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ABSTRACT 

We consider tensor products made out of a number of identical copies 

of the defining representations of Lie groups that are asymptotically free 

and complex. Decomposition of the tensor products into the terms with 

definite permutation symmetry is made by using the index sum rules and the 

congruence class. The results can also be used to find the branchings of 

SU(M) into a Lie Group G where M is equal to the dimension of the defining 

representation of G. Application of our results to preen dynamics is indi- 

cated in two examples. 
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I. Introduction. 

Gauge theories are generally regarded as the theories of elementary 

particle interactions. In a gauge theory, whether it is a grand unified 

theory or "preen dynamics", one generally starts out with a certain non- 

Abelian gauge group and writes down an invariant Lagrangian in terms of 

particle fields which transform as certain representations of the given gauge 

group. The fermion representations are usually required to satisfy additional 

conditions. 1 For instance, in many models the fermion representations should 

be complex" to prevent large masses for the known particles. Another require- 

3 ment is that the representation should be free of triangle anomalies, other- 

wise the theory will be unrenormalizable. The third condition often adopted 

is that the representations should be asymptotically free in the full gauge 

degree of freedom,4 not just in the SU(3) color subgroup. Recently there have 

been efforts to obtain complete lists' of both irreducible and reducible repre- 

sentations that are complex, anomaly-free and asymptotically free. We use 

these requirements only to get a natural limit on the representations considered 

in this paper. 

Having chosen the representations under due conditions, one has to con- 

struct a gauge invariant form of the Lagrangian. Here, one generally needs to 

know the properties of tensor products of the representations. Not only does 

one then need to specify how the tensor products can be computed, i.e., obtain 

the Clebsch-Gordan series, but also how they reduce to a direct sum of irre- 

ducible representations, each of which exhibits a definite permutation symmetry. 

The method of the decomposition6 of the tensor product of n identical repre- 

sentations into the component with definite permutations property is called 

the algorithm of "plethysm". 
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For example, consider a Yukawa coupling of the form (fL E4 fL)$ in 

an SU(N) gauge theory, where fL is the fermion field which belongs to the 

irreducible representation 

fL:~L:~qj@~ (1) 

of which the first two terms are symmetric under interchange of fL while the 

third term is antisymmetric with respect to the interchange of fL. Hence if, 

for example, $ belongs to 
EF 

, then the corresponding Yukawa coupling 

must be antisymmetric under the interchange of other labels such as the 

family indices. The alluded permutation properties of each of the three com- 

ponents under the interchange of fL can be understood as follows: Consider 

the fundamental representation cI[ of SU(M) where M is equal to the dimension 

of the defining representation g in SU(N), i.e., the dimension of the fermion 

representation fL. The group SU(M), in the fundamental representation, consists 

of all special unitary transformations of the M components of fL; the SU(N) 

transformations on fL form a subgroup, embedded in SU(M). This is referred 

to as a nonregular embedding of SU(N) into SU(M) in this paper. The symmetric 

part of (fL x fL) i.e., the first and second terms of Eq. (l), corresponds to 

a in SU(M), whereas the third term of Eq. (1) corresponds to the anti- 

symmetric representation 
E 

ofSU(M) . Such a method of decomposition with 

given permutation properties is what we call the algorithm of phethysm. Thus 

the computation of plethysm is equivalent to the direct computation of branch- 

ing of SU(M) -+ SU(N). 

In this paper, we present the computation of plethysm for the complex 

and asymptotically free representations of Lie groups, SU(N) (type sel), 
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SO(4N + 2) (type D2N+1) > and E6. The results of this paper have been applied 

to preon dynamics' for each of these groups with the correct Fermi statistics 

constraints and reported in a separate paper. 8 In particular, for SU(N) the 

results are given for the seven of nine irreducible, complex and asymptotic- 

ally free representations; ' for S0(4N+2), the results are given for the low- 

est-dimensional spinor representations of DS, D7 and Dg (note that D3 is iso- 

morphic to AZ); for E6, we give the computation of plethysm for the fundamental 

representation 27. - We have considered the direct products of at least two 

copies of the representation in all of these groups and in some cases the 

direct products up to ten copies of the representation. In fact, the recent 

suggestion7that the quarks and leptons are bound states of certain fundamental 

"preens" requires in general such computation of plethysm in conjunction with 

the requirement of Fermi statistics in the ground states.9 Two examples show- 

ing the relevance of the results of this paper for preon dynamics will be dis- 

cussed in Section IV. The computation of plethysm involving tensor products 

of several copies of the representations is also needed in tumbling gauge 

theories. 
10 

The paper is organized as following: In Section II, we present the 

method of plethysm based on the index sum rules and congruence numbers. 

Section III contains the results of the decomposition of tensor products with 

definite permutation symmetry. The results can also be used to find the SU(M) 

branching into a Lie group G for the case of nonregular embedding of G into 

SU(M). Then we give two examples of application of our results to preon 

dynamics in Section IV. Appendix A contains continuation of SU(N)-indices 

to real N which allows us to use large values of N without the need to calcu- 
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late large sums. Finally we present in Appendix B transposition rules for 

SU(N)-plethysm. 

II. Method of Plethysm Computation. 

In this section we describe the method of the decomposition of the 

tensor products into the components with definite permutation property. 

This involves two steps: the first step is to calculate the tensor products 

of some copies of representations and the second step is to reduce the 

tensor products to a direct sum of components, each of which has definite 

permutation property. 

There are several ways of handling these steps. For example, one may 

11 use the complete weight systems of the representation to obtain the tensor 

products and find the highest weight terms successively. This method, however, 

is not only cumbersome when the dimension or rank is large but is not complete 

to identify the terms with definite permutation property. One may, on the 
12 

other hand, use the method of the projection operators. As the projection 

operator takes an irreducible representation of W(M) into the representations 

of a group G directly where M is the dimension of the defining representation 

of the fermion fields in G, the identification of the terms with given permuta- 

tion properties are achieved automatically without recourse to the reduction of 

tensor products. But this method too becomes rapidly impractical as the dimen- 

sion or rank becomes large. 

The method we adopt in this paper is based on the properties of the 

zeroth, second, third and fourth indices of representations as well as classi- 

13 
fication of the representations by congruence number. It is known that the 
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indices of the representations of Lie groups provide useful clues in the 

search of Clebsch-Gordan series as well as branching rules. In addition, 

the congruence number 14 reduces further the search problem by classifying 

the representations. Generally speaking, a representation and its complex 

conjugate do not have the same congruence number, thus the congruence class 

is useful in groups like DZN+l and E6 where the indices alone can not dis- 

tinguish a representation from its complex conjugate. Note that 32N+l and 

E6 are anomaly-free while in s the triangle anomaly, i.e., the third index, 

of a representation has opposite sign of that of the complex conjugate repre- 

sentation. It should be emphasized that the indices and congruence number 

satisfy certain elegant relationships that can be used easily even when the 

dimension of the representation or rank of the group becomes huge. 

Now we proceed to introduce the indices of the representations of a 

semisimple Lie algebra. In general, the indices are defined differently de- 

pending on whether the order of the representation is even or odd. 

The index of order 2m of a representation R is defined by 

12m(R) = 
M&R) ("'M)m 

(2) 

where W(R) is the weight system of R and m = 0,1,2;.*. Though the indices 

of higher orders are known, we will use in this paper only up to the fourth 

index as these low-order indices can be computed simply13 from the use of 

the highest weight of R. It should be obvious that IO(R) is the dimension 

of R as every weight contributes 1 to the sum (2). The third order index of 

R is defined13 by 

13(R) = a c (PM)3 
MEW(R) (3) 
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where PM is the projection of the weight W(R) on a properly chosen direc- 

tion in weight space. The third order index I3 is trivial, i.e., zero from 

the property of W(R) for all Lie algebras except for SU(N) with N ? 3. As 

noted before, I3 for SU(N) is the triangle anomaly number. The normalization 

constant a of Eq. (3) can be fixed in such a way that I3 = 1 for the funda- 

mental representation of SU(N) (N '1 3). The first index of any representa- 

tion of any Lie group is zero and thus plays no useful role. Thus indices 

can be used both to calculate tensor products and to determine branching 

rules. 

To calculate the tensor product of the representations R and R' one 

has to determine the multiplicities ti of representations Ri which appear as 

a direct sum: 

R&R'=1 IliRj 
@i 

(4) 

The total indices of R @ R' are related to the individual indices of R and R' 

13 in the following way : 

Io(R ffl R') = IO(R) Io(R') (5) 

12(R @ R') = 12(R) $,@'I + 12(R') IO(R) (6) 

13(R a R') = 13(R) Io(R') + 13(R') IO(R) (7) 

14(R fl R') = 14(R) I,(R') + 14(R') IO(R) + 2(r;2) J2(R)12(R') (8) 

Here r is the rank of the Lie algebra. The total indices of the right-hand 

side of Eq. (4) are given by sums of individual indices of the representations Ri 

II1(R @ R') = 1 LiII1(Ri) > (P. = 0,2,3,4) (9) 
i 



-7- 

Combining Eqs. (5) - (9) one obtains four relations which will be referred 

to as the index sum rules for tensor products henceforth. These relations 

form four linear equations for the multiplicities Xi, which determine the 

ai's completely if there is a unique integer solution. For sufficiently 

small representations (which turn out to be sufficiently large for all our 

purposes) there is only one source of ambiguity, the complex anomaly-free 

representations. Since the indices Io, I2 and I4 are identical for Ri and Ri* 

they can only be distinguished by the I3 relation, which for anomaly-free 

representations is identically zero. Since complex anomaly-free irreducible 

representations are extremely large in SLJ(N)l this problem occurs in practice 

only in the groups S0(4n+2) and E6. This ambiguity can easily be settled by 

means of the congruence class. 14 

The congruence class is the generalization of "N-ality" for SU(N) to 

any simple Lie algebra. All representations of a Lie algebra can be assigned 

to such a class. This class is identified by one or two numbers C(R), defined 

moduIo a certain integer nc. For the details of this assignment we refer to 

Ref. 14. For our purpose, the important properties are the fact that complex 

conjugate representations have different congruence numbers, and that each 

representation Ri in Eq. (14) has the same congruence number, related to the 

congruence classes of R and R' in the following way: 

C(Ri) = C(R) + C(R') (modulo nc) 

This additional relation resolves the ambiguity, 

(10) 

Having determined the right-hand side of Eq. (4) we now have to identify 

terms with definite permutation properties. This problem is equivalent to find- 
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ing the branching rules for SU(M)T G, when a representation D of G (hereafter 

referred to as the "defining representation") is embedded in the fundamental 

representation of N(M). Of course M must be equal to the dimension of D in G. 

Irreducible representations of SU(M) can be specified by Young-diagrams. 

On the other hand, Young-diagrams also have an interpretation as representations 

of the permutation group. This dual interpretation is the basis of our results. 

A representation R of SU(M), given by a Young-diagram Ym with m boxes, 

branches into a direct sum of representations of the subgroup G: 

R-91 RjRj (11) 
@j 

where the kj's are integer multiplicities. The permutation group interpretation 

tells us that the left-hand side of Eq. (11) corresponds to those terms in the 

th m tensor power of D which have symmetry properties given by Y m' To determine 

the multiplicities we use the SU(M)-interpretation of (11). The branching is 

governed by the following index sum rules 8,13 

12(W = P2 c ej12(Rj) 
I. 

(13) 

13(W = P3 E kj13(Rj) (14) 

The scale factors p2 and 03 art? only dependent on the way the subgroup is 

embedded in SU(M). We emphasize that they do not depend on R. Therefore we 

can calculate them by choosing R equal to the fundamental representation of 

SU(M), which branches to the representation D of G: 
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-1 
p2 = 12(D) (15) 

-1 
p2 = 13(D) (16) 

Here we have used the standard normalization, I2 = I3 = 1 for the fundamental 

representation of SU(M). A relation similar to (13) and (14) for 14 holds only 

for a few special cases and can not be applied to SU(M)-branchings. 13 Notice 

that relation (14) is only nontrivial for SU(N). 

The tensor product is used only to limit the number of representations 

Rj on the right-hand side of Eq. (11). The most effective way of doing this 

is to use recursion in the number of boxes m of Ym. When the results for all 

Young-diagrams Ymml are known one can multiply each of them with D and use 

relations (12) to (14) to decompose the tensor product into the terms with 

permutation properties defined by m-box Young-diagrams. With this procedure 

the direct sums belonging to all m-box Young-diagrams, with the exception of 

totally symmetric and totally antisymmetric ones, are determined several times, 

which can be used either as a consistency check or as additional information to 

rule out possible ambiguities which might arise from Eqs. (12) - (14) alone. 

In practice we did not encounter any persistent ambiguities. 

In the special case G = SU(N) the procedure can be made much more effect- 

ive in the following way. The results we are calculating can be expressed en- 

tirely in terms of SU(N)-tensors, without any reference to the rank of the 

group. Therefore all branchings can be generalized to arbitrary N, with the 

understanding that Young-diagrams with more than N rows should be ignored. 

Thus one can use the index relations with arbitrary N. For an n-box Young- 

diagram the formula for Io is an n th order polynomial in N, and those for I2 
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and I3 have order n-l. Therefore, if n and m are the number of boxes of 

SU(N) and SU(M) diagrams one gets roughly 3nm equations for the multipli- 

cities from Eqs. (12) - (14), a few of which turn out to be dependent. 

Since the number of terms in the tensor product grows faster than the number 

of equations with increasing n or m, this method has its limitations. In 

general, even with the help of a computer, it turned out to be very hard to 

go beyond nm = 12. 

In Appendix A we derive formulas for the indices which proved to be 

very useful for our calculations, since they are continuous in the rank of 

the group. This allowed us to exploit the N-independence property of the 

index sum rules more effectively. In Appendix B we derive rules which relate 

the plethysms for a Young-diagram Y n of SU(N) to those for the transposed 

Young-diagram. 

III. Results. 

Generally grand unified theories and preen dynamics require fermion 

representations which are anomaly-free, complex and asymptotically free. Com- 

plete list of these representations has already been compiled. In SU(N), 

there is no complex irreducible representation that satisfies the requirement 

of both anomaly-freedom and asymptotic freedom! Thus one considers the re- 

ducible complex representations formed out of the anomaly-free combinations 

of the irreducible complex representations which are asymptotically free. 

It has been shown that there are nine such irreducible representations in 

SU(N). Of all of the representations of Lie algebras, the only complex irre- 

ducible representations which are both anomaly-free and asymptotic free, are 
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the following: the 16-, 126-, 144-dimensional representation of SO(10); 

the lowest dimensional spinorial representations of SO(14) and SO(18); and 

the 27-dimensional representation of E6. 

Now we proceed to present the results of computations of plethysm 

for the seven asymptotically free and complex representations [14], [22], 

[13], [2,1], [2,1'], [2] and [l'] of SU(N) (see the notation for the Young- 

diagrams below);the five irreducible representations of SD(4N+2) mentioned 

above; and the lowest dimensional representation of E6. 

A. SU (N) 

Since irreducible representations for an SU(N) can be represented by 

simple Young-diagrams, the use of the Young-diagrams is convenient. We will 

denote a typical Young-diagram that has a boxes in each of the first n rows 

followed by b boxes in each of the next m rows and so on by [an,bm;.*]. 

These Young-diagrams are used for both the defining representations of SU(N) 

and the representations of SU(M), M being the dimension of the defining re- 

presentation. 

Table I shows the terms up to the tensor product of ten copies with 

the definite permutation properties under the interchange of defining repre- 

sentations [2] and [l‘] of SU(N). In other words, the results contained in 

Table I correspond to Young-diagrams of SU(M) having up to ten boxes. Table 

II summarizes the results for the four representations [14], [22], [13] and 

[2,1] of SU(N) up to three boxes in the SU(M) Young diagrams. 

B. S0(4N+2) 

Table III gives the results for the spinorial representation of SO(l0) 



-12- 

up to five boxes in the SU(16) Young diagrams. Tables IV and V contain the 

results for the spinorial representations of SO(14) and SO(18) up to four 

and two boxes in the W(M) Young diagram respectively. The results for the 

1X- and 144-dimensional representations of SO(10) are summarized in Table VI 

up to three boxes. 

C. E6 

Table VII summarizes the results up to six boxes. As we mentioned 

before, the 27-dimensional representation is the only E6 representation which 

satisfies asymptotic freedom. 

IV. Application of the Results to Preon Dynamics. 

The results of this paper can be applied to preen dynamics in which quarks 

and leptons are viewed as the bound states of the elementary preons. Here, we 

give two such examples.8 

(A) (5 + 10*lL of SU(5) metacolor group as the preon representation. 

The SU(5) representation (5 + lO*)L is anomaly-free where L denotes the 

left-handed chiral state. In order for the preons to be confined, the preen 

representations should satisfy asymptotic freedom. The anomaly-free repre- 

sentation can then be repeated up to 13 times without loosing asymptotic 

freedom. Suppose that we allow the representation 5 + lo* to repeat N times 

where N is an integer less than 14. Such repetition then introduces the meta- 

flavor group U(N) x U(N) which is broken to SU(N) x SU(N) x U(1) taking into 

account the instanton effects due to the metacolor group SU(5). 
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Let us denote the metacolor representation as 

(5 + lo*)L =a+B (17) 

The transformation properties of a and B under metacolor group SU(S) and 

metaflavor group W(N) x W(N) x U(1) as well as the spin group SUL(2) x SUR(2) 

are summarized as follows: 

SU(5) SUN SUOC U(l) sy,w SUR(2) S-ality 

iJ l Q, 
a * 1 

an 

BR * u Q2 0 l 
3 

au ci - -Q, ' cl 4 

ig l a 
-Q, . cl 

2 

Here, S-ality is the congruence number and Ql and Q, are chosen in such a 

way that the [SU(5)]2 U(1) anomaly vanishes. There are four candidates for 

the massless bound states coming from the four singlet states of metacolor SUf.5): 

.5, aB2, 28, 85 (18) 

The representations for the bound states are to be constructed from these 

candidates by imposing further Fermi statistics so as to preserve total anti- 

symmetricity under metacolor-metaflavor-spin transformation. The transforma- 

tion under orbital angular momentum can be assumed to be symmetric. The meta- 

color singlet states constrained by Fermi statistics actually lead to the 

definite metaflavor wave function as we will see below. 

In order to construct the ground state wave function consistent with 

Fermi statistics, it is convenient to use the antisymmetric representation of 

one SU(1) group where I = 2MN, i.e., the product of the dimensions of the 
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spin; metacolor; and metaflavor representations of the defining states 

a, !3, a or 8. Note M = 5 and 10 for a(a) and B(B) respectively. 

Of the four candidates of Eq. (18). we take the state B5 by way of 

explanation. Since there are five identical B's to form a fermion bound 

state, we take the totally antisymmetric representation [15] of SU(f) = SU(20N) 

and consider its branching to Sum=(S) x SUmf(X) x SU&& . This branching 

consists of three steps: 

SU(20N) st;p 1 S'J(lW x SuVl stzp 2 SU(10) x SU(N) x SU(2) 

,t;p 3 SU(5) x SUOJ) x SU(2) (19) 

The first and second steps are special cases of the branching type 

SU(pq) 3 SU(p) x SU(q) which have already been discussed extensively in the 

literature.16 Our results apply to the third stage, i.e., SU(10) -f SU(5). 

This type of branching, i.e., SU(M) + the defining group particularly when M 

is large can not be found in the existing literature to our knowledge. 

The branching of [I'] under the first step is 16 

$1 -,[3,12] fi [3,121 + [5] @ [IS] + [ISI t!I [5] 

+ [4,1] ti [2,13] + [2,13] i9 [4,1] + [3,2] @ [22,1] 

i [22,1] CJ [3,2] (20) 

where the first factor in each term is the representation of SU(lON) and the 

second factor is that of SU(2). Since we know that the fermion bound state 

P5 must have spin $- and left-handed chirality, only the last term is per- 

missible, so that the SU(1ON) representation is uniquely determined to be 

P2,11~ Now we proceed to observe the branching of SU(lON) + SU(10) x SU(N): 
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[22,1] + [4,1] B [3,2] + [3,2] t3 [4,1] +[2,13] 63 [22,1] 

+ [22,1] @ [2,13] + [4,1] B [3,121 + [3,12] @ [4,1] 

+ [2,13] !9 [3,12] + [3,12] @ [2,13] + p,2] B [3,2] 

+ [22,1] 64 [22.1] + [3,2] Cd [3,12] + [3,12] B [3,2] 

+ [22,1] ta [3,12] + [3,1*] fi [Z2,1] + 2[3,12] @ [3,12] 

+ [l'] @ [3,2] +[3,2] @ [l'] + [S] & [22,1] + [22,1] @ [S] 

+ [4,1] @ [2,13] + [2,13] @ [4,1] + [2,13] 8 [3,2] 

+ [3,2] C4 [2,13] + [4,1] ~3 [2’,1] + [22,1] @ [4,1] 

+ [3,2] t3 [22,1] + [22,1] @ [3,2] (21) 

Again the first factor in each term of Eq. (21) is the SU(10) representation 

and the second factor is the SU(N) representation. 

Now we come to the most important stage of identifying the metacolor, 

i.e., SU(5) singlets from the branching SU(10) + SU(5), for which our results 

of Section III play a crucial role. Of all representations of SU(10) in Eq. 

(211, we see from Table I that only the terms containing the representation 

[3,12] of SU(10) can give the metacolor singlet states: 

[3,12] i [5,3,12] + [42,2] + [4,3,2,1] + [4,3,13] 

+ 2[32,2,12] + [4,23] + [4,22,12] + [33Jl 

+ [3,23,1] + 2[3,22,13] + [4,2,14] 

+ [3,2,1’1 + [25] + [23,14] + [3,173 (22) 

where [25] is obviously the SU(5) singlet. In this way, the metaflavor repre- 

sentations of SU(N) are determined to be: 

2[3,121 , [2,131 , [X,21 , [22>11 , [4,ll (23) 
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Similarly, the metaflavor representations of cz5, a8' and a28 can be 

obtained. These and other related subjects of preen dynamics are presented 

elsewhere. 8 

(B) 27L of E6 metacolor group as the preen representation. 

The second example is E6 metacolor group with preen a in the 27-dimen- 

sional (000010) representation. This representation belongs to congruence 

class 2 and can be repeated up to 22 times without losing asymptotic freedom. 

Such repetition introduces the metaflavor group SU(N) in addition. 

The bound state cx3 is a singlet of E6 and is a candidate massless bound 

state. The metaflavor representation of the bound state cz3 is determined by 

Fermi statistics in the similar way as in case (A). 

The branching necessary for satisfying Fermi statistics in the bound 

state a3 is again through several steps: 

SU(54N) st;p 1 ~~(27~1 x ~(2) s&p 2 SU(27) x SU(N) x SU(2) (24) 

In the first step, the totally antisymmetric [13] of SU(S4N) have the follow- 

ing SU(27N) x W(2) branching 

Cl31 -t t2,11 @ [2,11 + [3] @ [131 + [131 4 [31 (25) 

Only the first term can give spin %, and hence we find that the 

SU(27N) representation is [2.71 Under step 2 this branches into 

[2.11 B [ 2.11 + [3 ] P [ 2.11 + I2.11 a 131 + r19 B L2.11 + 

[2.1] f3 [13] . Finally, Table VII shows that the E 6 singlet (O,O,O,O,O,O) 

belongs to the [3] of SU(27), and the metaflavor representation 

of a3 is determined as [2,1] of StJ(N). 
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Appendix A. Continuation of SU(N)-indices to real g: 

The indices of a representation, defined by Eqs. (2) and (3) can be 

calculated from the knowledge of the complete weight system, for any repre- 

sentation. For the lower indices explicit expressions for arbitrary repre- 

sentations have been obtained in many papers. 3,13 These formulas usually 

contain sums up to the rank of the group, which makes a continuation to 

real N impossible. 

One may wonder why we are interested in such a continuation, since 

the groups themselves cannot be continued in the rank in a sensible way. For 

our purpose these formulas are advantageous in three ways. First of all 

they allow us to use large values of N without the need to calculate large 

sums. In the procedures of Section II large values of N are unavoidable if 

N is restricted to integer values. For the expressions derived in this 

Appendix, the computing time depends only on the structure of the Young-dia- 

gram, not on N. Secondly, since the index sum rules (12) - (14) can be 

generalized to arbitrary integer N if G = SU(N), they can also be generalized 

to real N, when continuous functions for the indices can be found. This pro- 

vides another way to avoid large values of N, since the N-dependence can now 

be probed by small, non-integer values of N. Finally, there exists an in- 

timate relation between a continuation of N to negative values and transposi- 

tion of the Young-diagram, which will be exploited in Appendix B. 

Continuous formulas are already known for the dimension of an SU(N) re- 

presentation and for the second and third order index of a few small representa-~ 

tions.l13 We will present a general formula for the second and third index? and 

indicate how the results generalize to indices of arbitrary order. 
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Our starting point will be the integer-N formulas for the indices. 

We will use the results of Perelomov and Popov. 17 The relation between 

the symmetrized Casimir operator Ja (in Ref. 17 denoted as Ia) with the 

indices defined by Eqs. (2) and (3) is: 

1 (RI 
12W = o J2(R) 

N2-1 

13(R) = 2N 
(N2-1)(N2-4) 

IO(R) J3(Rl (A-2) 

(A-1) 

The symmetrized Casimir operators can be expressed in terms of the quantities 
N 

SC,= 1 (L; - R;' (A-3) 
i=l 

where 

Li=fi-j$+N-i (A-4) 

Ri=N -i, (A-5) 

and fi is the length of the i th row of the Young-diagram representing R. 

The number of boxes of this Young-diagram is f. We take from Ref. 17 the 

following formulas for the symmetrized Casimir operators 

J2 = S2 (A-6) 

J3 = S3 - 3/2(N - 1) S2 (A-7) 

The sums we want to avoid appear in (A-3). Continuous expressions can be 

obtained by summing the parts of the summand which do not depend on fi 

explicitly, and using the fact that the fits vanish for i > p, where p is 

the number of rows of the Young-diagram. The structure of the Young-diagram 

appears in the results in the form of the following "moments" 

Mm = jEl .jn tfj lm (rr?l, n?O) 

Straightforward computation yields then the following expressions 
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J*(R) = (1 + N) MO1 - LMz N2 01 + M02 - 2Mll (A-9) 

J3(R) = (-l/2 + 3/2N + 2N2) MO1 - 3 2 2 3 
(912 + ml MO1 + PM01 

+ (Mo2 - 2Mll)(3N - 3 M+) 
+ M03 - 3M12 + 3M21 

- 3/2(N - 1) J*(R) (A-10) 

The crucial point is, that the moments Mnm depend only on the Young-diagram, 

but not on M. 

Although (A-9) and (A-10) have 

simplified by means of the transposed 

9 

the desired properties, they can be 

moments, defined as 

T nm = j& jnk(i )Im (A-11) 

where q is the number of columns and g(J) the length of the j th column of 

the Young-diagram. Several relations between the moments and the transposed 

moments can be derived. We will only give the ones for n + m 5 3: 

MO1 = To1 = f (A-12) 

T1l = l/*Wo2 + MO11 (A-13) 

3T21 - Tll = M03 +"02 (A-14) 

T12 + T1l = M12 + M11 (A-15) 

Additional relations are obtained by interchanging M and T. These relations 

can be proved by induction: they are trivial for the single-box Young-dia- 

gram, and when a box is added to an arbitrary Young-diagram the left-hand 

sides and right-hand sides of (A-12) to (A-15) change by the same amounts. 
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We use these relations to express the indices in terms of the symmetric and 

antisymmetric moments: 

S nm = l/*Wnm + T,,) (A-16) 

A nm = 1/2(M nm - Tnm) (A-17) 

Then we obtain the following expressions 18 

J2 = f(N - ;) + 2 A02 

J3 = - ; f (1 - N*) - 3f2 f3 l 2T 
N 

+(3N - .$Ao2 + So3-3S12 + 3S21 

(A-18) 

(A-19) 

These formulas reveal the transformation of the indices under transposition 

of the Young-diagram. Transposition is defined as an interchange of rows and 

columns, or equivalently a reflection of the Young-diagram with respect to 

the diagonal. The moments M,m and Tnm are interchanged by transposition, so 

that Snm is unchanged and Am changes sign. The effect of this is equivalent 

to a replacement of N by -N, apart from an overall sign. More precisely 

when Ip(Ym,N) denotes the p th order index of the representation of N(N) de- 

fined by the m-box Young-diagram Ym, then the following relations hold 

Io(Y;fi,N) = C-11” Io(Ym,-Nl (A-20) 
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12(Y;,N) = (-l)m-l 12(Ym,-N) 

13(Y;fi,N) = (-l)m-l 13( Y,,-N) 

(A-21) 

(A-22) 

where "T" denotes transposition. Relation (A-21) is a consequence of the 

well-known dimension formula 

IO 
= $ ,Ii. (N + i-j) (A-23) 

I>1 
.th where the product is over all boxes of the Young-diagram, located in the J 

row and i th column; II (the product of the "hook-lengths") is just a numerical 

factor. 

The extension of our results to higher indices is straightforward, 

but becomes rapidly complicated. 
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Appendix B. Transposition rules for W(N)-pletyhsms. 

In this Appendix we will formulate and derive relations between 

tensor products with definite permutation properties of a Young-diagram 

and its transpose. 

To simplify the notation we introduce an operation of a Young-diagram 

Ym on a Young-diagram Yn, denoted as Ym * Yn. This operation is defined as 

the mth tensor power of Yn, symmetrized according to Ym. The result of this 

operation is a direct sum of Young-diagrams with nm boxes: 

where i labels different Young-diagrams. The multiplicities ti can be read 

off from Tables I and II, for example 

[I31 * [2] = [321 @ [4,121 (B-2) 

[*I * [13] = [23] @ [2,14] (B-3) 

This should clarify our notation 

The transposition rules can now be formulated as follows: 

(i) if n is even 

Ym*YZ= (Ym*YJT 

(ii) if n is odd 

YT * YT m n = (Ym * YJT 

(B-4) 

(B-51 

To illustrate this we apply these rules to (B-2) and (B-3) 
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[I31 * [12] =[13] * [2]T = ([13] * [2])T = [23] + [3,131 

[I21 * [31 = PIT * [131T =([*I * [13]? = [32] + [5,1] 

(B-6) 

(B-7) 

The first expression can be checked with Table I. The representation [3] 

is not included in the table, but one can easily check that the index sum 

rules (12) - (14) are satisfied. This example also illustrates the main 

application of the transposition rules, namely, to supplement the tables in 

such a way that all defining representations with not more than four boxes 

are included. 

The validity of these rules can be demonstrated by a continuation of 

the rank of the group to negative values. Consider the index sum rules 

satisfied by (B-l) 

Io(Ym,Ml = 1 ti IOU;> N) 
i 

IP(Ym,W IpUn,Nl = 1 ci 1 Vi Jl , 
Pmn 

(P = *,3) 
i 

(B-81 

(B-9) 

where 

M = Io(Yn,Nl (B-10) 

These rules follow from Eqs. (12) - (16); we use the notation introduced 

in Appendix A for the indices of SU(N).~ Since the multiplicities .Li satisfy 

(B-8) - (B-10) for any value of M, we can replace N by -N. Then we use rela- 

tions (A-21) - (A-23) to obtain 

IOU,, C-11" 1,(Y;r,N11 = (-llm 1 fii IoUmnJl 
i 

(B-11) 
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IpUm> C-11" Io(Y~,Nll (-lln-' Ip(Y?;,Nl 

= (-I)~"-~ 1 .ki Ip(Y;;,N) 
i 

If n is even, (B-11) and (B-12) reduce to 

where 

Io(Ym,MT) = l'ki Io(Yz,N) 
i 

Ip(Ym,MT) Ip(Y;,N) = 1 ii Ip(Y$O 
i 

MT = Io(Y;,N) 

(B-12) 

(B-13) 

(B-14) 

For odd n we obtain the same results, but with Y;fi instead of Ym. 

These are exactly the equations for P,i which one would have to solve 

to calculate the direct sums which are equal to the left-hand sides of (B-4) 

and (B-5). We conclude that the ai's appearing in (B-l) satisfy these equa- 

tions when they are associated with the transpose of Ykm,. This is exactly 

the content of the transposition rules (B-4) and (B-5). This derivation is 

not completely rigorous because we have not shown that the sum rules have a 

unique solution. In fact, although we have not found such a case, we expect 

that at some stage ambiguities will exist, since for large representations Ym 

and Yn the number of equations becomes much smaller than the number of vari- 

ables P... 1 Such an ambiguity invalidates the derivation, but of course not 

the result. 
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1 2 3 r-1 
SU(r+l) 0 -0 -o-.... -o----- 0' 

r-1 
0 

1 2 3 r-2 

so(2r) 0 ----0 -0 - . . . _ 0 <Or 

*r 

Dr ,I- = odd integer 

Fig. 1. Dynkin diagrams for simple Lie algebras admitting complex 

representations and the weight systems follows the correspond- 

ing numberings in (al,a2,"',a,). 
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TABLE I. The reduction of the tensor products up to twelve copies of [2] and 

[12] of SU(N) with the given symmetry property of the Young digram 

in the first column. The table can also be used to obtain the 

branching of SU(M) into the representations of SU(N) when the defin- 

ing representation of SU(N) is embedded to the fundamental repre- 

sentation of SU(M) such that M is the dimension of the defining re- 

presentation of SU(N). For the defining representation [2] and [12] 

of SU(N), M is N(N+1)/2, and N(N-1)/Z respectively. 

SU (W Defining Representations of SU(N) 

[II PI [I21 

PI t41 P21 

P23 El41 

[A [3,11 w21 

[31 [61 t321 

[4,21 P2J21 

P31 P61 

VP11 [5,11 [3,2,11 

t4,21 [22,1?l 

t3,2,11 PYI 

[I31 [32l [3J31 

r4,1?1 P31 

[41 PI t421 

[6,21 [32,121 

14241 [241 

[4,221 P2 ,I41 

P41 PSI 



Table I - cont’d 

su [M) 

[3,11 

[2,121 t5,31 14,2,121 

[W21 [32,21 

[5,2,l1 [3,22,11 

[4,3,11 
[32,21 

[332,j.31 

r4,2,121 

[2 91 ] 
13.151~ 

[I41 t4,3,11 [4,141 

[5,131 t3,22,11 
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Table I - cont'd. 

SU(M) SU(N) 

[4,11 [9,11 [5,4,11 

[8>21 [42,12l 

17931 [4,3,2,11 

[7,2,11 [4,3,131 

[6,4] [32,221 

[6,3,11 [32,2,121 

[6,2,21 [32.141 

[5,4,Ll t3,23,11 

[5,3,21 [3,22,131 

[5,22,11 [3,2,151 

h2,21 P4,121 

[4,3,2,11 P3J41 

t4,231 P2J61 

[3J3.1~ w*1 

[3,21 [8,21 t42,121 

t7,31 [4,3,2,11 

[6,41 [4,3J31 

t7,2,11 t32.221 

[6,3,l1 [32,2,121 

2 x [6,22] 2 x [32,14] 

t3, I21 t7,31 [5,3J21 

W21 [42,21 

[7,2,l1 t4,3,2>11 

cont'd. 
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Table I - cont’d. 

SU(W SU(N 

2 x t6,3,11 [4,3J31 

t521 2 x [32,2,121 

[5,4,11 [4,231 

2 x [5,3,21 [4,22,121 

WJ2~ t33,11 

[5,3J21 [3,23,11 

[5,22,11 2 x [3,Z2,131 

t4>321 [4,2,141 

t42>121 [251 

[4,3,2,11 [3,2,151 

[32,221 P3,141 

[4,22,121 [3J71 

P2Jl [6,41 [5,22~ 1-1 > 

[7,2,11 t4>321 

t6,3,11 t4,3,2,11 

W21 [4,22,121 

t5,4,11 [4,3J31 

[5,3,21 [32 ,221 

PL2J21 t32,2,121 

[5,3J21 [32,141 

t5,22,11 [4,2,141 

[42,21 [3,23,11 

[4,3,2,11 [3,22,131 

[33,11 [3,2,151 

t4,3J31 P4J21 

12J31 [6,3,11 tu131 

t5,4,11 [4,3,2,11 

[5,3,21 [4,231 

[7J31 [4,22,121 

WJ21 [4,2.141 

[5,3J21 [33,11 

[4,321 [32,2,121 

t42,121 t3,23,11 

[4,3,2>11 [3,22,13] 

[5,2,131 L4.h 
.-----_- _.,. __-.__,. __,I~_ ._-, ,.-.-____ ~~;~ _ 



Table I - cont’d. 

SU WC 

[I51 
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SU(N) 

[61 [I21 Lb21 

[lo,21 [52,121 

[a>41 [42,221 

W21 [42,141 

P21 [341 

[6,4,21 [32,22,12] 

W31 [32,161 

[431 P61 

P2J21 P4J41 

[4,241 P2J81 

P61 Ill21 

[?,2,11 

[8,41 

[8,3,11 

W21 

[7,51 

[7,4,11 

[7,3>21 

r7,22,11 

[6,5,11 

2 x 16,4,21 

[6,3,2,11 

[6,231 

[5,4,31 

[4,3,2”,11 

[42,2,121 

cent ‘d 
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Table I - cont’d. 

sum S’JW 

[5,23,11 [5,4J31 

[42,3>11 [4,32,21 

142,221 [42,221 

kLW2,~l [5,4,2,11 

t4,241 E52,121 

t3,24,11 [6,5,11 

[4,21 IlO,21 [52,121 

P,31 t5>4,2>11 
2 x [8,4] ,[5,4J31 

P,2,11 2 x 142,223 
[8,3,11 

2 x [8,22] 
[42,2,12~ 

2 x [42,14] 

2 x [7,4,11 [5,32,11 

2 x [7,3,21 WJJ21 

[621 [4,32;12] 

[6,5,11 2 x [4,3,22,1] 

3 x [6,4,21 2 x [4,3,2,13] 

[7,3J21 [4,3,151 

[7~~,11 [341 

2 x [6,3,2,11 [33,2,11 

2 x [6,23] 3 x [32,22,12] 

[5,4,31 2 x [32,2,14] 

[52,121 2 x [32,16] 

2 x 15,4,2,11 

[5,32,11 

WJ21 

WJJ21 

[5J3Jl 

[431 

2 x [42,22] 

[4,32,121 

[4,3,22,U 

[4,241 

[32,22,12] 

[6>4,21 

[4,241 

[4,22,141 

[3,24,11 

2 x [3,23,13] 

[i,22,15] 

[3,2,171 

#I 

2 x [24,143 

P3,161 

P2J81 
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Table I - cont’d. 

su (LO SU(N 

[4.121 FJ331 16,4J21 

POJ21 [52,21 

[9,2,11 [5,4,2,11 

2 x [8,3,11 [5,4J31 

t7,51 2 x [42,2,12] 

2 x [7,4,11 P,3J21 

2 x [7,3,2] [5,3,2,121 

WJ21 t42,3.11 

[7>3,121 [4,32,21 

[7,22,11 [4,32,121 

[6,5,11 2 x [4,3,22,1] 

[6,4,21 2 x [4,3,2,13] 

2 x [6,32j 15,3J41 

2 x [6,4,12] [4,3,151 

2 x [6,3,2,1] [33,2,11 

2 x [52,2] [32,22,12] 

[5,4,31 2 x [33,13] 

2 x [5,4,2,11 2 x [32,23] 

[5,32,11 2 x [32,2,14] 

2 x [5,3,22] 2 x [4,23,12] 

[6.22,121 [3,24,11 

[5,3,2J21 2 x [3,23.13] 

[5,23,11 [4,22,141 

[42,3,11 2 x [3,22,15] 

L4,32,21 [4,2,16] 

b2,2,12] t3,2,?] 

[4,3,i2,1] [25,12] 

[32,231 [23,16] 

[4,23,121 [3Jgl- 
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Table I - cont’d. 

SlJ(M! SU(N) 

[321 Pa31 [5,4,2,11 

[8,3,11 t42,2,121 

t8,22l [42,141 

I7351 [6,321 

[7,4,11 [5,3,2,121 

[7,3,21 t4,32,21 

W2Jl [4,3J2Jl 

[6,4,21 t‘L3JJ31 

t6,321 [4,3J51 

[6,4J21 [32,22,12] 

[6,3,2,11 [33,131 

F,231 [32,23] 

[52,21 [32,2,141 

[5,4,2,11 [32,161 

WJ21 t4,23,121 

[42,3Jl [3,23,131 

WJJ21 t3,22,151 

14,%22Jl P5J23 

[33>131 123,161 

[3,2,1] [4,3,2J31 [6,3,2,11 

[33,2,11 t5,4*31 

[4,3,22Jl [5,4,2,11 

14,32,121 [5,32,11 

2 x [5,3,2,121 2 x [5,3,2 12] 

[5J3Jl [5,4,A 

[42,221 [42,221 

2 x [5,3,22] 2 x [42,2,12] 

[6,2?1 [42.141 

[42,2,121 [5,3,221 

[4,32.21 [42,3,11 

[42,3Jl [4,3’,21 

2 x [5,32,1] 2 x [4,32,12] 

3 x [5,4,2.1] 3 x [4,3,22,1] 

cant ‘d 
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Table I - cont’d. 

su CM) 

[3J31 

SU(N) 

4 x t6,3,2,11 4 x [4,3,2,13] 

W2J21 [5,3J41 

2 x [7,22,1] 2 x [4,3,15] 

2 x [5,4,31 2 x [33,2,1] 

3 x [6,4,2] 3 x [32,22,12] 

t6,32l I339 I31 

[52,21 [32.231 

3 x [7,3,21 3 x [32,2,14] 

t8J21 [32,f? 

[5,4,131 t5,23,11 

[6,3J31 [5,22,131 
[52,12] W41 

2 x [6,4,12] 2 x [4,23,12] 

2 x [7,3,12] 2 x [4,22,14] 

2 x [6,5,ll 2 x [3,24,1] 

2 x t7,4,11 2 x [3,23,13] 

2 x [8,3,11 2 x [3,22,15] 

PJ,121 [4,2,161 

[9,2,11 [3,2,171 

[7,51 P5J21 

t8.41 [24,141 

t8,3>11 [6,3J31 

[7,4,11 [5,4,2,11 

t7,3,21 WJ21 

w31 WJJ21 

WJ21 [5,3J41 

2 x [7,3,121 t42,3,11 

t6,5,11 [42,2,121 

I694921 t4J2,21 

2 x [6,32] 2 x [4,32,12] 

2 x [6,4,12] 2 x [4,3,22,1] 

2 x [6,3,2,l1 2 x [4,3,2,13] 

t52 ,21 [33,w 

cant ‘d. 
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Table I - cont’d. 

SU iM) SU (N) 

t5,4,31 2 x [33,131 

t52,121 [32,231 

2 x t5,4,2,11 [32;22,12] 

2 x [5,32,1] 132,2,141 

WJ21 [5,23,11 

WJ31 2 x [4,23,12] 

[6,3,131 [5,22,131 

[fG2J21 [4.241 

[5,4,131 2 x [4,22.14] 

[5,3A121 t3,24,11 

[42,3>11 [3,23,131 

~W2,21 t3,22,151 

[42,2,121 t5,2,151 

[4,3J2Jl t4,2,161 
[5,22,13] [4J81 

P31 [42,221 ;42,22] 

W31 [42>141 

[4,32>121 [5,32,11 

h3JJ21 [5,3,2,121 

[5,32,11 [4,32,121 

[5,4,2,11 [4,3J2Jl 

[6,3,2,11 [~,3JJ31 

W2Jl [4,3,151 

[431 t341 

2 x [6,4,21 2 x [32,22,12] 

[8,221 [32,161 

[42*141 W31 

F,3i31 [5,22,131 

[341 t431 

[52,121 t4,241 

[7,3J21 t4,22,141 

[7,4,ll r3,23,131 

F21 P61 



Table I - cont’d. 

su @I). SUW) 

[22>121 [7,4,11 [3,2’,1’] 

16,5,11 ,t3,24,11 

[6,4>21 [32,22,12] 

[7,3,21 [32,2,141 

tWJ21 [4,2,161 

[7,3J21 [4 22 141 

[7,22~11 [4:3,;5] 

[6,321 [33,131 

2 x [6,4,12] 2 x [4,23,12] 

2 x [6,3,2,11 

[52,21 

[5,4,31 

2 x [5,4,2,11 

2 x [4,3,2,13] 

r32,231 

r33,2,11 

2 x [4,3,22,1] 

[4,32,121 

[42,2,121 

[5,2,151 

[5,22,131 

[5,3,141 

[5,2?,11 

[WJJ21 

[V2,21 

[4293>11 ^ 

[2J41 [6,4,21 

[7,3J21 

[6,4J21 

16,3,2,11 
[5,tt,31; 

[52,121 

[5,4,2,11 

[5,32 .11 

PJ41 

[6,2J41 

[5,3,2J21 

[5,23,11 

t5,22.131 

[5,2,151 

[42,221 

k+] 

[4,3,121 

[4,3,22,11 

cant ‘d 



Table I - cont’d 

su ml 

-4o- 

SU(N 

dl [431 [dl 

15,4,2>11 15,22,131 

[6,3,131 t~,3,22,11 

[7,151 [341 

[71 [lb1 [721 

w,21 [62J21 

w,4; [~~,2~1 

[‘so;; I 
i5;,1;1 

[*:4 21 
[42a321 2 

d 
r4 ,2 ;1 1 
[42,161 

Lb2, ‘4 r34,121 

[6>421 [32,2t’1 

[6,‘V21 [32,22,143 

t6,241 r32.181 

[43,21 [26,121 

P2J31 P4,161 

14,251 [22,19 

P71 d41 

w51 16.421 [7,2,151 

[7,4,2>11 [6,3,2J31 

[6,5,2,11 [6,23,121 

[6,4,3,11 [6J2J41 

[6,4J21 [6,2,161 

[8,3J31 [5,4J2,11 

[7,4J31 ~V2,2Jl 

t5,32,131 
cant ’ d 



Table I - cont’d 

su[M) 

-41- 

SUW) 

[6,5,131 WJ31 

P,4,2A21 t5,3,22,121 

[‘L32,12l [L3JJ41 

rs2,3,11 [5,24,11 

15,42,11 [5,23,131 

t5,4,3,21 [5,22,1!~ 

[52,2,12 
;z 

t42,321 

t5,4,3,1 1 [42,3,L11 

[L~,22,~l [42,22,12] 

PJ51 [4,33,11 

P,2J41 W2,2J21 

[7,3J41 [4,32,221 

PL4J41 PL3J3Jl 

h3,2J31 [4,3,22,131 

t43,21 [34,12] 

[7,2,1’1 WEI 

[I71 [5,42,11 

[52,221 

[6,4,2,121 

[7,3.141 

tdl 

-h -h [281 [281 V21, W21 

[4,2? [4,2? t72,121 

t4 7241 t4 7241 [62,221 

[16.25j [16.25j b2J41 

[43,221 [43,221 [52,32l 

[6,4,231 [6,4,231 [52,22,12] 

W41 W41 [52,161 

[4 4l [4 4l .[441 

[6,42>2 1 [6,42>2 1 [42.3712] 

P2J21 P2J21 [42,241 

cont’d 
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Table I - cont’d 

SU(d SU(N) 

[*,4,221 [42,22,14] 

POJ31 [42,1sl 

[62,41 [34,221 

[8.421 [34,141 

[8,6, 21 [32,24,12] 

tl0,4,21 [32,22,16] 

w221 [32,P] 

P21 v81 

I10961 [Al41 

u2.41 t24,1sl 

[14,21 [22,112] 

h-6 1 V61 



Table I - cont’d. 

SU(Q 

-43- 

SU (N 

doI ts41 [lO,P] 
n 

[‘&,3~11 
1 -i 

t9,2L,l’l II 
[6‘,4,29 

.7 
[8,3,2’,151 ” _ 

P”1 

[7,6,4,2‘,11 

[7,52,3,121 

[62,5,3,2] 

L. I 

[li,l’l] 

[10,22,18] 

t%3,22,fY 

[8,4,23,14l 

P3,33,151 

L%24,121 

[L4,32,2,131 

[62,251 

[6,5,32,22,11 

[6,42,32.12] 

[52,4,32,21 

r1121 

cant ‘d 



-441 

Table I - cont’d. 

SIJ w Su W 
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TABLE II. The reduction of the tensor products of [13] and [14] of SU(N) up 

to five copies with the given symmetry property of the Young 

,&agram in the first column. The table can also be used to obtain 

the branching of W(M) into the representation of SU(N) where the 

defining representation of SU[N) is embedded to the fundamental re- 

presentation of SU(M) such that M is the dimension of the defining 

representation of SU(N). 

SJ (Ml Defining Representations of SU(N) 

[II IL31 

PI P31 

[V41 

P41 

P21 P2J21 

[A 

[31 

P31 [32>131 

r3,231 
[23,l3] 

P2,151 

D91 

P41 [I81 

P2J41 

P3J21 [dl 

P61 

P3J61 

P2J81 

[ll2] '> 

r[3',2,1] 

[32,22,12 

[3,23,131 
2 x [24,14] 

[32,2,141 

[3,24,11 

[3,2,l'1 
[22,1sl 

[2 .P] 
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Table II - cont’d. 

su @I) SU (N) 

141 

[3,11 [42,3>11 

[4,32,121 

2 x [33,13] 

PLW2Jl 

t4,3JJ31 

[33,2,11 
[32,22,12] 

2 x [32,&l 41 

[4J3J21 

[4,22,141 
i32,23] 

2 x [3,24,1] 

2 x [3,23,13] 

2 x [3,22,15] 

P5J21 

P4J41 

2x 

2x 

[441 
[42,32,12] 

[4,33,131 

[34,141 

[42,241 
[42,22,14] 

[4,32,2f,12 

t4,3J3J31 

[4,3J2J51 

[34,221 

133,23 11 

[33,2>151 

[32,24,121 

[32 ,23,14] 

2x 

1 2x 

2x 

[32,22,16] 

14,261 

[3,2’,131 

[3,24,151 

[3,23,171 

P81 

P6J41 

P4J81 

t42.181 

t32.2~181 
[32,P] 

[23,llO] 

[22,ll2] 

PI 

[43,3,11 

[42,32,12] 

2 x [4,3 :1 31 

2 x [34,14] 

t42,3,22,11 

[42,3J,131 

[42,23, 12] 

[42,22,14] 

[4,33,w 

W2J31 

[4,32,2fi2J 

2 x [4,32,2,14] 

2 x [4,3,24,1] 

2 x [4,3,23,13] 

2 x [4,3,22.15] 

[34,221 

W5J21 

[4,24,141 

[4,23,161 

[32,251 
2 ~[3,2~,1] 

3 ~[3,2~,1~] 

3 x[3,24,15] 

3 ~[3,2~,1~] 

2 x[27,12] 

2 x[26,14] 

3 x[25,16] 

2 X’[24,18] 

[42,2,161 

t4,3W71 

t4>3Jgl 
2 ~[3~,2,1~] 

cont’d. 



Table II - cont’d. 

S’JW 

-47- 

S’JW 

[23,1$ 

'[%dl 

[3,2,171 

13,191 

P21 t42,221 

[4,32,121 

[4,3,2J31 

[33,2,11 

2 x [32,22,12] 

[32,2,l41 

[4,24] 

[4,22,141 

[3,24,11 

[3,23,131 

[3,22,151 

[2? 

2 x F4J41 

[32J61 

[3,2,17] 

[22,181 

2 x [34,2,12] 

2 x [33,23,1] 

3 x [33,22,13] 

3 x [33,2,15] 

3 x [32,24,12] 

4 x [32,23,14] 

4 x [32,22,16] 

[32,P] 

[33,171 
2 x [3,22,1g] 

2 x [23,P] 

[3,2~~~1 

[22,112] 

[43,221 3 x [32,22,16] 

[42,32,12] [4,261 

[42,3,2,131 2 x [4,24,14] 

2x 

2x 

2x 

2x 

[4,3,24.11 

[4,3,23,131 

[4>3>22J51 

r34.221 

[33,23,11 
3 x [32,24,12] 

2 x [32,23,14] 

[3,26,11 

2 x i3,25,13] 

2 x [3,24,15] 

2 x [3,23,17] 

2 x 1281 

2 x [254] 

r25>f? 
2 x [24,P] 

[4,32J61 

[43>2>121 2 x [4,23,16] 

[42,32,21 2 x [32,25] 

[42,3,22,11 2 x [3,26,1] 

cont’d. 
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Table II - cont’d. 

S’J@O SI 

[4,3,2,131 
[33.;2,1] 

[33>131 

2 x [32,22,12] 

2 x [32,2,14] 

[4,23,121 

[32,231 

[3,24,11 

2 x [3,23,13] 

2 x [3,22,15] 

2 x [25,12] 

P4J41 
2 x [23,16] 

[4,3J51 

[32,161 

[3,2,171 

[22>181 

[2,1’“l 

[I41 

P2,L2J31 

14,33,2,11 

[4,33,13] 

2 x [4,32,2:,12] 

2 x [4,32,2,14] 

2 x [34,2,12] 

134,141 

4 x [33,22,13] 

3 x [33.2,15] 

[42,23,12] 

14,32>231 

[4,3,24,11 

2 x [4,3,23,13] 

2 x [4,3,22,15] 

2 x [33,23,1] 

2 x [32,24,12] 

4 x [32,23,14] 

2 x [32,22,16] 

2 x [4,2’,12] 

[4,24,141 

3 x [3,2’,13] 

4 x [3,24,15] 

3 x [3,23,17] 

2 x ~27,121 

P6J41 

2 x [25,161 

[24,181 

t42,3,151 

[4,32,161 

;4,W,171 

2 x [33,17] 

2 x [32,2,18] 

[35,11 

r4,22,181 

2 x [3,22,1g] 

[23,1lO] 

t4,2,1’01 
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Table II - cont’d. 

S’JW su (PI). _- -.-.., .-..--~- _. ---- 

PSI [52,151 

[5,4J2,121 

[4 :2 511 

[42,22,13] 

[i2,2 151 

[42,15l 

[5,32,221 

[42,3711 

14,33,121 

cant ‘d. 
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Table II - cont’d. 

SU(W SUOJ) 

[4,3 2,131 

[4,3,23,121 

[%3,22,141 

t34.131 

[33,231 

[33,2,141 

[32,24,11 
[32,23,13] 

2 x [32,22.15] 

[32.w71 

[32,1gl 

[3,25,121 

[3,23,161 

P6J31 
P5J51 

P4J71 
P3,191 

[22,1l1] 

[1151 
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Table III. The reduction of the tensor products of [2,1], [2,2], and [2,,12] of SiJ(N) 

up to three copies with the given symmetry property of the Young diagram 

in the first column. The table can also be used to obtain the branching 

of SU(M) into the representations of SU(X) where the defining representa- 

tionS[2,1], [2,2] and [2,12] are embedded to the fundamental representation 

of SU(M) respectively. Here M is the dimension of the defining repre- 

sentation of SU(N). 

SU(M) Defining Representations of SU(N) 

PI 

L 
11 1 

[31 

P,ll [2>21 
____- 

[4Jl j [421 

[3,2+1 i 
p; 1 j 

14222J 

I 
~:4j1 ! 

[4,1L] i I4,3,11 

I32l 
, 

[3,22,11 

[392,;1 , 
r2 .I 1 

[6,31 j F21 

[5,3,1] i [6,4,21 

[42,1] i [52,12l 

~5,2~1 I 
[5,4,2,11 

[5,2,12] ;2 x [42,22] 

[4,3,2] I [6,231 

[4.3,12] ~ 15,32,11 

2 x [4,22,1] : E431 

[331 ; [5,3,2J21 

[32,2,11 j [4.32,121 

[4,2,131 j [4,3,22,11 

[32,13] ; [4.241 
[3,23] j 

[3,22,12] 
[34l 

I42,14l 

14,151 : [32,22,12] 

[27 

[2J21 
---___ 

[4,221 [3,2,131 

[4*141 P4! 

[:,g]. 
N2,141 

[4,2,1L1 [3,2,131 

[32,21 [3J51 

[3,22,11 [23,121 

[5,4,2,11 

1 

[5,32,11 

2 x [5,3,2,12 

[42,3,11 

2 x [42,2,12] 

[5,3,221 
x 

r[5,2",1] 

2 x [5,22,13] 

2 x [4,32,2] 

[4,32J21 

4 x [4,3,22,1] 

3 x [4,3,2,13] 

3 x [4,23,12] 

Pd7 

[5,3J41 

[5,2,l'i 
2 x [4,3,15] 

[4,22,141 

[4,2,161 

[33,2,11 
2 x [33,13] 

[42,141 

2 x [32,23] 

2 x [32,22,12] 

2 x [32 2 14s 9 > 

v41 

[3,24,11 
2 x [3,23,13] 

[32J61 

[3,22,15]. 

I25.12l 

[23J61 
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Table III - cont’d. 

su w Su (N 

[2,11 

P31 

T 
/ 
I 
i ; 

-j- 

t6,2,11 

[5,41 
! x [5,3,1] 

i42.11 

[~,2~1 

! x [5,2,12] 

5 x [4,3,21 

5 x [4,3,12] 

5 x [4,22,1] 

[5,141 
? x [4,2,13] 

I x [32,2,1] 

t32J31 

[3,231 
2 x [3,22,12 

[3,2,141 

P4,11 

W31 

[5,3,11 

[5,221 

[5,2,121 
/ 

[4,3,21 
: 2 x [4,3,12] 

[4,22,11 

I [4,2,131 

[42,11 
/ 

I 

[32,2,11 

[33l 

[6,5,11 

[6,4,21 

[52,121 

x [5,4,2,11 

x [42,22] 

16,3,2,11 

[5,4,31 

15,32,11 

15,3J21 

142,3,11 

14>32.21 

t5,4J31 

[5,3J,121 

[42.2,121 

2 ~[4,3,2~,1] 

[5,23,11 

r4,32.121 

[4,241 

[33,2,11 

[4;3JJ31 
[32,22,12] 

[3,24,11 

i 

[6,3,2,11 

W2,121 

[5,4,31 

[5,4,2,11 

x [5,32,11 

x [5,3JJ21 

x [42,3,11 

x [42,2,12] 

x [5,3J21 

x 15,23,11 

x [5,22,13] 

x t4,32,21 

x [4,32,12] 

x [4,3J2Jl 

x ~4,3,2,~31 

x [4,23,12] 

WJ41 

x [5,3J41 

x [5,2,151 

x [4,3,15] 

[5J71 

4 x [4,22,14] 

2 x [4,2,16] 

[5,4,131 

2 x [42,22] 

4 x [33,2,1] 

2 x [33,13] 

i42,141 

2 x [32,23] 

5 x [32,22,12] 

4 x [32,2,14] 

2 x [4,24] 

3 x [3,24,1] 

3 x [3,23,13] 

[32,161 

2 x [3,22,15] 

P5J21 

13,2,171 

P4J41 

x [5,3,2,1L] 

E5,3,141 

[42.221 

[42,2,121 

[42J41 

[5,32,11 

[5,23,11 

2 x [4,24] 

2 x [4,23,12] 

3 x [4,22,14] 

[431 

[42,3,11 

[33,2,11 

2 x [33,13] 

3 x [32,22,12] 

[34l 

[32,231 

132,2,141 

cont’d. 
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Table III. - cont’d. 
su (Ml 

t32>131 

[3.231 

[3.22,121 
[23,13] 

[4,23,121 ;2 x [5,22,13] 

133>131 [V2,21 
3 x [4,32,123 

3 x [4,3,22,1 

[3,24,11 
2 x [3,23,13] 

14,2,161 

I [32,161 

3 x [4,3,2,13] [3.22,151 

[5,2,1’1 L421 

[4,3J51 P61 

SUP0 
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TABLE IV. The reduction of the tensor products of the spinor representation 

(O,O,O,O,l) off D5 up to six copies with the given symmetry property of the 
Young diagram in the first column. The table can also be used to obtain 

the branching of SU(16) into the representations of D5 where the defining 

representation (O,O,O,O,l) of D5 is embedded to the fundamental representa- 

tion [l] of SU(16). Square bracket is used to denote the Young diagrams Of 

SU(16) in the first column. Representations- of D5 are given in Dynkin nota- 

tion in parenthes,es, as. defined in F,ig. 1. 

SU(16) 

[II 

PI 
[1Ll 
--m--- 

12,11 

PSI 

[41 

r3>11 

P21 

PJ21 

Defining representation of D5 

(0,0,0,0,l) 
_- -__ 

(0~0,0,0,2) (1,0,0,0,0) 

(O,O,l,O,O) 

(0,0,0,0,3) (1,0,0,0,1) 

(0,0,1,0,1) (O,O,O,l,O) 



Table IV - cont'd. 

[2,13] / (1,0,0,2,1) (0,1.0,0,1) 

(0,2,0,0,1) (0,0,1,1,0) 

(1,0,0,1,0: (l,l,O,l,O) 

PSI (0,0,0,3,0) (l,l,O,l,O) 
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Table IV - cont'd. 

SU(16) D5 



TABLE V. The reduction of the tensor products of (0,0,0,0,2) and (l,O,'J,O,l) 
of D5, and (O,O,O,O,O,O,O,O,l) of D9 up to two copies with the given 

symmetry property of the Young diagram in the first column. The table can 

also be used to obtain the branching of SU(M) into DS and D9 where the de- 

fining representation (O,O,O,O,Z) and (l,O,O,O,l) of D5 and (O,O,O,O,O,O,O,O,l) 

of D9 are embedded to the fundamental representation [I] of SU(M). Here M 

is the dimension of the defining representation. Square brackets and 

parentheses are used for the Young diagrarmand Dynkin diagrams respectively. 

su (M) Defining Representations.' 

[II C0,0,0,0,2).of;D5 Cl,O,O,O,l) bf~D5 (~~O,O,O,O;O,O,O,l) of F9 

I21 (O,O,O,O,4) 1 (~,O,O,O,~) 

(~,O,O,O,O) (O,l,l,O,O' 
(l,O,O,O,Z) ~ (1,0,0,1,1) 

(O,fJ,2,0,0) (l,l,O,O,O) 

(3,O,O,O,O) 

2 x(0,0,0,0,2) 

(l,O,O,O,O) 

(~,O,l,O,O) (2,0,1,0,0) 

(0,0,1,0,2) (l,O,O,l,l) 

(l,l,O,fJ,O) 

2 x(0,0,1,0,0) 

(0,0,0,0,0,0,0,0,2) 

(0,0,0,0,1,0,0,0,0) 

(1,0,0,0,0,0,0,0,0) 

(0,1,0,0>2) 



TABLE VI. The reduction of the tensor products of the spinor representation 

(O,O,O,'J,D,D,l) of D7 up to fo& copies with the given symmetry property of the 
Young diagram in the first column. The table can also be used to obtain 

the branching of SU(64) into the representation of D7 where the defining 

representation (O,O,O,O,O,O,l) of D7 is embedded to the fundamental repre- 

sentaiton [l] of SlJ(64). Square bracket is used to denote the Young diagrams 

of SU(64) in the first column. Representatiorwof D7 are given in Dy"kin no-. 

tation in parentheses as defined in Fig. 1. 

SU(64) Defining representation of D7 

[ll (0,0,0,0,0,0,1) 

[21 (0,0,0,0,0,0,2) (0,0,l,0,0,0,0) 

[I21 (1,0,0,0,0,0,01 (0,0,0,0,1,0,0) 

t31 (0,0,0,0,0,0,3) (0,0,1,0,0,0,1) 

(1,0,0,0,0,0,1) 

iZ,l] (0,0,0,0,1,0,1) > 0,0,0,0,0,0,1) 
/ io,o,l,o,o,o,ij (0,0,0,0,0,l,0) 

(0,1,0,0,0,1,0) 

r-l31 i (0,0,0,0,0,1,0) (0,0,0,1,0,1,0) 

1 (1,0,0,0,0,0,1) 

[41 (0,0,0,fJ,0,0,4) (2,0>0,0,0,0,0) 

(0,0,1,0;0,0,2) (0,0,0,1,0,0,0) 

(0,0,2,0,0,0,0) (1,0,0,0,1,0,0) 
(1,0,0,0,0,0,2) 

[3,11 2 x (~,0,0,0,0,0,2) (0,0,1,0,1,0,0) 

(0,0,0,0,1,0,2) ~0,0,l,0,0,0,~) 

(0,1,0,1,0,0,0) (0,l,0,0,0,0,0) 

(1,0,0,0,1,0,0) 2 x (0,0,0,0,0,1,1) 

2 x (l,o,l,o,o,o,w (0,0,0,l,0,0,0) 

(0,1,0,0,0,1,1) 
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Table VI - cont’d. 

SU(64) D7 

P21 (0,0,~,0,0,0,2) (0,0,0,0,0,0,0) 

(0,0,0,fJ,2,0,0) 2 x (1,0,0,0,1,0,0) 

(0,0,2,0,0,0,0) (0,0,0,0,0,1,1) 

(0,1,0,0,0,1,1) (2,0,0,0,0,0,0) 

(0,2,0,0,0,0,0) (0,0,0,l,0,0,0) 

w21 (0,0,0,1,0,1,1) 2 K (0,l,0,0,0,0,01 

2 x (0,0,0,1,0,0,0) (1,0,1,0,0,0,0) 

(0,0,1,0,1,0,01 (1,0,0,0,1,0,0) 

2 x (0,0,0,0,0,1,1) (0,1,0,0,0,1,1) 

2 x (1,0,0,0,0,0,2) c0,1,0,1,0,0,0) 

[I41 (o,o,l,o,o,2,o) (0,0,0,1,0,0,0) 

(0,0,fJ,2,0,0,0) (0,0,0,0,0,1,1) 

(0,0,0,0,0,0,0) (1,0,0,0,1,0,0) 

(2,0,0,0,0,0,0) 1 
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TABLE VII. The reduction of the tensor products of the (O,O,O,O,l,O) of E6 up to 

five copies with the given symmetry property of the Young diagram ifi 

the first column. The table can also be used to obtain the branching 

of SU(27) into the representation of E6 where the defining representa- 

tion (O,O,O,O,l,O) of E6 is embedded to the fundamental representation 

[l] of SU(27). Square bracket is used to denote the Young diagram of 

SU(27) Land parentheses are used to denote the Dynkin diagrams. o,fE6, as. 

defined in Fig. 1. 

SU(27) Defining representation of E6 

PI (0,0,0,0,1,0) 
-. 

PI ! (0,0,0,0,2,w (1,0,0,0,0,0) 

t31 (0,0,0,0,3,0) (0,0,0,0,0,0) 

(1,0,0,0,1,0) 

[2,11 (0,0,0,1,1,0) (0,0,0,0,0,l) 

(1,0,0,0,1,0) 

[I31 (0,0,1,0,0,0) 

[41 (0,0,0,0,4,0) (0,0,0,0,1,01 

(1,0,0,0>2,0) (~,0,0,0,0,0) 

[3,11 (O,O,O,l,~,O) (0,0,0,0,1,0) 

(1,0,0,0,2,W (0,1,0,0,0,0) 

(1,0,0,1,0,0) (0,0,0,0,1,1) 

P21 (0,0,0,2,0,0) (~,0,0,0,0,0) 

(1,0,0,0,2,0) (0,0,0,0,1,1) 

(0,0,0,0,1,0) 
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Table VII - cont’d. 

SU(27) E, 

w21 

II41 

PI 

[4,11 

t3, I21 

P2Jl 

!L -I-- 
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Table VII. - cont’d. 

SlJ(27) E 6 


