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ABSTRACT 

We discuss those composite models of quarks and leptons 

with an SU(N) metacolor group and preons in the complex, 

anomaly free and asymptotically free representations, which 

do not have spectators with SU(3) 8 SU(2) 8 U(1) quantum 

numbers. We find that many,of these models can be ruled out 

independently of the way the chiral (metaflavor) symmetries 

are realized and the bound states are constructed. The 

remaining models contain a large number of preons; O(100) or 

more. 
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1. Introduction 

During the last two years there has been much interest1 

in constructing "composite models" in which the quarks and 

leptons are supposed to be the bound states of more 

elementary objects--preens. The main motivations for 

consider ing such models are: 

i 

ii) 

iii) 

iv) 

the proliferation of the observed quarks and 

leptons, which in composite models could 

hopefully be built out of a small number of 

preens; 

the generation structure observed in the 

fermion spectrum; 

the proliferation of parameters, of which 

the quark and lepton masses and the 

Kobayashi-Maskawa mixing angles are the 

prime examples; and 

the gauge hierarchy problem. 

These problems have been addressed by many authors in 

the past in the context of weak interaction models with 

gauge symmetries larger than the standard SU(2)L 64 U(1); 

Grand Unification models and the Extended Technicolor models 

among others.' It is however fair to say that in spite of 

many efforts and many interesting suggestions no convincing 

solutions to the problems above have been found. There was 

a hope then that progress could be made by making the quarks 

and leptons composite. The studies of the last two years 
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have shown however that it is very difficult to find a 

composite model which could solve simultaneously all the 

problems listed above. 1 

Since it is so difficult to find a successful composite 

model it seems useful to change the strategy and first 

eliminate in a systematic way the models which are not able 

to solve the problems i)-iii) . A lot of care has to be 

taken however in such an approach for the following reasons. 

It is often very easy to rule out composite models by 

making specific assumptions about the preon dynamics 

(metacolor), and in particular about the realization of 

metaflavor (chiral) symmetries, and the way the bound states 

are constructed. 3-5 For instance, many authorsilt assume 

that the metaflavor symmetries do not undergo a spontaneous 

breakdown. This assumption when combined with 't Hooft's 

anomaly matching equations 6 and specific assumptions about 

the way the bound states are constructed (Fermi statistics, 

spin rules, etc.) may lead to an immediate elimination of 

some models. These models might otherwise survive the test 

had we changed our assumptions about the bound states and 

allowed a part of the metaflavor symmetry to be 

spontaneously broken. Therefore in view of the fact that 

our understanding of preon dynamics is very limited at 

present, we think that in this "destructive" approach to 

composite models detailed assumptions about the realization 

of metaflavor symmetries and about the way the bound states 

are constructed should be preceded by other assumptions 
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which have much firmer basis. 

With these ideas in mind we have analyzed all possible _ 

composite models characterized by the following three 

properties: 

a) the metacolor gauge group is SU(N), where N is 

arbitrary, 

b) the preens are in a complex, anomaly free, 

reducible representation of SU(N), which 

satisfies asymptotic freedom, and 

c) there are no spectators (elementary metacolor 

singlet fermions) which carry 

Su(3) Q SU(2) 61 U(1) quantum numbers. 

The last property implies in particular that in this 

class of composite models all the observed quarks and 

leptons are preon bound states. 

Our main result, which does not depend on the 

realization of metaflavor symmetries nor on the assumptions 

about the bound states, but is a direct consequence of 

properties b) and c), is that this class of composite models 

cannot be simple. The point is that as usual we do not want 

to have SU(3)C B SU(2)L B U(l)y triangle anomalies. In the 

absence of spectators these anomalies have to be cancelled 

among the preens themselves. This restriction when combined 

with the requirement of asymptotic freedom and anomaly 

freedom for the metacolor group (and a reasonable 

restriction on the quantum numbers of preons) severly limits 
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the number of possible models. 

We find in particular that either 

i) the number of preens in each of these models 

is at least 135, or 

ii) the metaflavor symmetry must be larger than 

So in which case the number of preens 

could be slightly less than 100. 

Consequently the problem of proliferation of particle 

species found on the level of quarks and leptons cannot be 

solved in these models. On the contrary, the minimum number 

of preens allowed in these models is substantially larger 

than the number of observed quarks and leptons. 

Without making detailed assumptions about the preon 

dynamics we cannot however exclude the possibility that some 

of these models may provide clues to the generation puzzle 

and the fermion spectrum. Therefore as a preparation for 

possible future investigations, some of which we make in 

this paper, we give a list of all models of this type which 

a) Allow an anomaly free embedding of 

SU(3)C a SU(2)L a u(l)y into the metaflavor 

group, and 

b) have metaflavor symmetries which do not 

contain factors larger than SU(l4). 
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We also give a useful classification of all these 

embeddings. 

Our paper is organized as follows. In Section II we 

define the class of models considered in this paper in more 

detail, we list the basic formulae and we outline our 

strategy. In Section III we present a list of models which 

cannot be ruled out without making detailed assumptions 

about the preen dynamics. In Section IV we discuss these 

models (including those which have a metaflavor symmetry 

with a factor which is larger than SU(l4)) with respect to 

fermion generations. We find several models which can 

accommodate the known generations of quarks and leptons, but 

a full investigation of this question would require more 

detailed assumptions about the realization of metaflavor 

symmetries, which is beyond the scope of this paper. We 

defer such analysis for the future. Section V contains the 

summary and conclusions. 
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2. The Models and the Strategy 

2.1 Defining the Models 

The models which we will consider here have an SU0-J) 

metacolor gauge group and preens in complex, anomaly free 

and asymptotically free representations of this group. 

The first task in our study is then to find all anomaly 

free and asymptotically free representations of & SU(N) 

groups. Fortunately this has been already done by the 

authors of Ref. 7, and we shall use here their results and 

their notations. The full preon content of each model is 

then represented by a direct sum 

(2.1) 

where Ri are irreducible representations of SU(N). In terms 

of Young Tableaux, the Ri's are given as follows 

Rl 

R2 

= R4 = N-l 

= fjj RS = N-2 

R3 = 
Fil R6= g 

R 7=m 

R8 =R (2.2) 

Rg = q 

All preons in Eq. (2.1) are assumed to be left-handed, 

spin-l/Z particles. The multiplicities ni can be positive, 

negative or zero, where negative values correspond to 

complex conjugate representations. For instance ng=5 means 

that a given model contains five fundamental representations 
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whereas if n =-5 9 there are five complex conjugate 

fundamental representations. 

We should stress however that we only consider here 

models with fully complex representations, i.e., we do not 

study models which contain m representations of a given type 

and some number of the corresponding complex conjugate 

representations. (Models of this class have been considered 

by Bars.') Consequently in our models all preens are 

protected from acquiring a mass by the metacolor symmetry 

itself. 

In the absence of other than metacolor interactions the 

metaflavor group Gf corresponding to (2.1) is 

Gf @i 
= n sU(ni) tzi f~(i)~-~ @ 2 (2.3) 

where p is the number of representations with nonzero nit 

and Z denotes the U(1) group broken by the metacolor 

instantons to a discrete symmetry. Suppressing the U(l) 

quantum numbers, the preons in the Ri representations under 

metacolor transform under Gf as follows 

(l,l,..ni,..l,l) (2.4) 

i.e. they are singlets under all non-abelian factors in 

Eq. (2.3) except for one SU(ni) with respect to which they 

transform as the fundamental representation. 

In summary each of our models is characterized by a set 

of numbers (N,{ni}) and the corresponding metaflavor group 

Gf' All sets (N,{ni}) which are allowed by asymptotic 

freedom and anomaly freedom are tabulated in Ref. 7. 
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To proceed further we have to say something about the 

metacolor singlet particles, of which the standard quarks 

and leptons are the prime examples. We shall assume that in 

all models considered by us there are no spectators (with 

respect to the metacolor grow) which carry 

su(3)c @ SU(2)L @ U(l)y quantum numbers which implies that 

all the known quarks and leptons are not elementary but are 

preon bound states. If metacolor is the only new 

interaction, and if there are no fundamental scalars it is 

hard to generate masses for fundamental metacolor singlet 

fermions. This problem is obscured (but not necessarily 

solved) if other new gauge interactions are present in 

addition to metacolor, but in any case, it provides 

sufficient motivation to consider spectatorless models 

first. 

Having defined our models we could now proceed along 

the standard route 1 , i.e. 

a) make assumptions about the bound states, 

b) make assumptions about the realization of 

metaflavor symmetries, i.e. assume which part 

of the group Gf remains unbroken, 

and finally 

c) find the massless bound states by solving 

't Hooft's anomaly matching equations. 6 
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As we have emphazised in the Introduction this is not 

the route we will follow in the first part of our 

investigations. We first attempt to eliminate as many 

models as possible without having to make assumptions a) and 

b) r and only at the end shall we discuss the implementation 

of the standard machinery into our program. 

2.2 Embedding the Standard Model into Gf 

The number of allowed models can be substantially 

restricted through the study of possible embeddings of the 

Standard (SU(3)c B SU(2)L Q U(1)) Model into the group Gf of 

Eq. (2.3). 

The embedding of the Standard Model in Gf can be quite 

generally specified by assigning the SU(3)c QI SU(2)L '9 U(l)y 

quantum numbers to the preons. In a given model 

characterized by the set (N,{ni}) this can be done in many 

ways, and consequently to each model there corresponds a set 

of embeddings of SU(3) Q SU(2) Q U(1) into Gf. For instance 

if in a given model there are seven (ni=7) representations 

Ri we can group them into the following SU(3) 61 SU(2) 

representations 

(7) = (3,l) + (3,l) + (l,l), 

(7) = (3,2) + (1,1), 

(7) = 3(1,2) + (l,l), etc. 

(2.5) 



tsu (3) 13: 1 A(i) = 0 (2.7) 
i 

[SU Cm) I2 a u(1): 
m = 2,3,N 

1 YiKm(ri) = 0 
i 
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This, at first sight very arbitrary, assignment of 

SU(3) B SU(2) B U(1) quantum numbers to preens is severly 

restricted by the fact that as usual we do not want to have 

SU(3) cd SU(2) B U(1) anomalies. In the absence of 

spectators these anomalies have to be cancelled among the 

preons themselves. There are five types of triangle 

anomalies to be considered. These are 

[SU(3)13, [SU(N)]' Q U(l), [SU(3)12S U(l), 

ISU(2)12 Q U(l), RJ(1)13 . (2.6) 

Consequently only embeddings are allowed for which all 

these anomalies vanish simultaneously. The relevant set of 

anomaly equations is as follows 

(2.8) 

DJw3: (2.9) 

where the sums are over all preens grouped appropriately in 

representations of SU(N) 61 SU(3)c B SU(2) Q U(l)), and Y 

stands for the weak hypercharge which in our normalization 

is related to the electromagnetic charge by 

Q = T3 + $ . (2.10) 
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Furthermore A(i) is the SU(3) anomaly of the i-th 

representation of SU(3) (e.g. A(3)=-A(2)=1) and Kn(ri) 

denotes the second index of a representation ri of the SU(n) 

group. The Kn (Ri)'s are given in Ref. 7. As we shall see 

in Section 3 in many models there are no embeddings free of 

the anomalies (2.6). These models are then immediately 

ruled out. 

2.3 Restricting the Quantum Numbers of Preens 

Clearly in a given model the SU(3) @ SU(2) @ U(1) 

quantum numbers of preens are restricted by the anomaly 

equations (2.7)-(2.9). We shall further restrict these 

quantum numbers by demanding that all charges of unconfined 

particles (i.e. particles which are metacolor and color 

singlets) are integer. To formulate this more precisely, 

consider a preen with an SU(N) @ SU(3) @ SU(2) 

representation with 'N-alites' AN, A3 and AZ. The most 

general charge assignment which guarantees integer 

observable charges is given by 

Y % A3 A2 -.-= 
2 'N ii- + a3 3- + F + Q, (2.11) 

where Q. is an integer. The factors tN and !Z3 are integers 

defined module N and 3 respectively, and have to be the same 

for all preens. a,#0 since quarks have fractional charges. 

In the standard model !L3 is by convention chosen to be -1. 
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We will restrict the range of Q. in such a way that 

IQ,,Izl, where Q,, is the electric charge of the preon. 

Furthermore, we will only give explicit results for preens 

in the singlet and fundamental representation of SU(3) and 

SU(2). If aN=O (which turns out to be the case in all 

models except one) the preens can then only appear in the 

following SU(3) B SU(2) B U(1) representations: 

Q = (3,2,$ L = (1,2, -1) 

D = (J,l, 4 ) u = (5,1, -+, (2.12) 

E = (1,1,2) v = (l,l,O) 

and in the corresponding complex conjugate representations. 

For instance D*=(3,1,-Z/3). 

In other words, in looking for solutions to 

Eqs. (2.7)-(2.9), we shall only allow those which are 

contained in the set (2.12). 

We shall later comment on what happens when this 

restriction is relaxed. 

2.4 Two Classes of Models 

In what follows it will be useful to divide the models 

considered here into two classes 

and 

Class I : Ini/ < 15 for all i 

Class II: Inil 2 I5 for at least one i, 
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ltip licity which enters Eqs. (2.1), (2.3) where ni is the mu 

and (2.4). 

It turns out that the anomaly Eqs. (Z-7)-(2.9) can much 

easier be satisfied for the models of Class II. The reason 

is that in these models the preens which belong to the 

fundamental representation of an SU (ni) vow (see 

Eq. (2.4)) with ni 1 15 can be put in the anomaly free 

representation 5 + 10 of SU(5). Consequently if the 

remaining preens are singlets under SU(3) @ SU(2) @ U(1) 

(e.g. V in (2.12)) the anomaly Eqs. (2.7)-(2.9) are 

automatically satisfied. Furthermore, as we shall discuss 

in Section 4, in these type of models the preon bound states 

can also be put into !!I + 10 representations of SU(5) and 

consequently fermion generations with the right structure 

appear automatically. For our purpose the SU(5) group in 

question does not have to be gauged completely: we are only 

interested in its SU(3) @ SU(2) B U(1) subgroup. 

2.5 Strategy 

Having discussed various aspects of the models in 

question, we can now set up a program for our 

investigations. This program is as follows. 

1. We shall first solve the anomaly 

Eqs. (2.7)-(2.9) for the models of Class I 

taking into account the restrictions on the 

quantum numbers of preens as given in 

Eq. (2.12) 
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2. Next we shall eliminate the models which do 

not contain any SU(2) doublets and/or any 

SU(3) triplets or antitriplets. In such 

models we obviously cannot construct all the 

known quarks and leptons. 

3. We eliminate all models in which su(2)w 

appears only in the following combination 

(Ri,1,2,1) + (Ri,1,2,-1) (2.13) 

Such models are undesirable for the following 

reason. In such models, the composite 

electron and neutrino SU(2JL doublet must 

contain at least one of the preon 

representations of Eq. (2.13). But then using 

the other preon representation of Eq. (2.131, 

it is always possible to construct a composite 

electron and neutrino with the wrong 

electromagnetic charge. Since the "right" and 

the "wrong" doublet are constructed in exactly 

the same way it is not reasonable to assume 

that the latter is very heavy. 

4. Next we shall introduce a useful 

classification of those models of Class I 

which pass the above tests. This 

classification will facilitate our subsequent 

discussion. This discussion, which will also 

include the models of Class II, will primarly 
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concentrate on the question of quark and 

lepton generations. 

3. First Results 

Using the Tables of Ref. 7 we have analyzed all the 

models of Class I, i.e. the sets (N,{ni]) with lni]<15. All 

the models of this class which pass the first three tests of 

our program are collected in Tables I and II. A few SU(8) 

and SU(9) models have been omitted from Table II for reasons 

to be discussed in Section IV. Before going to the fourth 

step of our program, let us make the following observations 

on the basis of these Tables. 

i) The smallest allowed metacolor group is 

SU(5). 

ii) Many values of N are excluded. In 

particular Su(6) r SU(11) and SU(12) 

metacolor groups are not allowed. 

iii) The number of the preens in each model is 

larger than the number of quarks and leptons 

(counting color, weak isospin, helicities, 

etc.) presently observed. 

The smallest model (with a metacolor group SU(5)) 

contains 135 preons. The numbers of preens in SU(S), SU(7) 

and SU(8) models are 0(150), O(300) and O(400) respectively. 

Larger numbers are found for larger metacolor groups. 
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We conclude therefore that none of these models solves 

the problems of proliferation of particle species found on 

the level of quarks and leptons. This conclusion is not 

changed when the restriction (2.12) is relaxed and the 

models of Class II are considered. We would like to 

emphasize that we have reached this conclusion without 

making any assumptions about the realization of metaflavor 

symmetries and the nature of the bound state. 

In principle then if economy were the only motivation 

for the construction of composite models our study of 

spectator-less models would be already completed. We have 

not found any economical model of this type among the W(N) 

metacolor groups with preons in complex representations. 

It is however possible that nature is more complicated 

than we first thought. We shall therefore continue our 

study paying attention to the ability of the simplest of our 

models (those with metacolor gauge groups SU(5) and SU(7)) 

to reproduce the generation pattern observed in the data. 

First however, let us discuss various embeddings which 

in the Tables I and II have been denoted by capital letters 

A,B,...T. We encounter two distinct classes of embeddings: 

a) Those in which the trace of the U(Uy 

generator over each of the metacolor 

representations separately is zero, TrY,=O, 

and 
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b) Embeddings in which the trace of the U(ljy 

generator is non-zero for at least one of the 

metacolor representations, TrYr#O. 
8 

The traceless and non-traceless embeddings are listed 

in Tables III and IV respectively. The traceless 

combinations Ti which appear there are related to the 

representations of Eq. (2.12) as follows 

T1 =D+L; T2 =Q+U+E; T3=U+L*+E 

T4 =Q+L; T5 =U+2E; T6=D+E* (3.1) 

Tl =Q+U+D; T8 =L+E 

Note that the Tables III and IV correspond to the 

Tables I and II respectively. 

We note first that the cases A,B, and C in Table III 

can be conveniently classified according to SU(5) and SU(6) 

representations. Cases A and B of Table III are described 

by their SU(5) representations, where the 151 of SU(5) 

transforms as D* + L* under SU(3) x SU(2) x U(l)Y. Case A 

corresponds to a [s] and two [51's embedded in the 

fundamental representations of SU(n8) and SU (*,) I 

respectively, while Case B has a [=I and two [51's in these 

same representations. Case C has a similar embedding with 

the fundamental representations of SU (*,I and SU(g) 

containing a [gl and two [61’s of Su (‘3) respectively. In 

this case the [6] is U* + L* + E* under the standard model. 
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The remaining embeddings of Table III are more 

involved. In Case D, the [SU(3)13 anomalies are cancelled 

trivially by embedding two [31's and two [31's of SU(3) in 

SU(*8), while SU(ng) contains only color singlets. The next 

three cases (E,F, and G), all have the same SU(3) embedding: 

SU(n8) contains a (3,2)+(3,1) of Su(3) x SU(2), while SU(ng) 

has two (3,l)'s. In all the cases discussed so far the 

color charge and the SU(2) doublets are contained in only 

two different hyperflavor groups, SU(n8) and SU(ng). In the 

remaining cases in Table III W,I rJ) color triplets (or 

anti-triplets) and SU(2) doublets can also be found in the 

fundamental representations of SU(n3) and SU(n7) groups. 

Note that in both models H and I, the embeddings in SU(n7) 

and SU(n8) are complex conjugates of each other, while in J, 

the embedding in SU(n8) is twice the complex conjugate of 

the embedding in SU(n3). Finally there is precisely one 

model with !L,#O (9,N is defined in Eq. (2.11)). This model 

has an SU(8) metacolor group and consists of the following 

SU(8) x SU(3) x SU(2) x U(1) representations: 

(R;JJ ,-l/2) : (R8,1,2,‘3): (Rg,3,2,7/6); 

2 @*3,1,1,1/2) i 2(R,,3*,1,-7/6). 

We have considered the possibility of extending the 

range of preon quantum numbers from those given in 

Eq. (2.12). When we allow the preons to be in arbitrary 
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SU(3) representations, we find an additional twelve models 

which satisfy the criteria of Section 2.5. The smallest 

number of preons in any of these models is 195, 

(corresponding to SU(5) metacolor and R=-13R8 + 13Rg). We 

list only the metacolor and metaflavor groups of these 

models in Table V. (There is more than one anomaly free 

embedding of the standard model in some of the flavor 

groups.) 

Relaxing all restrictions on the SU(2) x U(1) quantum 

numbers would not reduce the number of preons 

significantly: by looking only at arbitrary embeddings of 

SU(3) we find that the smallest model has at least 90 

preons. 

4. Search for a Realistic Model 

In this section we shall determine those models of 

Tables I and II in which it is possible to construct the 

observed quarks and leptons. We shall also briefly discuss 

the models of Class II. 

4.1. Models of Class I 

4.1.1. Three Preon Bound States. Until this point, we have 

been able to avoid making detailed assumptions about the 

nature of the composite states. However, we are unable to 

proceed further without some general assumptions about the 

dynamics of the bound states. In the models considered the 

preons do not have any Su(3)@SU(2)@U(l), anomalies and it is 
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clear that these anomalies must also vanish for the bound 

states. This is equivalent to satisfying 't Hooft's anomaly 

matching conditions with respect to the SU(3)@SU(2)@U(l]y 

subgroup of Gf but otherwise it does not require w 

assumptions about the breakdown, (or conservation) of the 

metaflavor symmetry (2.3). 

We first look for three preon bound states making only 

the assumption that they are left-handed metacolor singlets. 

Our findings are as follows: 

1. Anomaly free three preon bound states exist 

for only ten of the hyperflavor groups of 

Tables I and II. These models are 

distinguished by an (*) in the Tables. 

2. Five of these models have an SU(5) metacolor 

group and preons with the quantum numbers of 

embedding A. All of these models have bound 

states in the [%?I and [lo] representations of 

a flavor group SU(5) and so they all contain 

at least one standard generation of fermions. 

Since we satsify 't Hooft's conditions in a 

trivial way [the bound states are anomaly free 

with respect to SU(3)BSU(2)oU(l)] we cannot 

determine the allowed number of generations. 

Enlarging [beyond SU(3)BSU(2)@U(l) 1 the flavor 

grow with respect to which we should satisfy 

't Hooft's conditions would give us 
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restrictions on the number of generations but 

this is beyond the scope of this paper. 

Finally, although all these models can in 

principle accommodate the known generations, 

except for the R = -R5 - 5R8 + 11 Rg model 

they all contain composite particles with 

exotic SU(~)~OSIJ(~)~OU(~)Y quantum numbers. 

3. The models with N>5 either: 

a) do not contain a standard generation of 

quarks and leptons, or 

b) have more than 240 preons. 

Consequently they are not interesting. 

In summary the only model with three preon bound states 

which has a chance of being realistic is the model with an 

SU(5) metacolor group and the preons in the R = -R5 - 5R8 + 

llR9 representation. 

4.1.2. Multipreon bound states. We now turn our attention - 

to models where the number of preons in the bound states can 

be arbitrarily large. Let us first enumerate conditions 

which are necessary (but by no means sufficient) for a model 

to have a chance to be realistic. 

a) It must be possible to construct the observed 

quarks and leptons as metacolor singlet 

states. In practice we will only require that 

the composites have vanishing "N-ality" for 

metacolor. 



-23- FEEMILAB-Pub-82/38-THY 

b) The bound state spectrum should be classified 

according to representations of the full 

metaflavor group. This requirement does not 

imply that we do not allow spontaneous 

symmetry breaking, but only that all 

components of a broken multiplet should be 

present in the low-energy spectrum if one of 

the components is identified with a quark or 

lepton. Only when some composites can pair 

off according to their SU(3)BSU(2)@U(l) 

representations we might assume that they 

become heavy, although there may still be 

unbroken chiral symmetries forbidding that. 

c) When composites with unusual electroweak 

quantum numbers, which are singlets or 

triplets of SU(3)c, are present, the model is 

unacceptable unless these states are in a real 

SU(3)@SU(2)NI(l) representation. 

d) The SU(3)c&J(1)EM representation of the 

composites must be real. 

With these conditions i n mind we have analyzed the 

models of Tables I and II. Our findings are as follows: 

1. In all models with traceless embeddings (see 

Table I) except those of class C, the 

embedding of SU(3)@SU(2)@U(l) in Gf is simply 

one generation, split into two parts which are 
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2. 

embedded in different factors of the flavor 

groups. Therefore it is always possible to 

reconstruct a generation of composite fermions 

in these models. It should be remarked that 

it is sufficient to construct first only one 

generation since it is always possible to add 

a cluster of preons ("generation counter") to 

the bound state in order to make a state with 

the same quantum numbers but a different preon 

content. It turns out however that in most of 

the models in Tables I and II a generation 

counter can only be constructed out of 10 or 

more preons. Consequently the reproduction of 

standard generations will generally require 

bound states with a large number of preons. 

As we already remarked in section 4.1.1. the 

number of generations can only be restricted 

once further assumptions about the realization 

of metaflavor symmetries are made. 

The models of class C can be ruled out on the 

following grounds. In models of this type, 

SU(3)xSU(2)xU(l) can be "unified" in an Su(f5) 

grow (see Section 111) I and therefore all 

composites can be classified according to this 

symmetry. In order to satisfy condition d), 

the SU(3)cQU(1)EM subgroup must be in a real 

representation. In particular this implies 
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that one needs an anomaly-free representation 

of SU(6). We have considered all anomaly-free 

reducible SU(6) representations with Young 

diagrams with five boxes or less which break 

down to a real representation of su(3)xu(l)em 

and found only two such cases, (with dimension 

286 and 436), neither of which contained a 

standard generation. It is clear that these 

models have no chance of being realistic. 

3. If SU(3) is embedded according to T7, the 

color triplet preons appear in the fundamental 

representation of SU(12). The simplest way to 

obtain quarks as composites is to construct a 

bound state in which the preon containing T7 

appears only once and all other preons appear 

only as flavor singlets. Consider models of 

class H with bound states constructed out of 

Iii preons in representations Ri (i=7,8,9). To 

get a metacolor singlet, it is necessary to 

have29.7+2&8+!Lg=O(modN). If 9.g = 1 

(mod ng) , as argued above, this equation can 

not be solved if both N and n g are even. Thus 

we find that all models in Table I with even N 

in class H are ruled out. In the same way, 

six "non-traceless" models with N=8 can also 

be ruled out and we have omitted them from 

Table II. 
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4. All of the "non-traceless" SU(9) models have a 

global SU(4) flavor symmetry. This symmetry 

can not be gauged since that would introduce a 

triangle anomaly with a U(l)y gauge boson and 

two SU(4) gauge bosons. Moreover it has to be 

realized in the spectrum because of the 

anomaly matching conditions. Therefore this 

symmetry will also lead to unwanted symmetries 

in the fermion mass matrix or a plethora of 

Goldstone bosons. We omit these models from 

Table II. 

In this section we have shown that in most of the 

models of Tables I and II, it is possible to construct the 

known quarks and leptons if the bound states are allowed to 

be arbitrarily complicated. The only class of models we 

unambiguously rule out is that of Class C. 

4.2. Models of Class II 

Up to now we have limited the dimension of the largest 

flavor group to 14. When a larger group is present one can 

simply embed into it a complete generation. It is also 

usually very easy to construct several generations of quarks 

and leptons in such a model. 

As an example we will discuss the simplest model of 

this kind. It is based on the metacolor group SU(4) with 

the following preon representation 
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* * 
R6 + R7 + 15Rg 

and the corresponding metaflavor group Gf = 

su(15)@u(1)MJ(1)@2. 

We denote the preon fields as $, x and $ respectively. 

Notice that there are only 90 preons in this model, less 

than in any model of Tables I and II. In this model it is 

simple to construct several generations because of the 

existence of a simple "generation counter", x2. By adding 

this two preon cluster to a given bound state one can 

construct another bound state with the same SU(15) 

representation but different U(1) and 2 charges'. We recall 

that in most of the models of Class I such a generation 

counter can only be constructed out of 10 or more preons. 

The bound states in our example are @x3Jlr $x5$, 4cc7JI 

and +x9$. These composites, which are metacolor singlets, 

form four standard generations of quarks and leptons and 

satisfy 't Hooft's anomaly matching conditions with respect 

to SU(15). They also satisfy the Pauli principle with a 

ground state spatial wave function 10 . The anomaly equations 

for the two U(1) factors are not satisfied for any linear 

combination of these U(l)'s and therefore these U(l)'s have 

to be broken spontaneously by the metacolor forces. The 

different generations are then distinguished only by 

different charges of the discrete symmetry 2'. 
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Up to this point, the model meets all the constraints 

we have used in this paper. To make the model realistic 

however we have to break the remaining chiral symmetries and 

SU(2)@U(l) to give masses to fermions and the W and 2 bosons 

(One can either gauge the SU(3)@SU(2)@U(l) subgroup of 

SU(15) or an SU(5) subgroup. In the latter case additional 

symmetry breaking is required at the unification scale). 

The metacolor forces alone cannot do this since one would 

expect all fermion masses to be O(AMc) in that case. One 

may hope that the color or electroweak interactions could be 

responsible for some spontaneous or explicit symmetry 

breaking 11 
but unfortunately we have not been able to 

realize such a mechanism in our example. Therefore we have 

to conclude that additional interactions are required (e.g. 

technicolor or fundamental scalar bosons) in order to 

generate realistic fermion and W and 2 boson masses. 

A second problem for models based on SU(15) is lepton 

number violation. Baryon number can be assigned trivially 

to the $ preon, and it is an SU(15) generator, which is not 

broken by metacolor. Lepton number however is not 

traceless, and therefore it has to be embedded partially in 

the U(l)- factors of the flavor group, which are either 

broken by metacolor instantons or have to be broken 

spontanously because of anomaly matching. In either case 

lepton number is broken, but it is possible to leave a 

discrete symmetry unbroken to prevent most of the lepton 

number violating processes. This requires however a rather 
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artificial arrangement of condensates. A much less 

artificial solution is to consider SU(16) instead of SU(15) 

as the metaflavor group in which a generation is embedded. 

Then lepton number is an SU(16) generator and is not 

necessarily broken by metacolor. 

A complete list of models of Class II can easily be 

extracted from ref. 7 and will not be reproduced here. 

5. Summary 

In this paper we have discussed those composite models 

with an SU(N) metacolor group and preons in the complex, 

anomaly free and asymptotically free representations, which 

do not have spectators with SU(3)@SU(2)@U(l) quantum 

numbers. As we have shown, many of these models can be 

ruled out without making detailed assumptions about the 

preon dynamics, such as realization of metaflavor symmetries 

or the structure of the bound states. In particular we have 

found that all the models of this type contain a large 

number of preons and consequently they do not solve the 

problem of proliferation of particle species found on the 

level of quarks and leptons. Many of these models could 

also be ruled out on the basis that they could not 

accommodate even a single generation. We have found however 

several models which could in principle accommodate all the 

known generations of quarks and leptons, although generally 

this would require bound states with a large number of 

preons. We have discussed these models very briefly in 
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Section IV. Further study of these models would require 

detailed assumptions about the realization of metaflavor 

symmetries and the structure of the bound states, to which 

assumptions we do not want to commit ourselves in this 

paper. If such a study would lead to a negative result we 

might conclude that in order to find a realistic composite 

model one has to look elsewhere, e.g. look for models with 

spectators or preons with partly or fully real 

representations. 
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SU(N) 

TABLE I. Models with Traceless Fmbt lings 

Hyperflavor Group Embeddings (P) 

5 1 0 0 -1 0 P (16-P) 

5 0 -1 0 0 -P (6+P) 

5 0 0 0 2 -P P-18 

5 

7,13 

8,16 

9,10,22,23 

14,15,16,40,41,42 

13,14,26,27 

22,23,24,40,49,50 

13,27 

22,2x,49,50 

7 

0 0 0 P -P 

0 0 0 3 P -3(N+4)-P(N-4) 

o 0 0 4 P -4(N+4)-P(N-4) 

-3 0 0 0 6 -12 

A (P=5,6) CP=~)(*) 

A (P=5,6) (P=5)( 
l ) 

c (P=6) 

A (5tp<8) (p=5,7,8)(*) 

C (P=6) 

A 

A (lO<P<13) -- 

c (P=lZ,l 

B (lO<P<l: -- 

D (P=12,1 

E (P=12,1 

F (P:l3) 

G (P=13) 

3) 

3) 

3) 

3) 

H (P--7) 

H (P:-6) 

H (P=-5) 

H (P:-4) (N=14)(*) 

H (P:-6) (N.14)(*) 

H (P=-5) 

I (~:-6) 

I (P=-6) 

J* 

(*) Models with anomaly free three preen bound states. 
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TABLE II. Models with Non-Traceless Embeddings 

SU(n) 

Metacolor 

5 

T 
R3 

Hyperflavor Group 

0 

-2 

1 

-3 

3 

3 

4 

R7 

-2 

-2 

-2 

-1 

-2 

-1 

-2 

Ra 

P 

R9 

(18-P) K (P=6,7,8) 

14 P,Q,R,S,T 

14 ,(*’ 

14 ,(*’ 

13 Q 

14 P,R(*' 

14 PIQ 

T Embeddings (P) 

L (P=6 , 7) 

M (P=8 ) 

N (P=7 ” 

0 (7<P<lO) -- 

(*’ Models with anomaly free three preon bound states. 
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TABLE III. "Traceless" Embeddings of 
SU(3) x SU(2) x U(1) 

Class 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

T W(3) x SU(2) x U(1) Embeddings in 

t SU(n3) 

T8 

T SU (n7) 

T8 

T6 

SU (n,) 

T1 

T2 

T3 

T7 

T4+T6 

TqfT5 

T1+T4 
* 

T8 
* 

T6 
2T8* 

SU (ng) 

2Tl* 

2T1 
2T3* 

2T8 

2T5 

2T6 

2T3 

T7 

T4+T5 

T7 



Class 

K 

L 

M 

N 

0 

P 

Q 

R 

S' 

T 

TABLE IV. Non-Traceless Embeddings 
of SU(3) x SU(2) x U(1) 
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SU(3) x SU(2) x U(1) Embeddings in 1 

SU(n3) 

U+L+E* 

D+E+2L* 

D+L*+2E 

u+2L 

L*+E* 

L*+E* 

T1 

SU (ng) 

2(U*+E)+L 

2(U*+L*)+E* 

2(D*+E*)+L 

2(D*+L)+E* 

2u*+L* 

T7fL 

T7+E 

T,+L* 

T,+E* 

3Tl*+E* (t' 

-- 

1 

(f) E can be replaced by E* 
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TABLE V. Models in Which the Preons 
are in Exotic SU(3) Representations 

N R Number of Preons 

5 -13R8+13R9 195 

7 -5R3-R8+13Rg 287 

7 -3R7+7Rg+12Rg 315 

7 -3R7+8R8+9Rg 315 

7 R,-8R8+13R 9 287 

7 R3+R,-8R8+llRg 308 

9 2R,-8Rg+14Rg 504 


