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I. INTRODUCTION

We were very interested in the extended jet calculus of Bassetto,
Ciafaloni and Marchesini (BCM),1’2’3) which allows one to compute the
production of coldrless (quark—antiquark-multigluon) clusters in jets. 1In
preparation for some applications of their formalism, we rederived the basic
equations for the ﬁodified propagators; we preseﬁt our findings in this short
nbte.

In our-derivaﬁiOQ we attémﬁt to keep all planar graphs, and oniy planar
graphs. This results in a somewhat different set of equations for the |
modified propagators. The solutioﬁs of.these equations do, however, obey the
same sum rules which_BCM found for their éase; hence théy afe as appealing
physically. | |

The colorless Elusters produced by extension of the BCM arguments to our
propagators aré more general than in the BCM case. Instead of consisting>
‘solely of one quark-antiquark pair.and multiple gluons, they may contain
additional quark-antiquark pairs. This does not detract from their
usefulness, however. |

Solutions'of our equations are damped in Q2 in a manner similar to those
of-BCM, although the exact behavior is a little differemt. The most striking

result of their investigation, finite mass for the color singlets as Q2 > @

is preserved.



II. EQUATIONS FOR THE GENERATING FUNCTIONS

As pointed out in Eq. (3.5) of Ref. 1, the ordinary jet calculus of

4)

Konishi, Ukawa and Veneziano”’/ can be summarized by the equation
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is'a generating functional for the normalized inclusive distributions of n
pértons of off-shell mass Q, in the a parton jet of mass dp to Q.
This can then. be used to obtain an equation for the exclusive quantities

if one writes
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and expands in'gd to obtain the exclusive probabilities. The new generating

functional G obeys the related equation (e = Qg/kz)
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It is especially important to note that if all the functions g are set

equal to 1, each G must be 1 and the terms on the right hand side cancel due

to
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III. PLANAR GRAPHS

We now wish to apply this formalism to an idealized world in which only
plaﬁar éraphs are included. When the number of colors is infinite.all QCD-
‘like'theories go over to this situation. Assuming that three colors are
already basically infinite, we wish to only include the planar graphs from the -
start. Following WittenS) and BCM,1> we draw the quarks as oriented lines and
the gluons as quark—antiquark pairs — i.e., we are labelling the color
indices.

In this regard, we.notice that ﬁhere are two possible ways of drawing a
gluon - either one can have the quark line on top as the gluon proceeds from
left to right across the page, or vice vefsa (see Fig. i).' We will call the
first possibility g, and the second possibility gz. As far as can be
determined, the gluon of field theory can be represented elther by g, or by
g, but qe‘will specify whicﬂAis being used each time since it then is much
easier to describe the planar graphs exactly.

All of Ehe vertices in Eqs.:(2.4) above have one parton splitting into
two othe?s‘with momentuﬁ fractions z and l1-z. We will use the convention that
momen tum fréctiop z is car;ied by the parton which goes off toward ghe top of
the page, and fractién 1-z is carried by the parton which goes toward the |
bottom of the page. Once this is done, we see that the.plaﬁ;r graphs lack
some of the-ﬁossible b;anchings used previously. 1In parﬁiculaf;'whenbwe have
an incident gluoﬁ Eus only the graph of Fig. 2 is allowed; we cannot héve the
vertex invoiving‘égq(z).

This means tﬁat when G is restricted to the probabilities coming from
planar graphs (Which should equal the probabilities coming from all graphs in
the Nc + o 1limit), the basi; evolutioﬁ equations must be modified. We must

remove the non-planar branching g, + q(z)+q(1-z). 1In order to have tﬁe



desired probability conservation we must therefore also alter the virtual
potential for the gluon, so that
v 1

=.l.‘gg 1 °qq
Pgu(z), 5 Pgu(z) +5 Pgu(z) (3.1)

rather than

v, 1 ‘g' ~q '
P (2) == P2 (z) + P (2)
g 2 g, 8y

as in Eq. (2.3) of Ref. 1. No such modification is necessary for the quarks;
there is a planar interpretation of all the possible vertices,
Given this, the basic equations for the generating functionals are
2
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and
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If we now ask for the probability that gluons go only to gluons, this is the
same as inserting £ = 1 for all the gluons in these eduations, and £ = 0 for
all the quarks. This then gives the equation for ag(kz,Qg),_the prébability

that gluons go only to gluons:

C T . N_o

130 N A T 1L o2, f -
7 (1) = og(t‘,vr_o) [- =5 [ [1-oCe) Jar+ (1 ag_)] 8o+ 1o=p (3+4)
. . To _ .
" 2,2 g 1IN -2N; f
with © = gn(k“/A°); & =iy P =33 ©C, =N and Ais defined by
=L
% T bt °

This differs somewhatbfrom Eq. (3.11) of Ref. 1 but they agree in the'Nc+ o

limit.

We now wish to compute the color connected propagators Tq(x). We define

rq by saying that we have a tree (see Fig. 3) and we count clockwise around



the branches of the tree, starting with the trunk (particle incident from the
left) until we come to the first non-gluon. This is the object whose x is

labelled in Fig. 3; the kind of object is the upper label q or q.

. q; 9. q- :
Offhand, therefore, one might think one could have Pg% Pq?, PqJ, or Pgl
i i
(the i,j indices label flavor of the quarks). However there are no
PR | . 4
Fq% or Pal +» This can be seen by drawing a typical planar diagram such as
i Sy

Fig. 3. We.see that the requirement of planarity will force the first non-
gluon coming clockwise off a quark to be a quark — not an éntiqﬁark.
Furthermore, the first non-gluon coming off an "upper” gluon is a quark,
whereaS'thé first non-gluon coming off a "lower" gluon 1s an antiquark.

We now write the generating functional for the planar graphs in the form
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at xﬁ{ Note that because we are insisting on planar graphs, the order CleeeCy

matters. Define Sg to be a variation which searches out the first U which is -

a quark U
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Acting with this variation on Eqs. (3.2) and (3.3) will either pick the
"first” quarkAOut of the “upper” leg, or out of the "lower” leg after the
bifurcation. Using the graphical technique of BCM, we therefore expect the

equations to take the form depicted in Fig. 4.

Note that BCM make a special equation for ¢, which is for the case where



the flavor carrying quark coming out is the same one as came in. This 1s not

necessary; Fi # Fi due to different starting conditions at Q2 = Q2

0" We will
use Fi if we need the same flavor out as in.
Noting that
we obtain the equations for general x:
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or altermnately,
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Here we have used the same convention for A(z) as do BCM.
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IV. MOMENT EQUATIONS
We now consider the zero moments of Eqs. (3.8) and (3.9). These give

[defining SQ(kz) = 2 f Fi(kz,x)dx, SG(kz) = Z f ri(kz,x)dx]
h | k|

4k a 2 3
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It is tempting to guess that

J ri(x)dx.= S (kz) = § = const [='1, by evaluation at k2 = QZ}
i Q Q | = %Y

(4.3)

since every quark coming in has some "first"” quark coupiéd to it. If we then
. have

5,0) = 5[1 = a(&®)] | (404)

ql
the first equation, (4.1), will be identically satisfied.

Substituting (4.3) and (4.4) into the second equation, we find exactly
the equation for g(kz), (3.4). The sum rules of BCM, Eq. (4.2) of Ref. 1,

therefdre, do hold for proper summation over the final index,



We now take higher moments of Eqs. (3.10) and (3.11) and find the moment

equations
3 3 CF i T
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These also differ somewhat from Eqs. (4.3) of BCM.
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V. FORMATION OF COLOR SINGLETS

There are a number of minor differences between our equations and those
of BCM; however only two of these are likely to have major consequencés.

First, the dominant terms as Q2 + » in the right hand side of Eq. (4.5)
are smaller by a.factor of two than those in Eq. (4.3) of Ref.il. We don't
really understand this, since we believe they should agree. Since an overall
factor on the right hand side of Eq. (4.1) will not affect the.spm rule
derivation, we hayé been unable to find an independent ﬁﬁy of testing this.

The second major consequence arises fraom the inclusion of the seconé term
on the right han& side of thé rj eﬁuation as shown in Fig.‘4. This shows ué

i

-as the term
Pi(r,-n) Agg(n)/4wb

in Eq. (4.5). This will create graphs in the ri propagétdr'like those in Fig.
5a; to obtain a "col&r connected” pr§pagator all the particles inside the |
dotted line must bé included. Some of these are emitted toward the bottom df.
.the page. These may include additional QQ pairs wﬁose X isfnoé "measured” .
This is in contrast té the BCM method, which includes onl&:gg;pﬁs iike‘those
shown in Fig.‘5b. | -

While the BCM méthod is simpler, we think that it doe;:ﬁot include all
the possible planaf graphé for SU(n). Inélﬁsiqn of the extra tefﬁ.makes lifé
less beautiful; hb@éver, aé we show below it does not ruiﬂ_the major ;esult.

" We now form mesonic colorvsinglets following BCM. Sampies.of the typeé
of graph to be included are displayed in Fig. 6. As in their'éase% only the
q *qg, & + gg, and q + gq vertices are allowed; the g + da'vertex will not

give a color singlet with their construction.
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VI. NUMERICAL RESULTS

We restrict ourselves here to presentation of a few illustrative results;
the applications of the formalism which were our original goal will be
discussed in another paper.

In Figure 7 we.show the solution Og(T) to equation (3.4), the probability
that gluﬁns go only to gluons. Note the rapid damping as Q2 +

Similar damping is seen for the propagators Pq. In Figs. 8, 9, and 10 we
compére various prdpagators r? with the corresponding "ordinary” propagators
D9 computed using the Altarelli-Parisi~Owens equatioms. Figure 8 is perhaps
the most illustrafive of the damping created by the sémi—inclusive &efinition
of the T propagators. We see that Fi and D% have the same values for small
1 (in fact a}l moments start at ; at T = ro), but that ail the moments of ri
drop rapidly at large QZ. Similar effects can be seen in Figs. 9 and 10; of
course since thesg I and D propagators start at O at 1 = T they are not
required to have the same values at other small Qz.

1t is this aamping at large Q which restricts the mass of pfoduced
colorléss clustérs.to a finite value. Followed BCM, we write the cross

sections for production of q(xz) and'a(xl) in colorless clusters such as those

in Fig 6 as
k2 do O wk®) o, dx c(2 .2
5 | =2 1’ 1 J5pe% =)
odk dxldx2 C.8. c ¢, X
‘ ‘ (6.1)
] c.C b X X
az_ 2%1%2, | g 2 2 "Iy a w2 22
I z(1l-z) Pe (Z)I‘cl()“(z)k » Qps xz) rcz(k(? 2)k", Qs x(l-z))

An approximatioh for the mass of the colorless clusters M2 can be obtained as

follows:

14



First we note that if a partion of mass k? decays to a colorless cluster

v2

of momentum fraction W and some other system of p'“ with momentum fraction

1-W, with the two systems having perpendicular momentum P, relative to the

direction of k, then in the infinite momentum frame

wlip?  pr2epl
Sl L
W 1-w

K2 >

Now in Eg. (651) the parton of momentum k carries momentum'fraction x of the
initial large momentum in the jet, so that W = X/x, where X is the momentum
fraction of the jet carried by the colorless cluster. It is also true that

X>x, + xz, so the relation

is reasonable.

To estimate the color'singlet mass spectrum, BCM then substitute the

boundaries k2 - _MX and X = x, + %, into Eq. (6.1) to obtain
: x1+’x2 1 2
Ly? o =—“—25 [ ] dxjdx, 8(x, + x, - X) —"2—
dM"dx dM dxldx2

The hext problem is then to estimate the integral over the I propagators,
Again following the lead of BCM, we return to our equatioﬁs (3.10) and

(3.11). We define the functions

and obtain equations for them by multiplying (3.10) and (3.11) through by x.

15
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. . 2 2
With the hypothesis that M(k ,x) = A(k"x), the equations simplify
considerébly. In fact if we take the limit k2+ o with kx fixed, the

functions A(kzx) then become the solutions of extremely simple equations

k) ] CF
T 8y) =~ Ai(Y) TN
(6.2)
y dy g y -+ Y/ 2wb
with the solutions
ﬁ L(l )c#mm
i X k2x
(6.3)
ri l.( 1 CA/an
g X k

_ c
This is similar to the behavior found by BCM, except that the exponent-§F§

for the qdark propagator Fi is smaller than theirs by a factor of 2. This
does not affect their conclusion about the damping of the mass clusters: Eq.

(6.1) becomes

2 i 2

M do - oM7) Z, f dx D¢ (QZ’ Mx , x)
odm?ax 2™ X X

- q

z j W(l W) (Mzw Qo) A (M (l W); Qo)
€1%2
1-X(1-W)/x » ,;clc2

dz P (z) (6.4)

XW/x

and the large MZ behavior of A damps the result as before.
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FIGURE CAPTIONS

D

2)

3)

4)

Representation of basic particles in our graphs.’ The particles are
proceeding-froﬁ left to right across the page. N

The on1y p1anar graph for the splitting of an "upper"ngluon into~a quark-—
antiquark pair.t'

Sample graphs for the coior connected,propagators.

Graphical‘depiction of equations (3.9 and (3.8). The box depicts the
virtual potentiai; solid circles depict all possiblé QCD happenings; half
circles with linés on both sideg.stand for the‘colof connected propagators

P;‘énd the open circle stands for the probability, ogjthét gluons go only

to gluons..



5)

6)

7)

8)

)

10)
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Sample graphs for the propagators I' . BCM include only graphs like 5b);
our equations also have graphs like 5a. |

Sample graphs contained in the sum in Eq. (6.1). The "bubble" encloses a
color singlet.

The probability that gluons go only to gluons

Cogpariéon of propagators for quark * quark (same flavor) for moments
n=1, 6 and 21.

Comparison of propagators for quark + quark (different flavor) for moments
o= 1,6 and 21.

Comparison of propagators for gluon + quark for moments n = 1, 6 and 21.
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