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ABSTHACT
Ve give a simple prooct of the nonrelativistic duality relation
e N o)
<wLUbotmd) - (J‘Ufn::) for ap,ropriste energy averages of the cross sectlons
+ - -~ r - -
for « e ~+(gq bound states) and ¢ e +{free qq pair), and culeulate the cor-

rections o the relation by relating WQU to the Fourier transform of the Feynman

pruopugation function and doveloping a short-time perturbation series for that

function., We Jllastrate s reselts in detail for simple power-law potentials
ard potentials wnish Iow iy combinabions of powers.  In the following paper,
We o oune ouT Fenilts he o otoly the nonrelativistic version of the 5hifman-
Vuinshtoin=Zashar.y o' iod Tor desermining the natare aof the 4 interaction
and calzulating encroien oF bolesd o sg.0 00 o, and S gest sume improvements in

the meirnol.
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I. INTRODUCTIOR

There is an assumed duality between the observed {bound state) cross
+ - -
section for e e +(confined qg system) » hadrons and the (free} cross section
for e e” +{free qq pair) ealewisted in perturbative QCD: if both cross sections

are appropriately averaged over energy, the averages are approximately equal,

<H20 >:<U20 > (1)

+ — . ,
where W is the total energy of the e & pair. This duality has been used

extensively in the analysis of heavy quark data.

Uptil recently, the duality relation had been demonstrated to hold conly
in the noarelativistic case, and then only in fhe JWKR npproxim&tionl or
in pumerical calculations in specific potential models.2 The corrections to
the relation were not known. In two earlier papers, we gave proofs of non-
relativistic duality for the single channel3 and coupled channelh problens,
and investigated the corrections to Eg. (1). (The corrections were also in-
vestigated by Pasupathy and Singh5 using an extension af the JWKB approxima-
tioca.) We subuequently extended the JWKB proof of duaiity to the relativistic
Bethe-Salpeter problem and investigated the relativistic-nonrelativistic con-
nection in detail.

Our method of proof of the nonrelabivistic Tesuits was based on a short-
time expansiou of the Feynman propagation function and required, as prescuated
in Refs. 3 and 4, that the qa potential be anulytic in r2 at the space origio.
We have since extended our results to gencral patentials, and have used them
to investigate the extenl to which the Shiﬁman-VaInshteYn—ZakhnrovT {svz}

progran of deternlning bound state parameters from perturbation theory



(as modeled by potential theory) can be improved by including higher order
effects. We report that work im this and the ro].'lovinga paper-

In Sec. ITA, ve review the connection between the cross section for
e*e' +hadrons in eonfining potentisl models and the Fourier transform of the
Feynman propagation function, and use the result to give a precise definition
af the duslity relation. In Sec. IIB, we establish the series of corrections
to the simple duality relation in Eq. (1) by developing the short-time Born
series for the propagator. We illustrate our results on the short-time
perturbation series for the case of power-law potent{als in Sec. IIC, give
some examples in Sec. IID, and apply the results to the duaiity relations
for exporential moments of Shifman, Va‘i’nshtefn, and ZakharovT in Sec. IIE.
In S5ec. IIF, we consider the case of the Coulomb-plus-linear potential,and show
how the duslity relations can be improved by extracting Coulomb corrections
and treating them exactly, as was discussed in Ref. 3. We conclude with some
comzects in Sec. 11I.

In an Apoeriix, we derive exact expansions for K(0,0,-it) (the Euclidean

-

Profecanor K{;', ,-i7) evaluated at the crigin Fr=T = D) for the harmonic
oscillator, linear, and Coulomb potentials. This function determines the
Shifnan-Valoshueln-Takharov exponential moments of the nonrelativistic e+e_
annikiletion cross section., Our results for the linear and Coulomb propa-
gators are tn cur kaowledge pow.

In the following paper,a we use the results obtained here to study the
nonrel.iivistinc verusion of the Sh'1t‘man—‘\fnrnshtern—ZakharovT method for deter-
mini-y thoe pature of the {relativistic) qq interaction and the encrgies of qq
bour.] siites from d.ality. Our work extends the earlier analysis of the 3V2
zetisd given by Bell and Bertl‘:.n.nn,g and we propose sone impravesents of

e omethiod.

II. SHORT TIME PERTURBATION THREORY AND DUALITY
A. Duality and the Feynman propagator

Our derivation of the duality relation in Ref. 3 was based on two ob-
servations, first that the free and bound cross sections for e+e_ + qg can
be expressed in terms of Fourier transforms of the corresponding Feynman prop-
agators, and second that the two p.ropa.gators are approximately equal at short
times, We begin by reviewing and extending these results.

The nonrelativistic cross section for e'e” annihilation intc a qq pair

bound in & confining potential Vv(r) is giwen for three guark colors by

d g ot oPelm 2w 2

boun S L o o(0)|% 6(e-e ) - (2)

Here a is the fine structure constant, eq is the quark charge in units of e,
:nc1 is the guark muss, W = '.}mq+E is the total energy in the center-of-mass
system, and \Pns(;) is the qq wave function for the nth S state. The sum
in Eq. {2) is just the Fourier transform E(0,0,E) of the Feynman propagator
K(;',;,t} for the gq system in the cenfining potential, evaluated for zero

quark separation,

(+ + ) z (+ } “iEnlt‘ » (+ (
K{r',r,t) = r' v ) 3)
nim u’nﬂ.|:1 ¢ nim
HERERI PSR RS
- (L}
- +' ' *
=2on § Vgt ¥ogp(r) §(E-E ;) .

nim

. . - -
Since only S states contribute to k for r' = r = {J, the cross section in

Eq. (2) is simply proportional to k(0,0,E),



_pp2.p 2%
A 12n°al LA W ° K{(D,0,E}. {5)

Similar results hold for the free cross section,

2

a = én aeeq v H-2|¢E(0)¥2 {6)

free

- s
= 12n2 a232 2w {0,0,E) ,
q 4 ©

+
vhere Ko(r',r,t) is the free propagator,

m m {+, +12
CELE = (k) ? et (2 42D (1)

Wn(it+e) it+e ’
ko is its Fourier transform,
& @
K,(0,0,E) = m vjem o, {8}

acd v = (E/mq)l/? in the veloeity of either quark Jn the center-of-mass
system.

Although the energy dependence of the cross sections cbound and Gfree
{c.r equivalently, of the functions %(0,0,E) and %o[0,0,E)) is drastically
different, the propagators K{D,0,t) and KD(D,O,t) are nearly egqual at short
times. In particular, in the presence of a potential V{r}, K is related

to KO by tie integral equation

t

K(Z',Ft) = KO(F',F,t) S J dt'[djr" Ko(?',?",t-t')v(?")x(?",;,t').

0
(9)
The integral tern vanishes relative 2o KD a; t + 0 for potentials ¥ir)

=2
Ve, singalnr Lhanor nt the origin, To make use of this infornation

and obtain a dunlity relation cornz2eting Thound and Ufr o YO BVerage the

6

cross sections over a range of energies by convoluting H20 with a smooth
function f(E‘—E),l0 and use Egs. (5) and {6) and the convolution theorem

for Fourier transforms to write the results in terms of K{0,0,t),

o> = f dE* f‘(E'-—E)HQO(E')
{10)
= 12m° aQeEm;Z rd.E' £(E'-E)®(0,0,E")

i

2 - .
1ene cxeeqqu rdt ']!‘(1;)1((0.0,:;).;-”:t .

—y

If f(E'-E) is chosen so that its Fourier transform ?(t) is sharply pesked
around £ = 0, we may use the approximate equality of K and KO at short times
to obtain the simple duslity relation in Eq. {1}. This relation correspends
physically to our expectation that a qa pair produced at r=0 is unaffected

by the potentinl for a short peried of time, i.e. until the guarks encounter
the confining potential barrier. We will next make this assertion more pre-

cise, and obtain a corrected version of Eq. {(1). i

B. Shert-time perturbation expansion

In Ref. 3, we estimated the corrections to the duality relation by using

+
the eperator expression for the full propagator K[r',;,t),

K(z1,5,t) = R T - {11}

+ 2

H(r') = -V /mq + ¥(r'), and making a (Wigner‘Kirkuoodll) expansion in
r'

terns of derivatives of the potential evaluated at the origin. This

procedure failu for potentials which are singular ar have singular deriva-

tives at *he origin, and we have since found it much more convenient to



e the integral equation in Eq. {9) directly, and solve for K by

eration. This gives the Born series

k(0,0,t) = KO(D,D,t) + xl(o,o,t) + K2(0.0.t) + ... {12)
ith
" Jt jtn d Itzdt J a3 I a3
K 20, = (-1 dt t [ r ... T
n(o 0.t} (-1 0 LI PN n~1 0 1 o} 1 (13)

- > o+ -+
% Ko(o,rn,t—t.n)v{rn)l(o(rn.rn_l,tn—tn_l)V(rn_l)- ¥ )E (r),0,t,).

[t is straightforward to perform the time integratfons in Eq. (13) re-

. 12
arsively using the explicit form of Ko in Eq- (7) and the identity
¢ 1 ORI R
dt' —- = Y e
0 ((t-t*)t]
, (1k)
_ofm xSl ) e
TS
z find that
m n
PR WY LA T ] djr ...I d3r Vie ). ..v{r )
K (0,0,t) = (hn(it*s,) (- yq) a L Ve, L
{15)
r +r .47, *r -m_{r +r t...+r )2/h(it+e)
n o,n-1" 21 "1 q' o n,n-1 1
X e T e e .
rnrn,n—l"'rELTL
here ¢ 5 = i;,—; }. The remaining spatial integrals can be simplified
i i7y
ooewtint by referving the polar sngle of ?i to ?1_1. Cosei,i—l = ?i';i»l’

+ +
né¢ the azimuthal angle to the plane defined by ri—l and ri_2. The

integrations over the n-2 azimuthal angles and the Euler angles which

: x -+
specify the orientation of rland ;2 are then trivial, and give a factor

2'(2ﬂ)n. The integrations over the angles Bi can be replaced, finally,

,i-1
by integraticns over the iengths ri -1 and we find that Kn(0.0,t) is given
r

by
o0 L
mq 3f2 mq n

K (0.0,6) = ald ™ [ 28 JO ar ... Iodrl Ve ). vir)

r +r r. ¥r

[ ot ool ') ~m (r or, w2/

.
" [r -z -] n,o-1""" |z,-r dr2l(rn+rn.ﬂ-1+'.'+r1)e
n n-1 271

(16)

fquation {16) gives Kn(0,0,t} as a weighted average of V(rn)...v(rl)

)1,2, i=l,...n. {This is the

over the region with the r and Tia1 ~ (t/mq
region which can be sampled by the quarks in a random walk in time t.)
Successive terms in the Born series in Eq. (12) therefore differ in magni-
tude by a factor “t<V>, where <V> = is an average of v{r) for r (t/mq)lfz,
and the series will give a useful expaunsicn of the full propagator for

t<ﬁ>t sufficiently small. We conclude that Egs. (12) and (16) give a short-
time perturbation expansion for K(0,0,t).

When we substitute the series for K{0,0,t) in the expression for

<w20b0und> in Eg. {10), we obtain our corrected duality relation,

12-rr2 a2 ei m;2 I_mdt Bt ?(t}[Ko(o.o,t)+xl(o,0,t)+...]

< >
Uhound

- (17}
[ at e'F* F(eiK (0,0,)0...

-—m

= <H20f > + 121° o e° m ?
ree q q
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By the arguments above, we can make the correction terms in Eq. (17) small
by making use of the short-time counvergence of the perturbation series, snd
choosing }'(t,) Lo be sharply peaked arcund t = 0, that is, by using a broad,
smooth smearing function F(E'-E) in the convolution im Eg. (10). We will
use power-lav potentials in the next section to illustrate the short-time
nature of the perturbvation series, and explicitly calculate the corrections

in Eg. {17).

B
C. Perturbation series for power-law potentiails

General power-law potentials of the form

vma.x v
vir} = Vv [ dv plv) {rfa) , -2 <v . (18)
o min
v
min
bave been used extensively in the analysis of gquarkonium systems, and are
flexibie enough to be of broad interest. For 2xample, the popular Coulomb-
: . H . . v 1k
plus-linear potential, 3 Lhe Martin potential ¥V = A+Br .l
. - . . 15 : : .
potentiul considered by Quigg und Rosner are all in this class. (In the
last case, p(v} = - 5'(v}.] The short-time character of the perturbation
serivs for K{0,0,t) is also particularly clear for power-law potentials,
0 we will consider thesm in Jetail.
The oth order Yerm in Lt periurbation series is given for a power-

law jwotential by

end the logarithmic

10
_ .0+l n Mg 3/2
. 1/2{u ., .+v )
L{it+€) 1 n
x I av p(un)---[ vy o(vl) [ 2
m_a
1 (19)
- - X ¥Ry X 4%
‘Jn vl
x [0 d_xn xn e [0 d_‘Kl xl flx . Idxn,nﬁl... le . ldx21
n Tn-1 R |
2
-(x_+x +ooa4x )
n “n,n-1 1
Lot
X (xn+1n,n—l+' xl) e '
whe i i i i 5 %, = i LR
re we have introduced dimensionless veriables x, = (mq/h(lti—e)) r,-

The factor (mq/h'ﬂ(it*ﬁ))Biz in this expression is Just KO(O,O,t), Eq. (7).
The leading t dependence of Kn(0,0,t} is clearly determined by the minimm
power in the potentinl V{r),

a1+ . )
min

Kk (0.0, t)/K {0,0,t) = ¢ . {20)
In the case of a single power, V = Vo(r/a}v, K(O.D,t}/KO(D.O,L) is given by
i
8 power series in 2™, From Eq. (19}, we can identify thw nth term

in the serjes for K with the nth power of t‘a’((t./mq)!ﬁ), where (t/mq)‘Ti is
the characteristic distance discussed after Eq. {16).
Tt is straightforwWward to calculate K1 and K2 far the general potential
in Eq. (18). A simple calculation for Kl gives
v /2

. 1 v
K (0,0,t) = K (0,0, t}{itre}V Jdvlp(vl)[;ﬁiga NET 51). {21)
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The calculation for K2 involves a triple iategration co the spatiml vari- '

ables. Integrating first on x we find that

21"
%(vlwz)
K,(0,0,) = K (0,0,0) b((ivse)y )° Jd"e p{“EJId“l "(“1)"[&!??]
q
= . {22}
vy vy —kxf —h(ﬁ+x2)2
e - e .

x Ide Id)r.lx2 xl
a ]

where x, is the greaver of xl,xg. The remaining integrals can be evaluated

r

in terms of gamma and beta functions.with the result

lw +u )
(0,0,t) = K (0,0,t)({itre)v )° {av, plv,} lav plu ) [3E2E 2
Kol0:0,t0 = K 10,0,u)1U o 2 PV LR N
Q
(23)
1L r[l , vy, N vl+u2+2 ) [‘(vi+1)i‘{v2+1)
2 2 (\Jlfl)(v2+l] ['(\Jl+u2+2]

We will use the general results in Eqs. {21) and {23) later to discuss
Lhe physically interesting case of the Cowlomb-plus-linear potential. For
. v
the special tase of the simple power laws V(r) = Vo(rfﬂ) ' p(\)i) = 6(\;1—\J).

these results reduce to

wi2

K, (0,0,1) = Al-:u(o.n,tltit*c}vo{i&:%} M 3, (2v)

q
e
W

ey YL 2 [1une) L 07 (ur1)

h,d(.z.n) = Ao(o,n,h)((uu)vo) {m aEJ r{vel) [\’Ei ~ ?_r(z'::’;g)} .
1 (25)

12

We have not evaluated K3(0,0,t) for a general power-law potential.
6
However, one of us (JBWl } has performed the rather lengthy calculation for
a single power with the result

K,0,0,8) = £.(0,0,8) ((itve) v, ) (—:ifi-g—ﬁ"’?

@ ) | urtenrteve)
(3w} (3u+43) | T(3w3) (v )T {3v+3) {26)
. 2 N 1 3w, 1, 1

— 7 1 .
(v+1)?  (aw2)? 32 2ur3, 2v+l

where 3F2(-) is a generalized hypergecmetric function.

D. Examples: The oscillator, linear, logarithmic

and Coulamd prupagators

It Is interesting to exumine the expansions of K(J,0,t) more closely
for some familiar cases,for some of which exact results are known. For

the oscillator putential V(r) = % mqm;?re, Eqs. (7], (2L), and (25} give

the expansion (see Eq. (A.4) io the Appendix with T =+ it}

3

oy 2 1 2.2 1lg b b
K _(0,0,t) = (— = L+ttt w ot o+ ...,
osc Ym(it+e) b 480
{(eh
12

in agreement with the expansion of the exact result for v=2

€(0,0,t) = (mo/kni sin wy¥e (28)
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The expansion of K(O.O,t)/KO(D,O,t} converges in this case for |wt| < m.
It cculd also be obtained as in Ref. 3 using the Wigner-Xirkwood expansion.11

For tc= linear potential ¥{r) = br, our expansion gives

n pal
Kline&r(fj,{),t) = (———[L--)3/‘ 1 - EE(A(it+a)3/2 + %é'(l(it+c))3 + ...,

Yr(it+e)
X = (befmq)l” , (29)

again io agreement with the exact result discussed Zn the Appendix,
Equ. (A.10) and {(A.12). In this cuse, ¥(r) is not analytic at the origin
in tiree-dimensional space, arnd the Wigner-Kirkwood expansion fails as noted
in Rer. 3. The present methods wre clearly superior to those used there.

The lagarithmie potential V = Voln(r/a) discussed by Quigg and Rosnerl5
is a 3pecis. case of Eq. (18) with p{v) = - §'(v). The approximate expansicn
o K(0,0,1) can be cblauined from our general results in Eqs. (21) and {23)

by differe-=lating with respect to the independent indices Ul and v and

Lhen settl-g 9.th eqgual to zero.  We find that
M3 372 1 2
KL(,g(O'O‘tj = {fﬁfitlE_)') L+ 5(it+E)V0[Y—1n((it+€)/mqa ]
{30)
2
v Htareew )% ([v-2al(Gtee)/m a7)1% + 25— - 8) + .
8 o q [

Figally., ~he cxpuasion of K(0,0,t) for the Coulomb potential can be
obtainel by ~zr e tie limit @ » =1 in  Eqs. (2L) and (25). The singu-
larities im whe gsaoma funciions in By {2%) cancel, and we finl that

rfor ¥le; = -1/,

1k
a ,3/2 2 1/2, 122
Koou (8205t} = (W"’_E_)) [l+[‘IT°! m Ueke) ] g mq(itﬂ:)t.:[.
‘ (3)
This result agrees with the expansion of the exact Coulomb propagator
derived in the appendix,
my @ a2m
R 3/2, gln) . Ta ¢, n/2
Koouy (090:8) = Gigeaey) NCED) (T Gigee ™5, (32)

n=0 P(E%L}

where L{n) is the Riemann zeta function.

E. Duality for simple power-law potentials

The duslity relation in Eq. (17} can be restated conveniently in terms

A"
of the (convolution) average of XK(0,0,E),
" ay
<K{0,0,E)> = <K(E})> .

Using this motaticn, and the result in Eq. (21), we find for a simple
v
power-law potential V{r) = Vo[r/a) that

K(E)> = f at B Fio K {0,0,t) [1 -[it+s)‘u’0(‘i‘—-t+;)u/? r(1+ %) + ]
m a
o q

" a9
= q-:o(xb + <ILL(E)> . (33)

The sizes of the correction terms c?l(E)> , etc.sdepend on both the
potential and the choice of the function ?(t), or equivalently of the
smearing function £{E'-E) in Eq. (10). Several choices for f have been
used frequently in recent work, e.g., the Gausclan smearing used by Barnott

17 . .
at ol and the luverss po«er T

in Ref. 7. The corrections were investigated in Ref. 3 for Gaussian

~onts and so-called exponential moments used
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smearing and power moments using our earlier methods. We will now illus-
trete the content of Eg. {33) using exponential moments, thus connecting
wita the work of Shifman, Véfnshte{n, and ZakharovT which we will examine
io i2tmil in the following paper.

Exponential moments are defined by the smearing function

~T{E'~E}

£(E'-E)} = 8(E'-Ee >0, (34)

B o= o - ' (35)

+

LY
With this choiece of f, <K(¥)> is proportiomnal to the Euclidean or imaginary
time propagator for the qq system,

-(E

nS—E)I

KEp =2 ] g0 e

= or e VR{0.0.-iT) . (36}

wWe can develop a perlurbation expansicon for k(0,0,-i1) by iterating
~be inrlidesn version of the integral cqustion for K, Eq. (9}, or equiv-

aler1ly and more directly bty evaluating the time integrals in Eq. {33)

w7 - tue Cauchy residue theorem. (This gprocedure is valid for £ < O.

Tre general result follows by analytic continuatien. It is important
-3 en v gnw

ija ='is ealenlation to know the branch of the (it+e) in
Tz, 1153), hence our retention throughout of the .} The result for the

Sieile jawer potential Vir) = Vu(r/a]u is

£
mooy [
e _ioy=t Lo . Toguf2 ¥
5,7, -dt) g 11-:«0( 2J rii+ 2)
mru

t (37)
+ (TVO)2(’F*E)VF[U&L) [ 1. _ rtiff}l_} v

Vil T ozr{oven)
I:l.‘ ‘dl.
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This result was obtsined to first order by Bell and Bertlmanng in
their nonrelativistic study of the Shifman—VainshteYn—ZakharovT program by
applying a Borel transform to the energy Green function for the qq system.
While that methed of derivation appears natural in the field-theoretic
context considered by SVZ, In our view it obscures the simple conpnection of
the exponential moments to the convolution averaging basic to duality.

The leading correction term in Eq. {37) has the magnitude

K (ED/R(E)> = K (0,0,-11)/K (0,0,-47) = 1 V(%" r(ae 3,
ma

4 {38)
where we note that

KO(O,G,—it) = (mq/hﬁT)B/z . (39)

More generally Eq. (38) gives s reasonable estimate of the leading correc-
tion for any smooth smearing function F(E'-E) with a width 1 in energy
space. The condition that this correction be swmall then determines the.

minimum allcowable width for f{E'-E).

F. The Coulomb-plus-linear potentiasl

It is important to recognize that {for fixed VO and a) the series in
Eq. (37) converges less rapidly for singular than for nonsingular potentials.

This becomes important for potentials which combine more than one power of

1/2

1

. For example, the Coulomb potential gives a series in powers of T

Eq. (31}, while the linear potential gives a series in 13/2, Eq. {29).

The first orider corrections for the physically interesting Coulomb-plus-



T

linear potential pherefcre differ by & factor of t, and it is quite possible
for the linear correction to be negligible while the Coulomb correction isg
still significant.

This quite different behavior of the correction terms in Eq. (37)
for different powers is illustrated in Fig. 1, where we have plotted the

ratio K(D,D,—iTJ/Ko(0,0,—it) as a function of the dimensionless wvariable

‘= Vil(zw) (mqaa)—v/(w?)t

(40)

for the (attractive) lipear and Coulomb potentials using the exect results
discusased in the appendix and also for the Coulomb-plus-linear potentiael.
The corrections are dramatically different for the different potenlials.
As we noted in Ref. 3, we can greably improve the duality relation
for the Coulomb-plus-linear potential by extracting the slowly convergent
Coulocmb series and treating it exactly. {The same technigque cumn he used

in principle for other singular putentials.) Thus, using the results of

Egs. {21) and (22) for Vir) = -a/c + br {and exponential smearing), we
find that
i} L 3 12 5
k 2 2
K{E)> = 2-:r¢3]?"r(4--3')3"2 [}fﬂ(ﬁm T)Ef % 7 agm 12~ ;(H/m )2 bT2~ 3qb12+0(1 i]
bt 1 1 e 1
{u1)

I

1 32 3
* . 1, . 2 2, 1 2 2
<KC0ul(}:.)> [1— Q(mnq) bt7 s 2(17 3mbt” + oy )],

"
whers <K I(E)> sums the Conlomb terms only. In this form, the cor-
Coul

3f2

rection Lo tie iewiliug Coulrb cunbribution is of order T , and i3

18
In terms of the cross sections, Eq. (4l) and its generalizatioas
3
state that
> =« > * i
<W20b0und Hzcshort range small correctiuns, (u2)
where © is the cross section calculated including only the

short range

singular short-range components of the interaction (e.g., the Coulomb
components). This relation was used by Barnett et al.lT in their tests

of perturbative QCD in e*e_ annihilation. Those authors cowmpared a
Gaussian average of the physical cross section for e+e— + hadrons with the
same average of the free cross sectico calcwated including short-range
gluonic corrections. The effects of the {nonpeyturbative) confining
interaction are suppressed by the averaging, and the success {or failure)

of the comparison tests the calculated cross section.

III. COMMENTS .

In the present work, we have used the comnection between the Fourier
transform of the Feyuman propagation function at the origin and the non-
relativistic ets” annihilation cruss section to estabtish a {quantitative)
duality relaticn connecting convolution averages of the cross sections
for eTe = (qq bound states) and e'e” + [free qq pair). The convolution
gveraging proverdure allowed us to transform the problem to one involving
the short-time behavior of the Feynman propagator K(0,0,t) which we could
investigate using the Born expansion for K, {Other averaging procedures

do not give such a siwmple method for calculeting the corrections to the



19

duality relation.} We illustrated the short-time nature of the duality
reiation in detail for the case of {simple or multiple) power-law
potenciels, and presented a number of examples. We emphasize the important
conclusion that duality holds as usually applied if the smearing function
used in the energy averaging {s sufficiently broad and smooth, so that the
conjugate time variable is small, and that the correcticns are galculable
for u given model of the interaction.

A very different and important use of duality was proposed in the rela-
tivistic context by Shifman, Vaznshte;n, and Zakharov.T Those authors use
a norrov smearing function f{E'-£} in Eq. (10) ta isclate the contributicn
of a single state. This procedure leads to large corrections in Eq. {17},
They then attempl to obtailn information about the confining interaction
of the energies of the bound states by cowmparing the corrected expressions
with experiment. We will examine the limitations of this procedure in
detail in the following pdptr,a and will sugpest improvements based on our

prezent results.
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APPENDIX

We collect here some exact results on the Euclidean propagators
K{0,0,-i1) for the oscillator, linear, and Coulomb potentials. These have
been useful in checking our expressions and investigating the rate of con-
vergence of the short-~time perturbation series in Eq. (37) and the trans-
ition to the exponential behavior at long times implied by Eq. (36). The

results for the linear and Coulomb propagator are to our Knowledge new.

Harmonic oscillator potential

2>
The exact propagator for the oscillator potential V(r) = %qm‘re

is well knownla and gilves

Ty )3/2

K(0,0,-11} = (hn sinh w7

. {a.1}

We obtain a series expansion For this quantity by using the Taylor series
for sinh wt, then expanding the result using the binomigl and muitinomial

. 15
expansions,

K(0,0,-i7) = ¥ (0,0,~iT) ¢ 1 + § ¢ (mT)gl (A.2)
o 2
2=1
where
E‘ 1
B -3/ - -
CE E [ mn ) E n i3 4] '
L A ...n G D a (s P oalo o ((2ee)t) Fon
1 ¢ I H n2.... N nl.
ﬂl+..-|’ﬂ- = m
nl+2n2*._..+£n1:1 (&.3)
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Explicitly, We can easily convert the sum in Egq. (A.8) into a contour integral
a L 631 6 !
xmwm=(ﬁmﬁimﬁdim)ﬂ—4m n:b Ai{-a)
E%? : 180 120960 K(0,0,-i7) = 7= 21:_1{ I aa Ai(-a)
(A.L) c ( )
1219 8 __ 5723 (410 ] A.10
* 1935360 9TV - Thgugboot * -] - ab

1 -akt 4 .
- ey I do e o tn Ail-a) ,
c

A where the contour ¢ encircles the zeros of Ai(-a) as shown in Fig. 2a, and
Linear potential

-a = eﬁi"u, 0 <arg a £ 2n. If we expand the contour outward to C' with

The bound state energies for an S-state qﬁ paiz confined in the three—
largl-a}} < w-§ as shown in Fig. 2b, we can use the asymptotic expansion
dimensional linear potential V{r) = br are given by 51
of the Airy function

k 1
g = WP a (8.5) 15 T3k + )
1 o . -1k 2 _3/2 :
ai(z} v 5o 2 exp(—‘iz ) 1 VPN
P{x+ =)0{k+ 6
where @ is the nth zero of the Airy function, k=0 { 2) {x+1)(362 )
n
(a.11)
M) =0, nal,2,... . {4.8) |argz] <=,
"he square of the bound stete wave function at the origin is independent of to caleculate the logarithmic derivative in Eq. (A.10) on the contour, and
8,20 find that
2 a b
[, st = - - (a.7) 4 ,. . 1/2 L 5 15 1105
Eﬂl('ﬂ)"(-ﬂ-) “ha - 5/2 + h——_———'l—ﬁ+-.. ’
32{-a) Bha 20L8(-a)
The exact Euclidean propagator for the linear potential is therefore given
by |argl-a}| <n . (A.12)
o -E T
k(0,0,-3t} = § |y (0)]" e ° {a.8)
n When this result is substituted in Eq. (A.10}, the integrals on @ can be
m_ b - AT : " 1t : L .
= q ): e B evaluated using Hankel's representation for the reciprocal of the gamma
L
un I‘l.l.nn:t.irm,22
wHETre a-1
1 -8 _=gAT (r)~~
b - day - = -~ " . .
X = G 3 (.9) B ) sl T(s) (8.13)
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The result is the desired expansion of the Buclidean propagator for the

linear potential,

m ' .
K(0,0,-i1) = (ﬁ;)”e [1 - % /r?(h)yg + % (xr)?’ - %ﬁ ./11(?«1)9/2

(A.1h)

221 &

This result is prabably exact despite our use of the asymptotic expansion of

w o
aif{-a} ic the integral. Vainshtein et al.T have obtained the first terms in

Lhis expansion by & somewhat different methed, but their result contaips

23
some errcrs as published.

Coulomb potential

The expressian for the Buelidean propugater for the Coulemb potential
Wir] = -a/r inoludes zn integral over the continuum as well as 4 sum aver the

Adiserene boundt stater

) 2 -Fr 3 2 BT
k{0,0,-i1] [ ag ) [ (0)]7 e+ “"’nsml e {a.15)
a ’ n=1
o
Here p(E) = mi/‘ 31/2/hﬂ2 is the ujsual density of states, wE(O} is the
continnun J-state wave tunetion ab the origin,
Lo o = o 20 DL (A.16)
¥r T o dlaptioim) 0 MV TR ' o
> fun,
NA‘:.J[”H o %11 Lkwnl}j ' (A'IT)

in Eq. (A.15).

It will be convenient to use & scaled energy E = Ecz,

With this convention,

33 o
a’m ~-E T2 «
It e e 1
K{a,0,-i1} e I dz Tep (a7 © 2 z 5
o . n*l n
u3m3 ~E 12
= —12 daz N S— e ©
16w 1-exp(-2n/vVz) .
c

In the second line we tave used the fact that the entire expression in

brackets can be written as a contour integral on the contour C shoewn in

Fig. 3a.

: ;. 2k
subtracting a segment below the real axis,

K(0,0,-it) = — -1

and find that

1 -E T¢
dz ———F 7~y & @

16w 1-expl-2n/¥E)

c' o]

identity

- e [ 1
fo 4 Texplenivz) © - fodz Lo TepCanivay) ®

oo

-E T2
B I R r s
ET T-expl-2t/vz)
0

We cuan ccmplete the contour as shown in Fig. 3b by adding and

1
* f 1z xplven/in) ©

The second integral can itgelf be related to K{(0,0,-i1} by using the

-E 1z
o]
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(4.18)

(4.19)

-E 12z

{a.20}

{a.21)
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the first equality in Eqg. (A.19). The combination of these results with
{A.20) gives the expression

G.3m3

a 1 B2
-1 = —_——— g @ + =
K{0,0,-i1) Tou {C‘ Q2 ) B
2 (a.22)
= E t/a
r2 § e °
=1 n

We can evaluate the contour integral in Eq. {A.22) by expanding the
25

tour so that |z] > b, using the Bernoulll expansion

o
N B i %}l Bn(%)" LR (a.23)
=0 .

integrating term-by-term. This gives

1 Bz -3/2 E imn/2 (%)%n {Eot)n/e
PO - = (B —_
c
32 3 {a.2k)
(E ) w -
- fo_T__ s z 2¢(2K) (Eo.[) 2 ,
2/x k=1 I(x- )
. 2
‘re we have used the relatians
B =0, n=135..:, B, = (—1)n+1 gga"—léz—“)i , (n.25)
[5] 2n (2n) n

expross the Bernoulli nusbers Bén in terms of the Riemuwrm zeta function.

We can convert the sceries in Eg- (A.?'r’) to a power sertes in T by

26

expanding the exponentials and then summing c¢n the principle guantum number n.

The result is

2
e E t/n

2} 1 o - 2G(2K+1) (p o yk-1 (4.26)
L3 & T{x) o
o=l n k=1

Combining Eqs. (A.22), (A.2W), and (A.26), we obtaino as our final result the

remarkably simple expression

33 » =32 (n-3)/
a'm” |[{E 1) w
K(0,0,~iT) = 552 |— + El~ ) 3515%— (£ 1)
3 2/ o' n=2 I‘(n—g—) °
n 5 {a.27)
o (g \3/2 bw T(n) 2
(hm} E n-1 (EQT)
=0 NT)
g \3/2 12 | on° - 3/2
= (73) 1+ 2Am(E 1) . Hogr e A cONE DY 4],
- 1.2
Eo =1 o mq N
1
where £(0) = - 5 and
. tln) 1
lim ———— =% . (a.28)
n+l I‘("—;l 2

This result holds also for the repulsive Couloab potential if we insert
an extra factor (-1)" corresponding to the replacement of @ by —x. One of us

{JBW} obtained & particularly compact derivation of the latter result using

the idenhityls i
R S

P ds o ° T{s)g(s) (A.29)
e - g- joo
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FIGURE CAPTIONS

Plots of the ratio K(O,D_—ir)lKo(0,0,—iT) of the exact Buclidean
propagator to the free Buclideun propagator for power-law potentials

Vir) = v (r/a)v as functions of the dimensionless wariable
3

uffory

Q
Finay I
e c) ViveTw g

Y (o a T. The curves show the very different

q

rates at which the correction terws grow for the linear potential
(v=1), and the Coulomb potentinl {u=-1). We also show Lhe correction
to second order for the realistic Coulomb-plus-linear potential for

a-0.2%, b=0.2 Geve, and L = 1.5 Ge¥, with x scaled according to

the linear term {v=1).

{a) The contour of integration € In the exact expression for the
Eurlidean progagator for the linear potential, Eq. (A.10). The
crosses denote poies of Ai't-a)/ai{-a) at the zeros of the Airy
function.

(b} The expanded contour €' used in the evaluuation of the iategral.
We musht take the uverall scale of the contour to ® with § > O in
oriier Lo use the asymptotic expuansion of the integrand in Eq,

(A1)

fa) The contour of jntegration © in the exact expression for the
Euclidean propugator for the Coulomb potectial, Eq. (A.19). The
2

crasee. denote the poles of the integrand at x = 1/n", o = 1,2,... .

(L) The mendified contour CF used in Eq. {a.20}.
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