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ABSTRACT

Shifman, VaInshteYn, and Zakharov {(S8VZ) have proposed a procedure for
calculating hadronic masses and determining nonperturbative parameters in QCD
using the operator product expansion Eor two-point functions and {exponential)
moments of the corresponding spectral funcrtions. In this paper we present a
detalled theovretical analysis af the SVZI procedure in the context of nonrela-
tivistic potential theory. We find that the phenomenological success of the
usual first-order SVZ method in relating hadroaic energies (masses) is due to
a hidden variational prianciple and a semiclassical structure which gives cor-
rect JWKB-like relations between energies. The first-order method fails
theoretically: it does nmot ruproduce the correct potenkial-model or field-
theoretic parameters, e.g., the gluon condensate parameter of QCD. We show

why It bredks dowm in this applicatlon, and that tts reliability can be

greatly improved in all applications by using higher order approximations for
the moment function. Our results are directly relevant for che SVZ analysis of
charmonium and upsilenium. The general conclusions should also hold for light

quark systems.
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I. INTRODUCTION

In a series of papers published in 1979, Shifman, Valnshtein, and
Zakharov [SVZ]l showed that ope could use the dispersion relations for two-
point functions in QCD in combination with first-order perturbation theory and
the operator product expansion to determine the masses cf quark-antiquark bound
states In terms of parameters in the field theory. The SVZ procedure has now

been used to correlate masses and spin splittings of a large number of qa states

1,2,3

in terms of a few parameters- For example, 1f it is applied to charmenium,

with the QCD parameters adjusted to fir the J/{ mass, the predictions for the
1 3

150, P . and By

tens of HeV.2'3

1,7 Dasses agree with the observed masses to within a few
.

4,5
This success has been remarkable, but mysterious. Bell and Bertlmann

studied the nonrelativistic SVZ procedure numeric;lly using potential models in
an attempt to assess its reliability. They found that the usual first-order
method failled to glve accurate energies for known potentials, and conversely,
failed to reproduce the potential parameters from given energies. As an ex-
ample, the analog of the gluon condensate parameter was underestimated by a
facraor of two.

In this paper, we show in the context of nonrelativistic potential
models for the qq system that the success of the first-order SVZ procedure in
correlating energies, and its failure in predicting absolute energies or
deternining parameters, are consequences of the strucrure of the approximation
scheme.  This structure includes a hidden varlaticnal principle for the greound
state <herpy EIS and a hidden semiclassical appreximation which gives JWKB-
like relations among the eonergies Ell for different angular momenta % and

different quark masses.

Io ane class of phenomenclogical applications of the SVZ procedure, the
potential parameters ~- or QCD condensate parameters —— are adjusted to fit

E for example in charmonium. The semiclassical structure in the first-order

15*
approximation then guarantees that the nearby energles Eli are given with rea-

sonable accuracy, and that the predictions for upsilenium are also valid.

This success In simultaneocusly fitting many energies does not imply that the
first-order SVZI procedure is reliable in other applications. It is not.

The varijational principle for ELS shows, in fact, that the analog of the gluon
condepsate parameter in the operator product expansicn fs necessarily under-
estimated by a large amount in the firs to charmonium, a fact already noted

empirically by Bell and 1.’-5:1'!.:].|1nann."'5

We conclude that the field theoretic
parameters using SVZ are therefore suspect.

To see {f it 1s possible to eliminate these problems, we extend the non-
relativistic SVZ analysis to higher order and obtain substantial leprovement.
We shaw that we can further improve the results for singular interactions by
making a8 Padd~type resummation of the perturbation series. Our results sug-
gest strongly that it would be worthwhile to extend the field-theoretic
calculations to include non-leading terms in the operator product expansion.

We also show by counter example that it is not possible to determine
the form of the gg confining interaction using the finite order SVZ method
or its nonrelativistic limil:.6 This has the unfertunate consequence that
information about qq excited states which is easily obtained in potencial

models {s not accessible from the present low-order S¥Z method.



The organization of the paper is as follows: Tn Seecs. ITA and TIB, we
review the $VZ program and set up its nonrelativistic analog. In Sec. IIC
we develop criteria for deterwining the bound state energies Erom the SVZ
exponential moment function R{1}. In Sec. IID, we prove a variational bound
> -] ElS in terms of the first-order approximation tg R{r)}. In Secs. TIE and
I1f we generallze our results to arbitrary anguiar momentum and derive our
semiclassical relacion for Eli .

In Sec. IITA we test our tesults for general power-law potentilals inclu-
ding the realistic Coulomb-plus-linear potential, and show that the first-order
SVZ technique "works" only when the potential parameters are adjusted to fit
the lowest energy levels (a particularly striking example for charmoniuam and
upsilonium is given in Table I1). We extend our results to second {and higher)
orders in the perturbatiuon series for R(T) in Sec. 11IB and show that substan-
tial improvements result. Padé summation of the series is considered In Sec.
111C, and the problems in determining the (nteraction by the SVZ technique
dare discussed ia Sec. ITID. Fipally, we summarize out results and discuss

cneir implicatlons for the SVZ preogram in Sec. ITIE.

II. THEORETICAL ANALYSIS

A. Background

The Shifman-Valashtein-Zakharov (SVZ) program is an extension of the
o ? -
z1¢ idea of duality,” e.g. for the process e & —~ hadrons, in which the average

senavior of the observed, highly structured c¢ross section is described using

. . " + - - 71—
iow order QCD results tor the "free" cross sectlon for e e —+ qq.T 9 Duality

8,10

25 Deen used to rtest perturbative QCD, determine quark masses and

predict leptonic widths for vector meson decays.?’ll

. 12
radiative corrections to these widths.

and to estimate gluonic
It was realized by SVZI that one
could go further by including some nonperturbative effects in the theoretical
calculations, and use duality to predict the masses of qa bound states.

To implement their program for e+e— annihilation via a wirtual phoron,
SVZ used the duality relations obtained by repeated differentiation of the
dispersion relation satisfied by rhe photon waccum potarization function
H(qz),

2
Ty [T¢w")
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Im N(s) is related rto the physical cross section for e ¢ -+ ¥ -+ hadromns at the

center-of-mass energy W by

a1y - 228 @
1617 a” e
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where we restrict our attention to a single (heavy) quark flavor. The right

hand side of Eq. (1) is therefore just an energy avetage of HZG calculated
2. -¥-1

by convoluting Hzc with a smearing function f(“2+Q ) = (U2+Q » and

reduces for a sum of narrow resonances {qq bound states) and a continuum to

() H r (e e ) It wl )
% I au? 182 N2 w1 T PN TS 2 2 ( au’ Usz‘iﬂ d 3
(“ 7y (M + Q%) 16m%a < & ™ +Q )

where Mn and fn(e*e-) are the mass and leptonic width of the nth resonance.
The leit hand side of Eq. (1) can be calculated by using perturbatcive
JCD and the operator preduct expansien to evnluate the vacuum expectation

value of the rize-ordered product of gquark currents
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i Id“x et4’¥ <0[T(ju(x), j, (0> = Iquqv-q LPRLIC ). (4)
and is given to first order in @, by
& 2
Li- 9%y = 4@ + a,a, @) + ¢ /18m)by @)1, ()

aQ

The functions AH' ay.. and bN were calculated for Q2 = 0 by SVZ,1 and for
general Qz by Reinders, Rubenstein, and Yazaki (RRY).2 The constant ¢1
is the nonperturbative gluon condensate parameter which appears in the
leading correction in the operator product expansion,

A1
]

4y = <0|G:vGEU]0> . (6)

where G is the gluon field strength tensot.
For N sufficiently large, only the ground state of the qq system

contributes significantly to the sum in Eq. (3), and Eqs. (1), (3), and (3)
. + -

zive a relation connecting the mass Ml and leptonic width Pl(e e ) of the

qa ground state to the field-theoretic expression. The ratio of Eqs. (1)
+ -

far two successive values of N is independent of Fl(E e } and depends

linearly on HZ

1 By requiring that this ratic be stationary with respect

tc variations in N (and Qz). SVZ1 and RRY2 could determine 3' in terms of

the 1/, wmass Ml (we note that us and mq were determined using moments with

S smaliy, and could then use the result with sum rules for different two-

1 3

soint functions to predict the masses of other states, e.g-, the SO. P

0*

1 . .
5+ and Pl states in charmoniuo.

N 2 ,
In later work, SVZ replaced the inverse pocwer moments of W7 with

respect te (;?+Q2) defined by Eq. (3) by “exporencial moments' which fur-

iter emphasize the contribution of rhe ground state to the sum rule and

make it easler to determine the.ground state energy. The exponential moments
are obtained by applying a Borel transform to Eq. (1). This involves multi-
plying Eq. (1) by (02)N+1 and taking the limit N + = with the ratio

Aow NIQ2 fizxed. The right hand sides of Egs.(l) and {3) are then replaced

by an exporentially weighted average of the physical cross section,

M(A) = % f aw? e"“z InF (W)

2 @ 2 (N
f awioane ™|

Q
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while the left hand side of Eq. (1) is replaced by the Borel tramsform of
Eq. (5) (explicit results are given by Eertlmann3).
It is clear from Eq. (7) that the exact value of the function
R{L) = -d lnM{x)/d> approaches Mi as A + =, While the approximate QCD
expression for M{4} is not reliable for A large, SVZ suggest that one can

nevertheless obtain a good value of Mi by evaluating R at a point

approx
where this functiom is stable with respect to variations of A, dRapproxldA =0.
(This corresponds in the power moments method to evaluating the ratio of
successive moments in the reglion of stability with respect to N.) The
advantages of the exponential moments method have been discussed by

1 4,5 r v 13 .
5¥Z,” Bell and Bertlmann, and Vainshteln et al. We will use exponential

moments in the following analysis of the SVZ program.

B. The SVZ Program for Potential Models

To study the reasons for the unexpected success of the SVZ pregram,
we will model the qa systen using nonrelativistic potential models in which

the quarks are confined in a schrddinger potential V(r), and attempt to



determine the ground scate energy Ell for angular momentum £ using a first-order
(or low-urder) perturbation expansion of the appropriate two-point function and
the SVZ exponential moments. The first-order 5-wave problem was studied for

»

simple power-law potentials by Bell and Bertlmann who showed that the SVZ
orocedure gave reasonably good results for ElS’ but did not provide an explan-
ation for that success. Those authors also showed that the exponential moments
sethod was generally more accurate than the power moments method used in wost
of the work of S‘JZl and RRY.2 Bertlmann3 later used the nonrelativistic ex-
ponential-mwoment limit of the RRY power moments to study P-wave energies in the
charm (¥) and bottom {(T) systems, and found that the nonrelativistic and rela-
tivistic results agreed to 10 MeV for these heavy quark systems.

-]

In the following secttons, we will repeat the Bell—Bertlmannﬁ analysis
of the monrelacivistic S-wave problem and show why the SVZ procedure works in
this case. We will then extend the first-order analysis to general £, again
with emphasis on the reasons for {ts success. Finally in Sec., ITI, we will

zive a number of numerical examples, and show how the results are improved by
zoing to higher order in the perturbation expansicn.

The nonrelativistic photon wacuum polarization function i{s siwply a

aultiple of the qa energy Green function evaluated at the origin,

ey » 2 mi &(0.0,8) . (8)
-ETe -
T(e' . TLE) = I at St ety (9)
and

G, T, t)

L]

18 (L)K{E,T,t) - (10}

10

Here K(?',:,c) is the Feynman propagator function which describes the propa-
gation of an initial qq state forward (t>0) or backward (e<0) in time, and 1is
given explicitly by the usuyal sum over states,

-iE

4
KRG,y = 3 ¢ . (') e
alm nkm

13 +
*

VELT an
where wnim(;) is the qq wave function for principal quantum number n, orbital
angular momentum £ and magnetic quantum number m. (We will suppress the spin
qunatum numbers which are irrelevant in the following arguments.) The cross
14,15

section uzubuund for e+e- + {qq bound state) is proporticnal te E(O,G,E)

and depends ooly on the 5 states,

2 2.2 2 -2
W cbound(E) = 12n°a e g K(0,0,E), (12)
where .
(0,0,E) = ; ae % k(0,0,1)
lw an
° 2
-In J Iwnscon §(E-E_)
o=l

The Green function G(0,0,E) satisfies a dispersion relation which

follows from Eqs. (9)-(13),

. L f mG(0,0,E")
G(0,0,E) = = I dE % {14)
0
where
- 1z o x 2 .
ImG(0,0,F) = 5 K(0,0,E) = n£1 |¢n5(0>| S(E-E_¢)- (15)

The dispersion relations analogous to the SVZ relations in Eq. (3) are obtained

by repeated differentiation of Eq. (14),
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.. In G(0,0,E)
1 d N = 1
v igy) G(0,0,E) = = J dg' ——————
NodE Tl @-p™?
(16)
2 o 2 R
° I dE! v Ul:oound(E )
25ﬂ30282 0 (E'-l’:‘.)N+1
; ) 1,13
application of the Borel transform
B=a 0" () an
N+
E=-K/t

to Eq. (16) gives the nonrelativistic version of the exponential SVZI woments

defined in Eq. (7),

mz -
q '
~2m d N = v =ETT 2 '
B ¢ ¢0,0,8)] = — J dE' e wo (E')
NI “dE 12ﬂ2u2ei 0 bound
(18)
= -E_.T
2
IO
o=l
The sum in Eq. (18) is just the Euclidean or imaginary time form of the
+, -+
Fevaman propagation function for r’ = v = 0,
-E .T
K(0,0,-10) = I o (@ |% e °% . (19)
u

We may therefore idencify the left hand side of Eq. (18) with K{0,0,-11}
and rewrite Eq. (1B) in a form similar to the relativistic expression in

Eq. (7)),
2

m o

g r
, L3 -E1 .2
K{0.0,-1i7) 23 dE e 7 W

, d(E) . (20)
12n7a” e

12

+ -
Equation (20) is a special case of the general duality relation for e e

aanihilation studied in the preceding paperl6 (we will denote this paper by
WDD} .

The ground state energy E 5 of the qa system can clearly be calculated

1
from Eq. (19) or Eq- (20) as

E.. = lim R.{(1) , 21
s . 0
where
d
Ry(1) = - - Lo K(0,0,-1T), L =0, (22)

provided the large-T behavior of RO(T) is known. The SVZ procedure {(already
studied by Bell and Bertlnanna for power law potentials) uses instead rhe ex-
pression for RQ(T) obtained in first-order perturbation theory, and estimates

E15 as

(1
Eis = Ry atn) (3)

where Tain is the value of T for which dR(l)/dT = 0. Tt is by no means clear

on the surface that this proceddre should work: the perturbation expansion

{5 essentially a small-T expansion (see the discussion in NDDIB), yet one is

trying to determine the large-T behavior of K(0,0,-11)}. The "magic"“ in

the procedure is that it works reasonably well, as shown 1n Table I. To

show why, we will first study the general preoperties of the limiting procedure
in Eq. (21}, and will then show chat Eq. (23} gives what {5 essentially a

Rayleigh-Ritz variational estimate for Els'
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C. Properties of Ra(1) and the determinarion of E 4,5

8 Bell and Bertlmann observed that (for all the potentials they considered)

1 4.5 the Eirst order approximation to R, always has a minimum as a function of T, and
If we follow SVZ© and Bell and Bertlmann '~ and attempt to determine 0

toock this minimum for their best esrimate of the ground state energy

E‘S from & low-order perturbation expansion of RG(T) (firsc order in the

cases considered by those authors), the approximate R_{1) will not have the 1 1
0 R I en
croper asymptotic behavior for ¥ + <, and the limiting procedure in Eq. (21) T

will fail. We therefore need a criterion for selecting a "best” value for ) X
This choice was of course motivated by the fact that the exact RD(T) mustk

our approximate E. .. We can easily establish two useful criteria from formal
15 approach its limit {(@mopotonically) from above. (The same is true for the
properties of RO(T). [t is convenlent for this purpose to introduce a dis-
ratios RS‘.(T) defined for arbitrary orbital angular momentum £ in Sec. 1IE.)

crete mormalized, pesitive discribution function {£} = {f , n=l,2,...} ,
n We will show 1n the next section that it corresponds also to a variatiomal

ith the f tio f defined b
vt € tuactions &, fe ¥ calculation of ElS and that E](é) > EIS'

-E T i ~E T Unfortunatel b iatm in th 1

§ ely, the minimum In the approximate can disappear in
e s ligmife /1y @ e ™S (24 o
n=1

higher orders of perturbation theory. We therefore consider the mext deriv-

R_(7) is then given by ative,

2 2 3 '
d’k a1 = <(E - <E>)7> . 28
> B, 25) o/ 4T ( (28)

Eis™r 2 Eyg

= <E> = -
EO(T) E . Els + <E

This quantity does not have a definite siyn for an arbitrary distribution

wnere the average <+>  is calculated with respect to {fl. The final in- )
T function. However, for the specific distribution defined by Eq. (24), we
esuality follows from the ordering of the energy eigenvalues and the 2

can show that dZR!dT E )T £

> 0 for 1 not too large, ( 197 % 1, by using

E -

Fay

zcsitivity of (£}, and establishes the {(obvious) fact that R_{(t) approaches .17
a the relation (valid in the JWKB approximation)

its limit from above. A simple calculation shows In addition that

32 d
I W :
v (0) = e 29
R fdT = - %> + <p»? ¥, (01| ' n dn }
(26}
= - <(E~ vE> )2 > < Q. and replacing sums by integrals. For T large, fl > fz > ..., a direct

calculation neglecting terms of order fﬁ faor n > 1 also gives dZRO/dTZ > 0.

Tre zpproach of R,]h) to ies limit is therefore monotonic., The difference
“(Eyg - E T The latter condirion holds in the regions with which we will be mosely
i-f,.) is of order e 2 ! for 1 » = 2 2z
15 concetned., We conclude that a change fn silgn of d Rofdr as t increases
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signals a departure from the expected behavior, and will use the value of 1
at the inflectlon point in RD(T) to calculate the approximate value of ElS'
This procedure is remarkably successful, as will be shown in Sec. IIT.

The minimum and inflection point c¢riteria for determining optimum esti-
tates for the energy can also be used to determine EIE’ the pround state energy
for angular momentum %, from the ratios RQ(T) defined in Sec. 1IE. The deriv-
ations are similar to that given here.

We remark finally that neither of the criteria above guarantees the
existence of a bound state unless the approximate Els is negative. They
simply provide ways to determine a best estimate for ElS if 1t is assumed

that a bound state exists. The same assumption is implicit in all applica-

tiovns of che relativistle SVZ procedure.

D. The variational principle

Bell and Bertlmannl"5 noted that R(l)(T

) always has a minimum for power-

(1)

law potentials, and thart the minimum value ELS

. R . )
exact ground state energy ElS' EIS

was always greater than the

> E We will show next that this

157
inequality holds for general potentials as a consequence of the Rayleigh-
Ritz variational principle. We believe, iIn fact, that the (hidden} wvaria-
tional aspect of SVI-Bell-Bertlmann procedure accounts for its remarkable

SUCCESS.

The Euclidean propagator ¥{(0,0,~11) is given to first order for a

general potential V(r) bylS
m - o [ —mqr /T
- P I T _a 3ioe 1
K(0,0,-11) (&WT) 1 o d47r r Wr)y + ... 00
J

16

Expanding ~Ln K to first order in v19 and calculating its derivative with

respect to 7, we find that

m2 - rle
Rél) -3 + —1 I d3r re 9 Vir) .

(&30
it 2"12
The Rayleigh-Ritz wvariarional principle states that
3 3
Els < j d7r ¢* H i//T dr d*¢
(32)

2 -
- f djt % [~ §~—+ V(r) ] ﬁ//der R
q

for any normalizable trial wave function ¢ (r). The second term in Eq. (31)

is exactly equal to the potential term in Eq. (32) for the trial functien

2
o) = rl/Z o I IZT- (33}

We therefore use this trial functieon in Eq. (32) and find after calculating

the kinetic energy term that

2
5 o f 3 -mqrzf'r
E,. <35 + d’r e Vi)
15 41 211_1_2
(34)
- R(l) R S R(l).

41

Thus, ElS is strictly less than the approximate value determined by the

winicum af né” 1,

(1) . (1
ElS < ElS = m:n[R0 )(T)] . (35)
The wvalue of ElS obtained by minimlzing (Rél)— %;) instead of Rél)

is always somewhat better than Ei;), but as shown in Tahle T, the improvement

is not spectdcular for simple power-law potentials (the correction term 1/41
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is generally small near the minioum of Rél)(f)). Much better trial wave
functions are easily found, e.g., a simple Gaussian without the factor rllz
which appears in Eq. (33). However, our intent 1s to test the SVZ procedure,
and we do not know of a relativistic version of the Rayleigh-Ritz variational
principle which is applicable to their problem. We will therefore drop the

variarional approach, but emphasize flrst that gf;}_}thhe_pest‘ggglmacg_fot

EIS which can be obtained using the first order VI Erocedure.21 The un—

expected success of the first order calculation of RO(T) (valid only for 1

smal!ls) in_reproducing ElS (hence the large T behavioar of the system} is

E. Geperalization to arbitrary amgular momentum

The nonrelativiscic generalization of the SVZ method to states with
orbital angular momentum L > 0 is based on the properties of the two-point
functions for irreducible tensor curtents Tgm(v) {we again omit possible
spin dependence). The scalar polarization function HE(E) satisfies a

dispersioo relation of the usual form with Imﬂl(E) proporticnal to the

quantity

1
lim —=— } R {xr")R* (F)S(E-E .} (36)
', @ (r'r)i n=1 nt nk nl

where Rni ls che radial wave function for the nth state with angular
womentun L.  Repeated differentiacion of the dispersion relation and

application of the Borel transformation in Eq. (17) leads to an exponencilal

mobent felation analogous to the S-wive relation in Eas. (18)-(20},

18
1 , ~Enlr
Ky (0,0,-11) = ‘:%mr’ﬂ —(:-'—r;i 1R rRE (0) e
o=1
» (an

= [ € ¢ o, (B) .
0

Here UL(E) is the cross section for the production of qq bound states with

angular momentum L through the action of the tensor curtent Tlm(V).
Equation (37) is of exactly the same form as Eqs. (19} or (20} (but

with KO(D,O,-iT) = 47K(0,0,~i1), an 1rrele;ant change in normalization).

The energy E is therefore given by the limit

Ell = 1im Rl{T) (38)
T+
where
d
RE.(T) " - in Kl(D,D,-i‘r) ) {39)

and we can use the criteria established in Sec. IIC to ¢obrain a best estimate

for E from the perturbation expansfion of Rl(T)‘ We will restrict our dis-

1L

cussion here to the first order theory, and use the estimate

E&’ =min[a;”m1 ) (40)

4
The functicn (r'r) Kz(r’,r.—iT) is just the radial part of the
Euclidean propagator for angular momeptum 2, and can be projected out of
the full propagator

- - LI
KE - = e, e @
nim

(&1
-£
- n%m Rnim(r')ylm(r) €

T
ni & * A
Rnim(r)Yi (r)
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by using the orthogonality of khe spherical harmonics Yim'

ey e reett) = | af, | R Y FORGE'T,-i0 Y, (6

ek lene 2] % Yo ETL i g el
(42

The result is independent of m. We can calculate the perturbation expansion

of K. needed above by applylng this operation to the usual series
"

(', r,-11) = O -0y - J dt’ I a3 g O @ P st

[
vk @ Tty 4. o
where o
K(O)(;',?.—Lr) - (2%¥]3/2 e'mq(r -ty fat »

The angular integrals encountered in this calculation can be evaluated by

.2
using the expansion

' ;';'/21

q M2 mgrrl
= f—r— T
& G rr‘) E (2e41) IE+% € 21 } Pi(r )
q L=0
™ ' (45)
n1 1/2 2 o X oo
=4 (o) I quor,, 3 0, (F1Y ()
q =0
. . 23
Here [i+' is a hyperbolic Bessel functiom
2
- e D ST N -, 52 ) |
L = 1 ) (46)

k=0 K!T (ke %)

z
Siviiing the result by (re')” and takiny the tmit ', r ~ 0, we find that

(©) 2 a3
0.0,-0 s — 5 D (a1)
2 1 41

r{e+ E)

20

and -
Kél)(o.o,—ir) - - 4 3 [ ar 29 v
ras3n? g 8

T 3 3 2 ' 2

r m 2+ 7 @ 2+ 3 o Foa(T-1t"Y-m /41"

. 2 q q
<] eGEEy T e
0

The integral over T' in Eq. (48) can be evalusted by repeated differentiation

of the identityza
. .
at’ 1 ~xzf(1—1')—x2/T'
T —‘_"—_—3H €
0 [{r-1")1"]
_2m 1 E—alet . (49)
13/2 x
and we find after some calculation that
=
o
kP 0,0,-10) = - K7 0,0,-50) - [ dr r V()
T{t+ E) 0

2 2,k (50)
otk l:rgi-k+3;(fgi_1
Lo RI(TOT T l

x e

The perturbation expansion for R,(T) 1is given to first order by

iV = - %;19{520’(0.0.-11) + &k D,0,-11) + ..

| W)

3 (51)
A g,[Km,K(oﬂ _
T dr L Lo

Using the result in Eq. (50), we cbtain our basic expression,

3 — 7 = 2 1

[ v o -m o/t 1 RIT(A-k- 3) m T

Ril)(t) - _T_Z oo ;3 I ar oo V(ry e I i —-*-————2—1 !’ _q?l
i+ Yo k=0 ki{R-k}T (53
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3
i+ 7 @ ,
=7t J dz Hg (2} V[[Eé]. z = mr it . {52)
40 (_' qJ 1

For L = 0, this expression reduces to the S-wave result given im Eq. {31),
and the estimate for the energy EIS given by Eq. (40) is related to a vari-
atienal principle as shown earlier. There ls no generalizacion of the vari-
dtional result for 1 > 0: the function Hl(z) which mulctiplies V in the in-
tegrand in Eq. (52) is negative for z + 0 and positive for z + =, and cannot

oe ipterpreted as the square of a rrial wave function.

F. A semiclassical result for E

14
R B T S P I N T - L VT S USRS . - S [ . 1 £ T o
ALLOGUEN WE GO NIl LdVE 4N 4ndi0g 0O ne variatliondl Tesulc 10T 15 Lox
L > 0, we can derive an interesting first-order relation for E L>0,

18’
which relates the ground state energies for different values of %(and mq)

and shows why the genvralized SVZ relarjons work. We begin by making an esti-
mate of the integral in Eqs. (92). The funcrion Hl(z) in the integral is
peaked for z = m T i1 siightly larger than £ ({(see Fig. 1), has unit area,
and can be approxicaled very roughly by a delta function at z = 2r= L.

3
7

Yy = ¥ fi
Ry (1) = T+Vl m | (53

Tae approxirition is surprisingly good for smooth potentials as we will

A good approximation for power-law potentials gives R' = & + With

this choice,

See in Cinz et secticn. More imporcant for presemnt purposes, Eq. (53)
(1)
incivates the way in which R}

(1) changes with changes in 1 and mq, and
£

trernfore allows us to relate the encrpies of different angular momentum

states anc different heavy quark systems. For these relations to be
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reliable, the functional form of V{r) wmust not change rapidly between the
regions of r which are most important in determining the energies we wish to
relate. (This is the case for simple power law potentials.)

1f we now apply the criterion in Eq. (40) to determine a best value

(1) for

for the first-order energy Ell

large £, we Eind that t_. is determined
min -

by the equation

T qu mq (54)
r ] 1 2
:%}T[‘ “]+v-<:°)], r = ('t /mq)" . z'~z+%.
aq c mqro oin
M e ek f s A E abn Eamegdacn in tha snuars hracketr in En f84Y 415 iugt the
Tne vanisning Ol thneé FUnCTion In tn€ squale DTadxkel In of- (2%7 L5 JUsSt NS
condition that the classical effective potential
Ak (55)
Vogele) = 7 t V)
hqt

have a minioum at the radius r = T, {the rondition for a stable circular erbit

3 1
for classical angular momentum £ + E)’ and Eil) is approximated by the energy
at the minimum,
(1}
Eln = Verslt) - (8)
We can understand this unexpected result as follows: The Euclidean

propagator K(F',;,’if) is given by the Feynman path integral
;,
- { Orrey =

FLLLY ©

T 3 +
fo H(r.r)dz
Pt
where H ts the Hamiitonlan of che svstem and the integral includes all paths

which connect T and r' In "time" T. In calculating Kl(0,0.—iT), we
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testrict the paths to those with classical angular momentum in a band around
i by the projection in Egq. (42). Paths which reach the origin for £ > 0
must then tunnel through a classically forbidden region. The tunneling

£
factors are divided out when we divide Eq. (42) by {r'r} and take the limit

r', T = 0. The Jeading contributions to KI(O,D,—it) arise from the paths

- +
oo which H{r,r) is a minimum subject to the tunpeling constraints. In the

approxizaticn which leads to Eq. {56), we have in effect minimized

IO ﬁ(;,;)d1 for leng times 1 by using the classical circular orbit for

angular mementum £' = £ + %. and have neglected quantum oscillations about

the orbit and the effect of the potential on the tunneling. (The appearance

of &' instead of 2 in r is apparently connected with the increasing phase

space available in the path integral for increasing r.) These approximations

2L1ve
L T
(r'r) Kl(r',r,Ai1) a (') e MO (58)
and
_ 4 _ . o1}
a5 tn Ki(o,o, i1) = B E”_ . (59)

The effect of localized radial oscillations about the classical path
can he estimated by noting that Eq. (56) is an approximation to the JWKB

expression for the energy. The JWKB quantization cendition is

1/2
£ 1 _1/2 _
(ot 35 -y = By { dr[Eni V(0]
(60)
172 1 o2 1/2
rnq jrdr[(EnF. - chf(ro)) * 2 veff(ro)(r rn) -eed '

- . 1y oun /2 -
I Veff(ru(t)] + (2n+ - 2){2\eff(rﬂ)/mq) ' n=1,2,..., i>1l.

(61)
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The resulr for Ell in Eq. {56) follows if we can neglect the zero point (n=1)
energy of the radial oscillaticns.

We reemphasize at this point that Eq. (36) (or Eq. (61)) gives a useful
relation between n-1 levels with different values of ¢ whether the approximate
energies are correct or not. We will io faect see in the next section that these
relaticns give the proper JWKB i-dependence of the ground state energies for

power law potentials.

1I1. NUMERICAL TESTS AND EXTENSION OF THE SVZ METHQOD
A. First-order results for power-law potentials

It is straightforward to evaluate Rél)(r) for a general power-law

potential
vir) = j oW c/a)Y . v -2, (62)
by using the identity
3
res) ' -~z
i+l 2 d L+ d 2 e
Hl(z} = (-1) —t—z ot i (EE) e (63)

3
ree+ 3)

which follows from Eqs. {48)-{(51), and integratinyg repeatedly by parts in

Eq- (52). The final integration give. a gamma function, and we find that

i+

L%

av vy ——— —_ (‘I"E) . (64)
wa

3 v 3 Kl
W r(E)r(u 3 :l)f(n 2)_ vi2
EN (v = -3 +

3 v 3
= = 7 =
TG+ PLa+ )
We will first consider the case of the simple powuer-law potential

v(r) = sgn v ‘Jo(r/a)\J - ¥, a, (63)
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where we have chosen the sign of V(r) so that the pcotential supports bound

states. It will be convenient to use a scaled time variable x = AT and to

(n
3

express energies and R in units of A, with

) = vi/(2+v) (mqa2)—vl(2+u) (66)
Then with Rl(x) = RE(T}/K , we have
3 3 W 3 J
Bt 3 s 24 Dri+ D
R (0 = 5L+ sgn v —2 2 2 2l (67)

l‘(-g— + ‘—z’)r(u %)

3 3 »
%3 TEfE +3)

+ sgn v

wi2

3
(e + x)
rQg+;) 2

The second form of this expression {obtained by using Stirling's approxim
ation for the gamma funcrion) has the & dependence predicted by the large &
approximation in Eq. (53), {(but with £ + 2 + %). However, the magnitude of
the secund term in Eq. (67) is too small by 21% for v = -1, correcr for

w = 0, and too large by 18% and 33X for v = 1 and 2. These errors are i-
independent . Their pattern is easily deduced from the form of the function
Hi(z) in the integral in Eq. (52) {see Fig. 1}.

(1)

The walue uf the first-grder energy Ell is easlly determined using

Eqs. (40) and (67),

'1 N 2 2
e s har Hed e O,

v =2, (68B)
1L 2

W T
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r&ra + 3y hre+H
Clv) =

3 . N 5
T+ P+ P

(69)
3 A
TGINER +35)
= __2_,__,__2_ L+ i)
3+

-1

If we use the approximate form of C(V) in Eq. (68), we obtain the semi-classical

scaling law for E{i) implied by Eq. (56),

2/ (+2)
o [virehras

i (ve2)
) 2 3
By - Al + 2)

e+ 3 . (70)
2rc§ + %) 2

The t-dependence of this expression 1s just that ohtained for a=1 from the

general JWEKB expressions given by Quigg and Rosner.z5

rdyrd + L |2IE 2v/ (240)
Eni = A — [20 + 2- E] W0, p=1,2,...,
rq + o2
(71)
s Thra- & | At
Enl = A — 1 1 [2n +2 - 2 + E] ,Wv<0, n=1,2,...
fg -9

(72)

provided we peglect the vw/2 in the last bracket In Eq. (72). The overall co-
efficient in Eq. (70) differs frum the coefficients in Egqs. (71) and (72),
but this difference is independent of . The scaling of the energies with
the potential strength and the quark mass is the same In all expressions,

and is deteruined by Eq. (66).

The accuracy (or inaccuracy) of the first-order energies E(l) is

15

shown in Figs. 2 and 3 where we conpate the prediction of Eq. (70) with the
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Quigg-Rosner JWKB predictions from Eqs. (70} and (71), and highetr order pre-
dicrions which we will discuss in the following sections. As may be seen from
the figures, the first order result for E . is generally poor except for Jv!
quite small. The accuracy of the predicted ground state energies EIE for
higher 2 is essentially the same as for ElS because of the correct JWKB scaling
in R given by Eg. (70). We aote in this connection that if we were to scale
the potential strength Vo in Eq. (65) by hand so that we fit EIS exactly, we
would obrain a good simultancous fit ro all the energles Ell' Nowever, it would
clearly be incorrect to conclude from the accuracy of the overall fit either
that the first-order method was accurate, or that the value of Vo determined fn
the fit was correct. This remark has obvipus implications for the SVZ program
to which we will return.

The first order predictions for E are also quite poor for the realistic

1%

Coulemb~plus-linear potential used in fits to heavy quarkonium systems,

4

Vir) = - T +br . (73)
L 1y .. - .
In this case RE is given by the sum
3
REO PR STk outa S VL S L S eAull: S YL .
% T Crard T T(E+ %) %

and the energies must be determined numerically.
Miller and Glssunzﬁ obtain a best fit to the spin-averaged charmonium

= 4.77 GeV, a = 0.49, and b = 0.17

and upsileniun data for . = L. 35 GeV, my
ueVE. Using these parancters, we Pind the results given In Table T1. We

Yind, for example, that the predicted $- and P-state energics in charmenium

are too large by 144 MeV and 142 MeV rtespectively, errors which are quite
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large on the scale of the absolute energies or the level spacing ElP - ElS =
1 1
408 MeV. The latter is given essentially correctly, E{P) - E{s) = 406 MeV.

There are similar discrepancies in upsilonium.

We can force a fit to the exact charmonium energies by increasing the
parameter a by 36% to a = 0.665 and decreasing b by 167 to b = 0.146 GeVz.
and obtain at the same time remarkable Improvements in the upsilonium energies.

However, the porential which results is certainly oot a good approximation to

the input potential.

We can alsc greatly improve the (apparent} match of the first-order and
exact results for the total energies Mll = Eli + qu simply by adjusting the
quark masses downward by © 70 MeV for charmonium and ~ 100 MeV for upsilenium,

again with misleading results (especially so if cne looks only at the fractional
ercor in ng).

We conclude on the basis of these examples (and our earlier theoretical
considerations) that the first-order predictions for the bound state energies
El2 can be expected to be qualitatively correct, for example to reflect the
correct pattern of level spacings, but that the quantitative predictions for
a given potential are unreliable. Conversely, potential parameters (or quark
masses) determined by forcing the first-order energies to fit a given spectrum
are likely to be substantially in error. This was pointed out for the § states
by Bell and Ber:lm.ann"’5 who showed thac the gluon condensate parameter ¢1 in

the SVZ effective pol:en:iai6

V() = - by (75)
Ir 64 q'l ’

is underestimated by a facror of two in fits to F.ls In charmenium, We will

discuss the implications of these results In more detail later.
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B. Extension of the SVZ method to higher order

Becsuse of the difficulties wicth the first-order 5VZ method discussed above,
we have extended our analysis of the S-state problem to second order for the
general pewer-law potential defined in Eq. (62), and to higher order in some
specicl cases. The second-urder result for RO(T) follows easily from the corres-—
ponding expansion of the Euclidean propagator K(0,0,-1T) given in the preceding

paper (UDD16).

v v, /2
(2) _3 | = 1
By (t) =50t Idvl plvy) 1'{2 + o H 2]

(76)

wl <
L]

] v o,

- rdv plv,}) Jdu plv )[1+ El + 2—] r[1+ Xl +
javy PAYy ILARS L T % 2 D)

021 (1 ](2+U1+U2)Iz ..

Cew #1)T (v, +1) v
1 2 } -r[ nr 2

j(v1+v2+2)

This expression simplifies somewhat for a single power, i.e., the potential

in Ez. (65). It is convenient in that case to use the scaled time variable
x = - and the scaled function Réz) = Réz)fl with & defined as in Ey. (66},
and rewri:e Eq. (76) as
2y, .3 vl vz _ w1 77
RD (x) x sgn(v)?[2 * 2 x B, x T, an
wLerx
[ ~ s .
2
2 = (24) {mm o - el | - Ifa«d |- (78)
’ l L M () J

3 is prsitive in the region of interest (v > -2}, and has a quadracic zere

at . = J.

30

We can obtain a second-order estimate for the ground state energy ElS
by minimizing Réz)(x) with respect te x for -2 < v < -0.36918... . However,
for v > -0.36918... no winimum exists, and we will therefore use the in-

flection-point criterion discussed following Eq. (29) and estimate Eig 38

(2) _ (2)
Big " ARy (ypg? a9
where
g2 @y a0 50)
de 0 inf

After some calculation, we find that

(2) _ o=
62 - s P ) (81)

ot L Iv| 1‘{2+ o E\,z r2r2+ ) (/v+l)B
v

v < -0.36918...

(82)

2 5
it o lelly ¥ wiiv _Y2p2f, vl t
3 7|2 1]r[2+ 2} + l:[' [2 1J r iJ!+ 2 ¥ 129(v+1) B, (v+1)B,

(83)
v » -0,36918...

To check th. theoretical reliabiliry of the minimun and inflection
point criteria for determining the optimum cholce of x, we have applied these
methods for the Coulomb, linear, and oscillater potentiils using the follewing

extended results obtained in HDD:lﬁ'Z?
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w= -1

2 Y32 ¢ Zln) ,x.mfZ
R SR =i
® 7] (84)

4nt 180

2
3 1 -% oo - n _2qmi ok
Ro(x) =2 YT ox ° - g(r~3) " /ﬂ[C(3) + 3 3 1x7
(85)
3 2 Y7
L O A . hl +...
'2{ 180 F 36 ) T x
R I 2 |
. [ ®\¥2 7 5 32,5 3_ 5k 9/
K(0,0,-11) = 77 Lo x4 17 % " %
21 6 ] {86)
6048 * ; '
; I T UL V5 SO WURN
Ry(e) = 5+ 707 x + 3(3-10)x
{87)
T ) {2 25m . 81 .8
97 {235V ez, 1 frf 25t 83
O[3 EY " T Peg o T

=y . sz 1t 2
_[_q_] 1+v’;x1’2+2—x+%f?c(3)x + Iy +...],
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v=2
™
v o (0g13/2 [ 2x 372
k(0,0,-1%) (:mj [sinhlxj (88)

I "q13/2 2,19 4 _ 631 6 1219 B a
Gt (P T* Y30* T 1se0 * Y7560 ™ j
R (x) = 3 coth 2x = 2 E 32“ (fcx)zn
0 2% qmg (220 (89)
3 8 3,64 5 _128 7
T trEoT R Otys K T s R ot

where Bn is the nth Bernoulli number. Tt is loceresting to note that the con-
tributions of the second and higher-order terms are much suppressed in RO
(even more s0 in - f£nK) relacive to X, as would be expected from the arguments
in Ref. 19.

We show our high-order results for the oscillator and Coulomb potentials
in Figs. 4 and 5. The validity of the minlmum and inflection-point criceria

. (n) (a)

for determining the optimum estimate for ElS from RD (x) is clearly evident

from these figures. We emphasize that the sequence of optimum values con-

verges to the exacr function RD(x) evaluated for x = » and not to

x .
optinun
ElS = RO(N). It {5 necessary to estimate the contributions of higher states
to Rix} if one is to correct for this effect. The curves In Figs. 4 and 5
show that the estimates for ElS can be improved substantially by iacluding
second- or higher-order terms in Ro(x) ,, but 1llustrate also that the cop-
vergence ol the perturbation series 1s sufficiently slow that it is probably
not worthwhile to 50 beyond second order. (Even going to second erder would

require a major effort in the field-thecretic concext.)

In Figs. 6 through lI, we shuw the behavior of the functions Fff(]”(x)
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and Réz)(x) for simple power-law pétentials with v = 2,1,%, -% , -1, and
for the realistic Coulomb-plus-linear potential with the parameters of Ref.
2b. The first-order estimates of Els given by the minima in the curves
are unrelijable as noted eartier. The second-order escimares are wuch im
proved in all cases. The necessity of having an apnalytic criterior to pick
the optimal value of Eéz)(x) for v > ~0.36918... is clearly evident from
Figs. 5-8 and ll.28

The overall accuracy of the first-and second-order estimates of ﬁls
for power-law potentials is shown for -1.25 < v < 4 in Figs. 2 and 3. It
is encouraging that the second-order results are nearly as good as the

1

JWKB results of Quigg and Rosner25 for -3~ v <2

3 and are reasonably
accurate even for wv=4, However, there are still problems in the inter-
esting region v v -1. We therefore consider the possibility of improving

the couvergence of the perturbation series using Padé resummation.29

C. Padé summation

The Padd summation technigque approximates the partial sums of a power
series by a ratio of polynomials. 1If the first w+nt+l terms of the series
wto

plodm) a 2] (90)
=0

are known, the [n,m] Padé approximant for P i{s the ratio

( n . o j]
flo,a] = | § Nz 1+ 7 D,z (913
ERNE
where the coefficients Nj and Dj are determined by the condition that the
R ntm
expanded form of Plo,m] reproduce the series to order z . 1t can bhe

shown for many types of serfes that the sequencre of Pad2 approximants

34

converges to the function defined by the original series for n,m ~ @, and
moreover, that the convergence is more rapid and the region of cenvergence
larger than for the original series.29 In essence, the Padd representarion
approximatas the smoothly varying part of the series by the smoothly varying
ratio of rwo polvnomials.

We have applied to Paddé technique to R(()z)(x), Eq. (77), by writing this

funcrion as

R{2 (3 « 1 p(D),M¥ey, (92)
[#] X
]
and constructing a [1,1) approximant for P(Z) in the variable xl+4u,
) 3 + Nl x1+%v
P P(1,1] = (93)
k)
1L+, Mk
where
) V)
N, = sga(v) [r{z +3) sv/r{z + 2J] (94)
and
D, = sga(v) su/r{z + %} . , (95)

The optimum values of x and RéZ) were then obtained for x > -1.2 using the
inflection point criterion. The Pad& approximations to Réz)(x) for power-

law potentials and the Coulomb-plus-linear potentialju are shown in Figs.

6—11.30

The accuracy of the Padd method relative to other methods is shown in
Figs. 2 and 3. dJe see that the Padd oethod glves substantial improvements

in the estimate of ElS for singular potentials. Thus for the Coulomb

potential, the Pad® estimate of is only in error by 3.5% while the

Eis

first and second order estimates are in error by 48% and 18%. ©On the
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other hand, there is no improvemeat in the energy estimates for v > 0. This
difference reflects the fact that the series for Ru(x) for the singular
potentials have a number of slowly-convergent terms with the same signs which
are efficiently summed by the Padd technique. The alternating series which
appear for 4 > 0 are more sensitive to cancellations, and are summed less
accurately.

We conclude that the Padd method can be applied to considerable advantage
for realistic singular interactions, but that the simple sccond-order method

is adequate for nonsingular interacticns.

D. Determining the effective QCD potential

]
Bell and Bertlmann showed thar one can assocfate the small-T expanslon
of RD(T} obtained as the nonrelativistic Ifmit of the SVZ expansion with an

effective confining Coulomb-plus-quartic potential

[ %1
- _s8,1 4
Vir) = I + o2 mq b, r (96)

LD

in the sease that Hoo (t} = Ré#;(T). However, the quartlic behavior of this
potential at large r and the flavor-dependence generated by the quark mass
in the quartic term are in conflict with the many successful potential-
theory results obtained for charmenium and upsilonfum. Tt is therefere
{mportant to Tecognize that one cannot use the filrst order SV7 procedure
with tre Leading terms in che operator product expansion to determine the
nature < ne fong range confining I[nteraction in qq systems. To illustrate

this, we consider the hypothetical potential

3 1 4.o1/4
v = - —= — ; .
(r} i + % mq [1+ tlr ] 1

36
40
- 43 z 4 4
Ir + 64 mq ¢l T 51z ™ ¢1 r + ..., ¢1r << 1
an
bog 1/64 4

T T3 Ty T i Tl

This potential has the Bell-Bertlmann Coulomb-plus-quartic behavior for r

small, but for the parametets used by these authors, is very nearly a (flaver-

dependenr) Coulomb-plus-linear potential in the regilon which is relevant faor

charmonium. The predicted energies are very different for the two potentials.
The exponential moment function for the potential in Eq. (97) behaves

for t + 0 as

RV @ - v e e - ey (98)
q 9

The term linear in @l gives the leading (nonrelativistic) dimension-four term
in Rél)(T). The term proportiounal to ¢i i{s of dimension eight, and is
therefore nonleading in the sense of the operator product expansion, and
would have been omitted in the calculations carried out to date. 3Since
Flory31 has recently produced a potential of this wore complicated sort by
summing the gluon condensate terms to all orders in an ultralocal, large
Nc approximation, the ambiguity noted here may not be entirely hypothetical,
and it will be important to extend the operator preduct expansion to include
higher~dimension operators.

The limitations of the 5VZ approach for determining V(r)6 and the
energies of excited states“ are rather striking when it is cowmpared to
the inverse scattering method of potential theery. Inm the latter, inform-
ation on & few energies can be used to construckt an approximate potential

which can then be used with the Schrodinger equation to predict the energiles
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of excited states. This procedure is quite successful for charmoniun and
26,132 :
upsiloniu=. Unfortunately, no analog is known which is appropriate to

the general field-thecretic problem.

E. Summary and fmplications for the SVZ program

In this paper we have investigated the theoretical foundations of the
SVZ approach to the prediction of hadronic masses in QCD, modeling the SVZ
procedure using nonrelacivistic potential models. The relevance of these
models to beavy quark systems was established by Berr_lmann3 who showed that
the predictions of the nonrelativistic and relativiscic versions of the SV2
procedure agreed quite well with each other for charmonium and upsilonium.
We believe that our general theoretical conclusions are also applicable to
light quark systems.

Our results show how the first-order SVZ method can work as well as 1t
sgems to in correlating hadronic masses, but srill be uareliable 1o other
applicatioms, e.g., in predicting masses from known QCD parameters,or deter-
mining those parameters from fits to hadronic data. Our principal results
are as follows:

1. The first-erder calculation of the S-wave energy E using the

15

SVZ exponential moments is quasivariational, and gives the best value of

ELS which can be obtained with the given input and method. The unexpected

s5uccess oI the SVZ procedure in extracting large-(Euclidean)-time results
from a serturbation expansion valid at short times is a consequence of the

hidden variarional nature of the calcufation. The predicted energy alwavs

1y, .

g 15" As a result, the value of the gluon

lies above the true energy, E

6
condensite Falametel ¢1 in the effective quark-antiquark potential” in Eq.
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ey
1s

the correct energy. This effect was found by Bell and Berclmanna in their

(75) will always be underestimated if it is adjusted so that E matches

numerical studies of power-law potentials, and was also shown to occcur in
the IIHC expansion in two-dimensional QCD by Bradley et.al.33 and by Ditsas

and Shau.Sa Miller and Olsson]5 have recently concluded on purely phenomen-—

ological grounds that ?L w.as underestimated by SYZ and RRY. Their analysis
of the charmonium data using finite emergy sum rules gave a value of ¢1 a
factor of two larger than that obtained in the fits to EIS'
We emphasize that cthe contribution of higher bound states (or the con-
tinuum) to the exact RD does not account for the difference between the first—
order and exact values for ElS' As shown in Figs. 4 and 5, the minimum values
of Rél) for the oscillator and Coulomb pctentlals lie substantially above the

*

exact values of R, at the same points. The "continuum' corrections may be

0

important in sowme cases2 but the basic problewm remains.

2. The first-order predictions for the ground state energles Ell
for different angular momentum series are connected by an approximate semi-
classical relation (precisely the JWKB relation up to an overall normalizacion
for simple power-law potentials) which guaramtees that the energies scale
properly with the quark mass, and that an entire set of levels will be firred
reasonably well if the potential is adjusted to fit the lowest levels. A
striking example of this phenomenon for the Coulomb-plus~linear potential Is

shown in Table II.

3. Conversely, success in firtiny an entire complex of energy levels

{e.g., the spin-averaged charmoniuz and upsilonium levels in Table II)

does not guarantee that the potential parameters obtained in the fic are

correct. Me conclude by analogy that the specracular swvecess of 5‘.-"2.1

RRY,2 and othvrbj'aé in fitting a large nunber of hadronic masses 1s
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essentially unrelated to the correctness of the QCD condensate derived in
these flts. The situation is further complicated by the presence of extra
adjustable parameters-—quark masses,the quark condensate used in fits to
light quark data, etc.--which make definitive comparisons between different
systems difficult. The clearest test of the method is probably the calcu-
lation of spin splittings within a given system. These depend on the con-
densates as well as the single gluon exchange terms, hence test the
theoretical input. The results are only moderacely successful.2'3

4. The second-order predictions for ElS appeatr to be quite reliable
for a variety of potentials, especially 1if supplemented by Padd sumnation
in the case of singular interactions. Use of the higher order expressions
in field-theoreric calculations would require, hewever, that the operator
sroduct expansion be extended to include higher-dimension operators (the
gluon condensate appears quadratically in dimension eight). This is a for-
midable task. However, it {s ecaly with the use of higher order methods that
one can hope to obtain rellable values for the nonperturbative condensate
parameters, e.g., for comparison to the results of lattice calculations.
we remark finally that high-order calculaticns are alsa required before one
can determine the nature of the confining interaction (and then only in the

region directly sampled by the bound states}.

ACKNUWLEDGMENTS

This resvarch was supported in part by the U.S. Departient of Energy
snder contract DE-ACOZ-T6EROOX81, and in pact by the University of Wisconsin
Zraduoate School with funds granted by the Wisconsin Alumni Research Found-
aticn. The paper was written while one of us (LD) was a Visiting Scientist

3T Fermilab, whose hospitality and support he appreciates.

40
FOOTNOTES AND REFERENCES

*Permanent address

tPresent address: Physics Department, Southern Technical Institute,
Mariecta, Georgia 30060

1. M.A. Shifzan, A.I. Vaioshtein, and V.I. Zakharov, Nucl. Phys. Bl47,
85, 448, 519 (1%79).

2. L.J. Reinders, H.R. Rubenstein, and 5. Yazaki, Phys. Lett. 948, 203
(1980); 5958, 103 (1980); 1038, 63 (1981); 104B, 305 (1981); Nucl
Phys. B186, 109 (1981); L.J. Reinders and S. Yazaki, ibid. B196,
125 (1982).

3. R.A. Bertlmann, Phys. Lett. 1068, 336 (1981); Nucl. Phys. B204, 387
(1982).

4. J.5. Bell and R.A. Bertlmann, HNucl. Phys. Bl77, 218 (1981).

3. R.A. Bertlmann, Acta Phys. Aust. 53, 305 (1981).

6. J.S. Bell and R.A. Bertlmann, Nucl. Phys. B187, 285 (1981).

7. A. Bramdn, E. Etim, and M. Greco, Phys. Lett. 418, 609 (1972};
M. Greco, Nucl. Phys. B63, 398 (1973); J.J. Sakurai, Phys. Lett. 468,
207 (1973}).

8. E.C. Poggic, H.R. Quinn, and 5. Weimberg, Phys. Rev. D 13, 1958 (1976).

9. G. Farrar, V.A. Novikov, L.B. Okun’, M.A. Shifman, M.B. Voloshin,
and V.1. Zakharov, Phys. Lett. 71B, 115 (1977); V.A. Novikov, L.B. Okun’,
M.A. Shifman, A.I. Vafashtein, M.B. Voloshin, and V.I. Zakhorov, Fhys.

Rev. letrt. 3B, 6ZX6 (1977); 18, 791 (E) (1977).

10. R.M. Barnett, M. Dine, and L. Mclerran, Phys. Rev. D 22, 594 (19B0}.



11.

13.

14,

15.

16,

17.

41

G.J. Gounaris, E.K. Manesis, and A. Verganpelakis, Phys. Lett. 568,

457 (1975); G.J. Gounaris, ibid. 72B, 91 (1977}; V. Barger, W.F. Long,
and M.G. Olsson, Phys. Lect. 57B, 452 (1975). F.E. Close, D.M. Scott,
and D. Sivers, Nucl. Phys. B117, 134 (1976); M.Greco, Y. Strivastava,
ana G. Pemse, Phys. Rev. D 21, 2520 (1980); K.J. Miller and M.G. Olssoa,
Phys. Rev. D 22, 2137 (1980).

B. Durand and L. Durand, Phys. Lett. 113B, 338 (1982); Phys. Rev. D 23,
2312 (1982).

A. 1. Va¥nshte¥n, V.I. Zakharov, V.A. Novikov, and M.A. Shifman,

Soviet J. Nucl. Phys. 32, B40 (1980) (tramslation of Yad. Fiz. 32,

1622 (1980)); V.A. Novikov, M.A. Shifman, A.I. Va{ushteIn and

v.I1. Zakharov, Nucl. Phys. B191, 301 (1961).

R. van Royen and V.F. Weisskopf, Nuovo Cimento 504, 617 (1867);

51A, 583(E) (1967).

B. Durand and L. Durand, Phys. Rev. D 23, 1092, 1531 (1981);

Phys. Lett. 99B, 425 (1981).

J. 8. Whitenton, B. Durand, and L. Durand, University of Wisconsin
preprint HAD/TW-42 (preceding paper). We will make extensive use of
the results of this paper, and will refer to it as WDD.

This reiation was originally given by E. Fermi and E. Segre, Z. Phys.
B82. 729 (1933), and has been rediscovered periodically. For recent
derivaricns in the context of quark physics, see C. Quigg and J. Rosner,
Phys. Rev. D 17, 2364 {1978} and Phys. Rep. 56, 167 (1879), and I.S. Bell
and J. Pasupathy, Phys. Lett. 83B, 389 (1979}. Ceneralizatiens to

L > 0 are given in the last paper and by J.S. Bell and J. Pasupathy,

Z. Phys. C 2, L83 (1979), and N. FrBman and P.O. FrBuan, J. Physique 42,

18.

19.

20.

21.

42

1491 (1981). The corrections to the formula are discussed in
J. Pasupathy and V. Singh, Z. Phys. C 10, 23 (1981).

See, for example, R.P. Feynman and A.R. Hibbs, Quantum Mechanics

and Path Integrals (McGraw-Hill, New York, 1969).

We choose Lo work with the perturbation expansion of -inK for the
same reascn that one works with the expanslon of the logarithm of the
partition function (the free energy) in statistical mechanics (the
problems are equivalent, with T +— 1/kT): K(0,0,-iT) is essentially
exponential, and the (cumulant) expansion of EnK in K = exp{inK)
gives an efficient approximation of high order terms in K. See, for

example, L.E. Reichl, A Moderm Course in Statistical Physics

(Univ. of Texas Press, Austin, 1980). In the cases we have checked,
the alternative procedure of expanding K in perturbation series and
equating R to che (unexpanded) ratio ~X'/K is significantly inferior
te that used here. (The egquivalent of the alternative procedure was
used, for example, by RRY (Ref. 2) in their power-moments calcula-
tions.)

R(l)(t) is positive and decreasing (dR(l)/dT} < 0) for 1 sufficiently
smail for any putential less singular than r-z at the origin, and

is of course bounded below by ElS' R(l)(T) must therefore have a
finite minimum value on (0,*) for any such potential with a spectrum
bounded from below, in particular, for any confining potential.
Partial results on the variational principle have been obtained recently
by R.A. Bertlmann, CERN preprint TH.34%40, October, 1382. Bertlmann's
proof 1is restricted to a superposition of attractive power-law potentials.

The more general proof above was given in J.R. Whiteanton, University of

Wiscomsln dissertation, 1982 (unpublished).



[

43
29. George A. Baker, Essentials of Padd Approximants (Academic Press,
22. G. N. Watson, Theory of Bessel Functions (Cambridge University Press, New York, 1975}).
1966), § 11.5(3).
3. Ref. 22, § 3.71. 2
30. For the Coulemb-plus-linear potential, the powers which appear in PQ
24. Ref. 18, p. 357. 3/2 1
are xllz and xl from the Coulomb terms, x and x~ from the linear
25. €. Quigg and J. Rosner, Phys. Rep. 56, 167 (1979).
terms, and xz from the Coulomb-linear interference. We therefore have
26. E.J. Miller and M.G. Olsson, Phys. Rev. D 25, 2383 (1982).
a seven-term series in xllz (with some zero cpefficients) and have used
27. The coefficients fn in the expansion
a [3,3] Pad® approximant.
o nv
R(x) = %; S+ %) ¥ nf_ L 31. C.A. Flory, Phys. Lett. 1138, 263 (1982). Flory obtains
n=1 1
4 [ {3 2 3
V() = - s 8 s\ 2 S5 s rZ _ s .
are easily calculated recursively from the ccefficients B, which appear 3 5 1 2r 3270 r
in the expansion
Y
342 b ot 7 32. H.B. Thacker, €. Quigg and J. Rosner, Phys. Rev. D 18, 274 (1978);
(hnt/mq) K(0,0,-i1) = 1 + Z 8, *
n=l 18, 287 (1978); C. Quigg and J. Rosner, ibid. 23, 2625 {1981),
by using the formulas
33. A Bradley, €.5. Langensiepen, and G. Shaw, Phys. Lectc. 102B, 35%
fl = &y (1981).
n-1
- o3 © 34, P. Ditsas and G. Shaw, Phys. Lect, 1168, 188 (1982).
forl™ Barl 7 nel Ly Bt flogr 02 1
35. K.J. Miller and M.G. Olsson, Phys. Rev. U 25, 1247 (1982).
See J.B. Whitenton, University of Wisconsin dissertation, 1982 (un- 36. B. Guberina, R. Mechbach, R.D. Peccei, and R. Riickl, Nucl. Phys. B1B4,
published), Appendix H. 476 (198l); B.L. loffe, ibid. B188, 317 (1981); ¥. Chung, H.G. Dosch,
28. The existence of the inflection paints is associated with nearby com- M. Kremer, and 0. Schall, Phys. Lett. 102B, 175 (1981).

plex-conjugate zeros in dﬂéz)/dx. In all the cases we have checked,the
value of % at the inflection paint is essentially equal to the real part
of x at the cozmplex zero. The inflection point criterion therefore
picks out the "complex minimum' of Réz) and generalizes the usual

minioum cricterion.



45

U Els.exact E§;) Els,varlational

-1 - % -0.13 -0.157

- % ~0.438 -0. 369 -0.392
3 1.833 1.977 1.906
1 2.338 2.616 2.461
2 3 3.464 3.162

4 3.800 4.500 3.985

Table I. Comparison of the exact ground state emergies for the

)

power law potentials V(r} = Vor given in Ref. 4,
Table 1, with the results obtained using the first-
arder perturbative expansion of R(T)} and the SVZ

procedure (Ei;) = min R(l)(r)) and its variational

T
(1) 1
(t) - h)). The

2/ (24V) m—VI(2+v)
o q '

Improvement (E = min (R
1

15,var

energies are given in units of V

46
2 2
a=0.49, b=0.17 GeV a=0.665, b=0.146 GeV
Scate E, ,,exatt E(l) Error E(l) Error
1E 1L (Mev) 1 (MeV)
(MeV) (MeV) {MeV)
Charmonium
15 164 508 +144 164 fitted
1P 172 914 +142 . 772 ficted
1D 1060 1221 +161 1063 +3
1F 1305 1487 +182 1314 +9
Upsilonium
15 ~98 106 +204 -94 +i4
1P 349 479 +130 343 -6
1D 585 714 +129 581 -4
iF 7653 205 +136 767 -2
Table 11. Comparison of the exact ground state energies for the Coulomb-

plus-linear potential V = —ar_l+br with the parameters of Ref.

26 with the first order energies calculated by minimizing the
il), Eq. (74). The masses of
the charm and bottom quark are m = 1.35 GeV, mb = 4.77 GeV.

5VZ exponential moments function R

The last two columns give the results obhtained for upsilenium
when the potential is modified so that the Eirst order 18

and 1P charmonium energies are correct.
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FIGURE CAPTIONS

Plot of the function H(z) defined in Eq. (52) as a function of the
scaled variable z/f.

Plots of the ratic of the approximate 15 energy to the exact

u
energy for the confining power-law potential V(r) = Vo(rla) N

Fig.

VD >0, v > 0. The curves give the results obrtained using the
first-order and second-order exponential moments, Padd resumma-
tion of the second-order series, and the modified JWKB formula
of Quigg and Rosner, Ref. 25. -
Plots of the ratio of the approximate 15 enetBy to the exact
ecergy for the attractive power—law poteatiszl V{r} = -Vo(rfa)v,
Vu >0, v < 0, The curves glive the results obtained using the
first-order and second-order exponential moments, Padé resum
mation of the second-order series, and the modified JWKB formula
of Quigg and Rosner, Ref. 23.

Cenvergence of the nth order approximations Rén)(x) to the exact
Dopent function Ro(x) = 3 coth 2x for the oscillator potential.
The short horizontal bars show the optimum values of R;n)(x) for
n=2,4,6 determined by the inflection point criterion of Sec. TIC.
g(m
0

The optimum values of (x)} for n=1,3,5 are given by the minima

Fig.

of the corresponding curves.

- . : : R(n)

toavergence of the nth osrder approximations 0 (x) to the exact
DUment fuiction RO(x) for the Coulomb potential. The oprimum values

cl {x) are at the minima of the curves for n=1,2,3, and 8, and

R(n)
o4

at the Inflectlon puints indicated by the horizontal bar for a=sS.

Fig.

Fig.

Fig.
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Behavior of the first- and second-order exponential woment functions
Rgl)(x) and Rgz)(x) and the Padé modification of Réz)(x) for v = +2.
The horizontal bars indicate the optimum values of R determined by

the inflection peint criterion. The horizontal line gives the exact
value of Ru(m).

Behavior of the first- and second-order exponential moment functions
Rél)(x) ang Réz)(x) and the Padd modification of Réz)(x) for v = +1.
The horizontal bars indicate the optimum values of RO determined by

the infleccion point criterion. The horizontal line gives the exact

value of Room).

Behavior of the first- and second-order exponential moment functions

et

Rél)(x) and Réz)(x) and the Padd modification of Réz)(:) for v = + 3
The horizontal bars indicate the optimum values of RD determined by
the inflection point criterion. The horizontal line glves the exact

value of RO(W).
Behavior of the first— and second-order exponential moment functions
Rél)(x) and Réz)(x) and the Padé modification eof Réz)(x) for v = - 1

2
Padé

The horizoatal bar indicates the optimum value of RO determined

by the inflection point criterion. The horizontal line gives the

exact value of Ro(w).

Behavior of the first- and second-order exponential moment functions

Rél)(x) and Réz)(x) and the Padd modificatfion of Réz,(x) for v = ~1.
) . RPadé .

The horizental bar indicates the cptimum value of 0 determined

by the inflection point criterion.

The horizoutal line gives the

exact value of Ro(w).
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Behavior of the flrst- and second-order exponential meoment Ffunctions
RS“(x) and R(‘)"(x) and the Padé modification of R(‘)“(x) for the

Coulomb-plus-linear potential V(r) = -arml + br with parameters

a = 0.4%, b = 0.17 GeV2 chosen to Fic the spin-averaged charmanium 3 4
spectrum (Ref. 26). The variable x is scaled using the scaling
for a linear potential. The horizontal line gives the exact value

of Ry(m).
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