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ABSTRACT 

We consider the explicit connection between linear 

representations of supersymmetry and the nonlinear 

realizations associated with the generic effective 

Lagr ang ians of the Volkov-Akulov type. We specify and 

illustrate a systematic approach for deriving the 

appropriate phenomenological Lagrangian by transforming a 

pedagogical linear model, in which supersynunetry is broken 

at the tree level, into its corresponding nonlinear 

Lagrangian, in close analogy to the linear u model of pion 

dynamics. We discuss the significance and some properties 

of such phenomenological Lagrangians. 
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I. INTRODUCTION 

A realistic theory employing supersymmetry principles 

should ultimately include a satisfactory treatment of the 

breaking of supersymmetry. A great deal of work has been 

devoted to the study of models for supersymmetry 

breaking, I,2 the super-Nambu-Goldstone mechanism, 2 low 

theorems, 3 4 energy and considerations of dynamical schemes. 

Moreover, the universal nonlinear realizations 

characteristic of broken supersymmetry and their Lagrangians 

were constructed early on in the development of the 

theory. 5,6 Specifically, Volkov and Akulov5 have introduced 

the nonlinear supersymmetry transformation laws and 

Lagrangians involving the massless Goldstone fermion 

associated with the process, as well as its general coupling 

to spectator fields (which do not play a Nambu-Goldstone 

role in the theory) of arbitrary spin and multiplicity. 

Ivanov and Kapustnikov7 have extended this construction 

by providing transformation laws which connect linear 

representations with the nonlinear realizations of 

supersymmetry, in the framework of the classic general 

discussion of coset realizations by Coleman, Wess and 

Zumino. 8 (Since, in most respects, the concepts involved 

were introduced a dozen years ago in the context of chiral 

dynamics, 8rg we will be outlining direct analogies to soft 

pion physics and the sigma model 10 where appropriate.) 
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EoEek I.1 has provided examples of constraining the 

fields of linear theories to eliminate all spectator fields 

and then reexpressing these systems into that Volkov-Akulov 

Lagrangian which involves only the Goldstone spinor--this 

corresponds to eliminating the u field in the nonlinear 

sigma model to derive the nonlinear TI Lagrangian. 

Nonetheless, it should be interesting to retain all of - 

the original degrees of freedom in a given linear, 

renormalizable theory and to fashion it into its equivalent 

nonlinear, nonmanifestly renormalizable, effective 

Lagrangian of the Volkov-Akulov type, by pruning out only 

the superfluous fields present. This effective Lagrangian 

should be equivalent to the original one, and, in the 

framework of broken supersymmetry, it should produce the 

same tree level S-matrix amplitudes. In this paper we 

provide computational status to this program and illustrate 

our procedure on a simple prototype model which retains all 

the essential features of the general case. 

Phenomenological Lagrangians isolate the Goldstone 

degrees of freedom in a system with broken symmetry 9,8 and 

generally provide a heuristic guide to its low energy 

behavior. For instance, in the case of chiral symmetry 

breaking, effective Lagrangians summarize the low energy 

structure derivable from current algebra. An example of 

their relevance in broken supersymmetry is the interesting 

suggestion 12 that, if quarks and leptons were to be 

considered as composite objects, they could be protected 
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from acquiring too high a mass by the Nambu-Goldstone 

mechanism. Specifically, the observable fermions could be 

thought of as pseudogoldstone fermions of dynamically broken 

supersymmetry, taking their relatively small mass from a 

weak explicit breaking of supersymmetry associated with the 

low energy gauge interactions--an analogue of the 

pseudogoldstone feature of the pion in chiral symmetry 

breaking. At very low energies the supersymmetric 

interactions would be invisible because of Adler decoupling. 

The intermediate energy phenomenology of this model may be 

studied conveniently through the suitable effective 

Lagrangian of the Volkov-Akulov type, even in the absence of 

the equivalent linear theories. 

Our paper is organized as follows. We first review, 

discuss, and clarify some known general features of 

supersymmetric phenomenological Lagrangians (Section II). 

In Section III, we describe how to formally convert a linear 

model in which supersymmetry is broken at the tree level to 

its equivalent nonlinear Volkov-Akulov Lagrangian, by tuning 

out any superfluous fields involved. We explicitly 

illustrate the procedure by a two dimensional (super 03) 

scalar multiplet; we wish to stress however that no 

essential complications are expected to arise in four 

dimensions, save the proliferation of fields and a marked 

increase in tedium (as dramatically exemplified in 

Ref. [ll], which works out the same model in both two -and 

four dimensions). In contrast to the four dimensional 
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case,i'2 two dimensions afford a linear model with a stable 

tree-level Nambu-Goldstone solution, which only contains a 

real scalar field and a Majorana spinor, and succinctly 

displays the features of semiclassical supersymmetry 

breaking with a minimum of complication. In principle, the 

procedure is valid for an arbitrary number of dimensions and 

size of multiplet. 

In the next section (IV), we compute a few tree 

amplitudes for both the linear and the nonlinear theories to 

verify that they coincide, in accord with the 
8 phenomenological Lagrangian equivalence relation: the tree 

approximation to the S-matrix is identical for both 

(nonlinearly) equivalent theories. The amplitudes evince 

Adler decoupling of the Goldstone particle at low energies, 

as dictated by the supercurrent algebra low energy 

theorems, 3 which do not have to depend directly on a 

particular Lagrangian realization. For the purpose of 

illustration, we work out such a simple theorem for 

spinor-scalar scattering (analogous to the Adler-Weisberger 

relation for nN scattering) and thereby reproduce the low 

energy behavior of the amplitude computed from the 

Lagrangian. 

In Sect. V we briefly summarize our procedure and 

discuss its relevance to the breaking of supersymmetry. We 

conclude by illustrating how to apply the procedure to 

extended supersymmetry and constrained superfields. 
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Some conventions, formal manipulations, and technical 

details are elaborated in the Appendix. 

Throughout the paper we will be using Majorana spinors 

for formal convenience, but conversion to Dirac spinors 

should present no difficulty: QDirac=($Maj+i$Maj)/fi. 

Indices are suppressed when obvious. 

II. GENERAL PROPERTIES OF THE NONLINEAR 
SUPERSYMMETRIC LAGRANGIANS 

The Volkov-Akulov nonlinear realization of the 

supersymmetry albegra contains one massless spinor Xa, which 

transforms inhomogeneously and nonlinearly under a spinorial 
- variation of constant parameter E: 

6Xa = fsa - + auxa Zyph (2.1) 

f is a constant of dimension 2 in 4 spacetime dimensions 

(and dimension 1 in two dimensions) which parameterizes the 

breaking of supersymmetry: <6Xa> = fsa --it is analogous 

to the pion decay constant f,,. It can be supressed and then 

reinstated, at any subsequent stage of our discussion, by 

dimensional analysis. 

Of course, X is a linear representation of the unbroken 

Poincar6 subgroup of the full supersymmetry group. No other 

fields are needed' to make the realization faithful. The 

commutator of two infinitesimal variations (2.1) is the 

translation dictated by the supersymmetry algebra: 

[6',6] Xa = 2i E'y E apXa . 11 (2.2) 
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In order to find a supersymmetric Lagrangian for this 

fermion, we construct invariants, up to a divergence, under 

variations (2.1). Motivated by an underlying superspace 

transformation considered below (2.18), it is useful to 

define the 4x4 matrix: 

wu z 6 9 
;+‘L !J 

where T u 

and w-lv = 6” - T *+ T ‘T “+ 
v 11 II )J K ..’ 

(2.3) 

(2.4) 

(2.5) 

The series in T terminates with T4, since X(xX)2=O. The 

determinant of the 4x4 matrix WE transforms as a total 

divergence under (2.1). 

1~1 E det WpoZ 1 + Ti +i (TL Tz - Tu'TJ + O(T3) f O(T4). 

(2.6) 

To see this, observe that: 

6W; = 5, aKwuY+ avcK wpK 

where 5, E 3 zy,x , 

(2.7) 

(2.8) 
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= /WI w;l” (cKaKwpY+ wllavs,) 

= aK(cK/wl) . (2.9) 

The simplest supersymmetric Lagrangian describes a massless 

fermion self-interacting through 4, 6, and 8-Fermi' terms: 

i2 Iw/ = - g . =_- +$XpX +... + O(f -6) . 

Note the positive vacuum energy f2/2 which also signals 

supersymmetry breaking. 4 The supercurrent is easily derived 

from (2.10) by Noether's procedure: 

5 = i f y,X W;'"lWl = i f yu,A +... (2.11) 

and, by its definition, it is conserved through the 

equations of motion: 

2 auk w-lpv IwI + A ap(w-luv~wl) = 0 . (2.12) 

The supercurrent couples the Goldstone spinor to the vacuum 

with strength f:2'4 

<oIs;I 

Also, integrating 

anticommutation that 

Ab, = i f y;' . (2.13) 

(2.11) I one may verify through 

the vacuum energy is indeed f2/2, as it 
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should4--a fact which could be obscured if the constant term 

in the Lagrangian (2.10) were carelessly dropped. 

We shall call fields of arbitrary spin not involved in 

a Nambu-Goldstone role spectators and denote them 

generically by p. (They correspond to c or, in general, to 

"radial" degrees of freedom in chiral dynamics.) Their 

transformation law is a homogeneous, (A-dependent) 

translation by 5: 

6p = - $ app :~~‘h . (2.14) 

These transformations also satisfy the algebra (3.2). _ 

Any local function of spectators transforms as a 

divergence, provided that it is weighted by IWI: 

&(F(p) Iwl) = aK(~KIwI)F(p) + IwI 5Ka,F(p) 

= a,(EKIWIF(P)) . (2.15) 

Derivatives of either X or spectators do not transform 

simply. However, the following covariant derivative may be 

defined for convenience: 

vu E w;lpa” . (2.16) 

Then it is straightforward to verify that covariant 

derivatives of both X and p transform like spectators: 
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6 (vpp) = w;lua”(cKaKp) + a”p (sKaKw;lu-w;lpaKc”) 

= 5" aKwuO) (2.17) 

Clearly, any Lorentz scalar function of P, VP, and VA 

multiplied by an overall IWI may enter into a 

supersymmetrically invariant nonlinear Lagrangian: its 

particular form will depend on the features of the 

associated linear model, or on the supercurrent algebra to 

be realized. 

The reader may have noted the formal analogy of Wu V 

with the Vierbein of General Relativity in the 

transformation properties, the covariant derivatives, and 

the construction of invariants. This is symptomatic of the 

origin of the above construction in a superspace 

translation516 with a local parameter -x(x)/f: 

8’ =e-yl. (2.18) 

The Jacobian of this transformation, 

J(x,e,x(x))=a (x*,el)/a (x,e), is an 8x8 matrix which 

transforms the covariant vectors: 
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Jb P’ 
v a’ 

a I 
aGa 

a - 
agb 

It is directly evaluated in 4x4 block form: 

Jb P’ = 
v a’ 

6P - + avXype 
avXa - 

-- 
V f 

+ (yh)b gb a 

(2.19) 

(2.20) 

Its determinant is also directly reduced to the determinant 

of a 4x4 matrix, through standard block reduction: 

det J = det 6: 
[ 

- + a,xYu8 
+ 3 avXypA 1 

= det w,i6; - $ vKXype) 

= IwI det(6; - + vKXype) . (2.21) 

Significantly, to zeroth order in 8, this is just the V.A. 

determinant; so that the V.A. Lagrangian (2.10) arises 

simply from the following superspace volume component 

f2 
/ 

2 
-- 

2 
d4x’d4e’ q . (2.22) 
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Since all expansions terminate after the fourth order 

in any spinor, the supertransformation (2.18) may be 

inverted completely, iteratively in e* and A(x'). 

Suppressing f: 7 

x!J 
= x’ ~ + iZi(x’)y,el + 3*~,a;x(x~)I(x~)y,e~ +... 

+... (2.23) 

The Jacobian of this transformation may be obtained 

indirectly, but easily, by inverting (2.20), as a function 

of the unprimed coordinates. This is the more useful form 

that we will rely on in the next section. 

On the basis of supertranslation (2.18), Ivanov and 

Kapustnikov' noted that any linear superfield @(x,6) may be 

split into a completely decoupled array i of spectator 

fields: 

i(x,e,x(x)) z @(XI ,e’) = @(x-iX(x)ye,e-A(x)) . (2.24) 

Indeed, the entire array transforms as a spectator. This 

follows by use of (2.1) and the transformations of the 

components of @, summarized by a supertranslation of x',B': 
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fii(x,e,A(x)j = $1~; + iFyu8' - i6Xyu3,8' + E-6x)-a(x;,e’) 

= i(F-&X)y,8-iEy,A 1 a;~(x~,e~)+(~--GA) & O(x',eO) 

= -i sy,A 'd ln-iauXyKea*K-auz4 & 4(x',el) 

= s,a%(x,e,x(x)) . (2.25) 

The components of # do not transform into each other: they 

comprise the fully reduced representation of the Poincar6 

subgroup still acting linearly on all fields. 8 Consequently,. 

the supersymmetry of the theory involved will not be 

affected if we constrain any components of @ to be equal to 

a constant. In particular, A--which so far has been set 

apart from the other fields and appears as an extraneous 

parameter--can take the place of the spinor field involved 

in the breaking of a spinor charge. This possibility proves 

useful in the derivation of effective Lagrangians described 

presently. 

III. TRANSFORMING THE LINEAR LAGRANGIANS 
INTO THEIR NONLINEAR EQUIVALENT. 

Consider the following toy model in two dimensions, 13 

involving a real scalar A and a Majorana spinor $: 

Rlin = + au&i + ; i&J, + fAq$ - $2(A2+l)2 . (3.1) 

This is invariant under the supersymmetry transformations: 
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GA=;+ , 6$=[f(l+A2) - igAls (3.2) 

where f is a constant of dimension 1. The v.e.v. of the 

scalar is <A>=0 and hence the spinor is massless, in 

contrast to the scalar, which has mass m= Jif. Supersymmetry 

is thus broken at the tree level: <&$>=fs, and the vacuum 

energy density is f2/2. The supercurrent is: 

S LJ = [if(l+A2) - 8,Ay"ly,$ (3.3) 

Note that, in contrast to regular symmetries, a 

potential of the form (A2-1) 2 would not break supersymmetry. - 

hour particular model it turns out that supersymmetry breaking is not 

14 invalidated by radiative corrections . Even if it were, this would still 

not be atissue here. We wish to stress again that our semiclassical 

reasoning is illustrative of the situation prevailing in an 

arbitrary number of dimensions, including four, whether 

supersymmetry is broken or not. (Still, the nonlinear 

Lagranians will be useful only when supersymmetry is broken. 

We discuss this later). 

We proceed to transform this model to an equivalent 

effective Lagrangian of the general type outlined in the 

previous section. However, since the algebraic aspects of 

supersymmetry are significant at this stage, we must restore 

(3.1)-(3.2) to a form in which the transformations (3.2) 

close into the sypersymmetry algebra without use of the 

spinor equations of motion. We thus regress to the original 
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superfield formulation of this theory: 

S=j. d2xLlin = $d2x dgd6 ; sD4' - 2f(;3+4') 1 (3.4) 

' + $$yJ, + v - Ff(l+A2) + T$fA 
I 

where @(x,6) = A +gJI + ?j ??eF (3.5) 

and 

m(x,e) = 0(xu+iEyu6,6+s) - acX,e) 

D z Z& - iy6 

(3.6) 

(3-7) 

In component form the supertranslation (3.6) reads: 

&A=:$ 6$=(F-irA)s GF=-i?r$ (3.8) 

These transformations close into the supersymmetry 

algebra. The "physical" formulation (3.1), (3.2) follows by 

simply eliminating the scalar auxiliary field F through its 

algebraic equations of motion: 

F=f(l+A2) (3.9) 

Observe that <F>=f. 

Suppressing f, we first evaluate the components of Q as 

defined through (2.24) and (3.5): 
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(3.10) 

i = A - i;$ + ;xA 

Ji = $ - AF + i?AA + + y$iiA 

F = F+ix,Zf$ - a2A F 

I I - 
It is straightforward to check that (A,$,F) indeed transform 

as spectators. The transformation (3.10) may be easily 

inverted to yield the following expressions (involving 

derivatives of A, in contrast to 3.10): 

- I 
A=A+X$+$A 

$ = $ + ;A - iyA)i - iX;XJX - iy,AaU(X$) 

- Xxapi;av~ - Xy,yvauxav(X$) 

where (cf. 2.6): 

IWI = 1 - iXJX - r s ‘~4 pva ‘xy5avx !J 

Now since the supersymmetry transformations of 

(3.11) 

(3.12) 

(A,LF) 

are not coupled together, any or all of them may be set 

equal to a constant consistent with the vacuum values of the 

fields on the right hand side of (3.10). If, for instance 
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,&J, ‘;=I; the original fields (A,'b,F) are nontrivially 

constrained (as in the nonlinear u-model) and 

eqs.(3.11),(3.4) reproduce the expressions of Ref. [ll], the 

analogue of nonlinear pion effective Lagrangians. 9 * If, on 

the other hand, we do not wish to constrain away any 

original degrees of freedom, we could still set p=O (only) 

without any loss of dynamical information. This is because 

the "angular" degree of freedom is already carried by the 

Goldstone field 1, and $ corresponds to the arbitrary origin 

in "rotation" space and not to an independent degree of 

freedom. J,=O in (3.10) provides an equation for X in terms 

of (A,JI,F) : 

A = G $ + ; JJ, ijcG$ 1 (3.13) 

where G is defined implicity in terms of (A,$,F): 

(F - i gA)G = 1 . (3.14) 

As a result, (3.10) and (3.11) reduce to the invertible 

transformation connecting (A,$,F) with (;,A,;): 

*We note in passing that the constraints of Ref. [ll] as 
erpressed in Eq. (9a) obscure the essential irrelevance of 
@ =c to the breaking of supersymmetry. It may, or course, 
be imposed in the supersymmetric a-model without 
supersymmetry breaking. It is also, for c=o, strictly a 
consgquence of the following alternative we might propose: 
l/Z_DQD@20, which has components A= l/2 44, 
F=iJIJ$+F +aA*aA, and (F+iyA)$=$. Thg secona compQnept may 
be solved for F; the solution F=l-i$J+-l/2$$9 $a ~+WWW 
which breaks supersymmetry (<F>=l) is chosen gy the third 
component, which otherwise doesn't seem to eliminate any 
further degrees of& frsedom. These constraints appear 
remarkably simpler (A=O,F=l) in the reduced realization. 
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i=A - $(G - 5 EG)$ 

A = G$I + ; Gii$$cGJ, 

; = F -iauTyu(G$ + + Gy$TcG$) - + $gGJ, 

A=A+;XX 

$ = i ii JX XX - iTAX f FX 

One might, at the expense of tedium, substitute (3.16) 

into (3.41, to obtain the nonlinear Lagrangian. We note 

however that it is far easier to work with superfields. To 

illustrate the essential redundance of $ discussed above, we 

retain it in the rest of this section and only drop it in 

the end; we will exemplify in the next section how its 

presence doesn't change the theory. 

We first observe that, from (2.241, 

a(x~,e~)=i(x,e,x(x)) , d2x'd26* = d2xd261J(x,6,A(x))I, and D' 

is expressible in terms of the unprimed coordinates, given 

J-l (x,6,X(x)). As a result, (3.4) with its integration 

inear 

the 

variables primed is direct 

Lagrangian with unprimed 

inverse of (2.20) is just: 

,lY recast into the non1 

variables. Specifically, 

(3.15) 

F = FlWl - a2i F - Xyuyk3,&,,x. (3.16) 
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(3.17) 

where: (6; + < - iavXy%)vNn=6: (3.18) 

so that the "supervierbein" VpKis easily solved to be 

v K= (w-lj: + i (W -1 
u fp v,TiyPe + ok , 

In consequence, 

(3.19) 

a ,,I z-m 

aB1 
iy"(ee-Aaa' = IJ 

(1 - iypeavX$) k - iype$aK. 

(3.20) 

We further observe that 

$a" = vu - iGyKVUAVK + o(e2) (3.21) 

and IJI = lwl[l + iiiy*VA - p E'~V~X~~V~AI . (3.22) 

The superfield integrands are 
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-. + &j = iTyuevuY(a"A + a,S;w + Te’eF 

+” 
2 iTyu(V,$ + VuAF) + i2 + (V$ + v,xJ1,2 1 (3.23) 

-2 (g + 5) = -2[;\ + $ + ?$i(l+i2) + g (;(1+,2)-~$$ (3.24) 

Inserting the above into (3.4) with primed dummy 

integration variables, changing variables from primed to 

unprimed, integrating out e,3, and eliminating F through its 

equations of motion, which are again F=(l+i2) , we are led to - 

the following V.A. Lagrangian: 

S =l‘d2x/W( + Vuk& 

. z 
+ 3 JIy.vJ, + A& 

- ; (l+;;2)2+ (; + &3)sLIvV>y5VyA 

+G (V,Xh 2 

+ iTy*VA(l+i') + s""$y5VuAPyA + p s'"Vuxy5VvA 1 . 

(3.25) 

We may now set $=O and retain only the first line of 

this nonlinear Lagrangian, which has the general form 

restricted in the previous section, and is thus manifestly 

supersymetric. Naturally, if we set A=0 instead, we 

reproduce (3.1). 
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IV. TREE AMPLITUDES AND LOW ENERGY BEHAVIOR 

The nonlinear Lagrangian derived in the previous 

section: 

= 1~1 
[ 
; Vu&'; - 3 f2(l+A2)2 + + (A + $ )sUvVuxySVvA 

I 

+ ii2@A + ?.& 
4f2 

+... 

(4.1) 

is equivalent to the linear one (3.1) via the nonlinear 

redefinitions (3.15), (3.16)- and could thus be transformed 

back to it. After the F'S are eliminated, the 

transformations start with a linear term (A=$+...,i=A+...). 

As a result, the loop expansion parametric weight of the 

fields contributing to a tree amplitude is the same for both 

linear and nonlinear models. 8 Hence the S-matrix amplitudes 

(i.e. on-shell) for the two theories coincide at the tree 

level--" the phenomenological approximation". 9 This is easily 

seen in a few simple amplitudes; ($,A) and (Ai) serve as 

equally valid interpolating fields for the massless fermion 

and the massive scalar (m=fif). 

The tree approximation to the decay of a scalar to the 

fermions (in its rest frame the fermion momenta are 

*m/2=+f/fi) is the same for the linear and the nonlinear 

models respectively: 
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<fl(p)f2(-p) I~d2xfhNWA(x) IS(O)’ = 

= <Ol $ (U(-p)u(p) - G(p)u(-p)lO> = if (4.2) 

<fl (p) f2 t-p) 1 ld 2 2V x f apXy5avGIs(o)> = 

= co1 $ (U(-P)U(P) - ii(p)u(-p))lO> = if (4.3) 

Conventions and normalizations may be found in the Appendix. 

In fact, the same amplitude is also obtainable from (3.251, 

i.e. even before the elimination of $. In that case, ;-A 

would have no kinetic term, while $+A would, and therefore 

the latter combination would be the interpolating field for 

the massless fermion. This leads to an amplitude: 

sll” - - 

+ 7 a,,Ay5avAA + 
L 

+ aYi+cpvavXy5 
( ) 

3 T api I IS(O)> = if 

precisely as before.* 

(4.4) 

*If the term 20 in the potential of (3.4) were absent, 
supersymmetry would break neither in the linear, nor in the 
nonlinear model, as evidenced in the vacuum energies. 
Moreover (3.15)-(3.16) would not, in this case, relate the 
fields through a linear term plus multilinear corrections, 
and the free amplitudes of the two models would not 
coincide. For instance, the nonlinear model would clearly 
not have a scalar-bispinor coupling, in contrast to the 
linear one, and thus the effective Lagrangian would not be 
"phenomenological" in the above sense. 
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A more intricate "conspiracy" of diagrams is observed 

in the identical tree amplitudes for fermion-fermion 

scattering. For example, in the center of momentum frame 

(all fermions carry energy p), the forward amplitude (in two 

dimensions the only alternative to this is backward 

scattering) is given by boson exchange in the linear model 

(Fig. 1); and by both boson exchange (Fig. 1) and four-Fermi 

contact interactions (Fig. 2) in the nonlinear 'one. The 

linear model leads to the tree amplitude: 

f2 1 
c 

1 
2- 

> 
= 4p2/m2 

m2-4p m2+4p2 l-16p4/m4 
(4.5) 

The boson exchange diagrams for the nonlinear model give 

1 
7 

1 - 1 = 64p6/m6 
m2-4p2 m2+4p2 l-16p4/m6 

(4.6) 

The contact coupling contribution (Fig. 2) 

4 . 1 . 2p2 
4f2 

= 4p2/m2 

Thus the overall tree amplitude (4.6) 

nonlinear theory is 

4p2/m2 

l-16p4/m4 

is 

(4.7) 

+ (4.7) for the 

(4.8) 

identical to (4.5). Technical details are provided in the 

Appendix. The amplitudes vanish for p+O. Similar results 

hold for backward scattering. 
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Ai a last example, we compute the fermion-scalar 

scattering amplitude. In the linear theory only the tree 

diagrams of Fig. 3 a,b contribute, while in the nonlinear 

model there is an additional contribution from a contact 

term (Fig. 3~). Consider forward scattering in the boson 

rest frame (fermion momentum/energy w). The tree amplitude 

for the linear model is: 

2f2m 
( 

1 1 
) 

-4w 
m(m+2w) - m(m-2w) = l-4w2/m2 

(4.9) 

The amplitude for the nonlinear model is: 

m3LlJ2 2 
-2 - 1 1 -4W 

f2 ( m(m+2w) - m(m-2w) ) 
-2 mw = 

f2 l-4w2/*2 
(4.10) 

The amplitudes coincide and vanish as w+O (Adler decoupling: 

observe that in Lagrangian (4.1) the interactions of X are 

all given by derivative couplings). The amplitude for 

backward scattering is identically zero. 

The low energy behavior of amplitudes like the above 

may alternatively be determined without reference to a 

particular Lagrangian, through current algebra techniques. 

As an example, we turn to the soft spinor theorems of the 

Adler-Weisberger type 2,3 relevant to the above process (in 

analogy to n-N scattering of chiral dynamics). The matrix 

element for two supercurrents interacting with a scalar 

state is (Fig. 4) 
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Mab 
PV 

= i d2xeiq'x<AflT(Sz(x) z:(0))/Ai> 
s 

The following Ward identity follows immediately: 

(4.11) 

+ 6(x")<Afl{SE(x 

/Ai> + 

),+W}lAi> = ) 

= -2yp’<Af /8,, (0) IAi> (4.12) 

where we have used the conservation law for supercurrents 

and their equal-time anticommutation relations, e.g. as 

defined in (3.3): 

aKAa"A 
2 - $(l+A2)2 

+62(x)2fsuvy5au (4.13) 

plus, conceivably, irrelevant Schwinger terms. The term in 

the bracket is the bosonic contribution to the 

energy-momentum tensor S PV' 
in accordance with the charge 

algebra, which is of course the integrated version of 

(4.13). The next term (curl) is a trivially conserved, 

chargeless "improvement," characteristic of the current 
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supermultiplet under consideration,15 and vanishes in the 

matrix element (4.12). 

The amputated amplitude we are interested in is the 

matrix element (between on shell fermion states) of the 

residue M(O) at the Goldstone poles2'3 in the Green's 

function Mu": 

Mab 2 
=f Ypg 

[ 
IM (0) 1 y 1 ab 

UV & v 
+ (less singular terms as q,11+0) 

(4.14) 

Hence the low energy limit of M (0) may be read off from the 

low energy limit of MuV: 

1 quMu"!Z" 
f2 

= M(O), as q,a+O . (4.15) 

The matrix element of M(w for forward scattering 

(q=l=(w,w), pi=pf=(m,O)) is obtained from (4.12): 

G(q)yuu(a)(+ <Afl-pup, + guU(p$ f2 +T (l+A ) 2 ') [Ai, = 

= -rlmp.q=-4@ , 
m2 

which is checked to be the low energy limit of (4.9)-(4.10), 

and displays decoupling as w-+0. We refer the reader to 

Refs. [2,3) for more details. 

A given current algebra determines a particular 

effective Lagrangian which incorporates the low energy 

theorems derivable' from it. The systematic approach 
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involved in this problem outranges our present scope: we 

do not attempt to provide a strict proof for the 

universality of the Volkov-Akulov Lagrangian. 

V. GENERALIZATION AND DISCUSSION 

The general principle for connecting linear and 

phenomenological Lagrangians is evident from 

Section III: First, the linear theory is expressed in 

superfield form. The argument of the superfields 0 is then 

shifted by -X(x)/f in superspace, thereby producing the 

fully reduced arrays i. A number of spectator fermions 

involved in supersymmetry breaking may be eliminated in 

favor of an equal number of ancillary Volkov-Akulov fermions 

X. This results in no loss of information and significantly 

simplifies the subsequent conversion of the theory to its 

nonlinear correspondent. If desirable, the nonlinear theory 

may be linearized back to the original form, provided no 

actual degrees of freedom have been relinquished. 

The effective Lagrangians described are useful mostly 

in the context of broken supersymmetry, since only then can 

the V.A. fields X be interpreted as the massless fermions 

of the theory: without a constant term multiplying the V.A. 

determinant, there can be no net kinetic term for X in the 

phenomenological Lagrangian. Useful or not however, they 

constitute mere formal relabelings of the original linear 

theories and do not display new symmetry properties. If 

supersymmetry is broken, the effective Lagrangian language 
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sets the Goldstone ("angular") degrees of freedom apart from 

the others and makes the structure of some low energy 

effects more transparent. 

We could further illustrate our procedure through more 

extensive examples (gauge multiplets, 13 higher dimensional 

theories, etc.) were it not for the proliferation of 

multiplets required for spontaneous supersymmetry breaking 

at the tree level.' The effective Larangians discussed 

should also, in principle, lend themselves to the study of 

dynamical supersymmetry breaking as we11,4 but we will not 

discuss the problem here, in the absence of simple 

paradigms, e.g. comparable to that of Section III. 

For the rest of the paper we confine ourselves to 

detailing the extension of our algorithm to extended 

supersymmetry and constrained superfields, which are most 

common in usual applications. In full analogy to (2.1), the 

following realization may be written 12 for the algebra of N 

spinorial charges: 

,,j = fej _ i a ,j zkyu’xk 
f !J I (5.1) 

j,k=l,...,N. Summation over repeated indices is implied. 

The central charge is not represented even though there is a 

dimensional parameter f available. Observe that each spinor 

X1 transforms nonlinearly with respect to the parameter s' 

corresponding to the associated generator broken, but, in 

addition, it transforms as a bonafide spectator with respect 
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to all-remaining parameters. 

The discussion of Sect. II readily carries through upon 

redefinition of the O(N) singlet matrix: 

T V- = - 
FI 

5 Xjypa”xj . 
f 

(5.2) 

Note that, because now there are more spinors involved, 

several expansions, like that of IJI or W;l", but not of - 

IWI t will terminate at generally higher orders fin the A's 

and 0's. IWI is obtainable from the Jacobian of the 

N-superspace translation: 

X’ =x ?J !J - ; xj (xlyud 

(5.3) 

The pure V.A. Lagrangian is at least O(N) symmetric. 

Spectators are accommodated in the usual manner. 

We proceed to illustrate the reduction procedure 

through the two-dimensional, N=2 scalar multipletL3 (which 

is also obtainable through dimensional reduction16 of the 

N=l, 4-dimensional scalar multiplet). We 

e1 2 1 rename: , ,X +S,E,X and 0',s2,A2+0 E X h' 6'6' to distinguish 

their group indices from those of the matter fields 

Am,$m,Fm, where m=1,2. The matter fields rotate into each 

other through the O(2) transformation Am+hmZsmnAn (note 

2=-l). Suppressing these O(2) indices as well as f in what 

follows, we may write the relevant N=2 superfield: 13 
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0 = A + 8y + $j + i (g8-gf)F + Be; + ieJ;a 

(5.4) 

The components of the superfield variation 6Q entailed 

by a superspace transformation bxu=i(zy,8+<yut), 68=e,6!=1?, 

are: 

A ,. 
S$ = -iJAs f igA$ + FE + Fz 

6F = -izJ$ + iig$ . (5.5) 

Note that two copies of the N=l model of Section III are 

recoverable upon suppression of E and 8, or ; and t. The 

higher components of the superfield (5.4) are related to the 

lower ones through the supersymmetric constraint: 

,. 
D0 + 50 = 0 . (5.6) 

As outlined in Section II, the standard reduced array 0 

is readily obtained by a A(x)-dependent supertranslation of 

@: 

i = @(x-iXy8-i~yf),8-x(x),~-?(x)) . (5.7) 

The spectator transformation law (2.25) follows 

mutatis mutandis, with c,,=-i(EyuX+$yu?). 
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As in the constrained N=l superfield 

[~~/2+8~+~e(l-i~r~+...)/21 of Ref. [ll], the constraint 

(5.6) may be enforced before or after the above reduction. 

The latter case may be technically preferable, since then 

the constraint pertains only to the higher components of the 

reduced array i (Cf. footnote p. 17). The essential 

components are thus only the lower ones: 

. ,. 
A = A - I$ - z$ + ixyAi + + (XX-z?;)F + SA? 

- ; (srA+n, (xp#+p$)+ $ xx $a2A 

JI = J, + iJAX - iJ;X - h XF - $ + + (ixAa2; - AT$A) 

2 
+ + p#(XA+;?) + i(A~&ypA$aPj) - v XA,X? 

i = F -ixa+ + r?a2i - $ (i;x-z?)a2A + i (xg$-$) 

+ + (Xx+$) (za2$-Xa2w . (5.8) 

Following the reasoning of Section III, G may be set 

equal to zero, without any restriction of the dynamics. 

This, in turn, determines A and i in terms of (A,‘+‘,F) , for 

F'F#O: 
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A = F * JI. (F-F)-1 +. . . 

A=; . $ (F-F)-1 +... (5.9) 
fi 

The dot product denotes contraction of the matter field 

group indices. 

Expansion around a perturbative supersymmetry breaking 

vacuum value <F>#O enables the nonlinear redefinitions (5.9) 

to start with a tern linear in the original fields, as was 

the case in Section III. In order to actualize this 

situation through a tree potential, the introduction of more 

multiplets might be necessary, 1 which is of course covered 

by the above discussion, but would involve longer 

manipulations. 

Construction of such potentials is part of a technology 

which is outside the scope of this investigation. 

Nonetheless, the present work demonstrates that, given a 

satisfactory linear model, there are no conceptual 

difficulties involved in its conversion to the equivalent 

Volkov-Akulov form. 
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APPENDIX: Conventions and Technical Definitions. 

We employ Majorana spinors: $=CTT. Their bilinears 

have particularly convenient flip properties. In two 

dimensions: 

$6’=?‘4J; 3Y5v=-vY5$; ~Y,$‘=-vY,$. 

The Fierz transposition is simply: 

63r’JI” = - + (JI”T’J) + Y,VP Y,JI + Y”b”vY~w 

(e.g. check $$$=O, etc... for any trilinear of the same 

spinor). 

In two dimensions, the gamma matrices satisfy: 

y"y"=g'vlt+Eu"y5 where our metric is timelike (goo=l), and 

sol=l. In the Majorana representation, y" and y 1 are 

imaginary: y"=c2, yl=io', c=-y", yLyoyL,3 (so y5y5=n). The 

Majorana spinors are then real: @=-y"TT=@*. The Grassmann 

parameters in superspace are also Majorana spinors. 

A supertranslation in superspace is x +xu+izyu8, 8+8+e. !J 
The generator for it is Q=3/88+iy8, and {Q,G}=-2ig. The 

corresponding supercovariant derivative is D=a/a%iye, and 

it anticommutes with Q. 

Grassmann integration is equivalent to differentiation: 

J dea = 0, dga eb = gab = a eb 
sea 

Upon contraction of spinor indices, this normalizes the 
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Grassmann measure: 

J 
The equal time anticommutation for Majorana spinors is: 

I$d), WY3 I = wAY1) . 

In two dimensions, the plane wave expansion for these real, 

two component spinors is: 

dp'[a(~')e-~~'~ + a+(pl)eiP'xlu(pl) 

where {a(p),a+(k)}=b(p-k) and u(P')= , whence: 

;(pl)u(pl) = 0 U(-p')u(p') = i(l-2e(-p')) 

U(Pl)Y,U(Pl) = 0 3-P1)v 5u(P ' =i ) 

U(pl)ypu(pl) = 1 + 2 gple(-pl) ii(-pl)y,~(pl) = 0 . 
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cl 
1 

Fig. 1: Boson exhange in fermion-fermion Scattering for 

the linear and nonlinear cases. The t-channel 

(a) is zero in both cases. The s-(b) and 

u-channels (c) are nonzero and interfere with-a 

minus sign due to fermi statistics. 

1 1' 

X 2 2' 

Fig. 2 Four-fermi contact interaction diagrams for the 

nonlinear case (4.1). The dot or heavy line 

denotes contraction of the derivative couplings 

on the adjacent lines. All four diagrams have 

equal magnitudes and interfere constructively. 

The two oaitted diagrams that would have a dot 

in the remaining positions vanish by 

antisymmetry. 
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Fig. 3 Forward fermion-scalar tree amplitudes. Only 

(a) and (b) contribute in the linear theory, 

whereas all three do in the nonlinear one. 

= 
+ less singular terms 

as q,R -0 

Fig. 4 Matrix element for a scalar state interacting 

with two supercurrents. 


