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ABSTRACT

We analyze in quantum chromodynamics the time-like photon
structure functions ﬁ; and ﬁz which appear in the direct
photon production in ete” collisions, using the cut-vertex
formalism and the renormalization group method. It is found that
ﬁg in leading order is not renormalized by the strong interactions
and agrees with the result calculated in the simple parton model.
The moments of ﬁz are calculated in the leading order. Then,
the structure function is obtained by inverting the moments.
The corrections to W| by strong interactions are found to be

4

large at small and large z.



I. Introduction

At very high energies in e e  colliding experiments the
direct photon production in such processes as shown in Fig. 1,

- *

ete” v (q) + hadrons ( C = + )} (1.1)

~ Ydirect(p)
becomes measurable. Here the virtual photon with momentum g
is far off shell (large q2 >0) and the observed photon having
momentum p 1is "direct", which means that it is not a decay
preoduct of radiatively decaying hadrons. The unobserved hadrons
have charge conjugation C = +.

From the above experiments of Eg. (l.l), we can measure
the time-like photon structure functions, which are defined as

1
follows:
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where T representing anti-time-ordered products.
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In the previous paper , we have analyzed the structure

functions W% (= TT\TI ) and W}: (= ‘,}14_!.?;‘[5)2@\2( ) in gquantum chromo-
dynamics ( QCD ). Using the cut—verteg formalismaand renormaliza-
tion group method we have calculated the moments of ﬁ% up to the
next-to-leading order, and Ehe moments of WE in the leading order.

In this paper we shall analyze the structure functions
ﬁ; and ﬁz in QCD with f flavors.

The information on ﬁg can be extracted from experiments
with unpolarized e+e- beams, where the linear polarization of
the final photon is measured with respect to the plane spanned by
the electron ( or positron ) and photon momentum} The structure
function ﬁz can be obtained by observing circularly polarized
final photons from annihilations of polarized electrons ( positrons)
and unpolarized positrons (electrons). In the Appendix, we express
differential cross sections of e+e7—iyt—+Ydirect + hadrons {(c= +)
in terms of photon structure functions for the cases of unpolarized-
and polarized-beam experiments.

In the free gquark model, i.e., the parton model (PM), the
structure functions Wg and ﬁz can be calculated by evaluating

the s-channel discontinuity of the box diagrams of Fig. 2. We

obtain
=Y - 2 _ 4 3
WB pmM- @ Gy ( z2 ) (1.2)
and
2
=y 2 2-z g (L - z)
Wi lp= © GY 4 - 1ln 5 (1g)




where o= e2/4 ; z==2p'q/q2, mq is the quark mass,and
5. =3f<et> =335 e} (1.5)
A i 1t

the sum i1 runs over quarks of f flavors .,
Because of the point-like coupling

=Y
of photon to quarks W4|PM

. 2 =Y
with g~. On the other hand, W3‘PM

We now study the behaviors of the structure functions ﬁg

does not scale, but grows logarithmically

displays Bjorken scaling.

and ﬁz in QCD using the Mueller’s cut-vertex formalism®*'* and the

renormalization group method. We find that ﬁz maintains the

nonscaling ]J1q2 behavior, but its shape changes substantially

Y
3

leading crder is found not to be renormalized by the strong inter—

from the simple parton-model prediction. However, W in the
actions and to have the same expression as obtained in the parton
model. The results are very similar to the case of the deep
inelastic scattering off a photon target ( q2<0 in this case)
where the space-like photon structure function Wz shows a
different nonscaling 1n (-cqz) behavior from the PM prediction,
but W! in the leading order is not affected by strong interaction

3
5,8,--7
effects and agrees with the result calculated in the parton model.

In Sect. II we analyze the structure function ﬁz. We
introduce new bare cut vertices for fermions, gluons and photons
which contribute to WI. (These fermion and gluon cut vertices

are also applicable to the study of the polarized nucleon produc-

tion in collisions of polarized e+e_ beams.) Then, we calculate



relevant;
the one-ioop ancmalous dimensions of thelcut vertices. Using

these anomalous dimensions we obtain the QCD predicticon for the

leading term of ﬁz moments. The structure function ﬁl itself

is obtained by inverting the moments numerically. In Sect.III

we analyze ﬁ;. We discuss in some detail why bare cut vertices

for fermions do not contribute to Wg in the leading order.

Section IV 1is devoted to a brief summary.



II. Structure Function WX

First we must find the projection operator which picks up

the structure function ﬁz from ﬁuva in Egq.(1.2). The
appropriate operator is -%-e_+uv €_tpr and we obtain

1 SUVPT &Y

T €oipy Sotg B ~T) (2.1)

g
where ¢_ and P, are finite with large q2 and q_

Using the Mueller’s cut vertex formalism, we now show the
moments of ﬁz can be written in a factorized form, i.e., the sum
of terms each of which is a product of a cut vertex and a time-

like coefficient function.

A. Cut vertices for ﬁz

Wé@eed to introduce new cut vertices for the analysis of
ﬁZ‘ We list in the following necessary (time-like) cut vertices.
Those vertices for fermions and gluons will also be applicable
to the analysis of the polarized nucleon production in polarized
ete™ collisions.

The flavor singlet cut vertices for two fermions without

and with one gluon are

. ab _ -n-2

Fig. 3(a): Rw'n(p) = ly_yg P Sap L

o _ _aj,b L YYs5 g —n=2

Fig. 3(b): prn (p,k) ig . Tab(p-fk)_ 1 (2.2)
. ] a,bj _ . JY=-Y5 4 _-n-2

Fig. 3{c): Rw’n (p,k) = -1g K Tabp- 1

The indices a,b refer to a representation R of the color



group SU(3) for fermions, ‘g 1is the strong coupling constant
of the theory, and 1 1is fxf wunit matrix. These vertices

obey the following Ward-Takahashi (WT) identities:

ai,b d

_ b a’b
k—Rl}),n (p.k) = gTaa’Rw rl(p+k)

r

{(2.3)
ab’

a,bi . i
k__R (p,k) = ng’n(p) Tb’b

Y, n

We must add the cut vertices for two fermions with more gluons.
Vertices with extra gluons become rather complicated, but their
form is essentially fixed by the WP-identities and the bare
fermion cut vertices without gluons. Therefore we have not listed
higher-order vertices.

The formula for the flavor non-singlet cut vertices for
two fermions without and with gluons are the same as the singlet

ones with the replacement of 1 by ( Qgh— <e2

2
>1), where Qch
is the square of fx f quark charge matrix, and <e2> is the
average quark charge squared.

The cut vertex for two gluons shown in Fig. 4(a) is
R (k) = 26, [ (gy 9,.k% - g_ g, kik_ - gy g_.kok_ )
af,n ij 107287 - -a?287 1= la”=-872"-

- (aog) ] kP73 (2.4

We need cut vertices for more gluons. The three gluon vertices

are shown in Fig. 4(b) and (c). They are given by



ij,1

RuB,K;n(p’q’r)

C..19
_ io | Ci419-8 ) ) )
2ig [ q_ {I( glngaP_ g_Kg2uPl glKg_apz ) { e+ )] r_

95,7910 2 P (X9~ TPy = (K19 -9 X )Pyl )

€151 191692095792, 9-491579-T20918) -

T Ur19549 570949187 924918) 9!

+ terms where (i,a,p) <> (3j,B8,9) p~03 , {2.5)

where Cijl are the structure constants of the color group.
'[{iljl

- , ij,1 _
*a:BK;n(prqrr) is obtained from RGB,K;n(p'q'r) as follows:

(i) change r:n_B to - (—p_)—n_3; (ii) interchange (i,a,p) =+
(l,x,r) in all terms in the parenthesis of Eg. (2.5).

These vertices satisfy the WT identities,

i5,1

R - ml
g RdB.K;n(p'q'r) lgcijm am,n(r)
(2.6)
B,i,31 o mi _
e RarBK:n.(p'q'r) lgclijuK;n{ p)
and the current conservation law
Kpij,l =
r IaaB,K;n(p,q.r) 0
(2.7)
periIL gy =0 .

Clr BK;n



i,ji
o, Bkin

ij,1

Alsc note that R
aB,K;

n(p,q,r} and R {(p,q.,r) are symmetric
in interchage of indices (i,o0, p) ++ (J,B,q9) and (j,B,q) <=
(l,<,r), respectively. Cut vertices with more gluons are
straightforward to construct with resort to the WT identities
and the current conservation law.

Finally we introduce the bare cut vertex for two photons
illustrated in Fig. 5:
RI. L (B) = 20(gy 9y,P° = 9_ 9, = 9y.9_P,P_) = ( aesp )] p P73
a8, n la”®2p% - -q”28%1F- 1 =p=25 - -

(2.8)

The expression of Eq. (2.8) is exactly the same form as the two-
gluon cut vertex of Eq. (2.4) apart from the factor Sij‘
It will be apparent in the following how these cut vertices

have been introduced.

B. Factorization

We consider a particular graph G contributing to ﬁz.
Suppose G can be decomposed topelogically as shown in Fig. 6(a),
where large momenta of order q2 flow through the right-hand
part t, but not through the left-hand part A. The two parts
are connected by two quark propagators which are included in .
For a while we forget the color and flavor degrees of freedom
of quarks. Call Mﬁv(k'q) the renormalized right- hand part,

and we may write

T
v

ME, Oe@) =3 by (k) M3 k% keq,q7) (2.9)

1



where the tiv are matrices in the Dirac indices and the MI

dimensicnless. The rules to find the contributing tiv when

are

q2 > ® are as follows: (1) The tensors should be antisymmetric in

u and v. Hence they have Euqu and Y-
in vy aside from Yg- (iii) Only conserved tenscors need be
considered since slightly off-shell fermions will not inhibit
current conservation when the momentum g flows through .
(iv) Drop all terms with explicit factors of m2 (quark mass
sguared) or kz. (v) Drop all terms with K compared to (.

The allowed tensors are

(ii) They are linear

1 Pl

tuv - lEu\)aB 5 Yg (2.10)

d

2 ayh

tT = ig Y (2.11)

2 2 5
v uvop q q
Writing
——% €,+W Mﬁv(k,q) = Mf+{k,q) , (2.12)

we cbtain for large q, with finite ¢g_ and ku '

1

. 2
ML, (@) A= day_vg — MU (k% keq,q) (2.13)

2
g

where

2
'k, keq,q%) =u] (k% keq,q?) + 5 M3 k%, k- q,q7)

2q_

(2.14)



Now we define the add@itional subtraction dictated t' for ME+
as follows:
£ MU (k,q) =i 2 mT(0,k-q,9%) (2.15)
-t g A Y Vg q2 P Keq,q .

Iy ~

where k+=k_]_=0, and k_=k_

For the contribution of Fig. 6(a) to ﬁz, we can write

4
1 uv DT _ d’k 1 PT A T,,T
where
™ (b0, = %ﬁ"jﬁ ddxalyaty oik? iP(¥-x)

<0

T(T, (), (2)) T (y)P (0N 0> (2.17)

and r,s are the Dirac indices.
We forget the renormalization of TQT(p,k) for the moment. From

Eq. (2.1) and (2.15), Eg. (2.16) is rewritten as

q 4 ~
Wy=—3 g 1 [ T_+(P'k)]rs (lY_YS) rs M (0,k-q,97) (2.18)
q (2m)
with
A I PT A
T_,(p/k) = 5= €_, TDT(p,k) (2.19)
We note the coupling of Ti+ to M' is only through k_. Then

taking the moments of both sides of Eg. (2.18), we find



L n = 2
g dz =z W4=: v E (g™) (2.20)

0 4,n
where
4
_ 1 n+l| 4k A : -n-2
YnT T2 Po g 4 [ T—+(p'k) ]rs( 1Y Y5 )rs k_
(27)
{(2.21)
and
2 1 o1 2
4 (g7)y=\ 4z z M (0,Z,97) (2.22)
l’n 0

with E==2ﬂ-q/q2. Eq. (2.20) shows that the moments of WZ can
be written in a factorized form. A bare cut vertex for two
fermions ( see Eg. (2.2)) 1is involved in Vi of Egq. (2.21).
At this point vy is the unrencormalized cut vertex. After
renormalizing the cut vertex, we obtain an equation just like
Eg. (2.20) except that v, is now renormalized. The renomaliza-
tion prescription for cut vertices is described in detail
in Ref. 3.

Next we consider a decomposition of the form shown in
Fig. 6(b), where two fermions and an arbitrary number of gluons
connect the two parts of the graph. Suppose M;l“~ u.,uv(kr"3kj’k'q)
is the renormalized amplitude for the right-hand partJ T.

ul,-~-,aj are the Lorentz indices of gluons and the divergent

part, for large q2, has all + indices. Owing to the WT identity

r"'rkjrqu) (2.23)

is expressed in terms of the amplitudes MI_”+,MU with two
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fermions but fewer gluons. Thus by repeated use of the WT

identities, M' can be related to Mt in Eg. (2.9).

+ v +uv Hv
Therefore, the additional subtraction dictated by t? for

T T

M+---+'uv is determined by that for Muv' The further discussion

on the factorization for the decomposition shown in Fig. 6(b) follows
parallel to the case for the decomposition shown in Fig. 6(a).
We arrive at a formula identical to Eg. (2.20) where the Vi
stands for the contributions from the bare cut vertices of two
fermions and many gluons.

So far we have neglected both color and flavor degrees of
freedom of quarks. Including these degrees of freedom we find
that the contributions to the moments of ﬁﬁ from the kare two-

fermion cut vertices and the bare cut vertices for two fermions

and many gluons altogether can be written in a factorized form as

Szdz 2 W= oY Eﬁ'n( fﬁ;, g ) + vhO Eﬁ?n( r g2,a)  (2.24)
where ¢ and NS stand for flavor singlet and nonsinglet
contributions, respectively, and uz is the subtraction scale at
which the theory is renormalized.

Consider now the decomposition shown in Fig. 6{(c). The
left~hand and right-hand parts of the graph are connected by two
gluons. Let Nf'ij(k,q) be the renormalized two-gluon and two-

v
B
photon amplitude. Again we write

T,1j = i3 T 2 . 2
thyv(qu) e oy (ke M (% kg q%) (2.25)
’\
where q;g v is a possible tensor structure and Mt is
r

_Y
dimensionless. The appropriate tensor which contributes to W4

for large q2 and q, ig °
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o3 k@) =8,.0a g

AR,V ij U vK-gvAguK )

(2.26)

1

(q2)2

A

2 A
gt g% e ? - a o kM e ) - gt a kS ) + g gk KO

ij
aB,uv

v

—+ , we obtain for large q2 and

Multiplying t by —%—e

q, .

£+ (k,q)=-%f-€ MY g td (k,q)

o, -+ -+ ad,uv
2
e 6, b [(9y.9, k2 = G_ Gygkik_ =gy 9_ckok_ ) = ( a8 )]
- lj(q2)2 la?287 - ~072871L "~ laZ-g27-
(2.27)
We define the additional subtraction t' for M;élav as
r
T, _1_ wv . T,1j I & T - 2
05 ey Mg nwtke@ )= tp  (keq) MU(0,k-q,97)
(2.28)
Then the contribution of Fig. 6(c) to ﬁz is
=y X d4k 1 0Tmi] T 1 TRV O B
W4= l“k(zﬂ)‘l [—-é-— €_, TDT,O&B(p'k)][ t 5= €_4 Mas'uv(k,q)]
(2.29)
where
14 _ 1 M4 .4 .4 _ikz _ip(y-x)
TpT,aB(p'k)—"_EF_jH‘d xd'yd 'z e e
- i 3
<O‘T(Jp(x)Aa(z))T(JT(y)AB(O)) 0> (2.30)

and A; is a gluon field. Using Eg. (2.27) and (2.28) we may

rewrite Eg. {2.29) as
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2

q 4 .
=Y + d’k ij 2—- )
! S(ZN)4 T, ap Prk) 955 109y,90gk =9 (Toghik_ — 9149 gkok )

_ (as=g )] MT(0,k-q,q%)

{2.31)
where
1] = = PTpi] 2.32
T 1, oa(Prk) 5~ oy Tor, g (PrK) ( )
Taking the moments of both sides of Eg. (2.31), we find
( 2 5
L dz 22 A= WO S (L ,g%,a) (2.33)
| 4 n 4,n 2
20 u
where

2 -n-3
x 2 dij[(glagZBk_-—g_ugzsklk_-glag_Bkzk_)- ( ae+rB )] k_
(2.34)
G 2 L o n+2 ot 2
E; o =5 ,9%0 )=§ az ¥ ° M'(0,%,9°) (2.35)
r u 0

As in our previous discussion we now renormalize vi. The

moments of ﬁz is still written in the same form as Eg.(2.33).

We find from Eq. (2.34) that vg is the contribution from the two-
gluon bare cut vertices. The form of Eg. (2.33) remains the same

after we include the contributions of cut vertices with more

gluons

Finally we examine the case where large momenta of order q2

flow all the way down to the real photon vertices, and the
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decompositions of the types shown in Fig. 6 are not adequate.
Then we should consider the four-photon vertex of Fig. 7 as a

wheole. Call Muu pT(p,q) the renormalized amplitude for the
r

four-photon vertex, and we decompose Muv QT(p,q) into the
!

different tensor structures

(poq) = =t (@ MY (p%,p-a,a®) (2.36)
1

M
UV, pT UV,pT

We only consider the tensor which contributes to ﬁz for large
Then tuv ot is antisymmetric in interchange of indices ¢ and
Y or p and T {we omit the superscript 1 of t;v 01 ).
9
The appropriate one is
t (p,q) = ~—3—~ {(p+qg, -P,q,) (P+qg, -p.d.)
uv,pt v’ (q2)2 up uip VT vaiT
-(prag,; ~P,9;) (P-a9,,, -~ P,q,)] (2.37)
. 1 uv ‘ 2
operating - e, on tuv o’ and for large g and q, we
obtain
1 uv
2
~ —t 1 2 . - ) = ( pert )]
o (q2)2 glquTp— g-ng‘L’plp— glpg_szp_ P
(2.38)
. 1 uv 0T .
When we multiply Muv,pt(p'q) by 23 f_4 f€_, , we find
quz
1 uv 0T s Y 2
4 E—"l' E—-]- Mu\),p-r (prq) o~ 2 2 M (Olzlq ) (2139)

(a™)

2
d
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Comparing Eg. (2.39) with Eq. (2.1), we find for the contribution
of graphs with the large-momentum-flow configurations shown in

Fig. 7 to the photon structure function ﬁz R

=y 2 1 2

W z,9%) =~ 2% M (0,2,q°) (2.40)

The moments are then given as

1 1 2
dz z" WY(z,q2)==—£— dz zn+2 MY(O,z,q2)==EY (—g—.nga )
4 4 4,n 2

0 0 U
(2.41)
The above eguation can be rewritten in another form:
1 n =Yy 2 Y 2 2
dz z° W,(z,q )==vY E (-9—-,g L0 (2.42)
0 4 n 4,n 2
u
where
Y o
V= 1
. PT_1 n+l Y
= f_4 5 Po RpT,n(p) (2.43)
and RET n(p) is the two-photon bare cut vertex whose expression
r

is shown in Eg. (2.8)}.
Collecting all these contributions from cut vertices, i.e.,
Eqs. (2.24),(2.33) and (2.42), we find that the moments of ﬁz

is given in the following factorized form for large q2

't on- 2 id 2 3
dz z" #)(z,q5) = I v By o (=5,9%0) (2.44)
0 { n 2
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where the sum i runs over 1, G, NS, and +v. The q2 dependence

of the structure function ﬁz enters into the time-like

coefficient function Ez _ On the other hand, vi does not
r

depend on q2, but is dependent on the particle observed.
Especially we have v;f1= 1 from Eg. (2.43). The hadronic

feature of the observed photon is taken into account within vﬂ,

G NS
Vn’ and Vn .

C. Anomalous dimensions of cut vertices
The q2 dependence of Ez n is governed by the renormali-
r
zation group equation (RGE), which has exactly the same form

as those for the case of the structure functions ﬁ% and W{

in Ref. 2. The anomalous dimensions which enter into the RGE

are now those of cut vertices contributing to ﬁz, that 1is,

-n 2 . .o - 2 = 2 .
Yq,i3(97) with i,3=4, 6, Y,"q(e%), and K" (g%,0) with

i=19, G, NS. They are expanded in powers of g2 as follows:

2
- n 2 = -Ofn L s i ] =
Y4'ij(g )— Y4,ij 16'”2 + r llj ltbr G
Y4,ns'd V4,88 T2 ' '
- n 2 =0,n e2
Ky,1(977a)= - Ry"7 2t , i=y, G, NS

The one-~lcoop ancmalous dimensions for the hadronic sector

are calculated evaluating diagrams in Fig. 8. The results are



- i -

' n
70 _=0mn 8 -2 1
Ya,p9p = V4,887 73 (1 o) + 4j52 = ] (2.46)
-0,n _ n+2
Ya,pe= " 4 HmeD (2.47)
—Orn - _ 16 n-1
Ta,6y 7 3 Th(nrl) (2.48)
AR N . Sppp— vay Lo+ A (2.49)
4,66 3 n(n+l) . 3 3 . .
J=2
The anomalous dimensions ﬁ2’$ and Eg'gs are obtained from
’ '

Eg. (2.47) by replacing the group-theory factor £/2 [= T(R)]

by the relevant charge factors, with the result

n+2 2

—0,1’1_

K4'w—— 8 _HTHIIT- 3 f <e™> {(2.50)
=0,n n+2 4. _ 2.2

K4,NS__ 8 n(n+l) 3£ (o™ o> ) (2.51)

Also we have in one-loop approximations

=
o= O

- =
[ R=]

=0 (2.52)

-0,n
Y4,i5

dimensions Yg'gj which are relevant for the structure function
r

It is interesting to compare with the anomalous

WZ in the photon-photon scatterings ( see Egs. (4.2)-(4.5) in
O,n
4,145

electroproductions!? The diagonal elements are the same, i.e.,

Ref. 6). Those vy also appear in the analysis of polarized



?O,D = pn
4,9y 4,9y
(2.53)
-O,D. — O;n
T4,6 4,6
For the off-diagonal elements we find
-0,n O,n
Y496 _ 4,6y
4f 16/3
=0,n O,n (2.54)
r I
Y46y _ 4,46
16/3 4f
where 4f [= 8T(R)] and 16/3 [= 4C2(R)] are the group-theory

factors.

D. Behavior of Wz

The procedures to solve the RGE now follows exactly parallel

to the procedures in the case of the structure functions W;

and ﬁl or the case of the deep-inelastic scattering off the

11
photon target

(l,§z,u ) in

We expand the coefficient functions Ez n
r

powers of the effective coupling constant 52 Tc the lowest
order, we obtain
4
e2 Sw , i=
By o(l, 3%, @) = < 0 . i=G (2.55)
e? s ,  i=Ns
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. 2 2 _
with Gw-<e >= i ey /f , and SNS 1.

Using these informaticons on the lowest order coefficient

functions and one-~loop anomalous dimensions, we arrive at the

following formula for the moments of W) :

rL L 5 5 - 2
Vdz 2™ W (z,q) = o i 1n-d— (2.56)
JO 4 4,n AZ
where
=0,n =0,n =0,n
_ K;'. ¢ : Y, K,’ §
B, o é (4 %y g, Y4566y, 4.NS ONs :
’ Y 28 -0,n
n 0 i+ Y4,NS/280
(2.57)
with
= 1 =0,n =0,n 1 =0,n =0,n _ =0,n
T 1 F '_28_( Ya,pu* Ya,ee) ¥ 07 Ya,gTa.ee T Yaay Y
0 8o
(2.58)
and B, = 11 - =2 f
0 3 .

0,n
4,9

equal to zero, we retrieve the parton model prediction,

If we set all anomalous dimensions except K and Rgrﬁs
r

1 2
n =y _ 2 = q
Sodz z W4‘PM = q P4,n 1n Az (2.59)
where PM
- 2
B = 4 § A (2.60)
4rn Y n(n+1)

The structure function ﬁz itself can be obtained from

the moments by taking an inverse Mellin transform.

-0
4

r
r

n
¥

g’
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The PM formula (2.60) can be inverted analytically, and we

obtain
W4 pM = C P4(z) ln—ii— {2.61)
PM
where
_ 2-2
Pq(z) = 4 SY = (2.62)

which coincides with the expression in Eqg. (l.4). The QCD
formula (2.57), on the other hand, has a complicated n
dependence and has been inverted numerically.

In Fig. 9 we present both the QCD and PM predictions for
zﬁz in units of o ln g®/A% . We find that the QCD effects
are large both at small and large 2z values. Especially, QCD
predicts that zﬁz vanishes as -1/ 1n( 1-z ) for z + 1

since N vanishes as 1/{(n 1ln n) for large n.
¥
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ITII. Structure Function ﬁ;

The moments of the structure function W; can also be
written in a factorized form, i.e., the cut vertices times the
coefficient functions. We can follow the same procedures as we

did in Sec. II. Here we only show the results.

The remarkable feature of W! is that we cannot find the

3
fermion cut vertices which contribute to Wg in the leading
order. Consequently, W! in the leading order is not renormalized

3

by the strong interactions and agrees with the result calculated

12
in the parton model. This fact is exactly analogous to deep-

inelastic scatterings off the photon target, in which there is
no twist-2 quark operators contributing to the structure function
Wg, and Wg in the leading order is not affected by the strong-

interaction effects and has the same expression as obtained in
§=7
the parton model.

Y

The appropriate projection operator which picks up ﬁ3

= . . 1
from WUVOT in Eg. (1.2) 1is —E—glung[glpng-knggzp]
and we find for large q2 and q, with finite g_ and P,

1 —UVPT__ =y
7 91,9200 91092779192, I W T A=Wy (3.1)

The bare cut vertex for two photon contributing to Wg
D

has the following expression:
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Y _ 2 _
Upr,n(p)'_ﬂ glngTp— (g_pngpl4-glpg_Tp2) p—"'g-pg-rplpz ]

} p PR3 (3.2)

+ [ pe>1 ]

The above form is inferred from the fact that when we multiply
o in Eg. (1.2) . - 1 2
the specific tensorY, which projects out W3 , by g ug

we obtain for large q,

YV r

P .q p.q p.q p.q
gug V{(g ..__.L.R_)(g ........,_\_"..._'E_)+ (g ...L)(g _.LL)}
1 -2 HP peg YT peq T peq VP peg
1

- 1 2 _
= w5 1193,95,P2 = (9_,95,Py +91,9.1P2) Po + 9,9 PP, |

+ [ p+>1 1} (3.3)

The bare two-gluon cut vertices have the same form as the

two-photon cut vertices except for the factor Gij:

P 2 .
1 o -—
Up%,n(p) 6ij{[glpg2tp- (g_pngpl-Fglpg"sz) p_-%g_pg_Tplpzl

-n-3

+ [ pe>T ] } P (3.4)
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The reason why there are no fermion cut vertices contributing
to ﬁg in the leading order is the following. Consider again a
particular decomposition of a contributing graph as shown in
Fig. 6(a), where two parts are connected by two fermion propagators.
Call Miv(k,q) the renormalized right-hand part, and we want

Tae T

T
t Muv(k’q) (t

denoting the additional subtraction operator )
to be egual to the additional divergences, which arise when

q2 + = for fixed k and fixed k-q/qz. Again we decompose
Mﬁv(k,q) into the different tensor structures as follows:

i
pv

T

M®o
U

k,q) = ; t

(k,@) ML(k% k-q,q°) (3.5)
1

where the tiv are symmetric in indices 1 and v, this time.
The candidates for contributing tiv when q2+ © should

be conserved tensors with no explicit factors of m2 and k2,

and with factor K dropped compared to ¢. The allowed tensors

are of the same form as those which have appeared in the Mueller’s

paper of Ref. 3:

q.49 |
L__ "
tuv" ( EMR q2 ) q2
{(3.6)
2 =0 29, 4 q-k +(y kv k) a° - (y,a,+v,d,) kg
uv 2 VRV v ‘v KV v U
- (kg +kag) d] -
U=y v (q2)2

Multiplying tﬁv and t2 by glugzv r we obtain for large q2

[ERY
and q,
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g.9 Y_
glugzv tiv _ 122
q 2q_
(3.7)
k
v 2 1 - 1
9,9, T BARAL PR A RN 7]
2d_ g

Therefore, when we attach the left-hand part A to
glugzv[ £t Mﬁv(k,q)], and perform the k-integration and
renormalization of the X-part, the resulting terms are proportional
to ql/q2 and/or qz/qz. Thus the contributions from decompositions
)
of the order l/q2 at most. In other words, there exist no

of the type shown in Fig. 6(a) to the structure function are

fermion cut vertices which contribute to ﬁ; .

Another support for this conclusion comes from the direct
calculation of a diagram as shown in Fig. 8(c) where the bare
gluon vertex Ri%,n(k) of Eq. (2.4) is replaced by Uég'n(k)
of Eq. (3.4). If there exist fermion cut vertices contributing
to ﬁg , then ultraviolet divergences would appear in the

calculation of such diagrams. But the actual calculation gives

no ultraviolet divergence.
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Following the same procedures as we did in Sec. II, the

moments of ﬁg can be written in a factorized form,

. . 2
n =y 2, _ i i g 2
S dz z W3(z,q ) ; V3,n E3,n( >+ 9,0 ) {3.8)
0 i U
where the sum 1 runs over G and vy only, and vl =1 .

The q2 dependence of Eé n is governed by the RGE. Since
r
there exist no fermion cut vertices and hence no mixing anomalous

dimensions of order e2, the leading term in the moments of ﬁg

2

does not grow as ln—9§ but is constant. Solving the RGE we
A

obtain the QCD prediction for the moments of WY,

i

S dz 2™ @W(z,q?) = B+ 0 (—L5—) (3.9)
0 Al In g~ /A

where B3nY is the leading term which appears in the expansion
’

-2 .
of E\é'n(l, g<,a ), i.e.,
Y -2 e4 =n -2
EB’n(lf g  Q ) =16ﬂ2 (SY B3,'Y + Of g ) (3.10)

Evaluating the box diagrams in Fig. 2 , we obtain



(3.11)

We can easily invert the leading term of the moments of

Eq. (3.9) analytically. We find that the leading term of Wg

coincides with the result (1.3) of the parton model calculation.
This fact means that ﬁg in the leading order is not renormalized
by the strong interactions. The origin of this interesting

result can be traced back to the fact that we could not construct

the fermion cut vertices which give leading cotributions to Wg.



IV, Summary

In this paper we have analyzed in QCD the time-like photon

structure functions ﬁg and WZ which can be observed in the

direct photon production in ete”™ collisions. We have used
the Mueller’s cut vertex formalism and have introduced new
fermion, gluon and photon cut vertices.

The results we have obtained are very similar to the case

of the space-like photon structure functions Wg and WZ in
=Y
Wy

the same nonscaling 1n q2 behavior as predicted by the parton

the photon-photon scattering. The structure function shows
model, but its shape changes substantially from the PM prediction.
The QCD effects are large both at small and large values of z.

On the other hand, ﬁg in the leading order is found not to be

affected by strong interactions and to have the same expression

as obtained in the parton model.
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FIGURE CAPTIONS

1. Direct production of photons in ete™ collisions. The observed
photons are assumed not to be radiative decay products of
hadrons.,

2. Box diagrams for the direct photon production.

3. The cut vertices for two fermions contributing to ﬁz.
(a) Ri?n(p)- (b) Rzéﬁb(p,k). (c) Rijﬁj(p:k)-
Solid lines and curly lines represent gquarks and gluons,
respectively.

4. The cut vertices for gluons contributing to ﬁz.

i,jl
a.BK;n(p’q’r)'

5. The cut vertex for two photons contributing to ﬁz.

ij, 1

13
(@) R (k). () Ry

0B, n (p,g,r). () R

6. Examples of decomposition of the amplitude for direct photon
production in ete™ annhilation:
(a) involving two fermions.
(k) involving two fermions and many gluons.
(¢) involving two gluons.
Wavy lines represent photons.
7. The amplitude océurring in direct photon production, where

large momenta of order q2 flow through the blob.

8. Diagrams for computing (a) ?E’Ew and ?2’25 :  (b) ?2'$G
r ! r
=0,n . -0,n
{c) Y4rG¢ H (d}) Y4,GG .

9. The structure function zﬁz in units of a2 in qz/!\2 as
predicted by (a) QCD in the leading order; and (b) the

parton model. We have chosen four flavors for both cases

2= 02, .

and have assumed that A PM
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APPENDIX

We present the expressions of differential cross sections

for the direct photon production
+ — *
e e > v (q) - Ydirect(p) + hadrons ( C= + )} (Al)

in terms of (time-like) photon structure functions for the cases

1
of unpolarized- and polarized-beam experiments.

As shown in Fig. 1, the momenta of two incident beams are

labeled by kl and k2 . The virtual photon momentum is

g=%k, +k Then, the general expression of the differential

1 2

cross section for the process (Al) can be written as

dg _ 3 * —UVEeT
Gy 2 ep(a)eT(a) luvw (A2)

dzdQ 4aq2

where ep(a) is the polarization vector for the final photon
with momentum p and polarization a , z = 2v/q2 = 2p-q/q2.

and
- 4dta (A3)

is the total cross section for ete - ptp~ . wHVPT

is
composed of photon structure functions as defined in Eg. (1.2).
In the case of the unpolarized-beam experiments, the

leptonic tensor is expressed as
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I a9, - KK - q° g, ) (Ad)
where K = kl- k2 . Since the tensor lﬁv is symmetric in
indices 1y and v , we can obtain the informatiocn on ﬁI’ ﬁY, and
ﬁg among four independent photon structure functions.

Let the z-axis be along the incoming beam momentum El'
and the x-z plane be defined by El and the ocutgoing photon

momentum p. Then, two independent linear polarization vectors

of the final photon are given by{3

0 0
0 cosH

e, (Ly =171 e, (=1 5 (A5)
0 -sing

where ep(_L) stands for the polarization transverse to the
x-z plane, and ep{ll) for polarization in the x-z plane.

& is the angle between two vectors El and § . Using Egs.
(A2}~ (A5), and (1.2}, we find that the cross section for the

linear polarization of the final photon transverse to the plane

spanned by the incident beam and the photon momentum can be

written as

U oY) - 2 - -
_do_ = :133 00 z [ WI + —-%-—--—\)—2 sin28 W; + %Sinze W?-;, ]
dzdQ )

(A6)

and the cross section for the linear polarization in the plane

is given by
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U\ ) _ 2 _ _

{—‘N—- = -%— 0y 2 [ WI + %Lz sin28 Wg - —-]2'—-sin26 Wg 1
dzdg
(A7)
Therefore, the structure function ﬁg is obtained by taking
the difference
v\ uYih _
B e = 2+ o, z sine W} (28)
dzdQ dzdQ

In order to.obtain the information on ﬁz , we must use
polarized incident beams, and observe the circular polarization
of the final photon. Consider the case where only the incident
beam 1 is polarized with the covariant spin Sy - Then, the

leptonic tensor in Eg. (A2) is written as

P _ 1. o B
luv T T2t fpvag 51 (A9)
The tensor liv is antisymmetric in indices p and V.

Neglecting electron (or positron ) mass m at high energies,

we can write

o H
s] = 2 0k (A10)
with o, = ¢ 1, expressing the helicity state of the beam.

The right-~ and left-handed circular polarization vectors are

given,respectively, by



- A-4 -

0 0
e (R) = = | %%, e, (L) = /i— coss (Al1)
/2 -sind ' 2 ~sind

Inserting Egs. (A9)-(All) into (A2} and using Eq. (l1.2), we
obtain the following two expressions which extract the structure
function WZ 3 (i) the difference between the cross sections
for observing the final photons with the right- and left-handed

circular polarizations from annihilations of polarized electrons

(positrons) with helicity state Gy and unpolarized positrons

{electrons),
PY g PYo
_dg "1 _ j_do 171 _ 1 Cq 2 2 gy cos6 WI (Al2}
dzd® /R dzdf j L &

(ii) the difference between the cross sections for observing the
right-handed circularly polarized photon from annihilations of
the unpolarized beam and the polarized beam with helicity states

= +]1 and = -1,

91

P Yo.=+1 Pyo,==1
_do |1 - |—de |1 = 3 0y Z 2 cos® ‘7“’1 (A13)
dzdf J R o ‘

91
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