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ABSTRACT 

We find that for any SU(N) gauge theory, there are no 

fermion representations which have (1) asymptotic freedom, 

(2) anomaly cancellation, and (3) a two fermion channel more 

attractive than the most attractive two gluon channel. The 

attractive force between fermions is compared to that 

between gluons in the MIT Bag Model. Therefore mass 

hierarchies due to tumbling are unlikely to occur in SU(N) 

gauge theories. 
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Dynamical models of the electroweak symmetry 

breakdownlt2 require quark and lepton mass generation in a 

hierarchy starting at an energy scale of 104-lo6 GeV3'4, 

much below the GUT scale of ~10~' GeV. At a sufficiently 

high energy, in the standard scenario, the theory exhibits 

an unbroken gauge interaction Gs, called the sideways group, 

which consists of massless fermions and massless gauge 

bosons ("gluons"). There are also in general additional 

global symmetries of the fermions, denoted by 5:. If Gs 

undergoes a series of spontaneous breakdowns at well 

separated scales into a succession of smaller and smaller 

subgroups, the hierarchy of quark and lepton masses may be 

understood as arising from the energy scales of the 

dynamical symmetry breakdowns. 5,6 Such a process is called 

"tumbling" 5 and the smallest masses are generated by the 

highest energy scale. 

The two main obstacles to implementing this tumbling 

scheme are how to generate a set of scales from a single 

gauge interaction Gs and how to determine the actual pattern 

of the spontaneous breakdown of the global symmetries q. 

One proposed 5,7 method of determining the pattern of g 

symmetry breakdown is the maximally attractive fermion 

channel (MAC) hypothesis. To understand MAC, one considers 

the interaction energy between two fermions, one in a 

representation Rl of Gs and the other in a representation R2 

of Gs, at an energy scale A sufficiently large that the 
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gauge field coupling constant is small (a,(A)<<l). In this 

region the interaction energy, AE12, is calculable in 

perturbative theory. In the Lorentz scalar channel [ll 

which transforms under Gs according to the representation R3 

contained in Rl@R2 AE12 has the form: 

AE12 _ -_ 
h 

[C(3)2~(1)-~(2)~,G(A)df 
(1) 

where C(i) is the value of quadratic Casmir operator on the 

representation Ri and df is a dynamical factor of order one 

independent of the group representation and aG(A). For 

C(3)<C(l)+C(Z) the force is attractive, and when A is such 

that 

_ C(3)-C(l)-c&Q a (*) = 1 
2 G (2-a) 

and cxG(A)<<l , (2.b) 

the strength of the interaction is comparable to the total 

energy of the two fermion state. The MAC hypothesis states 

that the channel with the maximum value of [C(l)+C(2)-C(3)] 

3 C12(max) will become strong first (i.e. at the smallest 

value of crG(A)-the largest A-141). The resulting bound state 

spectrum may be treated as a set of scalar fields with the 

same representation content under the global and gauge 

symmetries as the bound states. The analysis of symmetry 
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breaking then proceeds using techniques familiar for 

elementary Higgs potentials. Therefore at the scale *1 
symmetry breaking may occur by the "condensation" of the 

MAC: 

yf-+yi and possibly [2] Gs+Gi 

Now the process can be repeated for the remaining gauge 

group G; and massless fermions protected by the chiral 

symmetries inI%;. 

Thus a A2 is sought such that 

C '3 a (A,) = 1 
12 G' 

aG’ (*,I << 1 (4.b) 

3 with Ci2 at maximum value. 

The two scales A1 and A2 are related by the expression 

for aG(A) valid when aG(A)<<l:[31 

(4.a) 

'G(') = (bG/ir)ln(A,Al 
0 

which implies 

"1 
5 

- eXp{Cii (maxj-C;z(max) ] 

(5) 

(6) 

Therefore a large ratio of scales may arise from factors 



Cl;(max) and Cii (max) of the same order of magnitude and a 

"tumbling" pattern could arise such that: 

hl>>A2>>A3*** and 

q+ ST&+ *a- 

% 2 

A more thorough examination of MAC, however, reveals 

that it may be deceptively simple. H. Georgi, L. Hall, and 

M. Wise 8 have noticed that there are examples in which 

ciz ( max)>C 12 max) 3( and therefore A2>Al a contradiction. 

Furthermore they observe that in the string picture a large 

separation between Al and A2 cannot be simply obtained. In 

this note we argue that even within the confines of the MAC 

hypothesis, the basic assumption for tumbling, that the 

gauge self-interactions are weak at the energy scale 

determined by the condition of Eq.2, is never satisfied for 

any set of fermion representations which satisfy both the 

constraints of asymptotic freedom and anomaly cancellation. 

The most interesting cases arise for SU(N) gauge groups; the 

analysis is similar for other simple groups and the same 

conclusion is reached(4). 

Qualitatively it is easy to understand why tumbling may 

fail in asymptotically free gauge theories. The requirement 

that C12(max) be large tends to require large dimensional 

fermion representations (e.g. in SU(N) the pth rank 
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completely symmetric tensor representation has a value for 

the quadratic Casmir operator C2=p(N+p-l-:)/2 ) in order to 

satisfy Eq.2 with A in the weak gauge coupling regime, 

whereas asymptotic freedom severely limits the 

dimensionality of the representations. Therefore, a more 

precise determination of the strength of the gauge self 

interactions is needed. In the original tumbling schemes 5 

this condition was taken to be ctG(A)<l, but this criterion 

must certainly be refined as can be seen in the large N 

limit in W(N). For large N the effective coupling 

governing the strength of the gauge self interaction is 

NcrG(A) and the existence of tumbling scenario requires 

C12(max)aG(A)=l for C2(G)aG(A)<<1 (71 

instead of Eq.2[5]. Moreover, for large N (Nz17) the only 

fermion representations which are asymptotically free and 

satisfy the gauge anomaly constraint are (in Young Tableaux 

form) 

ma(m @(N+4)C7) @ mb( e@(N-4)=) @ mc (N-l f 
IT 

1 

@md(lZl @a) @ met m a m) @ m f Ej"R' C (8.a) 

where mar mbr mc' md' me' and mf are non-negative integers 

satisfying the constraint imposed by asymptotic freedom: 
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(N+2)(ma+2me)+(N-2) (mb+2mf)+2Nm 
C 

+(N+4)ma+(N-4)mb+2mdLllN (8.b) 

Eq.(8) implies Cl2 (max)c(N+l-i) but C2(G)=N so that the 

condition for tumbling (Eq.7) is never satisfied. 

To investigate finite N all asymptotically free and 

anomaly free fermion representations are characterized in 

Table 1. In terms of eight types of representations 

Cii=1,...,8 any other solution can be represented as the 

linear combination 

co 

Cm.C.$Cn.(ci@c~)@Cpi(Ri) 
i=ll 1 i 1 i 

(9.a) 

where c i is a complex fermion representation and r. is a 1 
real or pseudoreal representation satisfying the constraint 

of asymptotic freedom. (See Table 2). The (mi], Ini}, and 

{pi} are sets of non-negative integers chosen so that 

asymptotic freedom is guaranteed: 11 

i112( i' T C m.+lT (c.)2nj+lT (r )p (11N/2 
lj2 3 k2 k k (9.b) 

In simple groups other than SU(N) there are no solutions of 

type since the anomaly constraint is trivial 11 the Ci . The 

complex representations (cj) which allow asymptotic freedom 

are the lowest dimensional spinor representation (dimension 

22N , T,=22N-3) in 0(4N+2) for 2<N<4(C2(G)=22N) and two -- 
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higher dimensional spinor representations (dimensions 126 

and 144; T2 = 35 and 34 respectively) in O(10) as well as 

the 27 dimensional representation (T2=1) in E6(C2(G)=22). 

For finite N, dynamics also must be included so that 

Eq.(7) is modified to be 

C12(max)aG(h)df=l for C2(G)aG(A)dG<<1 (10) 

where df contains the dynamics of the two fermion channel 

while dG is associated with the dymnamics of the gauge 

bosons self interactions. The more naive analysis of 

tumbling of Eq.7 is valid if df"dg. To evaluate these 

dynamical factors, the MIT Bag Model is used to calculate 

the energy splittings of the two "gluon" state and the two 

fermion state. The maximally attractive two gluon channel 

always has vacuum quantum numbers. It has been argued by 

K. Johnson13 that the ratio of the energy shift of this 

channel AEG(R) in a spherical bag of radius R (here the 

scale R provides an infrared cutoff) to the ground state 

energy of the two gluon in the absence of interactions, 

2EG(R) I determines the confinement scale Rc; more precisely 

he argued that the condition for gluon condensation 

(confinement) is {(2EG(Rc)-IAEG(Rc)1)2 - 2E2,(Rc)} = 0 or 

1.5 IAEG(RC) I/EG = 1 where the center of mass motion has 

been removed. Approximately then, MAC applied to gauge 

bosons determines the scale at which gluon self interactions 

become strong. For the two gluon MAC 
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I*EGI 
EG 

= C2 (G) aG(N dG 

l/4 
with l/R > B and for the two fermion MAC 

1.5 
IAEf 1 

Ef 
= C12(max)aG(R)df 

9 

(1l.a) 

(1l.b) 

A detailed calculation 14 gives 

df=.41 and dG=.62 (12) 

so that df=dG. Using the values from Eq.12 in Eq.10 we find 

no solutions for Eq.9.a and Eq.9.b. 

It is therefore reasonable to conclude that tumbling 

gauge theories realized by the MAC hypothesis do not exist 

for simple gauge groups if the theory is asymptotically free 

and anomaly free. This result further suggests that since 

the gauge boson channels are the most attractive these 

theories do not realize the Higgs phase but are universally 

confining. 
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FOOTNOTES 

[l]. As is usual in these discussions only the Lorentz 

scalar channels are allowed as possible condensates. 

It is not expected that Lorentz invariance will be 

spontaneously broken. 

121. If the MAC is not a singlet under the gauge group, the 

local gauge symmetry may be broken as well as global 

symme tr ies. 

(3). This behaviour is dictated by the renormalization group 

equations. The constant bG = +Z2(G)-fi ?T (R.) , where i32 1 
Ri is the sum over fermion representation. 

[41. The restriction to simple gauge groups is natural, 

since each separate simple component of a semisimple 

group has a coupling which evolves at its own rate 

(barring the imposition of some discrete symmetry to 

relate coupling constants). In a given energy range 

only one coupling can become strong, the weaker 

couplings can, to good approximation, be ignored. 

[51. All the examples of tumbling suggested in Ref.5 fail to 

meet the conditions of Eq.7. Also the suggestion of 

Marciano" that chiral symmetry breaking for quarks in 

exotic representations may provide the weak interaction 

symmetry breaking scale is untenable under the 

conditions of Eq.7. 
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TABLE CAPTIONS 

Table 1: The eight independent anomaly free and 

asymptotically free complex fermion 

representations in SU(N) are listed in the first 

column by their Young diagrams. Numbers preceding 

an irreducible representation indicate its 

multiplicity in the representation. The second 

column gives the values of N for which the 

resulting theory is asymptotically free (upper 

bound) and independent of the other solutions 

(lower bound). The lowest order coefficient in 

the Beta function is bG=$$Z2(SU(N))-$B). The 

fermion contribution B is given in the last 

column. The maximum B consistent with asymptotic 

freedom is 11N. 

Table 2: All complex fermion representations satisfying 

the constraint of asymptotic freedom are listed. 

If we denote the representation matrices by 

TaQajRi>=CT;j/Rj' then Tr(TaTb)=T26ab, CTaTa=C21, 

and T2- (TaTbTC) sym 5 A dabc. For a explicit 

expression for these invariants for all simple 

groups and representations see Ref.9. Su PImax) is 

the largest asymptotically free SU(N) group which 

can contain the associated fermion representation. 



Fermion Content 

Table 

q= 827 
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G= El 
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8 

30 
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3 

(N-3)(N-4) 

2(N+3) 

2(N-3) 



Representation 

III 

El 
m 

81 

B 

N-2 : 
{ET 

N-l : 
ET 

Dimension 

N 

N(N-1) 
2 

N(N+l) 
2 

?$ N(N-l)(N-2) 

v3 N(N2-1) 

% N(N +l)(N+2) 

N(N-l)(N-2)(N-3) 
24 

x2 N2(N2-1) 

k N(N +l)(N-2) 

g N(N-l)(N+2) 

Table 2 

T2 C2 

‘4 
N2-1 

2N 

N-2 (N+l)(N-2) 
2 N 

N+2 (N-l)(N+2) 
2 N 

(N-2)(N-3) 3(N-3)(N+l) 
4 2N 

$3 3 NC3 
2 ( ) 2 N 

(N+2)(N+3) 3 (N+3)(N-1) 
4 2 N 

(N-2)(Nl;3)(N-4) 5 IN2-N-4j 

N(N2-4) 
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IN-2)(3N+l) (3N+l)(N-12 
4 2N 

(N+2)(3N-1) _I_-- (3N-l)(N+l) 
4 2N 

A 

1 

N-4 

N+4 

(N-3)(N-6) 
2 

(N2-9) 

(N+3)IN+61 
2 

NMAX 

NONE 

NONE 

NONE 

26 

11 

16 

(N-8)(N-3)(N-4) 12 -- 
6 

N (N2-16) 
3 6 

(-N2+?N+2) g 
2 

[N2+7N-2) 
2 5 -.. - 


