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ABSTRACT

The properties of topological objects with fractional
charge are studied. We first transform to new varia-
oles, in terms of which the lowest order contribution
gives the fractional charge. We then gauge that frac-
ticnal charge, Effects of the 0 angle in two di-
mensions are studied. In particular arbitrary periods
may be obtained. Induced extra charge dueto & turns
osut to be proportional to VB, C and P viclations due
te 8 may be arbitrarily small in some cases.
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L. - INTRODUCTICH

In both solid state physics and particle physics it has teen realized
that the particle spectrum of a theory may consist not only of the excitations
manifiest in perturbation theory, but also of particles of a non=perturbative to-

pological nature, termed solitons l).

While in solid state phenomena the existence of soliton excitaticns has
teen demonstrated, in particle physics cne is still zt the beginning of the process

of unravelling the impact of solitons on physical phencmena,

The structure of the soliton sector has become even more rich by the
discovery that seclitons may carry fractional charges 2)-4). This possibility has

caused great interest in both solid state and particle physics,

In this note we discuss some aspects of fractionally charged particles.
The fracticnal charge may corraspond to either a global symmetry or to a rauged local
symmetry., The rlobal charge may form when light fermions are added to a system con-
taining topological cxcitations, The propagation of light fermicns in a solitonic
backrround causes an instability in the Dirac sea of fermions resulting in the
topological excitations acquiring a global fracticnal charge, In this paper we
study in some detail the properties of these hybrid objects. In two dimensions one
can go further by pauging the global charge and investigéting its electromagnet ic

interacticns.

In Section 2 we review the formation of fractional global charges. Their
fate, once they are gauged, is fellowed. We investigate in particular the case in
which a background electric field is applied to the system. A rich structure
emerges, notably models with an arbitrary period can be constructzd, The models
studied are two-dimensicnal, A new scenario for € and P conservation in these

models emerges,

The second type of fractional charge is obtained by adding a topological
8 term to a theory in which solitons appear. In four dimensions it was shown by
Witten that monopoles turn into dyons 5) t in Section 3 we construct a similar
phenomenon in two dimensions and study it under various circumstances. Massless
fermions are added, and so are chirality-viclating Yukawa couplings. In particular,

we get models in which the dependence on the 9 parameter is not neriocdic,

In Section 4, we summarize the somewhat wide range of results and try

Lo draw some four-dimensional lessons from them.



GLOBAL F=ACTZONAL CHARGE : A REVIEW
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Goldstene and Wilczek 4 have proposed a general method for calculating

the global charges residing on solitons. We recast their results in a slightly
different language., In fact, we shall transform to new field variables, in terms
of which the result for the fractional charge is contained in the lowest non-zero

order. In the zase of slowly varying fields the results are userul in both two

‘

and four dimensicns. We start by solving a Yukawa nodel 4). Consider the Lagrangian
= “T?T - Y (s L)y (2.1)

Defining the new variables p, 8 and y by

¢l-. fCosat y ¢1: Fsime " vy = ex}n(‘ii‘{f)x (2.2)

one obtains, ir two dimensions
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Hote that the field ¥ 1is a chiral singlet and that under a chiral transformation

angle R the field o is shifted to o + 8. We rewrite (2.3) as
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where

\ i
An Epr DX

-t (2.5)
In order to calculate the fermionic charge one defines
'W{X]_ _Lr- ) (2,8)
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Thus
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;f(x} i3 the gauge invariant curtent [defined by point splitting and a line
[

irtegral}). Thisz result 13 obtained as follows
P (g0 = LU (XMW + & Z(xen) G LE @I XU + o(e) =

’Sf’(ﬂ - i ‘i(ﬁ‘f} I‘__Tri.", 24(3’4} -+ ir' \"P i'-fk}"( |:| XU) + o(€)

The two terms In the square brackets, one coning treom the e  separation in the

X tields and one from the line integral needed to reach the gauge invariant

jix), contribute egually in the limit ¢ —+ 0, resulting in =-1/2n Euv 3%. In

an external o field (a2 background field Au)
. . 2 D L gvr t
<3Py, = i [(Tq}‘ (0144 (> L4 €5 %] L (2.5)
+ higher order terms in 3a.

Tt iz heres that one invokes the slowly varying field approximation., Thus

(JB}’“U})‘“ = Er.,'b‘rF(x) (2.9)

with

F= {const.] -E;l—-t-t- [higher order terms in -QL:] o{.-}-[second and higher order
b1 %5

terms in 3q ] (2,10}

This leads to
< galx /i?) (© >.( =0 (2.11)

Leaving, to leading corder in derivatives (as compared with gp)

\ - <L ", (2,12}
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and
Q, =<§’)E‘”l’° 4‘).4: ilfr [oteor - (-] (2.13)

Thus a fractional charge 1s induced on a solitonic background. As pointed cut

in Ref. 41, 7. may obtaln any value., In four dimensions, the model of Eq. (2.1}
produces no induced current, since both scalar and pseudoscalar densities are even
under charge conjugation, However, we get an induced current for the analogous

model



L=y Py - ﬂ'l’ H ~iT f,-]if (2.14)

Low we cdefine

1)
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angd obtaln

(2.15)

L= iXFx-qFen +i XS (28 (2.16)

We do not compute extra terms [analogous to the (auaJ2 term cof E2.3)] since they
do not contribute to the induced current, It turns out, that the answer of
“oldstone and WicheKQ) is reprcduced by using cnly the axial part (S_IYHS)A of
the interaction term. In this case, the first non-vanishing contribution comes

rom o the sox diasgram (the triangle diagram vanishes due to charge conjugation).

~130, the answer is reprocuced with the unregulated box. Thus

i, = o T L LS, (), (1,67, ) (2.17)
{(+ higher derivatives)

The charge is given by the contribution of the first term only. The vector part
of the interaction must therefore be cancelled by the terms coming from the ¢

separation. Substituting (2.15) into (2.17) one obtains

G, = L % s Eat OO e (B (2.1

which is automatically conserved, As stated in the beginning of this paragraph,

all results here agree with those obtained in Ref. 4) by direct methods,

The cla331cal approximation

The formation of fracticnally charged solitons can be visualized by
. . . . 4
nogonizing the system and treating classically the soliton configuration ). We
shall demonstrate this for the system (2.1) with ¢2 = 0, Then the two dimensional

Lagrangian is ¢

L= 10 ﬂ*t‘l”‘f ?*“"1}‘5‘”* (2.19)



The Lagrangian can be studied by bosonizing the system, A real Tield ¢ 1is
introduced such that the following relatiens hold,

(Fr= 460
Yy == Cp My cos 20RC

Y Ly
4= 5 G0 C
{2.20)

Thus the bosonized version of the Lagrangian of Egq, (2,19) is given by

L= 4 6 L0 - Al§-D)-6p (cosam )9 (2.21)

Tt will turn cut to be useful to write also the fermionic charge Q in terms

F
of ¢
Qe = f ¥ Gy dx= Jﬂ' acv (2.22)
-ol)

In order to identify the particle excitations of the system one should identify
the various classical vacua of the system. They consist of the configurations

(4,0) which minimize the potential V(¢,0), where ¥(¢,0) is given by
v(§,6) = M- ‘]1*C"Gr+ tos (205 7) (2.23)

The minimal action configurations for 8Xa® >> GuC are

ﬁ:& -‘ﬁa*‘%_ )G th‘%)ﬁ} and it}:-&,csnﬁ-}

The minima are shown in Fig, 1. Actually, one can show that in general the minima
are at o = ¥k and ¢ = (—l)k+1§, where a is the positive solution of the
equation 4)\3(A%-a®) = CGu (3>a). The breakdown of the discrete chiral symmetry

o + g+{yT/2) is reflected in two dimensions by the existence of solitacns,

A drastic change has occurred with the introduction of the fermions into
the system, For a zero Yukawa coupling, G, the solitons in the system would have
o) = ${==) = 2a and, of course, zero As {Ao = kT correspond to the original
fermions). Once G 1is non-zero, this soliton has an infinite {infra=red infinity!}
energy, the Dirac sez becomes unstable, and a change in ¢ following the change
in ¢ is required to stabilize the system. In this example, A4c 1is xM/2, the
two solitons acquire a t% fermionic charge (the corresponding antisoliton will

have as well Qg = +1}. The two solitons are shown in Fig. 1.



Thne fact that Ao £ 0 signifies the spontaneous breaking of the disgrete
cnirzl symmetry possessed by the Lagrangian, and T/ obtains an expectation value

235 the brcken symmetry is diszcrete {$ + -5, = + v..] ro

- b re

Goldstone beson 1s ne-

Jaugirg the fractional charge

It has been shown that the lowest energy state in the soliton sector is

= collective excitation of both the original soliton and the fermionic degrees of
Treecom. This excitation has a fractional global charge, We would like to find

o4t Lo what extent the soliton will behave ags & charged object. In order to test

tnils we gauge the fermionic charge by adding a term juAu to the Lagrangian,

L1 30 r‘” - 4)*‘?7*"‘0‘{’”'*““;“{’}\!‘ % e 12020l

e

-2 1s agaln convenient to study the energetics of the system in terms of its

tozonized version, Using the notaticon displayed in Eq. (2.20), we obtain

‘L-.\.brtf) vipl+ N 50 €)= Cop s (2677) + & ST YN }-.. L, (2.25)

The redundant gauge field Au ¢an be integrated out to give

Lr L0 -vi) « 4] 8- Cmeeos (200 - €T (2.26)

where m = Cuy. The classical vacua are the minima of the potential W(¢,o}, where
Wid,a) 1s given by ¢
W($,¢)= V($)+ Gme tos(2076) + €6 (2.27)
K

“e can now check the various regions. Let us start in the region e? << Gma

wnere a 1s the minimum of the potential V(¢). For simplicity, we assume that
Tih) = Vi{=0},

In the ($,0) plane, only one absolute minimum now survives, the one

with g = 0, ¢ = =3. Discrete chiral symmetry (W =+ Yobyd + ) is explicitly

troken, If e 1is small, many unstable minima survive, allowing the existence cf

zairs of both almost integrally and zlmost half-integrally charged particles. as

2z is increased, the maximally allowed almost integer charge, LN decreases

until no unstable minima exist for a large enough coupling, What does this imply



for the fractionally charge solitons 7 4Ye gauged the fermion charge, it thus
Interacts with Au’ and irn two dimensions a charged particle gets confined,

che rotential has only one absolute minicwn and without degeneracy no solitons
can exist. The fractionally charged scliton got confined and, of course, s¢ did

the fermions, The string which confines two objects has a tension proporticnal

to the preduct of their charges. In cur semi-classical picture the tension
between two sclitons is determined by the energy difference between the two minima
which they bridge., The fractionally charged solitons are indeed confined by a
tension which is weaker than the tension confining cordinary fermions by a factor

1/4 as required for a particle of charge %.

In this model one envisages alsc bound states composed of three particles.
One fermion and a soliton-antiseoliton pair, all these have together a total fermicn
charge of zero, This configuration in the (4,0} plane is shown in Fig. 2. These
states are not stable topologically and may at best exist as metastable states.
Another test to the way in which the soliton is really charged is to switch on a
background electric field, The behaviour of charged particles in a background
£)

electric field has been studied extensively . We wish to verify that the frac-

ticnally charged solitons behave in a gimilar manner,

A constant electric field is introduced by adding a term
L eg
2 an

to the Lagrangian of Eq. (2.24), The bosonized form turns out to be
1 1 1 1
=4 L - - * -¢ .
L= L00p4) <1 ) - v(§) - Gmgeos(2T9) - & (¢ ) (2.28)
and the potential tc be minimized is

w($6) = v(§) + G cos (20rT) + %‘ \ ,ﬁ)l (2.29)

In this case, the system will still have one absolute minimum at that value of
g {picked from the extrema of the cosine term) which minimizes (g + 8/2/m)%.
Hewever, the degeneracy in ¢ 1is resurrected for 6 = g which 1s equidistant
from o =0 and o = =/m/2 ; thus at 6 = g the configuration (¢ = a,

o = «/7/2) and the configuration (¢ =-a,oc = 0) are degenerate, and a soliton
with A0 = #/71/2 (fermion number té) reappears in the same manner as Coleman's
hall asymptotic states appear in the massive Schwinger mocdel for 5 = 1., The

fracticnal charged soliton has been liberated, Note that for large e ,



T =z -8/2/7 i3 the sole minimum and no liberation seems to occur. These results
are pericdic in & (with z period =!, in the sense that for & = 7/2 + n

in = 0,%1,%2, ...) =zclitzns are liberated,

The fact that the period has been reduced to 1 1s evident from the
invariance of the Lagrangian under the following transformations
oo ; 6= e gn . {M'+ (2.30)
Obvicusly, on the background of a scliton with well-defined "4 number", the
pericdicity is still 27, In the massive 3chwinger model where the periodicity
in & is 2m, the 8 term generally breaks C and P, however, for & = nn
one can redefine the parity and charge conjugation symmetries such that the

thecry is C and P invariant.

These modified transfermations are

P " G(ﬂ - -n‘r;f "c('i) ; Fol (.’)"-, "’pn (“)

¢ C(y=-nig - (0 v Fa iy ~Faly)

One expects, however, that these symmetries will be spontaneously broken at
& = (2n+l)nm. In fact, this viclation is realized by the appearance of the "half

asymptotic" states,

In our case, Eq. {2.28), due to the shorter period in &, we can now
redefine C and P symmetries for 6 = (2n+l)nw/2 which are again expected to

be spontanecusly broken. These are:

pr G(x)— ‘“‘-_E - =% ' Forl— -Fu(-x) ! tﬂﬂ'—’ "*(“)
(2.31)

C, G —=E - G L Fuld~ Fulo o ¢l - 4l)

The existence of a liberation angle emphasizes again that the fractional
charge behaves as a regular charge, One may wonder if by varying the value of
the fractional charge, one may also vary the value of the 8 angle at which charge
liberation occurs., This does happen., To see the latter, consider a Lagranglan

4)

introduced by Goldstone and Wilczek

L= q’e.i*r"‘f = V(=)

1

whose interaction part is :

(2.32}



s being a real scalar field, By bosonization, one obtains that in the presence
of an electric background field (after gauging Jirst the fracticnal charge), the

potential V(o,0) to be minimized is

- .
V(.0 = 6m cos (2000 V) & (64 2) (2.3

Y{a) has a discrete set of degenerate minima. For e = O, the soliton carries

a fermionic charge given by

o
Qe = af,_—,*“ (2.34)

where Ao is the difference between the o values of degenerate minima of the

effective potential, By tuning Ax one may obtain any value for QF.
For e? << 27 Gm and 9 = O the soliton, which now carries a gauged

charge, gets confined. The effective potential has only one minimwn, At the

liberation angle, 6 at which half-asymptotic states appear in the spectrum,

9, t
the effective potential will have two degenerate minima., This occurs for

O = Qe fl- o, (2.35)

where R is the value of o at +w, [For a symmetric Vi(m), a at =-w is -0,
and 82 = O.] In other words, the existence of a fracticnal charge causes the
screening to cccur at a different value of the background electric field. The
ratio (8£+ao)/QF is w. One may alsc enquire as to the length of the period

in 6., It is clear that the effective potential (2.33) has a peried 2w, inde-

pendent of the form of the potential V(a).

If the potential V(&) is periodic tco, an additional structure will
energe, Actually the outcome depends on 2nP  the period of V{(a). The

effective potential will remain invariant under the transformation

& — O-2F M+ UM
G = G+ Iy Pm-dEn
ol, — -{-"7.[’“ {2.36)

In the case e = 0, the soliton carries a fractional charge QF = P and thus
the system will have a period EﬂQF. The problem can become more intriguing
if P 1is not a rational number, that is if the periedic of V{a)} 1is incommen-

surate with 2Zm., In that case, the system will have two pericds, It is known



that similar =systems 7 have 3uite an erratic § dependence., Any 3/27 of the
form Pm+n iz ecuivalent to 2 = O, Tnis is true alsc for any 7, but for P
irrational, we have an infinite number of values of £, arbitrarily close to

5 = 0, for which thers is no < and P violation (they still are of measure zero).

As the minima of YV  are ciscrete a would-be Goldstone boson ("axion") would not
pesult. A concrete exanple ¢f such effects may be a model with two nassive

charged particles, one of ther also having a2 Thirring interacticn, which makes
their periods incormensurable. One way wonder whether a similar mechanlsm may wWork

in four dimensions to cure the CF problen,

The four-dimensional non-Abelian gauge theory has an extra € and P
viclating parameter, 6, in a d4ilute instanton approximation the physics is pe-
riodic in 6 with a period 27, We do not understand how to describe this phe=
nomenen in terms of screening of some Ybackground" described by a non-zero 9,
We presume that such a descriztion exists and that sone <ind of charge does the
screening, if such a charge can be endowed with an additional Zracticonal charge
it could increase the amount cf CP conserving 8's without leading to an axion
Admittedly, this scenaric for the non-hbelian case is rather loose, bul in view
ei' the rich structure theoriss rave in the presence of a O parameter, we wish

Lo polnt cut this possihility,

3. - FRACTIONALIZING A GAUGED CHARGE

Having studied the gauging of a global fracticnal charge, let us turn
tc a system in which the fractional charge is gauged ab initio. It was pointed

cut by Witten 5)

that a menopele (a solitonic configuration in non-Abelian thecries)
of magnetic charge M (in units of 2n/e), will obtain a fractional electric
charge 6M/2n (in units of e), in the presence of a CP violating (6/32n2)FF

term in the Lagranglan, In twe dimensions, there is only an electric field,

Fu1'

of another charge avallable in two dimensions, the topological charge, Consider

In order to introduce an analogue to the magnetic charge, we will make use

thus a real scalar field coupled to the gauge field via its topological charge.
The Lagrangian is given by

Jz L0 -V« ebEvFr _Let 4 oesr, (3.1)
T\r Y o 0Lt Fpr

Wi

where V(¢) has a number of cegenerate minima. Integrating cut [ one obtains

IRV

L= Ot vil) - € (4+8) .2
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First, ccnsider the system for & = O and V(4) = V(-d). In that case the
modified potential V{$) + (a?/m)¢? still has a discrete symmetry (¢ - =3) and
for small encugh e, the potential has two degenerate rinima at ¢ = ta, say.
Solitons for which (o) =d{=x) £ 0 exist. We wish to draw an analogy between
some properties of this soliten and some properties of a magnetic monopole, Let
us now switch on §. The discrete symmetry is explicitly broken. The total
potential will have only one minimum as shown in Fig., 3. This situation should
remind us of the gauged soliton of the former section. A4s the system has conly cne
minimum, the scliton state has acquired infinite energy. Only pairs of soliton-
antisolitons interpolating between the non-degenerate minima are allowed, their
energy being estimated by the tension of the "string" which connects them. The
string tension 2e%ab/m/%  (for small e) is proportional to 4, We describe
these circumstances by claiming that the soliton has acquired an electric charge
whose confining properties are proporticnal to V3, In conclusion, for § =z O
the soliton, and the perturbaticn theory excitations are not confined, For

5 £ 0, the topoleogically trivial perturbation theory excitations retain their
neutrality, while the topological excitation gains an slectric charge ("monopole™)
= e(Eae/ﬂv’F)é (and becomes a confined "dyon"™), In this model 6 = 0 1is the
"liberation angle", Hote that if Vi) is non-periodic in 4 then, in this
system, one has an exanple of a non-periodic behaviour in the 8 parameter. This
behaviour follows from the absence of an infinite sequence of integer electric
charges due to the finite number of minima of the potential V{($)., Once a
dependence has been introduced, let us focus on phencemena which could conspire

to eliminate it, One expects that by adding massless fermions {with chiral
invariant interactions), the 8 dependence disappears. If one would break the
continuous chiral symmetry by adding a Yukawa coupling, G, the & dependence
should survive. Let us first set G to zero, in which case all theories for
different & should be equivalent, We recall that for 8 = 0, objects of non-
trivial topology were neutral in the sense that they were not confined. We should
now enquire how, for 8 # 0 and with massless fermions around, does the soliton

{("dyen") lose its charge and gets liberated,

The Lagrangian is given by

1 2
4= SO Vl) B fh s SR Ly e LY S0

where we have already bosonized the fermion bilinear, Integrating ocut the gauge
field, one obtains
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L= L Bl + 4 0n- [vig) o (e e+ 221 ] 0

For any & the potential Ve(¢,a} would be minimized v the c¢lassical configu-
rations {$ = ¢, ¥ = :+J, where ¢+, o_ refer tc the tegenerate minima of
V() and o, = =l/e, (; ¢ *- {ae /2/T}), Solitens are tius liberates and have
effectively lost their charge. Ne have already remarked that when -~ cbtains

a classical expectation value, breakdown of continuous chiral symmeszry is impliea,

Ho Goiastone Losons arise due to the chiral anomaly whnlch #eneratzss the rass of =z
"n"  particle represented by the fluctuaticn of c¢. Another languaze 10 describe
the phenomencn is the formation of a c¢chiral condensate resulting in the complete
screening of the & background electric field. What has cccurred is not unlike

what occurs in the masless Schwinger model in the presence of a background field.

Let usz next consider the case for which continucus chiral zymmetry io

2xplicitly browen by the addition of a Yukawa term

- LS -
Lr SO~ b - dFe V) e (G 00) sopdfY e

The bosonized form is

L 500 L B0 [vips & (e 4verr e ) ~dopdeos2ae]

Due to the Yuxawa term, the effects of 8§ cannct be elirinated, For & = e =

and 2, << 276y the system consists of solitons of fermion rumber :%.

MNext, let us switch on the background field keeping the fermion number

angauged, namely e = O, with ef, ei

<< 2rGu. In this case, we expect the
soliton with fermion number t% to gain an electric charge related to 6 and
thus beccome confined, The confined solitons will have both electric and fermiond
charge. In this case, the fermionic charges are t% arnd the electric cnarges

- L
are [ (e e a6/7/T)| 2.

The theory i1s nct periocdic in 9, When we gauge the “ermicnic charge

(e2 # Q), integer charged fermions are confined ard the periodicity in @& is

regained, The system is invariant under
G - G+ M
68— &-1an &
€y

Thus the period in 8 is 2w(e2/e3).

c



4, - DISCUSSIQN

We have shown that there exist new variables in terms of which a lowest
order calculation gives the fracticnal charge residing on a soliton. We have de-
monstrated in two dimensions that this is a bona-fide charge, This has been esta-
vlished by gauging the fracticnal charge and studying its electromagnetic properties,
In the two-dimensional models the charged soliton confined., It may be liberated
in the presence of an electric background field 8. The period length of 8, and
the value of 8 at which liberation occurs are determined by the value of the
fractional charge. Interesting phenomena cccur when the scalar field is self-
interacting with a periodic potential whose period is incommensurable with 2%,

A s¢enario for having a large number of C and P conserving theories emerges,

We have also constructed twe dimensional models in which fractional
gauged charges are induced on a soliton by a background electric field, and are

Wwiped out by the introduction of massless fermions.

We conclude by a four~dimensional analogue of the construction, Assume

%) model with a potential of the form V{(¢) = $2(32-a?)?,

ane has a Georgi-Glashow
for which i$| at infinity may be either zero or a. Such a theory would support
moncpoles, when a term which prefers $ = 0 is added toc V{4$) the monopole ceases
to be a stable excitation, MWevertheless one may envisage the following metastable
excitation. The field 4 in the radial direction would start from $ =0

rise to |$| =a and go back to §$ = O at infinity. This configuration looks
like a monopole wrapped by an antimonopole, The monopole would behave as if it
were superconfined, that is as if it had acquired some form of "“colour", Unfor-
tunately V{¢) is non-renormalizable in more than three spacetime dimensions.

In the 2+1 dimensional case, vortices play the réle of the moncpoles,
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FIGURE CAPTICON3

Fig., 1 : The classical vacua in the (¢,0) plane.

Fig. 2 : A metastable soliton-antisoliton-fermion bound state.

Fig. 3 : The effective potential for & £ O.
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