
m Fermi National Accelerator Laboratory 

FERMILAB-Pub-82/18-THY 
February1982 

Quantum-Chromodynamic Predictions for Direct Photons 
+ - in ee Collisions II Analysis of the 

* 
Third and Fourth Structure Functions G: and gi 

Ken Sasaki 

Fermi National Accelerator Laboratory 

Batavia, Illinois 60510 

and 

Department of Physics, Faculty of Education 

Yokohama National university, Yokohama 240, Japan 

* Work supported in part by the Department of Energy 
and bythe Nishina Memorial Foundation. ~-. 

0 Opereted by Univemitier Remarch Awoclatlon Inc. under contract with th. United Statea O~artmmt of Energy 



ABSTRACT 

We analyze in quantum chromodynamics the time-like photon 

structure functions ii; and c'JY 4 which appear in the direct 

photon production in e+e- collisions, using the cut-vertex 

formalism and the renormalization group method. It is found that 

"; in leading order is not renormalized by the strong interactions 

and agrees with the result calculated in the simple parton model. 

The moments of fi"I; are calculated in the leading order. Then, 

the structure function is obtained by inverting the moments. 

The corrections to Gi by strong interactions are found to be 

large at small and large s. 
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I. Introduction 

At very high energies in e+e- colliding experiments the 

direct photon production in such processes as shown in Fig. 1, 

+- * ee i Y (cl) -f Ydirect (p) + hadrons ( c = + ) (l-1) 

becomes measurable. Here the virtual photon with momentum q 

is far off shell (large q 2 >O) and the observed photon having 

momentum p is "direct", which means that it is not a decay 

product of radiatively decaying hadrons. The unobserved hadrons 

have charge conjugation C = +. 

From the above experiments of Eq. (1.11, we can measure 

the time-like photon structure functions, which are defined as 

followsl: 

+[ (-gw+ L$) (-gvT+ $$+(-g”T+ $$I (-gvp+ $+$) . . . . 
(1.2) 

-c-y+ p I.lqv+$Jpv !J uq2 
- p p p.q 

(P.q)2 
) (-gPT+ 9ppT+ppqT) ] ii-f 

p-9 3 

+[(-g UP+ $$) (-gvT+ EY)-(-gUT+ $$) (-gvp+ $?$I 1 q 

where 7 representing anti-time-ordered products. 
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2 
In the previous paper , we have analyzed the structure 

functions iz (= fil ) and ijz (= i?:+q2iz ) in quantum chromo- 
9 

dynamics ( QCD ). Using the cut-vertex formalismSand renormaliza- 

tion group method we have calculated the moments of f?g up to the 

next-to-leading order, and the moments of w: in the leading order. 

In this paper we shall analyze the structure functions 

E; and ii; in QCD with f flavors. 

The information on cl': can be extracted from experiments 
+ - with unpolarized e e beams, where the linear polarization of 

the final photon is measured with respect to the plane spanned by 

the electron ( or positron ) and photon momentum? The structure 

function 4 3 can be obtained by observing circularly polarized 

final photons from annihilations of polarized electrons ( positrons) 

and unpolarized positrons (electrons). In the Appendix, we express 
* 

differential cross sections of efeS+y+ydirect + hadrons ( C= +) 

in terms of photon structure functions for the cases of unpolarized- 

and polarized-beam experiments. 

In the free quark model, i.e., the parton model (PM), the 

structure functions wz and Ei can be calculated by evaluating 

the s-channel discontinuity of the box diagrams of Fig. 2. We 

obtain 

WY 2 
3 PM= e &y 4) ( - s2 (1.3 ) 

and 

i$ PM= a26 4 2$. ln q2 (i2- 2) 
Y 

9 
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where u= e2/4 , z=2pSq/q2, m q 
is the quark mass,and 

6 
Y 

= 3fce4> = 3 c e4 , (1.55) 
i 

the sum i runs over quarks of f flavors . 

Because of the point-like coupling 

of photon to quarks '1; PM does not scale, but grows logarithmically 
2 with q . On the other hand, fiy 3 PM displays Bjorken scaling. 

We now study the behaviors of the structure functions i"y 

and ii; in QCD using the Mueller's cut-vertex formalism3" and the 

renormalization group method. We find that WY 4 maintains the 

nonscaling lnq2 behavior, but its shape changes substantially 

from the simple parton-model prediction. However, wz in the 

leading order is found not to be renormalized by the strong inter- 

actions and to have the same expression as obtained in the parton 

model. The results are very similar to the case of the deep 

inelastic scattering off a photon target ( q2<0 in this case) 

where the space-like photon structure function Wi shows a 

different nonscaling In (-q2 ) behavior from the PM prediction, 

but W; in the leading order is not affected by strong interaction 
5,6i7 

effects and agrees with the result calculated in the parton model. 

In Sect. II we analyze the structure function El;. We 

introduce new bare cut vertices for fermions, gluons and photons - 

which contribute to ci;. (These fermion and gluon cut vertices 

are also applicable to the study of the polarized nucleon produc- 

tion in collisions of polarized e+e- beams.) Then, we calculate 



aevant: 
the one-loop anomalous dimensions of the=vertices. Using 

these anomalous dimensions we obtain the QCD prediction for the 

leading term of 4 WY moments. The structure function 4 EY itself 

is obtained by inverting the moments numerically. In Sect.111 

we analyze !7;. We discuss in some detail why bare cut vertices 

for fermions do not contribute to i: in the leading order. 

Section IV is devoted to a brief summary. 



II. Structure Function !F 4 

First we must find the projection operator which picks up 

the structure function i-f 4 from WVvpT in Eq.cl.2). The 

appropriate operator is 1 
TE -+,,V '-+pT ' and we obtain 

1 
TE -+uv E -+PT 

$J'JPT -i,jY 
-4 (2.1) 

8 
where q- and pu are finite with large q2 and q, . 

Using the Mueller's cut vertex formalism, we now show the 

moments of r; can be written in a factorized form, i.e., the sum 

of terms each of which is a product of a cut vertex and a time- 

like coefficient function. 

A. Cut vertices for Ei 

We'eed to introduce new cut vertices for the analysis of 1 
q. We list in the following necessary (time-like) cut vertices. 

Those vertices for fermions and gluons will also be applicable 

to the analysis of the polarized nucleon production in polarized 
f- ee collisions. 

The flavor singlet cut vertices for two fermions without 

and with one gluon are 

Fig. 3(a): -n-2 
RGbn(P) = iY_YS P- 'abl 

Fig. 3(b): 
Y-Y5 

Rtynb(p,k) = ig.k -n-2 Tib(p+k)- 1 

Fig. 3(c): Ra,b 
Qrn 

Y-Y5 
j(p,k) = -ig 7 -n-2 

T;bP- 1 

The indices a,b refer to a representation R of the color 

(2.2) 



group SU(3) for fermions, ~g is the strong coupling constant 

of the theory, and 1 is fxf unit matrix. These vertices 

obey the following Ward-Takahashi(WT) identities: 

km R ii,;p (p,k) = gT;a,R;:;(p+k) 

k-R;: (p,k) =-gR;b;(p) T;,b I 

(2.3) 

We must add the cut vertices for two fermions with more gluons. 

Vertices with extra gluons become rather complicated, but their 

form is essentially fixed by the WT-identities and the bare 

fermion cut vertices without gluons. Therefore we have not listed 

higher-order vertices. 

The formula for the flavor non-singlet cut vertices for 

two fermions without and with gluons are the same as the singlet 

ones with the replacement of 1 by ( Qih- <e2> 1 1, where ':h 
is the square of fx f quark charge matrix, and <e2> is the 

average quark charge squared. 

The cut vertex for two gluons shown in Fig. 4(a) is 

Rij aB ,(k) = 2 6ij [ ( glag2$ - , g-a9,&k- - glag+k2k- ) 

-n-3 
- (a-8 ) I k- . (2.4) 

We need cut vertices for more gluons. The three gluon vertices 

are shown in Fig. 4(b) and (c). They are given by 



.ij,l ag,K;n(P'q'r) 

= 2ig 
r 

‘ijlg-5 

q- I[ ( glKg2aP--g-,g2aPl-glKg-aP2) - ( Czf+K )I r- 

-[(rlg201-41ar2)P_-(r_g2a-g_olr2)P1-(rlg-,-g~ccr-)P2lg 1 
-K 

+c. ljl’ ’ g1Kg2ag-~+g2Kg-,g1B-g-Kg2~gl~1 r- 

- [r1g2c1g_5+r2g_ag15-r_g2clg~~l g-,1 

+ terms where (i,a,p)++ Cj ,B,s) 
-n-3 

1 - 
r I (2.5) 

where c.. 
111 are the structure constants of the color group. 

.i,jl a.BK;n(P1q,r) is obtained from ,ij,l a5,K;n(Prq,r) as follows: 

(i) change renT3 to - (-p )-n-3; (ii) interchange (i,a,p) ++ 

(l,K,r) in all terms in the parenthesis of Eq. (2.5). 

These vertices satisfy the WT identities, 

q5Rijpl a5,K;n (P,q,r) =igCijmRt:,n(r) 

q5Ritjl a,5K;n (P,q,r) = igCljrnR:iFn( -P) 

and the current conservation law 

rKRijtl 
a5, K;nbgqrr) = 0 

P aRi,jl Cl, 5K;n(Prstr) = 0 . 

(2.6) 

(2.7) 
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Also note that .ij,l aB,K;n(p,q,r) and R~:~~;n(Prqrr) are symmetric 

in interchage of indices (i,a, P) ++ (j,B,q) and (j,B,q) f-f 

(l,k,r), respectively. Cut vertices with more gluons are 

straightforward to construct with resort to the WT identities 

and the current conservation law. 

Finally we introduce the bare cut vertex for two photons 

illustrated in Fig. 5: 

R;&P) = 2[(glag2Sp: - g-,g2Bp1p--g1,g.+p2p-) - ( e++B )) P:n-3 

(2.8) 

The expression of Eq. (2.8) is exactly the same form as the two- 

gluon cut vertex of Eq. (2.4) apart from the factor Aij. 

It will be apparent in the following how these cut vertices 

have been introduced. 

B. Factorization 

We consider a particular graph G contributing to ii. 

Suppose G can be decomposed topologically as shown in Fig. 6(a), 

where large momenta of order q 2 flow through the right-hand 

part T, but not through the left-hand part X. The two parts 

are connected by two quark propagators which are included in h. 

For a while we forget the color and flavor degrees of freedom 

of quarks. Call M' ~" (ktq) the renonnalized right- hand part, 

and we may write 

M;Jk,q) = Z t;,, 
i 

(k,q) M;(k2,k-q,q2) (2.9) 



where the t' are matrices in the Dirac indices and the M'F uv 
are 1 

dimensionless. The rules to find the contributing t1 when 
liv 

q2 + = are as follows: (i) The tensors should be antisymmetric in 

v and v. Hence they have Euva8 and Y5' (ii) They are linear 

in y aside from y5- (iii) Only conserved tensors need be 

considered since slightly off-shell fermions will not inhibit 

current conservation when the momentum q flows through T. 

(iv) Drop all terms with explicit factors of m2 (quark mass 

squared) or k2. (v) Drop all terms with k compared to a. 

The allowed tensors are 

tiv = ielivay+ y5 
q 

tiv= isPvag* +j- y5 
9 q 

Writing 

1 
- Em+ 2 'A' MT ,,(k,q) = M:+(k,q) , 

we obtain for large q, with finite q- and kP , 

M:+(k,q) =iq+y-y5 % MT(k2,k.q,q2) 
q 

where 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

km 
MT(k2,k.q,q2) =M;(k2,k.q,q2) +2q M;(k2,k.q,q2) (2.14) 



NOW we define the additional subtraction dictated tT for M'+ 

as follows: 

h 
tT ML+(k,q) = iq+y-y5~ MT (0,k-q,q2) 

q 
(2.15) 

n 
where k+=kL=O, and k-=k-. 

For the contribution of Fig. 6(a) to ii, we can write 

1 uvE -c-+ -+ PTE d4k 
4 UVPT = c- (27Tj4 

(2.16) 
where 

ITkT (p,k) ITS = -&- d4xd4yd4z e ikz eip (y-x) 

<O T(Jp(x)$r(r)) T(J,(Y)&(OH D> (2.17) 

and r,s are the Dirac indices. 

We forget the renormalization of TiT b,k) for the moment. From 

W- (2.1) and (2.15), Eq. (2.16) is rewritten as 

(2.18) 

with 

Th+(p,k) =+ E-+'~ T;, (prk) (2.19) 

We note the coupling of T", to MT is only through k-. Then 

taking the moments of both sides of Eq. (2.181, we find 



1 
dz z 

0 
n w4= vn E4 n , (s2) (2.20) 

where 

and 

1 -n-2 v =- 
n 2 [ Tt+(P,k) lrs( iY--f5 jrs km 

(2.21) 

E4,+q2) = s 1 dZ zn+l M (0,&q2) 
0 

(2.22) 

with Fi= 2Cq/q2. Eq. (2.20) shows that the moments of wi can 

be written in a factorized form. A bare cut vertex for two 

fermions ( see Eq. (2.2)) is involved in vn of Eq. (2.21). 

At this point vn is the unrenormalized cut vertex. After 

renormalizing the cut vertex, we obtain an equation just like 

Eq. (2.20) except that vn is now renormalized. The renomaliza- 

tion prescription for cut vertices is described in detail 

in Ref. 3. 

Next we consider a decomposition of the form shown in 

Fig. 6(b), where two fermions and an arbitrary number of gluons 

connect the two parts of the graph. suppose Mi . . . 1 ccjrw (kl,-,kj ,k,q) 

is the renormalized amplitude for the right-hand part T. 

"1'" '"j 
are the Lorentz indices of gluons and the divergent 

part, for large 2 q , has all + indices. Owing to the WT identity 

j 
i41 ki- M:a.e+r ,,,(kl,--,kjAq) (2.23) 

is expressed in terms of the amplitudes M:...+,uv with two 
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fermions but fewer gluons. Thus by repeated use of the WT 

identities, MT + .-** f'pv can be related to M' 
lJV 

in Eq. (2.9). 

Therefore, the additional subtraction dictated by tT for 

MI . ..+I~" is determined by that for MT i.lV' The further discussion 

on the factorization for the decomposition shown in Fig. 6(b) follows 
parallel to the case for the decomposition shown in Fig. 6(a). 
We arrive at a formula identical to Eq. (2.20) where the vn 

stands for the contributions from the bare cut vertices of two 

fermions and many gluons. 

So far we have neglected both color and flavor degrees of 

freedom of quarks. Including these degrees of freedom we find 

that the contributions to the moments of 3 4 from the bare two- 

fermion cut vertices and the bare cut vertices for two fermions 

and many gluons altogether can be written in a factorized form as 

s 1 
dz z 2 2 

n( +t g ,a ) + vn 
NS ENS 2 2 

4 n( +I g ,cY) (2.24) 
0 , u I lJ 

where J, and NS stand for flavor singlet and nonsinglet 

contributions,respectively, and 1-1 2 is the subtraction scale at 

which the theory is renormalized. 

Consider now the decomposition shown in Fig. 6(c). The 

left-hand and right-hand parts of the graph are connected by two 

gluons. Let Mibi:(k,q) 
#. 

be the renormalized two-gluon and two- 

photon amplitude. Again we write 

M$;j (k,q) = t;; ,,,,(k,q) MT (k2,k-q,q2) 
$., 

, 
(2.25) 

where tij 
a5 ,Fiv is a possible tensor structure and MT is 

-Y 
dimensionless. The appropriate tensor which contributes to W4 

for large q2 and q, is 9 
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(2.26) 

x CL7 bagKBik.q)2 - qagK gkX(k*q) -g'aqBkK(k*q) +qcrqjkhkK) + 
(q ) 

Multiplying tij 
aB,LJV by +E-+"" , we obtain for large q2 and 

q+c' 

tij o15 -+(k,q) =+ C.+‘” $; ,,v (k,q) 
, I 

2 
sz 6.. q+ 2 

l' (q2) 2 
[(g1ag25k_-g_,g25klk_-glag-5k2k_) - ( cc++@ 11 

(2.27) 
We define the additional subtraction tT for MTtij as 

aB,uv 

t'( + E-+" M$$,(k,q) 1 = t,$-+ (k,q) MT&-q,q2) I 
(2.28) 

Then the contribution Of Fig. 6(c) to ii is 

w; = ‘\,, d4k 1 3(2nj4 [2 E-+ prTij pT,a5(prk) 1 1 Tl t 2 E-+ uv M;&k,q) I 1 

where 

Tij 1r pT,a8(p,k) =rj d4xd4yd4z e ikz eip (y-x) 

~0 ~(Jp(x)A~(~))T(JT(y)A~(0)) 0> 

(2.29) 

(2.30) 

and Ai is a gluon field. Using Eq. (2.27) and (2.28) we may 

rewrite Eq. (2.29) as 
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2 
WY = q+ d4k 2 

4 (q2j2 s 
Tij 

(2a)4 ' 
-+ uB(P'k) 'ij [(g1ag26k-- gw.ag26klkv.- glag+k2k-) 

II 

- ( a-6 )I MT(O,k-q,q2) 

(2.31) 

where 

Tij -+,,6(prk) = + E-+~'T;;,~~ (p,k) (2.32) 

Taking the moments of both sides of Eq. (2.31), we find 

:l 2 
1 dz z" ii= v; Et n(+ ,g2,cr ) 
j 0 I u 

where 
1 +- 
8 

Tij -+,aB (ptk) 

(2.33) 

x2 6ij[(glag26k~-g_,g25klk_-g1ag_5k2k_) - ( a++6 )I k:n-3 

(2.34) 

E4 ,m,( -+ ,g2,a ) = G 1 
I 1-I s 

d"z Znf2 Mr(0,%,q2) (2.35) 
0 

As in our previous discussion we now renormalize G 
vnm The 

moments of Ei is still written in the same form as Eq.(2.33). 

We find from Eq.(2.34) that v: is the contribution from the two- 

gluon bare cut vertices. The form of Eq. (2.33) remains the same 

after we include the contributions of cut vertices with more 

gluons 

Finally we examine the case where large momenta of order q2 

flow all the way down to the real photon vertices, and the 
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decompositions of the types shown in Fig. 6 are not adequate. 

Then we should consider the four-photon vertex of Fig. 7 as a 

whole. Call M $A", PT ('Iq' the renormalized amplitude for the 

four-photon vertex, and we decompose Mu" nr(p,q) into the , 
different tensor structures 

M Li",pT(p*q) = z t;",pT (p,q) M; ( P2,p.q,q2 ) (2.36) 
i 

We only consider the tensor which contributes to ES; for large q2. 

Then t 
P"rPT 

is antisymmetric in interchange of indices p and 

" or P and T (we omit the superscript i of tr 
D", PT 1. 

9 
The appropriate one is 

t u",pT(P,q) = ;2 
(q ) 

[(P'qglJn -PUqp) (P.qg", -P"qT) 

-(P*qgUT -PuqT) (P.qg,n -P"q,)l (2.37) 

1 operating 2 E-+'" on t 
I.l",PT' and for large q2 and q, we 

obtain 

1 
- E-+ 2 lJ" t u”,pT(prq) 

2 
q+ 

Z 2 
(q2) 2 

[ ( g1pg2TP- -g-Pg2TP1P--g1pg-,P2P- ) - ( P+-+T 11 

(2.38) 

When we multiply M pv,pT(p,q) by -& E-+'"E-+~~ , we find 

1 -E 4 -+ uvE 
q:,: 

-+ PT M uv,pT(~rq) = cq212 My(0,zrq2) (2,X9) 
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Comparing Eq. (2.39) with Eq. (2.1), we find for the contribution 

of graphs with the large-momentum-flow configurations shown in 

Fig. 7 to the photon structure function wi ) 

"j;( z,q2) =-+ z2 My(0,z,q2) (2.40) 

The moments are then given as 

s 1 

0 
dz z" k;(z,q2) =+ 

s 

1 

0 
dz zn+2 My(0,z,q2) =E; I 

(2.41) 

The above equation can be rewritten in another form: 

0 
dz 2" ij;:(z,q2) =v;i E;,n($,g2,a ) 

where 

vy= 1 n 

1 
= - 2 E-+ PT+ P- n+l Ry 

n-r,n(p) 

(2.42) 

(2.43) 

and RiT,n(P) is the two-photon bare cut vertex whose expression 

is shown in Eq. (2.8). 

Collecting all these contributions from cut vertices, i.e., 

Eqs. (2.24),(2.33) and (2.42), we find that the moments of q 

is given in the following factorized form for large q2: 

"1 

i 0 
dz z" $(z,q2)= 1 vin Ei 

i I (2.44) 
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where the sum i runs over $I, G, NS, and y. The q2 dependence 

of the structure function i?; enters into the time-like 

coefficient function Ei,nm On the other hand, vk does not 

depend on 2 q , but is dependent on the particle observed. 

Especially we have v;= 1 from Eq. (2.43). The hadronic 

feature of the observed photon is taken into account within vz, 
__ 

VG n' and VNS n' 

C. Anomalous dimensions of cut vertices 

The q2 dependence of E;t,n is governed by the renormali- 

zation group equation (RGE), which has exactly the same form 

as those for the case of the structure functions iq and WT, 

in Ref. 2. The anomalous dimensions which enter into the RGE 

are now those of cut vertices contributing to ii, that is, 

~4~ij(g2) with i,j =J,, G, ?,:,s[g2), and k4yi(g2,a) with 

i=$, G, NS. They are expanded in powers of g2 as follows: 

I i,j=li,, G 

(2.45) Y4yNs(g2) = q;, 2- 
161r~ 

+ . . . 
I 

E4yg2, a) = - ii;;2 -$ + . . . , i=il,, G, NS . 

The one-loop anomalous dimensions for the hadronic sector 

are calculated evaluating diagrams in Fig. 8. The results are 
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-0,n -0,n 8. n 
Y4,$$=Y4,NS= 3 [l- 2 n(n+l) +4c (2.46) 

j=2 

-0,n 
Y4r$G= - 4 f n+2 

n(n+l) 

-0,n 16 n-l 
'4,G$= - -- 

3 n(n+l) 

(2.47) 

(2.48) 

-0,n Q[f- 8 n 
'4,GG n(n+l) +4c -Ll++f . (2.49) 

j=2 

The anomalous dimensions gO,n 
4,111 

and $,n 
4,NS are obtained from 

Eq. (2.47) by replacing the group-theory factor f/2 [= T(R)] 

by the relevant charge factors, with the result 

EO,n= 8 n+2 
4,J, n(n+l) 3 f <e2> 

-0,n 
K4,NS= ' 

ni-2 
n(n+l) 3 f ( <e4, - <e2>2 ) 

(2.50) 

(2.51) 

Also we have in one-loop approximations 

(2.52) 

It is interesting to compare -0,n 
y4,ij with the anomalous 

dimensions O,n 
y4,ij which are relevant for the structure function 

w: in the photon-photon scatterings ( see Eqs. (4.2)-(4.5) in 

Ref. 6). Those y O,n 
4,ij also appear in the analysis of polarized 

electroproductions!' The diagonal elements are the same, i.e., 
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-0,n 
Y4rw = y::;J, 

(2.53) 

-0,n 
‘4,G = 

O,n 
‘4,G 

For the off-diagonal elements we find 

-0,n 
‘4,$G _ ‘t;:$ 

4f 16/3 
-0,n 
‘4,G$ _ ‘::;G 

16/3 4f 

(2.54) 

where 4f [= 8T(R)I and 16/3 [= 4C2(R) 1 are the group-theory 

factors. 

D. Behavior of i4; 

The procedures to solve the RGE now follows exactly parallel 

to the procedures in the case of the structure functions i"; 

and q or the case of the deep-inelastic scattering off the 
1. 1 

photon target . 

We expand the coefficient functions Ei,n (l,g2,cr ) in 

powers of the effective coupling constant s2 . To the lowest 

order, we obtain 

(1, 92, a) = ( 0 I i=G 
I 

(2.55) 

L 
e2 6Ns , i=NS 
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with and 6 NS= 1. 

Using these informations on the lowest order coefficient 

functions and one-loop anomalous dimensions, we arrive at the 

following formula for the moments of fii: 

r1 
1 
Jo 

ds Z" wi(z,q2) = a2 a4 n , (2.56) 

where 

-0,n 
a Q 

4,n (1+ '4,GG I + 
kO,n 

4,NS 'NS 
1 

250 

(2.57) 

with 

( y::;j, + '4,GG 
-0,n ) -0,n -0,n 

( y:;;$y:::G- y4,G$ '4&G) 

(2.58) 

and B. = ll- -+- f* 

If we set all anomalous dimensions except $,n 
4,JI 

and $,n 
4,NS 

equal to zero, we retrieve the parton model prediction, 

s 1 

0 
dz z" $ PM = a2 F4 n ln+ 

, 
where PM 

'4 n =46 n+2 
, ' n(n+l) 

(2.59) 

(2.60) 

The structure function 3 4 itself can be obtained from 

the moments by taking an inverse Mellin transform. 
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The PM formula (2.60) can be inverted analytically, and we 

obtain 

iii PM = a2 P4(z) In-$- 
PM 

where 

P4(z) = 4 6 2-z 
Y 2 

(2.61) 

(2.62) 

which coincides with the expression in Eq. (1.4). The QCD 

formula (2.57), on the other hand, has a complicated n 

dependence and has been inverted numerically. 

In Fig. 9 we present both the QCD and PM predictions for 

7. WY 4 in units of a2 In q2/A2 . We find that the QCD effects 

are large both at small and large z values. Especially, QCD 

predicts that zki vanishes as -l/ ln( 1-z ) for z-t1 

since a 4-n vanishes as l/(n In n) for large n. 
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III. Structure Function w: 

The moments of the structure function i; can also be 

written in a factorized form, i.e., the cut vertices times the 

coefficient functions. we can follow the same procedures as we 

did in Sec. II. Here we only show the results. 

The remarkable feature of i: is that we cannot find the 

fermion cut vertices which contribute to ziy in the leading 3 

order. Consequently, E; in the leading order is not renormalized 

by the strong interactions and agrees with the result calculated 
12 

in the parton model. This fact is exactly analogous to deep- 

inelastic scatterings off the photon target, in which there is 

no twist-2 quark operators contributing to the structure function 

w;, and W: in the leading order is not affected by the strong- 

interaction effects and has the same expression as obtained in 
5-7 

the parton model. 

The appropriate projection operator which picks up WY 3 

from ij in Eq. 1 
UVPT (1.2) is 2gl!Ag2"[glpg2T +glTgzpl 

and we find for large q 2 
and q, with finite q- and p u 

1 -j-glug2\, [ g1pg2T + glrgxp 1 FJUVPT- w: (3.1) 

The bare cut vertex for two photon5contributing to 3 3 

has the following expression: 
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UiT n(P) =Q glFg2rP2 - (g-pg2rPL+g1pg-TP2) p-+g-pg-rPlP2 1 

-n-3 + [ p++T 1 1 P- (3.2) 

The above form is inferred from the fact that when we multiply 
in E . (1.2) 

the specific tenkZ$whlch &ojects out ij< , by glUg2" , 

we obtain for large q, 

SlUls2”{ (gup - * ) (CT”, - 2.2 1 + (Q - Pu% ) (g”p - 2%)) 
p-9 P-q 

1 z- 

P2 
I L9,,s,,PZ - (4-pg2g-Jl +glpg-,P2) p- + g-pg-Tplp2 1 

+ [ P++T 1 I (3.3) 

The bare two-gluon cut vertices have the same form as the 

two-photon cut vertices except for the factor 6. .: 
=I 

-n-3 
+ [ P++T 1 1 p- (3.4) 
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The reason why there are no fermion cut vertices contributing 

to w; in the leading order is the following. Consider again a 

particular decomposition of a contributing graph as shown in 

Fig. 6(a), where two parts are connected by two fermion propagators. 

Call MG,(k,q) the renormalized right-hand part, and we want 

tT$v (k,q) ( tT denoting the additional subtraction operator ) 

to be equal to the additional divergences, which arise when 

q2 + m for fixed k and fixed k.q/q2. Again we decompose 

'ytv (k,q) into the different tensor structures as follows: 

M;Jk,q) = c t;,, 
i 

(k,q) M;(k2,k-q,q2) (3.5) 

where the t' UV are symmetric in indices p and v, this time. 

The candidates for contributing t1 2 
UV 

when q-r;- should 

be conserved tensors with no explicit factors of m2 and k2t 

and with factor Ji dropped compared to $j. The allowed tensors 

are of the same form as those which have appeared in the Mueller's 

paper of Ref. 3: 

tL = r4 
UV -( guv- q&.) - 

q2 q2 
(3.6) 

$" = -+- [ 2guJ q-k +(y,&+ Y,ku) q2 - (Yuqv + Y,qu) k-q 

- (k,q, + k&J d I + 
(q ) 

Multiplying tL UV and by glug2" I we obtain for large q2 

and 4, , 
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9142 Y- 

q2 w 

2 
g?g2" tu" 

1 k- 1 
- 7j--( Y1q2 + 9lY.J ) - - 

2% q2 

(3.7) 

Therefore, when we attach the left-hand part A to 

glVg2"[ t' M:"(k,q)], and perform the k-integration and 

renormalization of the h-part, the resulting terms are proportional 

to s,/s2 and/or q2/q2. Thus the contributions from decompositions 

of the type shown in Fig. 6(a) to the structure function ky are 

of the order l/q2 at most. In other words, there exist no 

fermion cut vertices which contribute to f: . 

Another support for this conclusion comes from the direct 

calculation of a diagram as shown in Fig. 8(c) where the bare 

gluon vertex Rij 
ctB,nck' of Eq. (2.4) is replaced by "ij 

p,,n(k] 
of Eq. (3.4). If there exist fermion cut vertices contributing 

to "j; , then ultraviolet divergences would appear in the 

calculation of such diagrams. But the actual calculation gives 

no ultraviolet divergence. 
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Following the same procedures as we did in Sec. II, the 

moments of ii; can be written in a factorized form, 

s 1 

0 
dz z" k;Cz,q2, = Z v; n Ef i'I (3.8) 

where the sum i runs over G and Y only, and vi n=l . I 
The q2 dependence of E$,n is governed by the RGE. Since 

there exist no fermion cut vertices and hence no mixing anomalous 

dimensions of order 2 e , the leading term in the moments of ci; 

does not grow as 1nA but is constant. 
*: 

Solving the RGE we 

obtain the QCD prediction for the moments of i;, 

b 
1 '-i 

0 
dz z" ij;(z,q2) = a2.iii n + O( ' 

3PY In q2/A2 
) (3.9) 

where is the leading term which appears in the expansion 

of E: ,(l, i2,cf 1, i.e., I 

E;Jl, G2, cy ) =--& 6 B -3ny + O( S2) 
161~~ ' ' 

(3.10) 

Evaluating the box diagrams in Fig. 2 , we obtain 



g3ty = 4 -- 
n-l 

We can easily invert the leading term of the moments of 

Eq. (3.9) analytically. We find that the leading term of w; 

coincides with the result (1.3) of the parton model calculation. 

This fact means that ii; in the leading order is not renormalized 

by the strong interactions. The origin of this interesting 

result can be traced back to the fact that we could not construct 

the fermion cut vertices which give leading cotributions to i;. 
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IV. Summary 

In this paper we have analyzed in QCD the time-like photon 

structure functions WY 3 and z1; which can be observed in the 

direct photon production in e+e- collisions. We have used 

the Mueller's cut vertex formalism and have introduced new 

fermion, gluon and photon cut vertices. 

The results we have obtained are very similar to the case 

of the space-like photon structure functions WT and Wi in 

the photon-photon scattering. The structure function i?;: shows 

the same nonscaling In q2 behavior as predicted by the parton 

model, but its shape changes substantially from the PM prediction. 

The QCD effects are large both at small and large values of 2. 

On the other hand, ii; in the leading order is found not to be 

affected by strong interactions and to have the same expression 

as obtained in the parton model. 
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FIGURE CAPTIONS 
+- 1. Direct production of photons in e e collisions. The observed 

photons are assumed not to be radiative decay products of 

hadrons. 

2. Box diagrams for the direct photon production. 

3. The cut vertices for two fermions contributing to q. 

(a) RGbn(p). (b) Rajfb(p,k). 
Jl,n Cc) Rarbj(p,k). 

Jlrn 
Solid lines and curly lines represent quarks and gluons, 

respectively. 

4. The cut vertices for gluons contributing to q. 
. 

5. The cut vertex for two photons contributing to G$ 

6. Examples of decomposition of the amplitude for direct photon 

production in e+e- annhilation: 

(a) involving two fermions. 

(b) involving two fermions and many gluons. 

Cc) involving two gluons. 

Wavy lines represent photons. 

7. The amplitude occurring in direct photon production, where 

large momenta of order q2 flow through the blob. 
-0,n -0,n 

8. Diagrams for COmpUting (a) Yi;;$ and Y4,NS ' (b) y4,JIG 

Cc) Y;;;$ i 
-0,n 

(d) Y4,GG - 

9. The structure function 2%: in units of a2 In q2/A2 as 

predicted by (a) QCD in the leading order; and (b) the 

parton model. We have chosen four flavors for both cases 

and have assumed that A21 A2 PM * 
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APPENDIX 

We present the expressions of differential cross sections 

for the direct photon production 

+ - 
ee + Y*(s) + 'directcP) + hadrons ( C= + ) (Al) 

in terms of (time-like) photon structure functions for the cases 

of unpolarized- and polarized-beam experiments: 

As shown in Fig. 1, the momenta of two incident beams are 

labeled by kl and 
k2 * 

The virtual photon momentum is 

q=k l+k2* Then, the general expression of the differential 

cross section for the process (Al) can be written as 

do 3 -= 
dzdR 4aq2 

u. z sn(a)Ez(a) luvVvpT C-42) 

where cP (a) is the polarization vector for the final photon 

with momentum p and polarization a , z = 2v/q2 = 2P.S/S2, 

and 

u. = 
4na2 

3q2 
(A3) 

+ - is the total cross section for e e + - 
'UP . ijl.l”P’ is 

composed of photon structure functions as defined in Eq. (1.2). 

In the case of the unpolarized-beam experiments, the 

leptonic tensor is expressed as 
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1” = - 1 
U" 2 ( quqv - KuKv - q2 g,,\, ) (A41 

where K = kl- k2 . Since the tensor lU 
U" 

is symmetric in 

indices u and v , we can obtain the information on iq ii;, and , 
i?; among four independent photon structure functions. 

Let the z-axis be along the incoming beam momentum $1, 

and the x-z plane be defined by 21 and the outgoing photon 

momentum i5. Then, two independent linear polarization vectors 

of the final photon are given by I3 

c 
E&) = 1 , ;) 

0 

Ep( 11 1 = ye 

0 i ) -sin8 
(A51 

where EP tl, stands for the polarization transverse to the 

x-z plane, and Ep( II ) for polarization in the x-z plane. 

8 is the angle between two vectors 21 and s - Using Eqs. 

(A2)-(AS), and (1.2), we find that the cross section for the 

linear polarization of the final photon transverse to the plane 

spanned by the incident beam and the photon momentum can be 

written as 

(1) 3 1 v2 = - u. z [ iq + -- aa 2 
q2 

sin20 KY 31 
(A61 

and the cross section for the linear polarization in the plane - 

is given by 
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(A7) 

Therefore, the structure function $ is obtained by taking 

the difference 

[ ,~~~;"' - fd~~~) I') = + u. z sin28 it; (A8) 

In order to obtain the information on 3 4 , we must use 

polarized incident beams, and observe the circular polarization 

of the final photon. Consider the case where only the incident 

beam 1 is polarized with the covariant spin sl . Then, the 

leptonic tensor in Eq. (A2) is written as 

lP 1. 
U" 

= -1 Euva@ dq 
2 (A91 

The tensor lP TV is antisymmetric in indices u and v. 

Neglecting electron (or positron ) mass me at high energies, 

we can write 

sY = 2 clky (AlO) 

with ul=+l, expressing the helicity state of the beam. 

The right- and left-handed circular polarization vectors are 

given,respectively, by 
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0 
1 EP(L~) = - case 

fi -i 
i i -sin0 

(All) 

Inserting Eqs. (A9)-(All) into (A2) and using Eq. (1.2), we 

obtain the following two expressions which extract the structure 

function W1; : (i) the difference between the cross sections 

for observing the final photons with the right- and left-handed 

circular polarizations from annihilations of polarized electrons 

(positrons) with helicity state 01 and unpolarized positrons 

(electrons), 

(d~;~)~l - (d~~~)~l = + u. z 2 u1 c0se ii: U+12) 

(ii) the difference between the cross sections for observing the 

right-handed circularly polarized photon from annihilations of 

the unpolarized beam and the polarized beam with helicity states 

u1 = +1 and u1 = -1, 

(,~;~)~=" - f, ,~;~)~=-' = + u. z 2 c0se El; (Al3) 
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