
a Fermi National Accelerator Laboratory 

FERMILAB-Pub-82/100-THY 
December, 1982 

Light Composite Supermultiplets 

T.R. TAYLOR* 
Fermi National Accelerator Laboratory 

P.O. Box 500, Batavia, Illinois 60510 

Received 

ABSTRACT 

It is argued that in a wide class of massless strongly 

interacting supersymmetric gauge theories there exist 

confining phases with unbroken supersymmetry. We explain 

how to identify and interprete the light composite 

supermultiplet content of these phases. 
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The outstanding question in every strongly interacting 

supersymmetric gauge theory is how supersymmetry and other 

global symmetries are realized in the effective theory of 

gauge-singlet composite supermultiplets. Recently two 

approaches 1,2,3 has been developed, leading to at least 

partial answers for the left-right symmetric models. The 

index analysis of Witten' proves that there is no dynamical 

supersymmetry breaking in theories with matter in real 

representations. The effective Lagrangian analysis 2,3 , less 

rigorous although more intuitive one, confirms Witten's 

results, leading however to some unexpected conclusions 

about the zero mass limit of the supersymmetric QCD (SQCDj3. 

The results of Ref.3 indicate that some supersymmetry 

preserving biscalar condensates, which break chiral symmetry 

down to the flavour subgroup blow up to infinite values in 

the Fl zero mass limit . One could then expect qualitatevely 

different physics of massless theories, first of all of the 

genuinely massless non-left-right symmetric ones, with 

matter in complex representations. Such a hypothesis is 

supported by the present ignorance of how to compute the 

index in the massless cases and by the failure of 

constructing any simple effective Lagrangians, when limiting 

oneself to the intuition provided by ordinary gauge 

theories4. 

In the present paper we argue that in a wide class of 



massless models there exist confining phases with unbroken 

supersymmetry. We present a simple prescription, based on 

the conjectured complementarity 5,6,7 and 't Hooft anomaly 
7 conditions , which permits the identification and 

interpretation of the light composite supermultiplet content 

of these phases. The key observation is that in 

supersymmetric massless gauge theories with a vanishing 

f-term (superpotential) and matter in large, in general 

reducible representations, the scalar potential may have 

nontrivial zero value degenerate minima, which break the 

gauge group, F2 while preserving supersymmetry . If the matter 

representation is large enough, like for example three 

families of - z+S in SU(3) or five families of 5 + G in - - 

SU(5), some supersymmetric vacua exist, which break the 

gauge group completely. For such models we are able to find 

completely broken Higgs phases, corresponding to some 

nontrivial configurations of the vacuum expectation values 

(vevs) of scalar components of the matter chiral 

supermultiplets. The perturbation theory in the weak 

coupling regime (corresponding to small distances in 

asymptotically free theories under consideration) can be 

then applied in order to identify the massless fermions. At 

this point one can invoke complementarity5 between broken 

and confining phases and reinterprete massless 

supermultiplets of the Higgs phase as light gauge-singlet 

bound states of the confining phase. Several remarks are 
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here in order. First of all, the complementarity has not 

been established for supersymmetric theories and one should 

consider it as a conjecture. It is however supported by the 

examples and nontrivial consistency checks, which will be 

presented throughout this paper. Another point, which needs 

clarification, is our use of the Higgs phases with vevs of 

some elementary scalar fields. This is in contrast with the 

case of ordinary gauge theories, where the Higgs phases has 

been usualy related to some fermion-antifermion condensates, 

indicated according to the most attractive channel 

criterion6. Supersymmetry provides us with elementary 

scalars and well defined potential, it is then natural to 

consider their vevs 9 in the presence of degenerate minima. 

Moreover, the massless scalars by screening may prevent 

fermions from condensation. 

Before proceeding to the examples let us explain some 

technical points. An elegant group-theoretical analysis of 

the spontaneous breaking of the gauge group compatible with 

unbroken supersymmetry has been given by Buccella et al. 

(BDFS)". Let us consider the case of a semisimple group G, 

with chiral scalar matter superfields transforming according 

to some representation R, in general reducible, of G. In 

the absence of a superpotential the condition for unbroken 

supersymmetry reads 

<d"(z, z*,> = 
d&R 

t 
4,/3” 

<z+,)(T”);<z’J) = 0, a(~ a, (I) 
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where z* denote the (complex) scalar components of chiral 

supermultiplets, and the matrices TD stand for the 

generators of G in the representation R. In Ref.10 a simple 

algorithm for solving F3 Eq.(l) has been proposed. The set 

of Eq.(l) is satisfied by the vev <z) if there exists an 

analytic G-invariant polynomial I(z) such that 

aI 
az* = 

I Z---CL> 
c<z:> ) (21 

where c is a complex constant, c#O. Indeed, from the gauge 

invariance of I(z) it follows that 

f$T”);r’l=O, au a, (3) 

therefore Eq.(l) is satisfied whenever Eq.(2) is fulfilled. 

We will use the BDFS algorithm in order to find and classify 

some solutions of Eq.(l). 

The first example to be studied here is SU(3) SQCD with 

three massless flavours. The physical degrees of freedom 

correspond in this case to the chiral superfields 

W^= ba,FF,“,) 
w wLt+,t, a= I+8 

7 +no&h- ?w,k,&, d,i = I+3 

a: = (2: , xl) J 
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This model contains 18 massless complex scalars '4 and "1, 

26 chiral fermions 1, W and x, and 8 vector gluons. 

Classically it possess the global symmetry SU(3)I,xSU(3)R 

xU(l)vxU(l)AxU(l)R, where the last U(1) factor corresponds 

to so-called R-symmetry3. As explained in Ref.3, both axial 

U(l), and U(l)R are anomalous, so that only one combination 

U(l), remains unaffected by the Adler-Bell-Jackiw colour 

anomaly. The quantum numbers of scalars and fermions are 

q(3 ?I I L 0) ,r-J-.,3, 

TJ3 I 3 -p) ^r,-, -, 

W2#3 ,l,f ,S) 

XG,1,2,-i,f_) 

I( Z) 1 I o,-$1 , 
e I”, 

(5) 

where the first number in a bracket corresponds to the 

G=SU(3) gauge group representation and the subsequent ones 

to the global SU(3),xSU(3)RxU(l),xU(l)X transformation 

properties. 

In the weak coupling regime, within the perturbation 

theory at least three distinct types of solutions of Eq.(l) 

exist, which break the gauge group completely. They 

correspond to different global symmetry breaking patterns, 

implied by configurations of the vevs of scalar fields 

related to different BDFS polynomials I. We will list one 

solution after another, in each case identifying the 

unbroken global subgroup H and the massless fermion 



spectrum. 

(i) I = t 
+a 

e;ik y; " 9; 

<Y’t) = 5” 
L , 

CT;> = 0 

H = W(3), * 5U(34/ U(l), , 

where SU(3),, is the diagonal subgroup of GxSU(3jL. 

Massless fermions: 

5 -y: ) x,: I 
**a 

(ii) I = Y; Tj 

<q, = CT;, = ST 

H = W(3):, 1 Y(l), , 

where SU(3); is the diagonal subgroup of SU(3)DxSU(3)R. 

Massless fermions: 

5-q $z # 4fl 
y; + x4 - ;a; ppq). 

(iii) 
1 = 2 vl: 

<ff) = <?I> = a; 

<YZ) = <‘2Z) = 0 

H= w(2); * U(l).& * [U(I$ , 

(6) 

(7) 

(3) 

(4) 

(IO) 

(11) 

(12) 

(13) 

(14) 

(16) 
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where N(2); is an obvious subgroup of Su(3)'D and the 

uJ(1)12 factor corresponds to two conserved combinations of 

the U(l)V baryon number with the x, generators of G and 

SU(3)D. 

Massless fermions: 

9; +y L. -:chpx;, , -t-z, p, f3:, 

$, q+q , y , x; , dh d, i < 2 . (17) 

In all three cases eight of matter fermions pair with 

gauge fermions to form massive Dirac particles. The 

remaining ten massless fermions form representations of the 

unbroken global subgroups. 

At this point we will invoke complementarity and 

continue our massless spectra to the strong coupling regime 

in the confining phase of unbroken gauge symmetry. The 

light fermions have to be recovered there as gauge-singlet 

composites. We find that the complementary light composite 

fermions can always be expressed as some linear combinations 

of the fermionic components of the following chiral 

composite superfields: 

(18) 



In either of the cases they form representations of 

different subgroups K of the global symmetry group. The 

light fermions of Eqs.(9), (13) and (17) correspond to the 

fermionic components of the following composite 

supermultiplets: 

(i) one linear combination F4 of B and g, Tj' 

K = W(3), * !&J(3),* U(l), 

(ii) 0, E, 

Tj-?j&f$T: 
IL-* 

K = sJ(3)"X U(l) 1 U(l), , " 

where SU(3)V is the diagonal subgroup of SU(3)LxSU(3)R. 

(iii) 
T j -&T: , Tj , T’ w& l,j <2, 

k-I 

‘3, 0, 

(W) 

(20) 

(21) 

(22) 

(23) 

K= Su(2),*u(i)~ U(l),X U(I), , (24) 

where SU(2)VxU(1) is an obvious subgroup of SU(3)". 

This can be easily verified by replacing the scalar 

constituents of the fermions of Eqs.(l9), (21) and (23) by 

their vevs of Eqs.(7), (11) and (15), respectively. 

The first nontrivial check of our results comes from 

the 't Hooft anomaly conditions'. Indeed, in all three cases 

there is anomaly matching between elementary and composite 



fermions, with respect to the appropriate subgroups K. An 

obvious question is what condensates could be responsible 

for dynamical breakings of the global group down to these 

subgroups. Not surprisingly, the BDFS polynomials I [see 

Eqs. (6) r (10) and (14)1 turn out to be good candidates. 

Their vevs provide correct symmetry breaking patterns, and 

furthermore, being vevs of the scalar components of the 

superfields B, E or T, they do not break supersymmetry. In 

such a way complementarity supported by anomaly matching 

lead to an interesting conclusion. We find the degeneracy 

of supersymmetric vacua in the weak coupling regime 

replicated in the effective potential of the strongly 

interacting effective theory of composite superfields. 

From the discussion of SQCD it is clear that the 

reality property of the matter representations is irrelevant 

to our considerations. A similar analysis can be repeated 

for other examples, in particular for the SU(5) model with 

five families of 2 + z matter representations. This model 

contains the following chiral superfields 

W” = (I”, Fzv 1 4”94 ,?Tdi,ti, a=1+24 

Pp = (‘44 , Wf ) 

M’ = (& Xf,, dP 

m& ?7lu.lLpa, d,lJ,i = 15 

0.5) 

where M' do is totally antisymmetric in d and 13. Classically 



10 

it possess the global symmetry Su(5)Pxsu(5)M 

xU(1 ~)pxu(l)Mxu(l ,I R. As in SQCD, only two combinations of 

three U(1) symmetries remain unaffected by the gauge 

anomaly. The quantum numbers of scalars and fermions are 

-f’fz (Z, 1.) 3,$) 

~@,!,_5,-1A) 

where the first number in a bracket corresponds to the 

G=SU(S) gauge group representation and the subsequent ones 

to the global SU(5)pxSU(5)MxU(1)vxU(1)X transformation 

properties. From the plethora of supersymmetric phases, for 

the purpose of illustration, we quote here only those 

related to 

1 = %prs9E 
;jkLm y; ‘9; 9: .4: 9: 

and 

1: v4/32&3 + c +& 

(27) 

(28) 

The 51 complementary light composite fermions can then be 

expressed as some fermionic components of the superfields 

E = +sg e ijkLm pq p’ p,” pf p: 

Fj; : MA; P; P”, 

G’;” z ~*‘=g6q Mk, M,; Mix P; (24) 
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They form representations of the little groups of the 

appropriate BDFS polynomials of Eqs.(27) and (28), i.e. of 

Su(5)pxSu(5)Mxu(l)x and su~3~,~rsu~2~,1~~tu~1~1~, 

respectively. As in the previous example, the light 

particle content is consistent with the rt Hooft anomaly 

conditions. Again, some multiscalar BDFS condensates are 

expected to form, in a one-to-one correspondence with the 

classical supersymmetric solutions, which break the gauge 

group completely. 

Many other examples can be studied in a similar manner. 

The only limitations are coming from the dimensions of 

matter representations. They have to be large enough, so 

that completely broken Higgs phases exist, however not too 

large, so that asymptotic freedom still holds. Such models 

have several common features. For a qiven representation 

the number of massless fermions is by construction the same 

for all completely broken Higgs and confining phases, and 

equal to the number of elementary fermions minus the number 

of the gauge group generators. The light composite fermions 

belong to the simplest gauge-singlet composite chiral 

superfields and are built of one elementary fermion plus a 

number of scalars. Finally, the global symmetries, like the 

chiral ones are always found to be at least partially broken 

by multiscalar condensates corresponding to some BDFS 

polynomials. 
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Our analysis clearly indicates for the existence of 

supersymmetric phases, neverthless we do not regard it yet 

as a proof of the absence of dynamical supersymmetry 

breaking in this type of models. We are not able to exclude 

the possibility that some strange nonperturbative phenomena 

occur, which create some other, more energetically 

favourable, perhaps nonsupersymmetric, vacua. 

In summary, the use of complementarity between Higgs 

and confining phases leads to the definite conclusions about 

the realization of supersymmetry and other global symmetries 

in a wide class of strongly interacting supersymmetric gauge 

theories. It enables to identify the light supermultiplet 

content consistent with the anomaly conditions and to 

recognize the origin and patterns of the dynamical symmetry 

breaking in the confining supersymmetric phases. We hope 

that our approach, maybe supplemented by other arguments, 

could also give some insight into the physics of the models 

not covered by the present investigation. 

As a possible application of our results we would like 

to point out supersymmetric pr eon modelsll, where the 

multiscalar preon condensations could lead to some 

physically interesting symmetry breaking patterns. 
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FOOTNOTES 

Fl A possible explanation of such a singular behaviour has 

been recently found by G. Veneziano, to be published. 

F2 These are so-called ambiguous solutions of supersymmetric 

theories, for which the scale of breaking remains 

undetermined to all orders of perturbation theory8. In the 

following we will set this scale equal to 1. 

F3 The trivial solution <z~>=O, for all d, does not break any 

symmetry. 

F4At this point B itself would fit too [see Eq.(7)] , however 

as we will see later, U(l), is expected to be broken 

because of the anomaly non-matching, therefore this state 

should not carry a definite U(l)" quantum number. 
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