, for the following two reasons: First,
the goals of these kinds of work are very limited, and--at least in
part--are removed from guestions of immediate observational
importance. Efforts of the first kind might in principle tell us
about the currents beyond which colliding beams cannot be stored, but
they have not yet shown how to prediet the behavior of colliding
beams at normal operating currents, belcw the maxima. Efforts of the
second kind might in principle tell us if beams necessarily blow up,
but they have not yet shown how quantitatively to evaluate the size
of the blowup. Second, =even within these limitations, neither
direction has produced a clear success. Research of the first kind
(which is always conducted entirely in the Wweak/strong
approximation), where it has yielded specific results at all, has
generally overestimated maximum colliding currents; research of the
second kind has so far not yielded concrete predictions.

Here are capsule sketches of these theoretical mainstreams:

Maximum current theories: Authers who attempt to attribute
storage limitations to resonant instability calculate maximum current
by substituting tuneshifts plus unperturbed storage ring tunes into
resonant conditions of the form (13). As mentioned in Chapter II, in

the course of our discussion of rules of thumb for £ s this kind
of procedure in its simplest form was Y™#Atroduced--and
discredited--about twentx years ago. Later variations, involving
coherent oscillation,8 have also been unsuccessful. (It has

recently been suggested, however, that such calculations be
reconsidered.®®)

Authors who attempt to attribute storage limitations to
stochastic transiticns calculate maximum currents by applying a
"resonance overlap" eriterion’® that we shall describe briefly in the
next section. As we have already mentioned, stochasticity
calculations can be made to yield maximum tuneshifts comparable to
those observed in real storage rings, but only at the expense of
artificial assumptions regarding the strength of longitudinal
oscillations.

¥¥There are exceptions, of course. The theory of overlap-knockout
resonarnce is an example.
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This general apprecach to c¢olliding-beam physics suggesta a
number of possibilities that, as yet, have either not been
considered, or have been considered only superficially:

It is poasible that even though these ideas incorrectly predict
the preclse current at which beam i3 lost too rapidly for practical
storage, some such mechanism might be able to account for the rate at
which such rapid loss takes place. {Reference 86 proposes a
calculation of the loss rate due to a resonant instability; however,
in this calculaticn the function F of Eq. (22) is approximated by a
low-order polynomial in x and y, which, as we shall see in the next
section, <c¢an badly distort particle behavior at large x and y, where
losses actually take place.)

It is also possible that the maximum tuneshifts observed in real
storage rings have more to do with the approach to an instability,
than with the instability itself. Stochastic beam 1loss below the
stochastic transition, known as "Arnol'd diffusion,"’% has been
investigated in the abstract by various authers, but as yet there
have been no phenomenoclogical calculations that can be meaningfully
compared with observation.

Finally, it is alsoc possible that radiative noise somehow lowers
the threshold for the stochastic transition. However, the interplay
between chaotic and radiative effects has received very 1little
attention. (Kheif‘etsa"’B and Ruggiero have proposed aimilar
approximate mathematical formalisms in which these two kinds of
effects are both incorporated naturally; however, neither of these
formalisms has predictive power, since each invoives an unknown
parameter h whose dependence on energy and current can only be
determined from experimental data. An earlier version of such a
formalism, proposed by Hereward and by LeDuff, is described in
Section IV of Ref. 16. For a related attempt (unsuccessful) to model
an SPS beam-beam effect as the result of an effectively randem
nonlinear process, see Ref. 37. In this connection, see also
Ref. 113.} 53 90

Blow-up onset theories: Several authors have attempted to
explain the tendency of colliding beams to blow up as a cooperative
phenomenon involving simultaneous unstable oscillations of the charge
distributions of both beams. (This type of analysis employs
mathematical techniques from Plasma Physies.) In view of c¢omputer
simulations in which weak beams blow up considerably even when strong
beams do not vary at all, it is likely that cooperative mechanisms
can at best account only for a fraction of the blowup observed in
real storage rings.

It has been suggested91 that the nonlinear resonances 2u _pu =
integer play an important role in the onset of vertical beal grgwth
(at least in weak/strong systems) because they can facilitate
transfer of particles from 3large horizontal amplitude to large
vertical amplitude. This 1is supported, in the absence of dispersions
and irregularities, by data from the PETRA simulation of Refs. 58-61,
&% one can easily see in the left half of Fig. 27; however, when
dispersions and irregularities are present, as in the right half of
Fig. 27, the situation is not so clear. The role of this resonance




49

may be exaggerated by the analysis of Ref. 91, which employs the same
polynomial approximation to F as 13 employed Iin the 1loss rate
calculations of Ref. 86, mentioned above,

The calculations that will be highlighted in Chapter V 1lie
outside these mainstreams, but in my view represent the moat complete
attempts so far to confront issues of immediate phenomenological
significance in colliding beam physics on the basis of first
principles, They are: a calculation of collision-related beam loss
during routine operation of the ISR and a calculationn of beam
blowup at SPEAR, by application of.a theoretical correction to the
results of the computer simulation described in Sec. 2d of the
preceding chapter. :

Let us now proceed to the mathematical preliminaries.

2. Resonant behavior in weak-strong systems--basics

Each of the two calculations iIn Chapter V will refer to
weak-beam test particles that circulate through a storage ring having
the following idealized characteristies: The distance, %4/C, between
adjacent interaction regions is also a repeat-pericd of the storage
ring in the absence of the strong beam; longitudinal effects,
including dispersion, are not present; the only nonlinearities are
those in the strong-beam kicks, idealized as in Eq. (22). In one of
the calculations (the ISR model) the storage ring will bte idealized
further--radiative damping and noise will be absent. TIn the present
section we derive some basie properties of such an idealized
nolseless, undamped, weak/strong system. In the next gection we
shall explore some ways in which these properties are modified when
radiative damping is taken into acecount.

a. Action and angle variables

In what follows, we shall find it more convenient to represent
the motion of a test particle by the action {(or amplitude) and angle
variables {I , I , 6 95 } of unperturbed betatron osecillations, than
by its Cartesiin pHaseYspace coordinates {x,y, x', y'}. The action
(or amplitude) and angle variables are defined in terms of the
Cartesjan variables by

x = /2L B (s) cos(¢x(s) + 9x) (32)

B (8)x* - (1/2)8 (s) x = /2T B (5) sin (¥ (s) + 0 ),

and similarly for y. The azimuthal parameter s is, as usual, equal
to the product of time and the speed of light. The beta functions B

and B_ are periodic in s, with period %9/C. The periodic functions $
are defined by
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s 2ncu

- ds! x
¢x(s) - 'ro Bx(S') - R’O 3 ;] (33)

and similarly for y. (For simplicity of normalization, we assume in
what follows that s = 0 is an interaction point.)* Between beam-beam
kicks, the I's and ®'s satisfy

de .
ds
(34)
dex C -
& C T, (21mx)=wx,

and similarly for y. This is well-known.?? -

In certain ccntexts, the quantities x and V2I B {or y and
2B )y or x and YIB_ (or y and /I B ), &rd often used
intgrghangeably, even théuﬁh, according oY ¥32), they are not
identically equal, The reason iz that the cosine in (32) generally
oscillates rapidly, so that x quickly swings between * ¥2I R , and
the average (at a rixed (mod £,/C) value of s) of x2 over tifled short
compared to the scale on which I  varies, is I B ., Thus, for example,
if the half-width of a beam pipé is W, it is §oﬁmon to conclude that
a test particle is effectively lost as soon as v2I B_ > y; Similarly,
it is common to equate the average of B I over th& fest particles in
the weak beam with the beam's mean-sqﬁaxe half-height. We shall
adopt these conventions in what follows, because it is often easier
to derive the behavior of the I's (by averaging--when one can--over
rapidly varying angles) than it is to derive the behavior of x and y
directly.

b. The colliding-beam Hamiltonian; resonant amplitudes

Equations £62) and (32) imply that when a test particle
encounters the k~ interaction region (1<k<C), its actions and angles
change according to

AI
x

A6
x

-3F5/38 4+ 0((F)?)
x (35)

+3Fk/3Ix + 0((F)?),

¥The normalized amplitudes a and a dgfiggd in Eq. (3Q) gre related
to I and I as follows:*a = 2f 8 /o ?, = 2I. B /0_%. The o*’s
here ire the dymensions of the stroné fead. y vy v
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and similarly for y. e (1., ) 8_) is obtained b solving
Eq. (32) for x and y, and sugstitﬁting the results into F (x,y} (F
is the integral defined in {(23), evaluated using the distribution of
the strong beam as seen at region k). For convenience, we shall--as
is customary--neglect the terms of quadratic and higher order in the
right-hand-side of Eg. (35).% Note, however, that we szhall not make
additional truncations of this kind irn cumulative effects of many
beam-beam encounters. More precisely: In what follows, we employ
approximate dynamical equations that omit terms of 0(F?) and higher,
but we do not systematically omit higher—order terms in solutions to
these approximate equations.

This approximation permits us to combine the two parts, (34) and
(35), of the equations of motion of the I's and 8's in the following
simple way

dX

X _ _oH
ds -~ T 38
x
(36)
O o
ds aIx
(and similarly for y), where the Hamiltonian H is defined by
C +50
He=wl +ol + 3 F I, 6 ey) > 8(s-nlg-k(2,/C)) . (37)
k=1 nz-"2

(By allowing H to depend explicitly on s (beyond the dependence in
the §-functions), one can use the same type of system of equations to
describe models in which external parameters (such as tunes)- vary
with time.)

Because the €'s are periodic variables, it is appropriate to
expand H in a Fourier series

-
H(T,8) = w1 +

| —

T (I)cos(n -§+n( )8 + 8a (D). (38)
n n

nz-«
Xy ¥

¥Let us estimate, for example, the remainder AI_ + 3FX/36 . To begin,
we quote estlmates, given, either explicitly or implicitly, in
Problem 4 of Ref. 3: For a typical test particle at an interaction
point (where Bt - 0), Ay'/y.-UnE /B!, where Ay' is defined by (22)
and E is the veftical tuneshift ﬁ eglon k (similarly for x).
Thus,” AT /1 =(143). (V14(1- mED® - Y21, to be compared with the
0(F¥) explesiion, -2nEX, For EX - .06 (SPEAR's maximum), the latter
exceeds the former by Ibout 25!
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The vectors T, 3, E, and ; represent the pairs (Ix’ I), (86,8 ),
(w , w}, and {n , n ). The numbers n , n_and n aré afa in%egexs.

Thé cogfficientsxF; g and phases 5; nxareydefined by
¥ b

c
a8 a8 >
> —2mikn/C X kK = —in-8
F-;I, ‘(I)zlz:e §—2:I-T— ﬁz‘ﬁzF (I,-é)e l
k=1
, (39)
c
a6 4 >
- —2mikn/C x K =+ neb b
G—E,n(I) Z Arg Ze §-2-1—T—— _<ﬁ—2-_§- F< (1,8) e
k=1

Definition (39) implies that, in general, the amplitudes F+ and

phases 5; n have the properties n,n
b
F + I) = P+ T .
-n,—n( ) n,n( ) . (30)
G-;,-n(l) = -G-r:,n(I)’

because the functions Fk are real. The integer n and the multiplier
1/%¢ in Eq. (38) arise from Fourier decomposition of the sum of delta
functions in (37):

+ +% T
1 in(2n/80)s ' {(41)
Y Seme) =g T " 08 |
Nz=x b

Note that when all the FK (x,y) are even functions of x and vy,
then E; i3 zero unless both n_ and n_ are even. Npte also that if
all int8p8ction regions are iden§ical, z.e., if all F" are equal to

the same function ¥, then F+ is =zero unless n is an integral
multiple of C, in which case n,
-
18, (D) dd d@ >
e n.n b'e - - ..in'e
F ! = —= 3 .
2 n (De c%vﬁﬁnmm (42)

Also,*when the FX are all even, and all equal, P> eiG;,n is real for

all n and n (i.e., & is an integral multip?énof T, when F+ is

not zero). n,n n,yn
Define
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Ho

i

-+ 1 -+

wlepr D, (43)
and H; = H - Hp. It 1s conventional®’®* to replace H by He, in
Eq. (36), in order to obtain a simple first approximation to the

trajectory of a teat particle.®* With this replacement, T is
independent of time, and varies at a constant angular rate

i =0
. ' {44)
8=V H(D),

The effective tunes of such a trajectory are the components of
(Ro/21) VHy (I). (This is the leading effect to which we referred in
the discussion surrounding Eq. (12). The function Su_ appearing in
Eq. (12),is equal to {L0/27C) x (—u_+3He/3I_) and similgrly for 6u_.)

An To(s) and By(s} that satisf¥ {4h) agproximate a solution “of
{36) as closely as can be expected, provided the cosines that
constitute H;(To(s), go(s)) oscillate rapidly  enough. {The
quantitative meaning of "rapidly enough," and of "far enough" and
"near encugh," below, will be made explicit in the next subsection.)
In this case--as a perturbative  calculation in powers of H;
indicates--the corrections to Tg and @n also oscillate, and are O(F)
in amplitude, where F is any parameter (fgr example, vertical
tuneshift) deseribing the overall scale of the F—,

ir To and 8o satisfy (44), the angular rate at which a cosine in
Hi oseillates is

d om '
& (5t - 2m2) 2w ho 4 3R, s

for some integral ; and n. H; oseillates "rapidly enough" when the
expression above is far enough away from zero for all integers nx,
n_, and n. .

An I, for which the right-hand-side of (4l4) vanishes is called
nresonant” (see footnote next page); the set of all To for which the
right-hand-side of (44) vanishes is called "the (ﬁ,n) resonance curve
in the action plane.”™ Near a resonant action, perturbative

¥TE Is not obvious that H = He + Hy 1ia the only systematic
decomposition of H that permits an analysis similar to that developed
in the remainder of this chapter. It is the only one that I have
encounterad.
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calculations in powers of H, are ill-defined because they yield
expressions that contain factors of the form (#5) in denominators. A
more careful calculation, to be carried out in the next subsection,
shows that when Iy is near enough to resonant(and 8, is appropriate),
the corrections to I, and @u can oscillate with amplitudes as large
as 0((F)°).

Note that when tEe strong beam is symmetric about the design
orbit--i.e., when F (x,y) is an even function of x and y for all k,
so that FE n = 0 for odd n or odd n_--there are large resonant
oscillationd only for e¥en n_ and “n.. This is the origin of the
expectations, expressed in Chapter II, ectlion 3, concerning the
constraints that beam symmetries impose on observable effects in
cireular colliders.

Note also that when the storage ring, includ%ng the strong beam,
has repeat period &L4/C--i.e., when all the F" are equal, =0 that
F; n = 0 when n is not an integral multiple of C--there are large
redonant oscillations only when n/C is integral. This is the origin
of the expectations, also expressed in Chapter II, Section 3,
concerning the constraints that storage ring periodicity imposes on
observable effect in circular colliders.

Resonant actions play central roles in each of the calculations
to be discussed in the next chapter. Accordingly, the remainder of
the present chapter is devoted to the theory of osecillations about
resonant actions.

¢, Nearly-resonant motion; resonance overlap; frequency and width

In this subsection we derive and analyze a simple approximation
to the behavior of nearly resonant solutions to Eq. (36). Most of
the discussion in this subsection will refer explicitly to models in
whieh provision 1is made for both horizontal and vertical degrees of
freedom. HNear the end of this subsection, we shall point out some
simplifications that arise for models--such as the ISR _model
discussed in the next c¢chapter--in which the horizontal degree of
freedom is omit}ed.

Thus, let I and ﬁ represent actions and angles that solve (36);
let Tr be a constant vector such that

AeVHo (T ) & %% n=0, _ (46)

for some integers n , n , and n ; and let 1 = 1.1 .
For small 1, 1 1s¥conventional®’?®* to approkimate Eq. (36) by
modifying H = Hy + H, as follows

¥Note THAT this differs from the standard accelerator-physics usage93
of "resonant," which most often refers to conditions of the form
(13), to be satisfied by storage .ring tunes, rather than by
phase-space coordinatea. (This footnote refers to preceding page.)
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H+H F)+3iVud ) +«12dH dH, (47)

0 0 r [} r 0 r

Hy =+ 2£ (I ) cos {n D, l s + G+ (Tr)] , (48)
0

where, among all triples of integers (associated with nonzero Fourier
coefficient F} in the same ratios, the triple (n n) is one of the two
{the other is (-n,n)) with the smallest common divisor. This is
usually sufficient to guarantee that, in (48), one approximates H, b
the largest of the Foyrier terms that would be slowly varying if %
satisfied {43) with I = ; . The factor of two ia present because the
terms corresponding to (n Tn) and (—n,-n) are identically equal. (48)
contains no i-dependence because i is assumed small. Note that the
gradients in (47) do not act on i.

The rationale for approximating H, by the first three terms in
its expansion in powers of is this: If one retains only the first
term, then substitution into (36) (using (48)) gives 8' = 0, whieh is
far from the starting premise L HO(T ) (a prime indicates
differentiation with respect to s). If one retains only the first
two terms, then substitution ipto (36) (using (48)) gives an i(s)
that grows linearly with s, i.e., rows without limit; however,
this % ngt reasonable, because if I deviates conaiderably from I ,
then n*VHo(I ) + n(2w/%e) deviates considerably from zero, and so the
resonant substitution (48) becomes inappropriate. Three iz the
smallest number of power-series terms needed to avoid these
difficulties (see footnote next page).

With modifications (47) and (48), Eq. (35) becomes

1

2 \>» > > 2m -
-(Io)n F-E,n(Ir) sin[n'g * I, s + G}:,n(Ir)]'

(49)
-

To simplify this, we recombine the variables: Let & be a fixed
vector tangent to the (n,n) resonance curve at Tr {in particular,

¥ Ho(‘fr) + (1-%) '\F*Ho(fr).

@¥) (% H:.(Ir) =0), (50)

and define i_, { Ba, and Gt by

t’



6 & (1) .
3= sﬁﬂacfr) . : n,n_r (n-ﬁ)ﬁaotfr)
(n¥) 20 (T ) (51)

+ 0 (as¥) ¥ Ho(fr).

The subscripts “3" anq+"t" stand for "along" and '"tranaverse:" By
definition of e, 1 o ~is a small displacement along the resonance
curve, andw-as lon ad ; and ¢ are . linearly independent (i.e., as
long as (n*¥V)? Ho(1 ) £ 0)-—i+; is a small displacement transverse_to
the resonance curve; similarly, the vectors (3-V) HU(TP) and (;-v)’ .

86,491

%Some authors model resonant effects by making the replacements

- >
H > H (¥-0) + T.¥ HD(T=0) + 172 11,89, H (=0), (47a)

- In_|/2 [ny|/2
Hy > 284 AE,nIx Iy cos[z'§+-%gﬂ-s+63 n(f:O)]. (t8a)
b

The expression on the right-hand-side of (47a) is the sum of the
first three terms in the Taylor expansion of Hy, in powers of 4 the
expression on the right—pggd-side of (48a) is the same Fourie:+term
as in (48), but with F» e*“n,n replaced not by its value at 1= ,
but by its leading nbghavior as I+0. These are the power-serigs
approximations menticned in Section 1 of this chapter. Let us
briefly sketch the main weaknesses in these approximations.

The quadratic approximation (47a) Eimplifies the procedure of
solving Eq. (46) for I . However, the I _'s so obtained are likely to
be much smaller than tﬁe correspondingr exact soluticons, for the
following reason: The appgoximation to Hy derived from (47a) grows
linearly with 1 for large I; however, in reality, i Hp approaches the
constant w as I+», because (roughly speaking) for large a weak team
particle is--on the average--far from the strong beam, and therefore
can only suffer =small pertyrbations because of the strong beam.
Thus, (47a) overestimates VHy, for most , and therefore
underestimates solutions to E-ﬁHo + (21n/%,) = O for most (ﬁ,n).
I.e., if one uses approximation (47a), one is likely to conclude that
a given resonant effect is important for smaller actions—-—and
therefore for more particles--than is reaily the case,.

For |n | + In_| > 4, and for large I, (4Ba) overestimates H
much more Badly t¥an (47a) overestimates Hq, but for essentially thé
same reason. Thus, if one uses (48a), one is likely to conclude that
resonant effects extend to larger actions--and therefore transport
weak beam particles to larger distances from the beam center~~than is
really the case. (This footnote refers to preceding page.)
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VHo(E ) indicate thg direction in which %1 would change if Eq. (4b)
were 1n force, and I suffered a small displacement along the
resonance curve and achoss the resonance curve, respectively.

In terms of 1.4 9a, and @t, Eq. (49) is

t’
t 2 -
1, = - %o F;,n(Ir) sinet , (52a)
1 + 3 ) >
8, =1, (n ) Ho(T) | (52b)
L]
ia =0, (52¢)
Y
ea = ia . (52d)

Cne obtains an eguaticn involving only 8 by differentiating both
sides of (52b) with respect to s, and then usSing (52a). The result
is

8, = - wi sin 8, (53)

where

W

Padi™

2 ¥ -b-hz -+
rE g, B nlI) [ He(I)I. (54)
(In what folliows, we assume, for convenience, that w2>0. No
generality is sacrificed in this way, because the two cases r w2>0
and w?<0 can be transformed into one another by the shift 8 -6 +W.$

Equation {53) 4is familiar from elementary mechaﬁic&sn——it
describes the angular coordinate of a simple pendulum. The conserved
"energy" is

£ = % (B;)z - wi coset='%-[(E'V)ZHO(TPJ]zitZ— Micosﬁt . {55)
For E<w2, 8 _ oscillates regularly about 27Tm, for some integer m. For
e>w?, © rotates, i.e., ©_ (and therefore 3lso [@ (s) - s<8!>])
oscfllaEes, but with nonzero” mean value, |<8 > is” a monotonic
function of g, approaching V/2e for lagrge €. %he function Gt(s) is
completely determined by <8,> and <8, -<8 >g>,

Substituting Eqs. (520%d) into £51)% and bearing in mind the
foregoing discussion, we see that 1 and @ oscillate periodically
about Ic and Ee (the subscript "e" stands for "center"), given by
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->
Ic = iac ,

b
n

sVHu(Tr) + 1, (srs)) (e-¥) ﬁac(ir)

.
i TN I X2 ) (56)

Te¥)2 .
(n-¥) %8y () _

= e d +‘ >
- sVH°(§P+1c) - i, (@) 3Ho(1r)

2mm - &+ (E )
n,n' r

(E-ﬁ)?HO&PJ

+.‘ - .2
(n*¥) VHo (1) + 0t12),

for €<w;, and by

+
1

(j’_>+ i+
n +
c t a® ’

<}
il

sVH (T + <
0 r

> (s-s) (B i (1) +

+ 1 (s-s,) (0 Vn (d)

- s VHD (Tr+Ec) + @c(s=0) + 0012y, (57)

i >
constants of integration. “The ogcilla%ory rema rs i-1_ and
are determined entirely bg 14, <it>, 8_, 8., and by a csolution,
8,(s), of Eq. (53). For €>wr’ Ot is, in %urn, entirely determined by
<I,> and s, .,

t Expregsions (86) and (57} are both of the same general
f‘or'm——solutions_+ of (43) (to 0(i )}, with I = Ir + 1. However, they
differ in that ic and 9 (s = 0) are unrestricted in ?57), while %n

56) 1_ must lie along ¢, and the component of (s = 0) along {(n*V)
Ho(T )cmust take a special value. Trajectories of the special form
(56) "will be called (stable) "resonant trajectories."” A region of
phase space that, at some fixed time, is centered on the locations of
resonant trajectorigs that have in common the same index m and
resonance numbers (n,n), and satisfies e<mi, will be called a

"resonant region." As time evolves, resonant regions follow resonant

for e>w’, The coefficients 1i_, 8., and s are, independent
Lk + ¥ g
iride -9,
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trajectories through phase space. The boundary of a resonant region,
where € = wz, will be called a "separatrix.n

The main conceptual difference between solutions of (36) inside
and outside resonant regions is this: For E>w2, there is a one-to-one
correspondence between solutions of Eq. (36) fmodified according to
(47) and (48)) and the solutions to Eq. (44) about which they
oscillate; i.e., in this case, solutions to (36) are simply
deformations of solutions to (44). For E<w2, by contrast, there are
more solutions to Eq. (36) than there are solutions to Egq. (UU) about
which they oscillate; a two-dimensional set (labelled by the initial
conditions i,(s = 0) and 8.(s = 0)) of solutions to Eq. (36)
oscillates about each resonant trajectory.

Thus, resonant trajectories are stable configurations (i.e.,
centers of stable oscillation) in phase space; the domains of
stability (i.e., the sets that oscillate about the stable centers)
are the resonant regions. This is why resonance figures prominently
in each model that we discuss in the next chapter--a resonant region
can compete with the neighborhood of the design orbit for a share of
the beam population., If a very stable resonant trajectory is located
far enough from the beam center, the observational consequence can be
expansion of the beam size, or enhancement of the rate at which
particles strike the containing pipe walls, or both.

When, in the preceding section, I referred to phase space points
that are M™near enough" to regsonant, or "far enough™ from resonant
(equivalently, for whieh the cosines in H1 osecillate "rapidly
enough™) I was trying loosely to characterize phase space points that
are, respectively, inside and outside resonant regicns.

It should be noted that rescnant regions also figure prominently
in the_theory of stochastic behavior, through the "resonance
over-lap"76 criterion: Subsets of phase space in which two resonant
regions overlap are especially likely to contain many points that lie
on chaotic orbits, Since neither caleculation in Chapter V will
require an application of this eriterion, we shall not consider it
further here. A very detailed treatment can be found in Ref. 76.

In the next chapter we shall need to refer to resulta obtained
using formulae for the frequency of small oscillations in a resonant
region, and for the width of such a region's projection onto T-space.
Let us derive these formulae and comment briefly on some of their
features.

Frequency: The behavior of small oscillations is determined by
Eq. (53), linearized about 9t = 0. The angular frequency of the
corresponding narmonic vibrations is clearly w_,

The reader may find it instructive to see an order-of-magnitude
estimate of W., ¥or this purpose, pe rewrite the definition (54) of
W, entirely in terms of %¢ and the FX, using the definition (42) of
Ho ¢

1 52
@, =5 \[EF;,H(Tr)[(n 2R TINEMIR (58)
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We may estimate (58) as *follows: Let 0 be a rough common
approximation to both g_ and 0, the atrong beam (and wunperturbed
weak beam) Gaussian ha1¥ widthg, at the 1 teract;on pointa; and let B
be a rough common approximation to both B_ and B . According to the
definitions (23) and (39) of the F and of F+ ,the following simple
estimates follow from dimensional consideratidns, for T "0(02/8), an
amplitude typical of most particles in the beam: r

- e2N - el
Fon (-fr) O(T) 0 (E_E) !

Bt e (b - ol (RN ()] -, [rey: fer
(BV) Fp o) -0 (02) (E) 0 (02) (Ef) :

As in Chapter IT, the variables N, I, f, E refer, respectively, to
the number of particles of charge e in the strong beam, the current
in the strong beam, the storage ring revolution frequency, and the
energy per beam particle, In formglating {59} we have
neglected--among many other things--any n-dependence. When (59) is
substituted into (58), we obtain

(59)

W, =0 %O(Eyi) = 0(27E/%0 ). {60)
Efg?

The motivation for the second approximate equality 4in (60) is

provided by the form of the equation, {4), that defines the

tuneshifts; £ is a rough common approximation to the tuneshifts Zx

and £ ,

{4 similar estimate, w, - o(varg/Lo), applies to storage
rings--e.g., the ISR--in which continuous beams cross at a non-zero
angle. In such cases, Eqs. (27) and (4a), rathgr than (23) and (W),
must be used in defining and estimating F+ , (n*V)2 F» , and £.)

Let us compare this order of mgggitude to “’other rates
characteristic of storage rings, for the case of e*e”™ colliders: The
rate of betatron oscillations is typieally <0(10) vibrations per
beam-beam crossing; thus (1/27m) ms "0(10/20}, where w, is a rough
measure of the angular frequency (per-azimuthal distance @, not per
time) of either vertical or horizontal betatron oscillations. The
transverse damping time Y~ ! 1is typically =0(10°-10") beam-beam
crossings; thus y~0(107°-10"%/%y) (per azimuthal distance 3}). IL.e.,
for £ ~0(1072),

l__ ll— . - so 2.
o7 W8 f oWt Y 10° : 10° &+ 1-10 . (61)

Width: The projection of a resonant region onto the T—plane iz a
tube that surrounds the corresponding resonance curve. According to
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(51), the width of this tube at b .» along the direction n, is equal
to the product of [n| (z/n*n) and the length of the interval defined
by all values of i _ for which &<w 2 can be satisfied for some real
value of 8 Acgording to the fefinition (55) of €, the inequality
Efmﬁz is equlvalent to

2w |cosd | 20

1A
-3
[
| A

. — r = . _ (62)
(n-ﬁJZH (I (n-ﬁ)zﬁuﬁlr)

Thus, the rescnance width W, alcng ﬁ, is equal to

4| %]w 2F» (1)
Wr = — P_ = lll.;ll o n,n - = . (63)
(n¥)2H, (T ) (aeV)2r> (T )
r 0,0 r

(The p;ue geometr1$ (perpendicular) width of the tube is
w.l- (hee)?/|n|2]e]2112,) -

An order- of—magnltude estlmate aimilar to that described above
would give W ~0(0?/8) ”O(I ). If taken literally, such an estimate
would cast doubt on much of the picture that we have just derived,
since that picture is based on +the assumption that 1 is small
However, the rough comparison W_~0(I ) is an overestimate, since’
in fact the Fourier coefficiénts Fr fall rapidly with increasing
In|, for T -oco?/p). n,n

Let ug note some simplifications that arise when the analysis
described in this subsection is applied to models--such as the ISR
model discussed in the next chapter--in which no provision 1is made
for the horizeontal variables x and x!

-+ > -+
In such cases, the vectors I, I, i, 5, n, etec. have only

y-components, and c is irrelevant.r Thus, the general resonance
condition (46) becomes

dH
- - .p 2"
ny(dIy)(Iy = Iyr) = -n.lo ’ {64)

and the general expression (56) for a resonant trajectory becomes

iyc =0,
dHo 1
eyc = 8 D (Iyr) + = {2m - Gn ,n(Iyr)] (65)

¥y Y Yy



62

+ (emm - 5n ,n(Iyr')]'
Y Y Yy

H

A
-7y
5|°
2|~

It follows from (65) that resonant trajectories with m's that
differ by n_ are identical, because the angular variable © has
period 2m; hus, there are precisely n resonant trajec%gries
associated with n_ and nat I . For the sgme reason, each of these
trajectories is periocdic in s with .period at most* (n /d)%y, where 4
is the greatest common divisor of the integers n_ and n. Neither of
these statements is true in general when the torage ring model
invelves both vertical and horizontal degrees of freedom.

To make the discussion in this subsection more conerete, a
schematic representation of the two-dimensional phase space of such
an x~-independent model is shown in Fig. 32. 1In this figure one sees
the 1locations (at one value of s) of four resonant trajectories
{corresponding to n_ = Y4), and the separatrices of the associated
resonant regzions. A movie of such a phase plane would show that as
time (==/c) passes, the points within each resonant region swirl
about the resonant trajectory at the region's center, and the whole
"island chain" of resonant regions revolves--with some periodie
deformation--about the origin. The reveclution and defeormation are
such that the pattern of resonant trajectcries and separatrices
repeats in a time interval A4t = %y/c--the island that occupies
position number p in the chain at time t evolves smoothly into the
island that occupies position number p + n at time t + Zq/c.

3. Resonant behavior in weak-strong systems-damping included.

In this section we derive some basic properties of nearly
resonant behavior in damped systems. For convenience, we shall
assume, in what follcws, that the rates of vertical and horizontal
damping are exactly equal. In real storage rings, they are very
close, but not identical.”

We shall largely ignore noise processes, although, 1in passing,
we shall indicate the way in which they modify the conclusions
derived here. The theory of noise effects in the present context is
not well developed. In the next chapter, when we shall need to take
radiative noise into account quantitatively, we shall have to do so
semiphencmenologically.

®One might have naively expected that the period is always (n_/n)%q.
However, in obtaining the physical orbital coordinates y and ¥' from
I and 6 , one must use Eq. (32), which depends explicitly on s with
périod Xs = 29/C. Thus--unless, for some special reascn, the period
of 8 (s) and ®_(3) is actually less than Lo/C--the true period of a
resofant trajectory is the smallest common integral multiple of R2,4/C
and (ny/n)lo, i.e., (ny/d)lo.
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We shall see that the damped case is similar to the undamped
case in that there is a subset of phase space wi&hin which the vector
separation, parallel to the resonance direction n, between T and some
given resonance curve oscillates about zero. However, the damped and
undamped cases also differ in several respects. The most important
such difference is this: Without damping, rescnant-region oscillation
centers, when projected onto the action plane, are (according to
Eq. (52c)) stationary points on the resonance curve. With damping,
the oscillation centers, when projected onto the action plane, also
lie on the resonance curve, but they are no longer
stationary--instead, they drift steadily toward resonant actions
that satisfy

I
rx

IPY b J

=

. (66)

:’IH::’

The precise point at which a particle's orbit stops drifting in this
way 1s determined by noise. If noise were absent, such a drift would
persist indefinitely, gradually slowing as the oscillation center
approaches (66).

This drift--"resonance streaming"--is the mathematical

phenomenon introduced by Tennyson5 in an attempt to interpret the
ordered, nearly vertical normalized-amplitude motion associated with
the beam blowup observed in the SPEAR simulaticn discussed in the
preceding chapter. Tennyson was led to this interpretation by
comparing such ordered trajectories with maps that show a number of
resonance curves in the a .a plane®*, calculated from the flat-beam
equations of wnotion wuséed “in his simulation. In all cases, the
ordered parts of trajectories were observed to follow resonance
curves. The resonance map for 2.2 GeV per particleand £ =z & = .06
is reproduced here (from Ref. 5) as Figure 33, for direct® comparison
Wwith the test-particle trajectory shown in Fig. 30. One sees clearly
that the long vertical segment in Fig. 30 lies along the resonance
(n_, n,n)=1(3, 1, -21).
THe work of this section is organized as follows. In subsection
3a, we shall show how one modifies the f-@ equations of motion (36)
in order to include the effects of radiative damping. In subsection
3b, we shall use the approximate techniques introduced in subsection
2e in eorder to analyze the modified equations of motion obtained in
subsection 3a, In particular, we shall derive the existence of the
streaming effect.*?® We shall also derive--among other things--the
following approximate formula for the rate at which streaming
proceeds (as long as noise can be neglected): Let fr(s), lying on a

x’

¥Recall ghat whe translated into thg notation used in this chapter,
a_ = (1/0_ ) ¥2I , a_ = (1/0 ) Y21 B .

s¥The oFiginaf xexpfanationy of §t¥eaming, due to Tennyaon,s’
involved a geometrical argument that we shall not reproduce here.
The analytical treatment presented in Subsection 3b enables one to be
more quantitative. ’

71
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resonance curve, be the time-dependg&t action of the center of some
resonant-region osci’latlon, let p be a fixed vector orthogonal to
the resonance vector n; let y be the common value of the hnorizontal
and vertical radiative damping rates (per azimuthal distance); then

ﬁ'fr(s) = (constant)’e'zys . (67)

This formula will play an important part- in the SPEAR calculation to
be discussed in the next chapter.

Note that Eq. (66) is a consequence of Eq. (67). According to
(672, D‘Tr approaches zero as g becomes infinite; but p*I = 0 is
equivalent” te (66), because n*p = Q, and because--for  our
purposes--action space is two-dimensional.

a. T—@ equations of motion in the presence of damping.

In terms of Cartesian phase space coordinates, the equations
that describe the damped 1linear motion of test particles between
strong-beam encounters are

dz
as =%
(68)
dz?'
as = Kploz - Tte)a,

where z represents x or y. The function K (s) measures the focu331ng
strength of quadrupole magnets; it is relafed to B (s) as follows"

L) Bz

B --——-—-21{6

z~ %, (69)

0! ny
3]
(]

The damping coefficient T (s) is in general s- dependent--typiecally,
it takea its largest valvues”in RF cavities,' The average, <FZ>, of T
over one repeat period (f¢) of the model storage ring is equal® t5
twice the transverse damping rate v.

To write (68) in terms of I and @, one substitutes the
definition (32) of the actions and angles into (68). After some
algebra (that we shall not reproduce here), in the course of which
Eq. (69) must be used, one obtains the result

ae |
N

1 ¥
—EIZS (S - —2 BZCZ) I F)

1
eézwz-cz(sz EB'C)P s
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where Cz and Sz represent the cosine and sine, respectively, of

+ .

z The T - @ equations of damped motion in the presence of a
counter-rotating strong beam are obtained by combining (70) and (35),
Just as we combined (34) and (35) in deriving the undamped equations
(36). The result is

' ) : B 1 ot
I cTee, 21,5, (s, - 38 502 Ty v
(71)
1 ]
aH 1
ez =+ §f; -C, (5, - 2 B ,Cp) T,

where H is defined in Eq. (37).

As in Subsection 2b, it is appropriate to expand not only H, but
also the damping terms in (71), as Fourier series in powers of the
periodic variables exp(2mis/%e), exp(iB_J, and exp(if ). For
simplicity, we shall, in what follows, fetain only terms $f zeroth
order in the Fourier expansions of the damping corrections. Thus,
the damping term in the I, equatjon will be replaced by —<FZ>IZ =
-2YI,; and the damping term in the € equation will be replacéd “by
the S-independent number &w_= 1/8 < T B >,

With these reductions, Eq. (71) b&clmes

t a;{
I
(72)
L dH
B = + o,
z 9T,

where H is defined by
H=Ha+ 1e80 .

In what follows, a resonant action T will always be defined as =z
solution of Eq. (46), with 8 substifuted for H. (However, since the
I''s are generally small, this substitution should shift the 1 's only
alightly.) Note that the zeroth Fourier components, Hg and ﬁn, of H
and H satiasfy

He - Hy = ﬁ - H.

* Thus the remainders H; and H; are equal.
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b. Streaming, etc..

Let us now apply the resonance approximations (47) (with H,
replacing Hy) and (48) to Egs. (72). In terms of the variables
defined in (51} (with A, again replacing He), Eqs. (72}, 1in this
approximation, are equivalent to

' 2
i1, = - T Eﬁ,n(Tr) sin®, - 2vi, - 2vI, , (73a)
e; = 1, (BW)2 Ho ), ' (73b)
==, -2y 1, (73c)
e; =1 . (73d)

The parameters I  and I, are obtained from fr in the same way that i
and 1, are obtained from i, i.e.,
> -+
ir fnI, +cI . (74)
As in Subsection 2c, one can obtain an equation involving only 6 :
Differentiate both sides of (73b), and then insert (73a), as well ks
{(73b) itself. The result is

L ]

Bt = -wrz sinﬂt -2y [(;'ﬁ)zgu(fr)] I, - 279{' (75)

If the initial values of ¥ and ¥ 1lie in a resonance
region--appropriately deformed because of the damping terms in
(75)--then 6 _ and (because of (73b))i, oscillate; and, as s becomes
infinite, Bt approaches one of the static values

Em = 2rm - Ar?sin {EZ; [(E'V)zao(fr)] It}’ (76)

UV}
r

and 1 approaches zero, (We shall not derive an analytiecal
expres3ion--to replace € = W *——for the boundary of a resonance
region in a damped system, bePause we shall not need such an
expression in the calculations to be discussed in Chapter V.)

Within a resonance region, the center of oscillation in the T
plane isa Tr + ci_. Thus, the oscillation center streams along the
resonance curve because, according to (73c), 1_ # 0, unless i ;+-Ia,
ghere streaming stops. Note that 1_ = -Ia means that Ir + cia =
n It’ i.e., that Eq. (66) is satisfied.
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Unless I, is small, however, i_ = -I_ violates the small-1
assumption that underlies the resonancé approximations (47) and (48).
When analyzing long-range streaming, one should modify this
assumption and these approximations. Here is an appropriate set of
such modifications: Write

-1 .1, _ €4

where 1 is located cn a resconance curve, as before, but 1is now a
time-dependent dynamical variable; and i, as before, i;+small, but
constrained--1 must now lie along n(izni ). (Since T 1is now
variable, a term i_¢ would be redundant.] As for (47) and (u8),
leave them unchanged in form (except for the replacement Hy + Fg),
but reinterpret the variables on which they depend, according to the
ansatze symbolized by the decomposition (77).

These modified approximations ,phave _this in common wi}h the
original ones: In either case, I . EYT is proportional to n. This
means that

4

> > - >
15 (peI) + 2y(p*I) = 0, (78

for 3-3 = 0. Upon integration, Eq. (78) yields Formula (67).



68

V. TOPICS IN THEORY-CALCULATIONS

In this chapter, we discuss two calculations of quantitatively
measurable phenomena in colliding-beam storage rings:
¢ollision-enhanced heam loss at the ISR,gS_g? and beam blowup at
SPEAR. In each case, we shall choose input parameters so that the
results can be compared directly with published experimental data.

These calculations are similar in that, in each case, the
phenomencn in question is attributed to the transfer of some fraction
of the beam from the beam center to a single distant stable resonant
region.* However, they differ in the mechanism by which this transfer
takes place.

In Section 1, below, we introduce and contrast these two
transfer mechanisms. The details of the calculations will be
presented in Sections 2 and 3.

1. Comparative discussion of transfer mechanisms

In the SPEAR model,5 a particle reaches large amplitudes in the
following way: Radiative noise transports the particle to the
low-amplitude end of a resonance curve, and then {(if the cgarticle
enters the corresponding resonant region) radiative damping causes it
to stream towards the high-amplitude end.

There is no such pathway available to ISR particles, for two
reasons. First, there is no damping process to drive streaming.
Second, as explained in Chapter II (Section 3a), the horizortal
coordinates x and x' do not couple through the bheam-beanm
interactions, so that action space may be regarded as effectively
one-dimensional; in particular, a "resonance curve" is nothing more
than an isclated point--it has no "near end" or "far end."

In the ISR, according to the calculation that we present in the
next seection, noise drives particles to large amplitude in a less
direct wag: Because of noise (due primarily to intrabeam
scattering 3’99), a particle's energy diffuses. Because 3 particle'’s
unperturbed storage-ring tune is a funetion of its energy (Eduw/dE =
2.8 in the ISR at 26 GeV’®) the tune also diffuses. As the tune
diffuses, the locations of resonant regions in phase space diffuse as
well, because Hy--which, through (U46), determines the values of
resonant actions--itself depends explicitly on the unperturbed tune,
aceording to definition (43). A proton then reaches large amplitude
by first becoming trapped in a resonant region when the tune is such
that the region is close to the beam center; and then by being swept
away as the center of the resonant regions diffuses outward. We
shall explain "trapping and sweeping" more precisely in the next

®*0ne can probably generalize either of these calculations in order
simultaneously to take into account the effects of more than one
well-separated resonant region. I do not know how one would proceed
if the main resonant regions overlapped.
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section.®

It is hard to see how a similar process could be responsible for
important effects in an electron-positren storage ring {although this
was suggesated in Ref. 97), because phase stability (due to the RF
system) prevents the electrons' and positrons' energies--and
therefore alsc their tunes--from wandering very far from the energies
and tunes of the e~ and e synchroncous orbits.

2. ISR beam loss?®-?7

In this section, we estimate beam loss at the ISR, operated near
the fifth-order resonance 5v_ = 43, following Refs. 95-97. As
indicated in the preceding segtion, the entire effect will be
attributed to the five resonant regions associated with the
(time-dependent) rescnant action T defined by 5(dHo(I__)}/dI_ )
~43(21/%4) = O. yr oo e

Similar calculations have also been deone for operation near
other, higher order resonances. We shall confine ourselves to the
fifth-order case in order to avoid certain complications that would
otherwise be present.

Note that the calculation.will apply to times soon (a few tens
of minutes) after injection, because, as yet, there are no adequate
techniques for predicting the long-time behavior of beams--such as
those in proton storage rings--that are not acted on by a fast
relaxation process, such as radiative damping.

We shall compare the result of our caleculation with published
ISR data’’ taken at 26 GeV per proton, and about 8-9A of current per
beam. Under those conditions, a loss rate of about 20-60 parts per
million has been observed in at least one of the beams. This is
roughly ten times the loss rate that is registered when only one beam
eirculates,** ‘

The work of this section will be presented in three parts. In
Subsection 2a, below, we explain the basic starting assumptions. In
Subsection 2b, we explain in detail how moving isolated resonant
regions can sweep particles out of a storage ring beam. Finally, in
Subsection 2c, we combine the material covered in 2a and 2b, in order
to complete the calculation.

a. Basic premises

We shall carry out this calculation as if the ISR were a
weak-strong system, even though the experimental situation involves
beams of roughly egual currents. This i3 permissible because the
tuneshifts are very small (about £ = _-.0004 per interaction, for the
operating conditions in question hgre) 30 that the changes that beanm
number one induces in beam number two make a negligible contribution
to the changes that beam number two induces in beam number one, and
vice versa,

¥ Intrabeam noise can also act directly on a particle’'s transverse
coordinates, without a resonance as intermediary, but much less
rapidly, according to Ref, 96.
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In the course of this calculation, we shall require an ansatz
for the distribution of an ISR beam, both in transverse phase space
and in energy, immediately following injecticn. For the transverse
distribution, we shall assume the Gaussian expression

r 1t 9L, @
Bly,y',s) dy dy' = (e™7y'"y) 5L —L (79)
I, o

for the normalized probability that a test particle can be fougd in
the differential area dy dy' about (y,y'). The constant I is
related to, the Leta-function and beam-half-height at an interagtion
poeint, by I = (0 )2/8 . At the ISR,gi under the opegating conditions
with whichY we sHa1l ¥e concerned, O is 1 mm and B_ is 14 m. Also,
the largest vertical amplitude that proton can have before it
strikes the beam pipe is3%¥

Iymax = 10 Iy* (80)

(i.e., the lapgest possible vyertical displacement from the beam
center is v2R I =l 5 times the rms beam half-height).

For the’ E%%gability in energy space, immediately after
injection, we shall assume a uniform distribution over an interval of
finite size. For a 26 GeV ISR beam of 8-9 A, I estimate the width,

AE’ of this interval to be given by#*%

A
E .
g .01 . \ _ (81)

Correspondingly, the unperturbed storage ring tunes are distributed
uniformly in an interval whose width Av is given by

A A
« g _E . E =
A,* B % (2.8) .03. (82)

As indicated in the preceding section, we shall assume that @,
the probability dJistribution in tune space, evolves in time, after
injection, according to a diffusion equation

*I have taken this estimgte from Ref. 93. Reference 96 uses the
comparable estimate /Ivmax/l = 3. According to Ref. 97, however,
the maximum amplitudé is given by vI 7I_ = 7. 1 do not know the
origin of this disagreement., I expectyﬁ3¥. §3, a CERN report, to be
more reliable on this point.

#%This has been obtained by extrapolation frem Guignard's
discussion®? of a 30 Amp beam. According to ocur deascription (Chapter
II) of the manner in which the ISR is filleaq, AE should roughly scale
with the first power of the beam current,. '
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2
D, 3°p _ 3B (83)
av? 5t

(i.e., the individual values of Vv execute random walks with very
small step31°°}, where the diffusion constant D is given,
approximately, by#* v

D, = 5 x 10710 gec”!, . (8u4)
We assume that immediately following injection {(t = 0), the
distributions ¢ and ¥ are independent. :

Finally, let us discuss some assumptions that we shall make
concerning the Fourier coefficient, Fs, -43, that sets the scale for
the resonant effects to be analyzed below.

We begin by noting that Fs —u43 is nonzero because the ISR beams
collide slightly off-center--a typical vertical offset is?? %
.2 mm--and because the offset is not the =ame at all interaction
points. If the functions F~ describing beam-beam encounters were all
symmetric under y»-y, or if all interaction regions were identical,
then Fs -43 would wvanish identically because five is not even, and
forty-three is not divisible by eight (the number of ISR interaction
points).

In order to model the dependence of Fs, —43 on the beam offsets

8¥,, we assume that all the strong-beam F are related to a single
"master" function F (symmetriec under y+-y) via

k (y) = F(y-éyk) = Fly) - F"(y)éyk , (85)

where the prime in (85) indicates differentiation with respect to vy.
We shall take F to be given by Eq. (27), for 0(¥)--following the
fgregoing discussion--a Gaussian, centered at ¥ = 0, with half-width
Gy, and with total integrated weight equal to the beam current 8-94.

®*I have taken this number from Ref. @3, In Refs. 96 and 97, numbers
an order of magnitude smaller are quoted. I can account for the
shortfall in Ref. 97. In Ref. 97 the figure quoted for D was really

the diffusion constant (with (26 GeV)? factored out) for the
d§stribution in energy; this is eclear because the results in Ref 97
do not follow from the input unless the factor D /D = (E dv/dE)? =~ 8
is inserted in the appropriate places. The numbgr Juoted in Ref. 93,
extracted from Ref. 98, corresponds to a beam intensity of 30A. For
simplicity, we shall ignore the variation of D with current (a
proper analysis of the relevant formulae in Refs. $8 or 99 is teyond
the scope of the present review). One should be aware that the
derivations in Ref. 98 do not actually refer explicitly to diffusion.
As far as I can tell, diffusion is an appealing, but not rigoroua
interpretation of the theory of intrabeam scattering.
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It follows from (85) and (39) that Fs,-43 is given by
§ omixc+u3/8)0 1% o, st 518
- = * —= P (Y - ¢ - *
Fs,—us3 ]ég% Sy, e | 7 P ZIyBy cos Y)e vyl
(86)
For future reference, we.note that if all &y have the same
magnitude dy, but arbitrary signs, the largest vafue that the first
factor (Lo be called h) in (86) can take is
8 omik(43/8 /g
max h = max |§: Syk e ik (43 )I = [B(2+/2) ]! 28y=(5.,2)8y.
k=1
(87)
{This can easily Dbe derived by directly enumerating the
possibilities.) Under the same constraint, the average of hz, over
all independent choices of the signs of the Gyk, is easily seen to be

<h?> = 8 (8y)? . (88)

In what follows, we shall neglect the dependence of Hy on the
3y, .
k

b. Trapping and sweeping

In this subsection, we discuss in detail how ISR protons are
swept to large amplitude by (5, -H3)-resonant regions that move
ocutward because the protons' unperturbed tunes wander.

For most of this discussion, we shall focus on (the vanishingly
small populaticn of) protons associated with only a single wandering
tune v _{t). The loss rate for the "'full beam will be obtained by
insertXng the appropriate results of this analysis into an integral
over the initial distribution of tunes.

Before we proceed, wWe shall need to make explicit some
qualitative features cf the relation between the
strong-beam-independent unperturbed sterage ring tune Vv_  and the
resonant action, Iyr’ defined by ' y

=5 H°'(Iyr) - U3(2m/%g) = S5(2n/%0) + (SIRQ)FQ’O(IYF) ~ 43(27w/%4).

(89)

(The primes in (89) indicate differentiation with respect to I .)
For this purpose, we show, in Fig. 34, a graph (reproduced fFom
Ref. 97) of (8 )~' (2m)~! ¥y, 0 {I_ ), as a function of /I_/I ¥, It
follows from Fig.y3ﬂ that (Ro/2m)Hg always lies between %y { 8£y,
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corresponding to I =« Q@ (recall that E is the tuneshift per
interaction, and that there are eight iﬁteraciion regions), and

V_ 4+ 4 | corresponding to I = T = 10I_. Thus, there is no
alcessible resonant action unle¥s v 185" vetween (43/5) - uf =
8.6 - UE . and 8.6 - 8E ., 1 ificreases from zero to I aj v
decreased (recall that £ ¥0) r¥om 8.6 - 8E to B.H -uf ymax Y

Let us now begin by’ examining the ti?ﬁe-dependenty changes that
the mobile (5, -43) resonant regions make in the initial transverse
distribution (79), under the special assumptions that v (t) is
greater than ' 8.6 - B8f when t = 0, .and that v_(t) dgcreases
monotonically thereafterd We make this assumptign only for
simplieity, sc that the main conclusions will not be obscured by
technical complications., We shall indicate later how the conclusions
are modified when these assumptions are removed.

As indicated above, there are no (5, -43) resonant regions in
transverse phase space until Vv (t) reaches 8.6 - 8E_. As soon as
Vv _(t) passes 8.6 - 8 , an "island’chain" of five resoRhant regions
grows out of the ogigin I = 0. Any proton caught in such a region
swiris about the region's cexter, while the center 1itself revolves
about the origin,

Because of this swirling, many protons originally on the
low-amplitude sides of these regions are moved to the high-amplitude
sides, and many protons originally on the high-amplitude sides are
moved to the low-amplitude sides. Since the initial transverse
distribution (79) bvecomes more rarified as I inereases, this
high-low interchange produces a net movement of grotons outward, to
larger amplitude.*

When vV is still close to 8.6-85 , this net movement is very
small, because the resonant regiond are close to I - 0, where the
initial Gaussian distribution (79) is nearly uniform-Ii.e.,, where the
rumber of protons that are available to be displaced from higher to
lower action is nearly equal to the number of protons that are
available to be displaced from lower to higher action.

This net moyement begins to be appreciable when V ig such that

rp ° (1/2) I, because that is where the inifial transverse
d!stribution (exgressed in cartesian coordinates) has its steepest
gradient, Note that, according to Fig. 34, this corresponds to vy =
8.6 ~ TE . :

As % moves beyond 8.6 - TE , the resonant regions move beyond
I = (1/2)I_, into a domaif of phase space in which the initial
dfStrivution i sparse. Thus, because of the continuing interchange
of high and low amplitude particles within the moving resonant

®Note that this interchange can take place only if the resonant
regions move outward very slowly, Otherwise, the time spent by a
proton inside a resonant region cannot be long enough for swirling to
have a significant effect. A discussion (in terms of the frequency,
W,, of resonant oscillation) of the maximum value of dI /dt beyend
wgich the distribution of protons 1s largely unafffeted by the
passing resonances has been given by Chao and Month in Ref. 95, with

zome refinement in Ref. 97. We shall not conaider this point further
* here,
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regiona, as in a game of leapfrog, the moving regions carry with
them, to large amplitude, a substantial fraction of the protons th@t
contributed to the original net outward movement at I =(1/2)I_,
without picking up many new protons. When v reachdS 8.6 - MEY,
corresponding to I =TI , this population steres the beam pige
and is lost. w ymax

This transport mechanism is what we have referred to as
"trapping and sweeping.™ For direct evidence that this phenomenon
can actually take place, the reader is referred to the computer
studies described in Ref. 95. -

In accordance with the picture*® we have just described, Chao and
Month?®*® propose the following recipe for obtaining a crude estimate
of the number of protons that are swept out of the beam in this way:
Multiply the total (infinitesimal) number of protons associated with
v (t) by the total integrated weight assigned by the initial
pxobabillty distribution (79) to the five (5,-43) resonant regions
corresponding Lo v = 8.6 - 7Y ., We shall employ this estimate in
what follows, y y

We may easily determine how this integrated weight depends on
the beam offsets: As we saw in the preceding subsection, the resonant
Fourier amplitude Fs, ~43 depends on the offsets through the
multiplicative factor h, Thua, according to Eq. (63), the width of
the (5, -43) resonance in action space is proporticnal to +h. When
the offsets are small--so that h, and therefore the action-space
width, is small--the radial widths of the resonant regions in
Cartesian (y,v') coordinates are proportional to the action-space
width, and are therefore also proportional to vh. (The angular widths
are always 21/5.) When the Cartesian widths are small, the integrated
probability is approximately proportional to the Cartesian area
cccupied by the resonant regions; and since, for small width, the
area scales with the width, one finally concludes that the integrated
probability is approximately proportional to vh, for small offsets.
According to Ref. 97, the proportionality constant** is about
(.06)/Y0_ .

Forytypical values of h (substituting 8y = .2 mm into Eq. (88))
this probability is quite small, about .05, althecugh (using (87)) it
could be as high as about .08. We =shall use .05 in the rough
estimates that follow. .

A nearly identical informal analysis ({(which we need not
reproduce here) can be applied when the tune trajectory uy(t) does

®¥Actually, this picture, and the recipe that follows, are somewhat
oversimplified. However, the subtleties that have been omitted here
are only relevant to the higher-order resonances with which we are
not concerned here. For more details, see Ref. 97.

®%This number is extracted from Ref. 97's Fig. 6, which shows a graph
of ,the integrated resonant -region probability, normalized to
(h/o /__ 1/2 as a function of ST . Gulgnard33 gquotes a number
larggr than this by an order ofyﬁag itude, this can be attributed to
an incorrect replacement of (d?F /dI ) and Fs ~.43 by the leading
terms in their expansions in powgig of? I . )
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not satisfy the assumptions imposed at the beginning of this
subsecticn, The general conclusion is this: Whenever V (t) reaches
8.6 - 4  after having earlier passed 8.6 - 7E , wWith no other
encountek with 8.6-4% in the interim, then approxi%ately 5% of the
protons associated with vy(t) are lost from the bean.

¢. Total loss rate

We now estimate the number R(t)dt of random-walking tunes that
(a) have encountered the point 8.6 - 7% at least once between time
zero and time t, and {b) have not reached¥8.6 - 4  between time ¢
and the last encounter with 8.6 -« 7§ | and {c) reach 8.6 - 4
between times t and t + dt (for small dtj. Qur estimate for th
total rate at which protons are lost will then be five percent of our
estimate of R.

For this purpose, let us divide the initial tune interval into
two subintervals A and B, defined by

8.6 -7, + 8 >V >8.6- %y (89)
8.6 - Ty > vy 2 8.6 - 7€, -85 s (89b)

where the positive numbers AA and AB satisfy

AA + AB z Av . (90)

The initial tune probability distribution P takes the value 1/A
inside the union of these intervals, and zero outside. v
Let us also decompose R into the infinite series

A

R=R1A+R1B+R2 +R25+... N (91)

where RA(t)dt (RB(t)dt) is the number of random-walking tunes,
initial?y in the interval A(B), that (a) have encountered 8.6 - 7&

precisely n times between times zero and t,.and (b) have not reached
8.6 - u4& between time t and the last (n'th) such encounter with
8.6-7E ,yand {c) reach 8.6~ 4& between times t and t + dt. e shal

see tﬁat it is easier to e%aluate the constituent rates R™ and R

than it is to evaluate their sum. In any case, we shall also see
that the sum is dominated by its first two terms, at least for t £ a
few tens of minutes,

Let us also define

1 -(v=-vg)?2

0, /ﬁ;ﬁ;g Mth
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As a functlon of V, P solves the diffusion Eq. (83), with boundary
condition

P(vg,v,t = 0) = §(v-vg). (93)

Thus, Pdv is the probability that a tune v y located {nitially at
V. _ = Vo, will, because of random walk, lie {n an interval of width dv
about v =z v at time t,

We'now proceed to determine R.

The most easily constructed contribution to R is the first term,
R17, in the right-hand-side of (91). Because every tune initially in
interval A must pass 8.6 - 75 before it encounters 8.6 - 4 even
once, R, is simply the rate at vwhieh tunes, initially in intefval A,
reach 8.6 - UE for the first time, without ever having reached it
before, ¥

It is easy to convince oneself that this is equal to the rate at
which tunes, initially in A, would be 1lost altogether if a
fietitious, perfectly absorbing wall were placed at v = 8,5 - bE |
This is a productive way to rephrase the definitioh of R, because
the problem of random walk in the presence of an absorbing barrier is
a standard one in the theory of probability.!?? Following the
treatment of absorbers in Ref. 100, RIA is given by

8.6-7§y+AA
- 3
RA - j-dvo[Np(vo)] (2D, &5 P(ve, v=B.6-4E ,6)]
8.6-7
Ey
8.6-7¢ +AA
-2ND "
* %5 j’ dvo Tve P(vo, 8.6-H5y,t)
8¢ 6-TE ' ‘
2ND . -
= "E;‘ [P(8.6-75y, 8.6-uEy,t) - P(8.6—75y+AA, 8.6-u€y,t)]
2ND,,
= Av [P(—3EY’0,t) - P(AA"3€y10!t)]! (gu)

where N is the total number of particles in the beam.
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We now proceed to the construction of RIB. For thi purpose,
note that every random walk that contributes to R;  at time t
consists of these two parts: an initial trajectory that starts in B
at time zero, and ends with its first arrival at 8.6 - 7 at some
intermediate time; and a final trajectory that starts with 8.6 - TE
at the intermediate time and ends with its first arrival at 8.6 - 4£Y
at time t. Note also that the same decomposition, characterized b¥
the same length scales, applies to the paths that contribute to the
rate at which diffusing tunes, initially in the fictitious interval

8.6 - 7§y + AB > vy > 8.6 - 75& . (95)

encounter 8.6 - U4E  far the first time, without having encountered
it before. Thus, yR; and the latfter rate are equzal. Since th

latter rate corresponds to the same kind of process to which Ri

corresponds, we may evaluate it in the same way. The result is

g 2D
3 [P(-3&,,0,t) - P(Ag~3E.,0,80] . (96)

vV

Ry

1]

In a similar fashion, one obtains

y 2ND,

R, = Y [P(-35 (2n-1),0,t) - P(AA-Biy(2n-1),0,t)] ’
(97)

B 2NDv
Rn = Av [P(-3Ey(2n-1),0,t) - P(AB-3Ey(2n-1),0,t)] .
In order to estimate R numerically, let us assume that

2

(3€y) /4 Dyt 2 0(1), . i (98)

i.e., (using the data provided in subsection 2a) t £ a few tens of
minutes. This guarantees that the exponents obtained when (92) is
inserted into (97) are much larger for.n > 1_than they are for n = 1,
so that we may approximate R by Ri” + Ry . If we also assume that
both AA and &, like A , are much larger than 3£, then in addition
we may neglec@ the second terms in each of the fdrmulae (9) anad (96)
for Ri” and R; . As a result of these assumptions, we have

2ND
R=RP o rRB-— Y e (-95,2/4 D t) . (99)
Avwavt -
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Finally, following Month,”’97

value of the approximation (99)

2 2 D, - -
RE=\[qewp() EA- “NC1.Bx10 S)sec”!, (100)
3 y v

(This maximum is attained when (3% }3/4 D t = 1/2, i.e., when t = 24
minutes.) Thus, our estimate for tHe frac¥ional beam loss rate is

we estimate R by the maximum

2|2

s (.05) (%) $ 7T x 107% sec”?
v 40 parts per million per minute . (101)

This appears to be in rough agreement with the observed rates of
20-60 ppm per minute quoted in the prologue to this section.

It should be noted that although the bound (101) refers
explicitly only to times comparable to half an hour, the observed
loss rates quoted above can persist for longer than ten hours (see
Fig. 35 for an example of relevaHtBtime-dependent experimental data).
Presumably, this is due to the R_’" with n>1, which are not counted
in (101). n

3. SPEAR beam blowup

In this section, we shall attempt to estimate beam height at
SPEAR Dby applying a (semiphenomenolcgical) theoretical correction to
results of the computer simulation®’ described in Chapter IIT,
Section 2d. Our aim is to cobtain more information about the role of
resonance streaming in storage ring behavior. Accordingly, the
correction, to be derived from Eq. (67), will be based on the
assumption that all beam enlargement observed in the asimulation is
due to streaming up the resonance curve (n_,n ,n) = (3,1,-21) that
appears to determine the ordered structure seén in Fig. 30, As will
be explained later in more detail, a correction of some sort is
necessary in order to compensate for large dis;ortiogs that* are
ighegent in the particular flat-beam limit--o +G, B *0, y/J_ and
B /0  fixed--in which the simulation was carried ott.* y

Qur beam height estimate relies on extrapolation from the
results of a computer simulation because, as yet, there is no
adequately self-contained theory of resonance streaming in the
presence of noise.

The work of this section will be presented in two parts: In
Subsection 3a, below, we discuss in detail how the results of ocur
correction are to be compared with published experimental data from

[ ] # -
#*In this section, we continue to use the symbols 0 and 0 for the
half-widths of the Gaussian strong beam at interactioh point3,

-



79

SPEAR. 1In Subsection 3b, we explain the flat-beam distortion and
calculate the correction itself,

a. Scheme of comparison with experiment

The correction to be calculated in the next subsection will be
applied only to flat-beam simulation data correspending to
weak/strong operation at 2.2 GeV per particle, and with horizontal
and vertical strong-beam tuneshifts both equal to .06. These are
operating conditions for which the . simulation output made
available®’’® to me has been the most detailed. The corrected
results will describe weak/strong operation at the same energy, with
the same tuneshifts, and also with

4 ® L 3 ] ® *
Y e B a B & B
rs-L-. L [ XY =4 XL s0. (102)
o0 B, Byox B, Ey B,

(In the third equality above, we have used Eq. ‘H) and its horizontal
counterpart, together with the inequality 0 _<<g_.)

The parameter r should be determined b§ tHe experimental data
with which we want to compare the results of our calculation.
However, both the choice of data for comparison, and the assignment
of a specific value to r, are problematical, for the following
reasons.

(i) Strictly speaking, there is no value of r for which the
conditions  enumerated above reproduce conditions under which
published SPEAR data has been obtained, because all published SPEAR
measurements have been made during strong/strong operation, with
equal currents in the two beams. If the experimental observations
had revealed that (at least for E = 2.2 GeV) one of the two strong
beams was not significantly enlarged, then we might have been able to
interpret the situation as effectively weak/strong. But, as
explained in Chapter II, most SPEAR measurements are taken only after
the RF phases have been adjusted so that both beams are blown up
equally. .
(ii) Moreover, even if weak/strong experimental data were
available, a single value of r could not consistently be a;signed
because the dimensions of unperturbed beams gt §PEAH satisfy o /Y. &
1/30, while the beta functions satisfy 8_/8. = 1/12 = (2.5¥0 Jo_,
contradicting (102). yox yox

Our strategy for dealing with these problems is as follows:

(1) There is some indication'’ that if the RF phases are
readjJusted so that the enlargement of one of two strong SPEAR beams
is eliminated, then the vertical dimension of the other SPEAR beam is
between one and two times as great as it is when (at the same energy
and current} the two beam sizes are matched (see footnote next page).
Accordingly, we shall guess that at 2.2 GeV, with a strong-beam
tuneshift of Ey = .06, the height of a weak beam at SPEAR 1lies

-

-



8o

somewhere between these two values: On the low side, the height that
either one of two matched 2.2 GeV beams has when the current is such
that the vertical tuneshift due to either beam would be .06 if it
were not blown up; and on the high side, twice this low value,.

Let us determine these values from the SPEAR data shown in
Fig. 1. (Although the energy--1.94 GeV per particle--at which this
data was taken is not exactly equal to the energy--2.2 GeV--with
which we are immediately concerned, it should be close enough for the
rough estimates that we formulate here.) We begin by observing that
Fig. 1 has been marked to indicate that the tuneshift .023
corresponds to a current--2.2 mA--at which luminosity follows the
low-current I? law, and therefore at which neither matched beam is
blown up. Since (following (4)) tuneshift would be proportional to
the first power of current if the beam dimensions were not to blow
up, the current that a beam would have if it gave rise to a vertical
tuneshift of .06 without being blown up is (2.2 mA)*{.06/.023)
5.7 mA. From the ratio of unperturbed gquadratic luminosity to the
actual luminosity shown in Fig. 1 (i.e., according to £q. {(2), from
the ratio of actual area to unperturbed area, recalling that
horizontal blowup is negligible) one finds that the matched-beam
vertical blowup at 5.7 mA is about 1.6. Thus, we shall guess that at
E. = .06 and E = 2.2 GeV, the vertical dimension of a weak beam at
S¥EAH is between about 1.6 and 3.2 times as great as it is when the
strong beam is absent (see first footnote next page).

(ii) As for r: In the next subsection, we shall present the
results of our £C° rection for all values of r betwgen*the actual
value, 1/30, of 0_/0_, and the actual value, 1/12, of B /8 . We will
be guessing (fo fack of a better procedgre; thit %f we_could
properly extrapolate the simulation output to B /8 = (2.5)0 /C , the
resulting btlowup would lie somewhere between thgsextwo extre%es?

b. Distortion and correction

In order to understand how the flat beam limit can distort beam
enlargement associated with resonance streaming, let us first rewrite
the fundamental streaming equation (67) in terms of the normalized
amplitudes .a, ang a , begause, unljke,the I's, they remain finite in
the limit oy—>5, By»03 ¥/0, fixed, B/07 fixed.  The result i3

a? g*2 2 g*2
p. [ -2 X ) . yry = constant x e”?Y% | (103)
b 4 * Y %2
28 28,

*One reaches a stronger conclusion from data generated by the LEP
simulation discussed in Chapter TII. Figure 26 (reproduced from
Ref. 31) shows how the height (normalized to the unperturbed height)
of a simulation beam varies as a function of the beam's current, when
the current in the opposing beam is held fixed. One sees that when
one. beam has very low current, its height is about twice the height
of either beam when the two currents are matched, (This footnote
refera to preceding page.)
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where 3 is ortheogonal to the vector n that, together with the number
n, defines the resonance curve on which a is constrained to lie. 1In
the flat-beam 1limit, the second term on the left-hand side of (103)
vanishea, s0 that this equation may be simplified further, becoming

axr(S) = axr(s:O) P LI {104

We can now see that the flat beam 1limit distorts blowup when
there are rescnance curves--such as the one associated with (n_ n_,n)
= (3,1,-21) in Fig. 33--that are nearly vertical. In such “cases,
when large changes in a_ accompany small changes in a,_, a streaming
equation that, 1like (X5ﬂ), makes no explicit reference to a
describea test particles that wmove very rapidly to very 1ar§g
vertical amplitudes, dominating the averages that determine beam
heights.

In order to predict, for the particular case of interest here,
how this distortion 1is reduced when 0% and Bf bacome non-zerec, we
shall have to assume that a number of thiﬁgs (in'the model wused in
the simulation) which at present can only be determined by computer,
change very little when r departs very slightly from zero, with E,Ex
and Ey fixed at 2.2 GeV, .06, and .06 respectively. They are

-- The location of the (3,1,-21) resonance curve in the 3
plane. When r = 0, this is, approximately, the vertical line
8yp = 2.8, according to Fig. 33.

~- The percentage of all test particles that are streaming
up the (3,1,-21) resonance curve at any moment. When r = 0,
this 13?? about 5%.

~-- The time that a typical streaming particle actually
spends streaming up the (3,1,-21) resonance curve in any one
stretch. When r = 0, this is?’® about one third of the
transverse damping time.

Let us now use these assumptions to estimate weak beam height as
a function of r, ' :

We begin by computing the largest value of a r typically reached
by a particle that streams up, the (341,-21) resbnance curve., To do
this, we argue as follows: Let al and a' be the points at which the
particle begins and ends, respectively an episcde of streaming.
According to the assumptions above, al =~ 5 = 2.8. We shall set
(a;‘;)2 ~ 2%% hecause we expect that wgen axparticle first gets caught
by the resonance, 1ts vertical amplitude is typical of the

*PFOUAbIY closer to 3.2 than to 1.6, if one can generalize from the
LEP simulation. (This footnote refers to preceding page.)

**In Fig. 30, al is approximately equal to Y4, not to v2. However, in
view of unpublisfed data’? that we shall not reproduce here, thias
appears to be an exception. In any case, our final upper bound
(following ine%uality (107)) for SPEAR blowup will not be very
sensitive to ag, even for ag as large as .

-
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unperturbed dynamics (there is no reason for it to be otherwise, when
one assumes, a3 we 4o, that the main effect of the strong _beam is
localized in the*(3,1,-21) resonance curve). To determine a_ , we use
Eq. (103) (with p = (1,-3)) and the assumption that the ’particle
streams only for a time interval At satisfying yedt = 1/3:

2 %2 f.2 %>
(2.8)'0:{ i B(ay) Uy
#*
2Bx 28y
2 %2 . ma M2
(e-zla) (2.8) Ux i 320
282 28; ) (105)
I.e., ubing e""/3 = 1/2,
® , %
o 8
(@2 =1+« -3} [ L
y o B
y X

(It should be pointed out that the apparent singularity at r = 0 i=
an artificial consequence of our having assumed that the resonance
curve 1is exactly vertical. A more careful analysis107 reveals that
the 1/r singularity washes out when r becomes comparable to the
aquare of the typical true slope ({=1/20 from Fig. 33) of the
resonance curve, i.e., r = 1/800.). According to (106), (aZ)? 1lies
between about 15 and 37 when r lies between about 1/30 and 1712

Finally, to obtain the contribution of resonance streaming to
the rms weak beam blowup itself, we argue as follows: According to
Eq. {30}, the mean square blowup {i.e., the mean square weak beam
height, normalized to (c_)z) is equal to one~half the mean square
value of a_, According to tﬁe assumptions, the mean value of a z
should be’ close to its unperturbed value (=2} for 95% of the tedt
particles, because, at any time, 95% of all articles are not
participating in streaming. The mean v%lue of a’ for the remaining
5% should be somewhere between two and (ay)z. Thus”we have

<y?>2/a0 < [(958) + 14 (58) ¢ 172+ (aD)213/2 (107)

When r lies between 1/30 and 1/12, the right-hand side of (107)
lies between about 1.2 and 1.4 (a significant reduction from the
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blowup of about 4.5, observed in the simulation’® when r = 0.) Note
that this interval does not overlap the interval (1.6, 3.21, towards
the high end of which we guessed that the experimental blowup would
lie. This suggests that resonance streaming does not make the
dominant contribution to the beam blowup seen in real
electron-positron colliders.
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FIGURE CAPTIONS

Fig. 1. Luminosity v3. current per beam at SPEAR, from
Ref. 10, The letter & refers to Ey‘

Fig. 2. Luminosity vs. current per beam at CESR for four
values of B;, from Ref. 11.

Fig. 3. Luminosity vs. current eer bunch at PEP, from Ref. 12.
. 3
The symbols Bx and BY refer to Bx and By.

Fig. 4. Specific 1luminosity vs. current per bunch at PETRA,
for several energies, from Ref. 13.

Fig. 5. Television photographs of beam cross-sections at
SPEAR, from Ref. 16.

Fig. 6a. Horizontal (R, for "radial") and vertical (V) beam
density profiles at ADONE, for beam current below the blowup
threshold, from Ref., 18,

Fig. 6b. Same as in 6a, but for beam current above the blowup
threshold.

Fig. 7. Maximum vertical beam-beam tuneshift vs. energy at
SPEAR, from Ref. 10.

Fig., 8. Vertical beam-beam tuneshift vs. current per bunch at
PETRA, for several energies, from Ref. 13. The subscript z
corresponds to y in the present review.

Fig. 9. Phenomenological fit (solid line) to experimental data

from various e*e”™ storage rings. Redrawn from unpublished plot
due to H. Wiedemann (1980).

Fig. 10. Schematic drawing of the DCI system, from Ref. 43,
The crosses indicate collision points.

Fig. 11. Results of several experiments performed at DCI, from
Ref. 43, The parameter 7 refers to the (equal, in this case)
fractional parts of the unperturbed storage ring tunes: v =
3473, vy = 1.73. *

Fig. 12. Schematic representation of an ISR beam (a) as viewed
head-on, and (b) aa viewed at a nonzero crossing angle.

Fig. 13. Results of an ISR overlap-knockout experiment, from

Ref. u6. Ipeam refers to the current in a coasting beam.

(AP/D)b refers to the fractional difference between the
momentum of a counter-rotating bunched beam and some reference
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momentum. (Ap/p)  decreases with time; the absolute value of
its time derlvagive is indicated in the figure. (Ap/p)_ is the
fractional momentum spread in the cocasting beam. V is the
peak voltage in the bunching RF cavities. Q is the unperturbed
vertical storage ring tune. The energy is not specified,

Fig. 14. Antiproton beam lifetime vs. unperturbed horizontal
tune at the SPS, from Ref. 49.

Fig. 15. ISR current loss rate and beam lifetimg va. vertical
beam-beam tuneshift, as measured during a high-B experiment,
from Ref. 52, The subscript z is as in Fig. 8.

Fig. 16. ISR current loss rate vs. vertical beam-bean
tuneshift, as measured during a nonlinear-lens experiment, from
Ref. 53. The subseript v is as in Figs. 6.

Fig. 17. Schematic representation of a head-on collision of
two identical bunches. The points ¢; and ¢, are the centers of
the two colliding bunches; ¢y is midway between the two
buniches; p lies in the horizontal midplane of bunch no. 1, and
is located a distance % in advance of the bunch center ¢,. (a)
shows the bunches before contact. (b} shows that the point »p
reaches the center of bunch no. 2 when it is a distance /2 {or
a time 2/2¢) beyond the collision center cy.

Fig. 18. Luminosity vs. current per beam at LEP, according to
numerical simulation, from Ref. 31.

Fig. 19. Luminosity and vertical beam-beam tuneshift
vs, vertical damping time at LEP, according to numerical
simulation, from Ref. 31. The subseript z is as in Fig. 8.

Fig. 20. Luminosity vs. unperturbed vertical tune at LEP,
according to numerical simulation, from Ref. 31. on is the
unperturbed horizontal tune. K_ is the number of bunches per

beam. and &__ are the horizontal and vertiecal tuneshifts
that eitﬁer beam would generate if the opposing beam were

absent. The subscript z is as in Fig. 8.

Fig. 21. LEP luminosity vs. root-mean-square irregularity in
horizontal tune per interacton region, according to numerical
simulation, from Ref. 31. The symbol U, used in this figure is
equivalent to 27 times the M, used in the present review.

Fig. 22, LEP luminosity vs. vertical interaction-point beta
function (measured in meters), for different bunch lengths,
according to numerical simulation, from Ref. 31. "Bunch
lengthening factor = n" means that the bunch length is equal to
(1.2)n om. The expected LEP bunch lengthening factor is fpur‘.31
The subscript z is as in Fig. 8.
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Fig. 23. Luminosity va. current per beam at CESR according to
numerical simulation, from Ref. 63.

Fig. 24, Contour plot of luminosity vs. the fractional parts
of unperturbed tunes at CESR, according to numerical
simulation, from Ref. 63. The numerals along the contours
indicate luminosity wvalues, in units of 10%° cm'zsec'l. Cther
markings in this figure are explained in Ref. 63.

Fig. 25. Weak beam height (normalized to unperturbed beam
height) vs. vertical unperturbed storage ring tune at PETRA,
according to numerical simulation of weak-streng operation, for
various energies, from Ref. 60. "4IP" means 4 interaction
points (C = 4). The subseript 2z is as in Fig. 8.

Fig. 26. Weak beam height (normalized to unperturbed beam
height) vs. vertical unperturbed storage tune at PETRA,
according to numerical simulation of weak-strong operation, for
various tuneshifts, from Ref. 60. "YIPY is as in Fig. 25. The
subseript z is as in Fig. 8. Q refers to the tune of
synchrotron oscillations. s

Fig. 27. Weak beam height (normalized to unperturbed beanm
height) vs. unperturbed storage ring tunes at PETRA, according
to numerical simulation of weak-strong operation, with (right)
and without (left) dispersions and tune irregularities, from
Ref. 61. The subscript z is as in Fig. 8. Q_ is as in Fig. 26,
The energy is 17.9 GeV per particle, the s%rong—beam tuneshift
is .04, and C = 4.

Fig. 28. Luminosity vs. current per bunch as measured at PETRA
(strong-strong) under three different operating conditions,
from Ref. 60. Curve {a) corresponds to an unperturbed vertical
tune of 23.3, Curve (b) corresponds to an unperturbed vertical
tune of 23.1. Curve (¢) corresponds to Vv = 23,1 and, in
-addition, to a special reduction of n_'s. In al cases, Vv =
25.2. X X

Fig. 29. Weak beam height (normalized to unperturbed beam
height) vs. vertical strong beam tuneshift at SPEAR, according
to numerical simulation of weak-strong operation, from Ref. 57.

The parameters Dx and DY are explained in Ref. 57.

Fig. 30. A streaming trajectory from the SPEAR simulation of
Ref. 57. Reproduced from Ref. 5.

Fig. 37. Orbits in an ISABELLE simulation, from Ref. 75.
Fig. 32. Schematic representation of fourth-order =stable

reacnant trajectories {large dots) and separatrices
(football-shaped enclosures) at a single time, in a system with
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one degree of freedom. The 1long arrcw indicates that the
trajectories and separatrices revolve about the origin as time
progresses; the short arrow indicates that phase 3space flows
around the resonant trajectory within each resonant region.
Revolution of rescnant trajectories is clockwiae
{counterclockwise) if dHgy/dI is positive {(negative); flow in
resonant regions is clockwise’{counterciockwise) if d2Hge/dI 2

yr
is positive (negative).

Fig. 33. Resonance curves from the SPEAR model used in the
simulation of Ref., 57, from BRef. 5. (Note: Based on a
comparison between this figure and Fig. & of Ref. 57, it seems
to me that the labels "2v 4+ 6V_ = 2" and ™10V, = 2" should be
replaced by "2V _ + 6V _ = 5% and W10v_ = 6," respectively. The
variables V. ahd V, used in this FiRure are what we would call
W,-2 and ¥ -2 in the present report. In terms of our usage of
the symbois v, and VY, (V, = 24_ and V_ =z 24 _ at SPEAR), these
replacements are equivilen®t to v* 4 3v,y= 217 and 5V = 26,
respectively. These replacementsyare aésumed in the tegt.)

Fig. 3%. (16%E_)~' aF o/2I, (D(0) in the figure) vs. YT /T
(0 in the figure), 282 thé ISR model discussed in Chapte¥ v¥
from Ref. 97.

Ref. 35. Current loss rates {(and beam height) vs, time near a
fifth-order rescnance in the ISR, from Ref. 45,

Fig. 36. Heights (normalized to unperturbed height) of two
colliding LEP beams vs. the current of one of them (A), the
current of the other (B) being fixed, according to numerical
simulation, from Fig. 3271. All fixed parameters--except
horizontal and longitudinal damping times--zssumed in this
graph are identical to those that correspond to the luminosity
maximum in Fig. 20. The horizontal damping time is half that
used in generating Fig. 20; the longitudinal damping time is
25% greater than that used in generating Fig. 20.
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