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ABSTRACT
A general discussion of a quark-lepton unification characterized by
the gauge group Gégsw with two coupling constants gg and 8y and by the

+
unification mass scale M=105“

! GeV is presented. The choice of Gw is
quite restricted by the measured value of sinzew. The minimal model of
such a (petite) unification turns out to be SU(li)PS R SU(Z)L ® SU(2)R
®su(2) , ® SU(2)p,, where the first three factors constitute the well

known Pati-Salam group. The presence of SU(Z)LﬁQSU(Z) is required by

R?
the measured value of sin26w and it implies the existence of mirror
fermions whose masses may range from 20-30 GeV to a few TeV's. The
lightest mirror femion might be relatively long lived when compared to
an ordinary sequential heavy fermion. The model accomodating all known
quark and lepton generations gives the correct sin26ﬁ=0.22 and at the
same time can be made consistent with the experimental bounds on rare

transip}ons induced by leptoquark exchanges.

PACS numbers:
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I. INTRODUCTION

If it is true that at presently attainable energies the strong and
electroweak forces are described by an SU(3)xSU(2)xU(1) gauge theory,
then it is natural to expect further synthesis at higher energies. At
present, the most attractive candidates for such a synthesis are the

grand-unification schemes,‘l"5

in particular SU(S).2 In those schemes,
strong and electroweak interactions become unified at a very high
mass-scale of J‘1015 GeV, with quite possibly relatively 1little new

3 15 6

phenomena populating the energy-region of v10° to v10 GeV. There are

good reasons, such as the approximate agreement of the measured value of

32’7 and the economical

sin29w with the theoretical expectation
assignment of known fermions to SU(5) representations, to take the
grand-unification idea very seriously. However, there are also
well-known difficulties, in particular the large number of arbitrary
parameters and especially the lack of a credible scenario of spontaneous
symmetry breaking.

Given this situation, it may be of importance to carefully examine
less ambitious alternatives. Our purpose here is to examine a limited
class of such alternatives. We assume that at some distance scale, not
too many orders of magnitude less than the compton wavelength of the
intermediate bosons W- and ZO, the SU(3)®SU(2)®U(1) gauge theory,
characterized by three coupling-constants becomes embedded in a gauge
theory G§8Gw’ characterized by only two coupling constants: gs and gw.

That is, we assume the strong group G, and weak group G, each are either

S W
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simple or pseudo-simple, i.e., a direct product of simple groups with
identical coupling strengths. We call such a possibility petite
unification. Any subsequent unification of the strong force with the
weak at still shorter distances we shall leave unconsidered.

It turns out that it is not easy to find realistic models of such
petite-unification schemes, at least in a reasonable economical fashion.
We shall argue that the best candidate theory is based upon a Pati-Salam
SU(4) strong group, where lepton-number plays the role of a fourth
color. The weak group Gw can be (SU(2))“ or (SU(’-l))2 (or, if one
doesn't mind extravagance, SU(S)).8

It turns out that the choice of G is quite restricted. The charge

W

operator 1is evidently a linear combination of generators of G, and G ,

S W
with coefficients of order unity. This implies that the electromagnetic
potential Au is a 1linear combination of strong gauge fields with
coefficient of order e/gs, and of weak gauge fields, with coefficient
e/gw. It follows that in the 1limit of gs>>gw, the electromagnetic
gauge-field resides almost completely in GW. Because of this, a
representation of GéSGw which is singlet under GS will have the same
relationship to the SU(2)RU(1) electroweak generators as would be the

case were Au completely contained within GW’ In particular the relation

of Georgi, Quinn, and Weinber'g2

LT

w N

sinzew =

n

Q
(1.1)

where the sum goes over the members of a representation of Gw (for

instance the adjoint representation), survives almost intact.
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Specifically we find

IT

w N

Renormalization
Group Corrections

. 2
sin ew =

N

+ O(%;) +

2Q W

Adj. of G
(1.2)

For the standard Weinberg-Salam SU(2)

ET32

5Q°

=1 .
Adj.

(1.3)

and we therefore see that a considerable enlargement of Gw is required.

For example, for the group (SU(Z))n, one obtains

£12
3 <1
e
Je (1.4)
A detailed analysis of options for GW is given in Sections III and IV;
the smallest acceptable G does turn out to Dbe (SU(2))”.

W

Coupling-constant renormalizations must also be considered; this is done
in Section VI. The qualitative behavior is unaffected by these
modifications, especially if one chooses the petite-unification mass
scale not to be inordinately large.

What about Gs? Can it be SU(3)C? If so, then the photon would be
contained entirely within Gw, and the Georgi, Quinn, Weinberg formula,
Eq. (1.1) would apply to all representations of Gw——including fermions.

For example, all left-handed color-triplet fermions would necessarily

form a representation of Gw. The known ones (e.g., uL’dL) satisfy
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w N

=2
-1

N

2Q
color 3,L (1.5)

implying at the least a large number of additional quarks and/or new
quarks of charge >1. We shall not consider SU(3)C further, but shall
choose instead SU(4), built a la Pati and Salam.' This provides what
appears to be the most efficient choice of a strong group, and is the
simplest case for which the electroweak U(1) generator is a linear
combination of both GS and Gw generators.

Hereafter in this introduction, we restrict our attention to
SU(H) x (SU(2))4 and inquire as to the particle-content of such a
"minimal" model of petite-unification. The first two. of the four
electroweak SU(2) groups may be identified with the SU(2)L<8 SU(2)R of a
conventional left-right symmetric model.9 The final SU(2)£(® SU(Z)ﬁ pair
can be associated with similar "mirror" degrees of freedom which do not
couple to the conventional Wir (or its heavier right-handed counterpart).
More specifically, for each generation, we introduce a set of two

component Weyl fermions Y? (a=1,2,3,4; i=1,2) transforming as (4; 2,1;

1,1)L + (O; 1,2; 1,1)L; €.,

u, o dy
u, 4,
¥ =
uz  dg
v e
© (1.6)

The mirror f‘ields,10 whose masses may range from 20-30 GeV to a few

TeV's, then transform as (4; 1,1; 2,1)L + (B 1,13 1,2)L:
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u, D,

U, D,
yr o=

U D

3 3

N E-

(1.7)
The existence of these mirror fermions is required by the permutation
symmetry among the SU(2)'s assumed ab initio.

From the form of ¥ we see that leptons provide the fourth color
degree of freedom. It is easy to arrange spontaneous symmetry breakdown
of SU(4) to SU(3). For example, a real adjoint Higgs representation 15
provides the six leptoquark bosons with mass, and does not generate any
baryon-number violations. It also generates no fermion mass. The
leptoquark mass-scale must be quite large (>100 TeV) in order not to
produce unacceptable neutral-current interactions. The phenomenology is
discussed in Sec. VII.

The 15th generator of SU(4) is proportional to B-L.11 It combines
with the sum of the 4 -electroweak T3 generators to become the

electromagnetic field, in accordance with the generalized

Gell-Mann-Nishijima relation

1
Q = E(B'L) + T3L + T3R + T3L' + T3R' (1.8)

The mass-generation of the twelve electroweak gauge-bosons can be
accomplished by four Higgs multiplets transforming respectively as (U;
2,13 1,1), (43 1,25 1,1)y...(843 1,13 1,2). Other SU(4)-singlet
representations of the (2,2) type may also be introduced to provide the

fermions mass. However, the overall scheme for fermion mass generation
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must be quite complicated in order to account for acceptable VvV masses,
full SU(H4) breaking in the mass matrices within a generation, Cabibbo
mixing, and the fermion mass hierarchy among generations. While the
scheme itself does suggest a variety of avenues to explore, the study of
the fermion mass generation is beyond the scope of this paper.

The paper is organized as follows: In Section II, we present in
more detail the general structure of petite unification, we list our
main assumptions and derive Eq. (1.2). In Section III, we study the
restrictions on the choice of GW coming from the observed value of
sin2ew. In Section IV we enlarge this consideration to include fermion
representations, and show that, upon assuming SU(4) for the strong
group, many possible candidates for G, are eliminated, and that

W
Su(y) @)SU(Z)“ seems to be the simplest candidate for a

petite-unification model. In Secgion V we present the fermion, gauge
boson and Higgs content of the SU(4) ®SU(2)u case, and we outline
spontaneous symmetry breakdown of this gauge  group down to
SU(3)é80(1)em. In Section VI, we study, via a renormalization-group
analysis, the predicted value of sinZGW. For SU(4) 8)SU(2)4, the value
agrees with experiment for a wide range of parameters. Section VII is
devoted to phenomenological implications. The most important of these
are a consequence of the lepton-quark unification at a relatively low
mass scale, and are rare flavor-changing decays and neutral-current
processes induced by leptoquark exchange. We also briefly discuss the
phenomenology of the lightest of the mirror fermions whose masses could

be as low as 20-30 GeV. Section VIII consists of concluding remarks.
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II. BASIC STRUCTURE

2.1 Basic Assumptions

We shall first list our main assumptions without yet specifying the
fermion and gauge boson content of the theory.

A) We choose as the unifying gauge group

G = GS(gS) @)GW (gw) (2.1)
where GS and Gw stand for the strong group and the weak group
respectively and gs and gw denote the corresponding couplings. We
assume GS and GW each are either simple or pseudo-simple, i.e., a direct
product of simple groups with identical couplings.

B) We assume that G is broken down to SU(3)a$U(1)e.m according to

the following symmetry breaking pattern

G ” > G1 ﬁ—ercz Mw) SU(3)&8U(1)e.m.
(2.2)
Here
G, = SU(3) (g.) ® Colgs) ® G (g.)
1 c'e3’ < Yg'Sg W' oW (2.3)
with SU(3)_ ® ESC Gg, and
G, = su(3)c(g3) 8>SU(2)L(g2) ® U(1)(g") (2.1)

where G2 represents the "standard" model, 1i.e., QCD for the strong
interactions and the standard SU(2)RU(1) model'® for the electroweak

interactions. Furthermore the scales at which the symmetry breakings
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occur satisfy
Mo <M LM
(2.5)
with Mw being of the order of the W-boson mass. It should be remarked
that in principle the breakdown of the group G could directly occur down
to the group G2. In order to have our discussion more general we shall
allow for an intermediate stage at which the group G1 is an unbroken
gauge group. Such a hierarchy also seems to be a requirement forced by
data on sin26W and rare decay processes — at least for the most
economical models.
Furthermore, in accordance with our early petite unification idea
we require that
C) M and ﬁ are only a few orders of magnitude larger than MW’ and
D) the weak hypercharge U(1) group of Eq.(2.4) merges into both 53
and G, at the mass scale ﬁ.

W

Requirement D) allows us to put quarks and leptons into identical
representations of the weak group GW and consequently make the quarks
and leptons to be indistinguishable when the strong interactions are
turned off. Notice that if U(1) were totally embedded into GW such a
unification would not be possible.13 Quarks and leptons would have to
form then entirely different representations under Gw, in order to
account for the disparity in quark and lepton charges. Also the total
embedding of U(1) into és is unacceptable, since this would lead to a
large value of sinzew. When U(1) is totally embedded into ES, sin29% of

o 15

Eq.(2.20) is equal unity. Even for M,M=10 “GeV the resulting sinzew(Mﬁ)

is larger than 0.4.
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As far as SU(2) is concerned, it is embedded into the group Gy but
the following two cases can be considered
E1) "unlocked standard model", in which the generators of SU(2)L

are the unbroken generators of GW,
and
E2) "locked standard model", in which the generators of SU(2)L are
the unbroken combinations of generators belonging to several disjoint
SU(2) subgroups of Gw.
Finally, without loss of generality, we assume that
F) SU(3)c and &S are unbroken subgroups of GS so that their
generators are unbroken generators of GS.

2.2 Diagonal Generators and Normalization Conditions

In view of the derivation of Eq.(1.2) for sinzew, which we present
in Sec. 2.3, we shall now introduce some necessary notations and list
certain normalization conditions which relate various couplings in
(2.1)-(2.4) at the mass scales M, ﬁ and MW' For the purpose of Sec. 2.3
only the diagonal generators need to be considered.

The electric charge generator Q of U(1)e.m. is given as usual by

30 (2.6)
where T and T, are diagonal generators of SU(2)L and U(1)

3L

respectively. T3L and T0 can be generally written as follows

0
T = :E: c. T
3L - oW ~OW ’ (2.7)

and
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S e T
Ty = :E:Caw Tow + £=2C35 Tis
s 1
(2.8)

where T0 and Eg

oW respectively.

are the diagonal generators of Gw and G

S S

The sets [Caw] and [C&W] are orthogonal to each other. The generators
Tgw in Eq.(2.7) are the generators of the disjoint SU(2) subgroups of GW
(see the case E2). In the case of the unlocked standard model (E1)

Eq.(2.7) reads as follows

(2.9)

where Tgw is a diagonal generator of one of SU(2) subgroups of Gw.

We shall normalize Tgw as follows

0 .0
Tr (TOLWTBW) = ASOLB

(2.10)
where A depends on the representation.

Corresponding to Eq.(2.6) we have the following known relation

1 1 1
= + .
SCANEFAC ARk

It is not difficult to derive analogous relations (normalization

(2.11)

conditions) corresponding to Egs.(2.7) and (2.8). In this respect the

formalism developed by Weinber'g“4 is particularly useful. We obtain

2
1 ZL "o
[e,(1)1% g, (4712

(2.12)
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>
1 g Cou
= -+

fer@?1? (g% [

is

2,42
S(M)]

g+~

(2.13)

Furthermore the assumption F) implies

2 ~ 2 2
g,(M7) = g, (M™) = g, (M7) .
3 S S (2.14)

We are now in a position to derive Eq.(1.2).

2.3 Basic Equation for sin26w

. . .2 2
We first define sin SW (MW) by

2

£ i)
2,.,.2
22 (2.15)

sin29w(M$) =

In order to derive Eq.(1.2) we use the evolution equations for
various effective coupling constants. In the one-loop approximation to
the relevant renormalization group B functions, neglecting fermion mass
effects, and upon using the normalization conditions (2.11)=(2.14) these

evolution equations read as follows

2 2 -
12 5 - 2CH2 + ~2C§2 +2by In g; ’
[gr(M))] g (M)  go(M7)
" W S (2.16)
2
o ~
1 W M
- 2b, In —
2 2" 2,72 * % ’
[g,(M5)] (M%) My
2 MW S (2.17)
s 12 = 12 +#2by1n — (2.18)
gs(M)  g5(M) M.
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and
=3 1 = 12 + 2b In ¥ .
gs(M7) g (M) M
(2.19)
In order to simplify notations we have introduced Cg = ZC?S and

similarly for Cw and C&. The parameters bi and b are the coefficients of
gi in the relevant renormalization group Bi functions. Explicit
expressions for these coefficients are given in Section VI. There we

shall also briefly discuss the fermion mass effects.

Combining Egs.(2.15)-(2.19) we find

2 ~

Of.( ) '
sinzew(Ms) = sinzﬁg 1 - Cg ——fﬂg— - BHG(Mé)EK In M + X 1In g]
aS(Mw) My M
(2.20)
where
2
Sin29O = Cw
W 2 .2
Cw +Cw
(2.21)
K' =C (B - b.,)
S 3 (2.22)
2
C
W 2
K = b, - 0&2 b, - Cgby
(2.23)
and
2 2 1402
oy 2 () o = B
o MW - 4q » G Mw T by )

(2.24)
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We note next that for any representation of Gw which is singlet
under GS (for instance for the adjoint representation of Gw) the second

sum in Eq.(2.8) is inoperative. Eqgs.(2.6)-(2.9) lead then
2
Tr T
[e? + (1™ = |—3 ,
- Tr Q

aJ- (2.25)
where T3 belongs to any subgroup of GW' Thus finally our basic formula

for sin26w is given by (2.20) with

2
Tr T
sin26° = 3 C 12 .
W Tr 02 W
adj.

(2.26)

For the unlocked standard model (E1) Cﬁ2=1

and Egs.(2.20) and
(2.26) give the formula (1.2). In the case of the locked standard model
(E2) Cﬁ2£1 and Eq. (1.2) is modified by an overall factor in addition

to a change in the parameter K.

2.4 Strategy

In this section we have stated our assumptions and we derived a
general formula for sinzew(Mﬁ). In the next few sections we shall look

for acceptable groups G_, and G.,. A necessary condition for our scheme is

S W
that it should give a value of sin26W consistent with the experimentally

measured value15

2
(sin“6.) = 0.23 + 0.015 .
W exp (2.27)
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Recent calculations of Ref.16 show that (sinzew)exp of Eq.(2.27)

which is measured in low energy experiments is related to sinZGW(Mé) by

. 2 . 2 _
sin ew(rflﬁ) = 0.95 (sin“6.) - ~0.22 + 0.074

(2.28)
Eq.(2.20) together with K,K'>0 (see Section VI) tells us that
sinzew(ma) = R sinzeg
(2.29)
with R<1. Furthermore for M~10°%! GeV and M~300 GeV - few TeV
' 2 1
0-95 CS - g
2 2
R ~ 0.85 CS =3 (2.30)
2 8
0065 CS - —3'

where the numerical values of Cg are the only ones encountered in our

study (see Section IV). Consequently only the gauge groups which give

0.23 < sinzeg < 0.30 (2.31a)

2 1 2
for CS =% 3 and

0.30 < sin®6)) < 0.40 (2.31b)
for Cg = % have a chance to satisfy Eq. (2.28). Therefore our first
task will be to find gauge groups Gw which have sin268 consistent with

Eq. (2.31).
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.. 2,0
JITI. sin ew AND Gw

The aim of this section is to derive a formula for sinzeg for
Gw:[SU(N)]k and subsequently find which pairs (N,k) satisfy equation

(2.31). We begin with the unlocked standard model.

3.1 Unlocked Standard Model

In this case we have

(3.1)

and consequently

2
2.0 |TrTg 1
sin ew = > = > .
TrQ adj. 1+CW

(3.2)
where T3L is the diagonal generator of SU(Z)L. This equation determines

c 2

once sin260 is known.
W W

Now in the case of GW=&8§ cee é, where there are p identical
factors of G, the "charge" generator for the adjoint representation of
G, can be written as

W

Q .. = 5 Q. (o) ..
adj. o=1 W' ‘adj.

(3.3)
Here Qw(o) corresponds to the oth factor 6 and is given in an obvious
notation as follows
Q<94 Zc (o)T o)
(3.4)

where i run over all diagonal generators in the oth factor G
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Using Tr(QW(o)Qw(o')) = Tr(Qﬁ(o))GUo, we obtain

2 2
Tr(Q )Iadj = 0§1Tr(Qw(o))adj. .

(3.5)

Notice that TP(Qs(G))adj. can take on different values for different O.
§L)adj. is obtained by considering any of the factors é to
which the standard SU(2)L belongs. We find (Tr(TgL )=1/2 for the

Next (TrT

fundamental representation)

2

(TPT3L

) = C2(G) [}

adj. = b§0f3bcf3bc

(3.6)
where Cz(a) is the eigenvalue of the quadratic Casimir operator for the
adjoint representation of the group 6. Combining (3.2), (3.5) and (3.6)
we finally obtain

sin®e? = CZ(G)
w - .

2
021TP[QW(°)]adj-

(3.7)

3.2 GW=SU(N)@L..SU(N)

3.2.1 Basic Formula

We shall now evaluate (3.7) for Gw:[SU(N)]k. We immediately obtain

C,(Su(N)) =N .
(3.8)

. 2
The calculation of Tr[QW]adj.

notice that since the quarks and leptons are in separate (but identical)

is slightly more involved. We first

representations of Gw the gauge bosons of Gw have integer electric
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charges. Allowing for arbitrary integer charges of the gauge bosons we

can write generally, for each SU(N),

5 a
Tr(Q) | = Yi%n, |,
adj. i=
(3.9)
where o is the maximal gauge boson charge involved and n, is the number
of gauge bosons with [Q]=1i.
ni can be calculated straightforwardly as follows. We first recall
that the adjoint representation can be constructed from the product of
the fundamental representations N and its conjugate N. Therefore ni can
be found by considering the "charge distribution™ in the fundamental
representation of G=SU(N).

Denote by rj(Ogjga) the number of elements in the fundamental

representation with the charge Qw-j, i.e.,

~ ~ ~ ~ ~

[Qw,.o.Qw, QW —1,:.. -1, e oy Qw-a’oo.Qw-a]

To ry Ty (3.10)

where 6W is an eigenvalue of Qw. The gauge boson charges are
lQI:i:I(QW-j)-(Qw-k)I=lk-j| . Then it is easy to show that
ni =2 r.r, 1<i<a
k-j=i 9
(3.11)

with

(3.12)
where the factor 2 in Eq.(3.11) comes from the fact that both the
positively and negatively charged gauge bosons contribute to Tr'(Q;). In

Eq.(3.12) the summation is over all pairs rj,r which satisfy k-j=i.

k
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In order to illustrate the formula (3.11) and its derivation let us
consider a few examples.

a) a=1.

In this case the fundamental representation consists of PO fermions
with charge 6W and r1 fermions with charge 6w—1. Therefore the charges
of the gauge bosons in this case are 0, 1 and the number of charged
gauge bosons (n1) is obtained by counting how many different gauge

bosons connect the s fermion with charge Qw to the r1 fermions with

charge Qw-1. One obtains

(3.13)
b) a=2
In this case the charges of the gauge bosons are 0,+1,%2,

Proceeding as in the previous case we obtain

n, = 2(r0r1+r1r2) ’
n, = 2r.r
2 2 ’
0 (3.14)
with
ro + r1 + r2 = N.

(3.15)

It is now clear how to obtain the formula (3.11) for arbitrary o
(for a single SU(N) group).

In summary sinze% for [SU(N)]k groups is given (in the case of the
unlocked standard model) by Egs.(3.7)-(3.9), (3.11) and (3.12). Note
that for a given group [SU(N)]k there is a set of values of sinzea, each
value corresponding to particular charge distributions either in the

adjoint or in the fundamental representations.
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3.2.2 Implications for Gw

Having explicit formulae for sin293 at hand we can easily find

which gauge groups G give Tacceptable™ values of sinzﬁa (see Eq.

W
(2.31)).

i) We first find that gauge bosons with charges *3 and higher
are not allowed in the "unlocked" version (E1) of our scheme. Indeed if
a=3, one can derive an upper bound for sinzeg which is obtained for any

N>4, k=1, r0=r3=1, and either r1=1 or r,=1, and which reads as follows

2

1 1

2.0
sy <tEm f T

(3.16)

ii) The maximal allowed number of doubly charged gauge bosons is

two with Q=#2. The only value of sin°6y consistent with Eq.(2.31) is

obtained for k=1 and a unique charge distribution in the fundamental
representation

(QW, Qw-1,...,Qw-1,Qw-2) . (3.17)

For any single SU(N) with N>3 (3.17) 1leads to Tr(Qé):MN which

implies

sinzeg = 0.25 .

(3.18)

The cases with four or more doubly charged gauge bosons or k>1 are
excluded since they lead to sin293<0.20.

iii) If a=1 one can derive the following bounds for sin290

W
corresponding to k=1 and any N:
2,0 1

< sin GW < m N even

2\

(3.19)



-21=- FERMILAB-Pub-81/22-THY
and

2N < sin29o < 1

_— —_— N odd
(Nz_” - W= 2[1-(1/N)]

(3.20)

Notice that for N=2, i.e., SU(2), the upper bound in (3.19) and (3.20)
is 1 and becomes smaller with increasing N.

The upper bounds correspond to the charge distribution in the

fundamental representation characterized by r =N-1 (or r

=1, r €»r1).

0 1 0
The lower bound for even N corresponds to the symmetric charge
distribution ro=r1=N/2. For odd N the lower bound corresponds to

ro=(N-1)/2 and r1=(N+1)/2 (or r ++r1).

0

It follows immediately from the above bounds that if o=1 and k=1,
i.e., Gw is a simple gauge group, only groups SU(N) with N>7 have values
of sinzea consistent with Eq.(2.31). Furthermore combining Egs.(3.19)
and (3.20) with the general formula (3.7) we find that the maximal
allowed value of k in the product GW=[SU(N)]k is k=U4. In addition if
k=4 only the group [SU(2)]u gives sinzeg consistent with Eq.(2.31). All
other groups with k=4 and N>3 have sin26%<0.20 and are of no interest to
us. Finally in Table I we list all the groups GW=[SU(N)]k with N<8

which give sinzeg consistent with Eq.(2.31). The relevant charge

distributions in the fundamental representations are also listed there.

3.3 Locked Standard Model

In this case Eq.(2.26) applies with

2 2

H
(]
"

=

g [cl,]
(3.21)

where m is the number of disjoint SU(2) subgroups of Gw, whose diagonal
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generators enter Eq.(2.7). Therefore for a fixed value of
[(TrT35)/(TPQ2)Jadj.’ the value of sin263 is m times larger in the
locked case than in the unlocked case. For a=1 (singly charged and
neutral gauge bosons) this implies that the groups Gw which give sinZG%
consistent with Eq.(2.31) must now be large. For instance if m=2 the
smallest acceptable weak groups are [SU(2)]8, and [SU(H)]” which give
sin203=0.25. Therefore the locked standard model is not economical and
we shall not consider it any further. It should be however remarked
that smaller weak groups consistent with (2.31) can be obtained in the
locked case at the cost of introducing doubly (0=2) and triply (o=3)
charged gauge bosons. For instance if m=2 and «=2 any [SU(N)]Z(N23)
with the charge distribution (3.17) will give sin26%=0.25. Also by

choosing r0=r1=1 and r,=N-2 some of the simple groups SU(N) with N>6 and

2
doubly charged gauge bosons satisfy Eq.(2.31). Similar comments apply
to the case a=3 if m>3 is chosen. Perhaps one interesting and
economical case would be SU(3)XSU(3) 17 with two doubly charged bosons

since sin263=1/4, but as we shall show in Sections IV and VI this case

turns out to be also unacceptable.

3.4 Summary

The study of this section leaves us with the following candidates
for the weak group GW
a) Unlocked standard Model
i) groups listed in Table I;
ii) SU(N) groups with N>3, fundamental representations of
Eq.(3.17) and two doubly charged gauge bosons. The corresponding

sinzeg = 0.25.
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b) Locked Standard Model
[SU(N)]2 groups with N > 3, m=2 (see 3.21) and two doubly charged gauge
bosons. The corresponding sinzeg = 0.25. As discussed in Section 3.3

other groups in the "locked" version of our scheme are not economical

and will not be considered further.,
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IV. CONSTRAINTS FROM THE CHOICE OF GS

To proceed further we have to choose GS' As discussed in the
Introduction the minimal strong gauge group turns out to be SU(4). We
shall now show that if

i) The strong gauge group GS is chosen to be SU(Y4),
ii) Each standard quark SU(3)c triplet is put with a lepton in
the fundamental representation of GS (lepton number being the fourth

color'),1

iii) Electric charges of quarks and leptons are restricted to

n,n' integer
d = 1,2

(4.1)
then many of the groups Gw listed in the Table I can be eliminated.

In order to show it we first write the electric charges of quarks
and Jleptons in terms of their weak charges (Qw) and the strong charges

(QS) as follows

Q = C.T +Q, =Q, +Q ’
S™15 W S W (4.2)
where T15 is the diagonal generator of SU(H4) which commutes with SU(3)c

generators. Using the normalization of Eq.(2.10) we have (A = 1/2)

1
Ti5 = % !
-3 - (4.3)

The coefficient CS will be determined later on. Now the content of the

fundamental representation of SU(Y4) is (see(1.6))
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3

| 2 ]
(4.4)

where q1,q2,q3 is the standard color quark triplet and £ stands for a

lepton. From Eq.(4.3) it follows that

(Qq), = -3(Qg)
S ’

% 5%a (4.5)
where Qg is an eigenvalue of Qg- Taking next into account that the weak
charges Qw of 945951093 and £ in the representation (4.4) are the same
and using (4.1) we obtain
6; = %[d +3n' +0'] , d=1,2

(4.6)

where Q; is an eigenvalue of Qw corresponding to the ith fermion.

We conclude therefore that if GS=SU(u) and the quark and lepton
charges are given by Eq.(4.1) then the Gw is restricted to groups and
representations for which 5% are multiples of 1/4. Thus it is enough to
calculate 6; in order to decide whether a given group Gw and its

representations can lead (in the case of G.,=SU(4)) to acceptable charges

S
of quarks and leptons. This is what we shall do now. To this end we
have to specify the fermion representations.

We shall consider two classes of representations which we
symbolically denote as f‘ollows18

1) (F315100051), (1,F,1,1,004) (4.7)

and
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ii) (£,F,1,1,...,1) o (4.8)
Here only the transformation properties under Gw have been shown. Each

entry in (4.7) and (4.8) corresponds to the group G in the product
Gw=a868§..4®a. In class 1) quarks and leptons transform nontrivially
under one of the groups & and are singlets under the rest. In the class
ii), which includes only semi-simple groups, fermions transform as (r,F)
under any pair agétﬂw and are singlets under the rest.

We begin byldiscussing the case of singly charged gauge bosons (the
case a=1 of Section III). In this case each fundamental representation

of the groups G has the charge distribution

[@u,QI,...,%I, %I-1,..;§r-1]

0
\ (409)

with r0+r1=N. This is also the charge distribution for the class i). In
the case of class ii) we have to consider the matrix

r'o r'1

L I rnae, s e e,

?W’QW’ .o on, Qw“' gee .Qw-1

o

QW,QW, ooan, Qw_1 g .QW—1

wtle e Qs Qw........Qw

-
s ee O

~ ~

mw+1...QW+1, Qw........ .

(4.10)
where the rows refer to f and the colums to T.

Furthermore

r.+r, =r! +r! =N .
o 10 (4.11)

It is now a ¢trivial matter to calculate Qw by wusing the
tracelessness condition for the charge operator QW. For the class i) we

obtain
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(4.12)

The other eigenvalue is 5w-1. Using Eq.(4.12) for the groups 1listed in

the Table I we obtain the relevant values for 5% which are shown in the
third column of this Table.

For the class ii) awis found from condition that the sum of charges

is zero,

réroaw + rori (5W+1) + r6r1(aw-1) + r{ r15W =0 .
(4.13)

Eliminating, by use of Eq.(4.11), r, and r% in favor of N we obtain

1
ki
1
3

(4.14)
Two other eigenvalues are awi1.
Using these equations for the groups of interest, we obtain the
last column of Table I.
For the case of doubly-charged bosons in the unlocked standard
model only the c¢lass i) applies. The charge distribution in the
fundamental representation is given in Eq.(3.17). Using the

tracelessness condition we obtain

(4.15)

The other two eigenvalues are 0 and -1. The same eigenvalues are

obtained for the "locked" cases mentioned at the end of Section 3.3.
Before discussing the implications of these results 1let us

calculate the coefficient CS of Eq.(4.2).
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We first obtain

Co = 2 Tr'(Q'T1 ) .

S 5

(4.16)

Choosing next in accordance with Eq.(4.4) the following form for Q

i
Qq Qi 0
Q = q Ql
0 q i
Q
.17)
where
i - ~i
e T Wg % (4.18)
and using Eqs.(4.3) and (4.5) we obtain
2 1 i i.2 8,71 i.2 8§,~ .2
Cq = g[3Qq-3Q2] = §[QW-Q2] = §(QS)2
(4.19)
Cg is independent of i. In Eq.(4.19) the relation
~i 1 i i
Qw = E[3Qq+Q2]
(4.20)

has been used.

In order to simplify the discussion of the groups in the Table I
and of the assignment of the Kknown quarks and leptons into various
representations we have listed in Table II possible weak and strong

multiplets, the corresponding weak and electric charges and the values

2
S

|Q2|52 and IQq|$4/3 have been shown there.

of the parameter C.. Only cases which satisfy Eq.(4.6) and for which
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Having the Tables I and II at hand we can now enumerate good and
bad features of the groups listed in Section 3.4. We shall only discuss
the groups which give Qé which are multiples of 1/4 (see Eq. 4.6). In
particular we do not consider the group [SU(3)]3 any further.

a) Certainly the most attractive ones are the groups ESU(Z)]” and
[SU(H)]Z. They do not require other electric charges.than the known 0,
+1 for leptons and anti-leptons and +1/3 and 2/3 for quarks and
anti-quarks, if the representations of the class i) i.e.,
(f31,1,1...)+(1,F,1,1...) are used. Because for these representations
the barameter C§=2/3 is small, the resulting value for sin29w is in a
very good agreement with the experimental data (see Section VI for
details). Also the group SU(8) has the same features as the two groups
above. But SU(8) is a very large group and for that reason perhaps less
attractive. The representations of class ii) i.e., (f,f,1,...1) are not
acceptable for the groups,[SU(Z)]u and [SU(H)]Z. They lead to a large
value of Cg=8/3 and the resulting sinZBW(Ms) is at least three standard
deviations below its experimental value (see Section VI). Furthermore
in the case of these representations leptons with charges *2 and quarks
with charges *4/3 are required.

b) The groups [sU(5)1%, [SU(6)1% and [SU(T)1® with Q}
after renormalization to sin26w < 0.,20 1if M>105 GeV. For M<10u GeV

=0,x1 lead

sin29:O.22 can be obtained but such a low value of M 1is inconsistent
with our analysis of rare decays (see Section VII). Furthermore these
groups are large and require leptons with charges *2 and quarks with

charges *4/3.

¢) Among the groups in Table I which have Ql-

e
5-6 . 2
GeV acceptable values of sin GW. These are

0,#1 only [Su(2)13
and {SU(3)]2 give for M=10

0.20-0.21 for [SU(2)]3 and 0.21-0.23 for [SU(3)]2. However these groups
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require leptons with charges *2 and quarks with charges *4/3.

d) The groups with doubly-chafge gauge bosons which have
sin263=0.25 are excluded because they have a large parameter C§=8/3 and
therefore lead to sin26w<0.18 after renormalization effects are taken
into account. Furthermore these groups also require *2 and *4/3 fermion
charges. The same remarks apply to the "locked" cases mentioned at the
end of Section 3.3.

Finally

e) In the case of the group SU(4)1®SU(4)2 (rotré, Eq.(4.10)) the
parameter Cé is very small (C§=1/6) and the resulting sinzaw(Mﬁ) turns
out after renormalization to be larger than v0.27 for M<1O8 GeV.
Smaller values of sin26w can be obtained at the cost of increasing
substantially the scale M which is against our philosophy. Furthermore
for the group in question the quarks with charges *4/3 are required.

In summary tﬁe considerations of Sections III and IV leave us with
only two economical candidates for the group GzGéSGW. These are

1) G=su(s)eLsu(2)1? (4.21)
and

11)  G=SUL(SU(H)IZ . (4.22)

Furthermore as we shall show explicitly in Section VI only the

fundamental representations of Eq.(4.7) are consistent with the

experimentally measured values of sinzew.
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V. MINIMAL PETITE UNIFICATION MODEL

In the previous sections we have found that the minimal petite
unification gauge group consistent with the measured value of sin29w
(see also Section VI) and which did not require other than the
conventional wvalues of quark and 1lepton charges was the group
SU(4)§8[SU(2)]M. We shall discuss it here in some detail. '’

More explicitly we take

G = SU(ll)S ® SU(Z)L ® SU(2)R ® SU(Z)L, ® SU(Z)R, (5.1)
where SU(2)Lf8’SU(2)R may be identified with the SU(Z)ﬂgsU(Z)R part of the

well known left-right symmetric model9

and SU(2)L,®SU(2)R, constitutes a
"mirror" left-right symmetric counterpart.
The group G is broken down to SU(3)0®U(1)EM in three steps as

follows

G — SU(3) ®U(1),® [su(z)]u — SU(3) ® 3U(2), ® U(1)
M c S M c L

— su(3)c ® U1 )EM

"

(5.2)

We shall first present the fermion and gauge boson content of the
model. Subsequently we shall discuss the Higgs system necessary for the

breakdown (5.2) to occur.

5.1 Fermions

Fermions transform under G as follows
i) Light fermions \Dcix(n) (a=1,...43 i=1,2) are grouped in n=1,2,...
generations and transform under G according to

[0
¢i(n) = (4,2,1,1,1)L (5.3)
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*q
b, = (B,1,2,1,1),
(5.4)
where Weyl fields are used.
L
ii) heavy ™mirror" fermions wia(n) are grouped in mirror

generations which transform under G according to

¢ia(n)

(4;1,1;2,1)L
(5.5)

wia*(n) (831,151,2),

(5.6)

Example of the first light generation and of its heavy mirror
counterpart is given in Eqs. (1.6) and (1.7) respectively.

Recall that the existence of the mirror group SU(Z)L,QDSU(Z)R, and
its fermions is required in our scheme by the measured value of sinzew.
The assignment (5.3) accomodates known quarks and leptons (n=1,2,3) with
conventional charges. The mirror fermions have no ordinary SU(2)L weak
interactions. Of course both the 1light and mirror fermions have
ordinary electromagnetic and neutral current interactions.

The mirror fermions have to be heavy enough to escape detection.
On the other hand they have to be lighter than ﬁ. This is due to the
assumed permutation symmetry among SU(2) groups which requires the
equality g (Q°)=gp(@*)=g,, (Q¥)=gy,(@%)=g,(@%) for scales @M, wnere
[SU(2)]4 is a good symmetry. If some of the mirror fermions had the
masses larger than ﬁ they would not contribute to the relevant
renormalization group functions which govern the evolution of the gL,
and gR, couplings for Q2>ﬁ2. Consequently the equality ngnggL'=gR'
would no longer be true for scales larger than g even if it was true at
ﬁ. Thus we expect the masses of the mirror fermions to populate the

energy range from Mw to M but it is not excluded that the masses of the

lightest of the mirror fermions could be as low as 20-30 GeV. Some
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phenomenology of these 1light mirror fermions is discussed in
Section 7.3.

5.2 Gauge Bosons

5.2.1 Gluons and Leptoquarks

The SU(3)c content of the adjoint representation 15 of SU(li)S is as
follows

15=8+3+3+1 ,

(5.7)
and the corresponding gauge fields A;S are represented by
SU(3)c U(1)S
pe +,1 -
al !
. HS G;’z SU(3),,
{Aus(l=1,ooo15)} = l=1,ooo,8 G+’3
M
~s1 =32 A=33 ¥
G’ ,G’™,c’ A U1
i T T Y| us ()S . (5.8)
Here the octet A;S stands for the gluons,
2,1 _ _1,,9 = .,10
Gu = /Z(AuS + 1AuS) ’
(5.9a)
32 _ 1,11 - .12
G]-l /Z(AuS + lAuS) ,

(5.9b)
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£,3 1,13 = ., 14
Gu = VE(A]JS + lAus) )
(5.9¢)
and AuS = A&Z is the neutral gauge boson which corresponds to the
generator T15 of SU(ll)S and equivalently to the generator of U(1)S. The

4 3

leptoquark gauge bosons G;’l carry charges +2/3 and connect quarks to

leptons. They are responsible for the rare transitions, the

phenomenology of which is presented in Section 7.1. Under the breaking
+

of SU(lI)S down to SU(3)C<® U(1)S the leptoquarks Gi gain masses of order

M whereas the gluons and the gauge boson A ., remain massless.

us

5.2.2 Electroweak Gauge Bosons

The model has twelve massive electroweak gauge bosons in addition
to the massless photon.

These include:

+

+ +
i) six charged gauge bosons Wﬂ, WLT, WR: and three neutral gauge

bosons Z 22, Z, all with masses of order M,

1? 3
+

ii) the standard W~ and Z0 gauge bosons with the conventional
masses of order Mw.

It should be remarked that the field Bu of the standard model 1is

. . " 3 .

expressed in terms of the fields AuS and (AuW)R,L',R" which couple to
the diagonal generators of U(1)é@BU(2)ﬁSSU(2)LﬁgsU(2)R, respectively, as

follows

- sin® 3

_ S/a3 3
Bu = Auscoses + —73——(AuR + AuL, + AuR,) ) (5.10)

where the mixing angle GS is defined by
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)

3
tanf_ = .
S gy V2 (5.11)

Recall that gs is the U(1)S coupling constant. Furthermore we have

cos®
- . S,. 3 3 3
YA = A sinf_ - (A + A + A ) ,
1 us S V3 UR uL? HR!' (5.12)
1,.3 3
Z = (A - A ) ’
20 7 V2R T R (5.13)
1,,3 3 3
Z, = o=(A°_ - 2A + A ),
347 /6 R HL! HRY (5.14)

Whereas the gauge bosons 22,23, wﬁ, Wi, W;,have a common mass which

we denote by M the mass of Z1 is given by

M
coseS

M(Z1) = (5.15)
Eq. (5.15) is the analog of the standard model relation Mw = Mzcosew. As
discussed in Section 7.2, M must be larger than 300 GeV in order for the
model to be consistent with the experimental data. Finally, notice from
Eq.(2.13) that the hypercharge U(1)Y coupling constant g' is defined in
terms of 8g and gw by

8,853

g' = — = g.sinf V3 ,
[985+2g51/2 WS (5.16)

where Eq.(5.11) has been used. EQ.(5.16) is analogous to the well-known

relation e=g sinew.
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5.3 Higgs Bosons and Symmetry Breaking

The breakdown (5.2) can be accomplished by the scalar multiplets ¢

and  ¢.(i=1,.,4) which transform under SU(l)g 8>[SU(2)]” as

¢

(1551,1,1,1) (5.17)

and

-
]

(432 ¢ SU(2)i) ’ (5.18)

where 2 € SU(2)i means doublet under SU(2)i and singlet under the
remaining SU(2)'s, i.e., each ¢i is a 4x2 matrix. The charge structure
of ¢i and ¢ is the same as that of the fermions and the SU(ll)S gauge
bosons respectively. In particular we have

o = |2 ¢ (5.19)

Pl e | '
i

where ¢ denotes a color triplet.

The study of the symmetry breakdown (5.2) by the multiplets & and

$¢. 1is essentially a hybrid of the analyses of Li20 with that of

i
Buccella, et al.21 Li made a general analysis for the case SU(n) @ SU(m)
with a scalar multiplet transforming as (n,m). On the other hand
Buccella, et al. analyzed breakdown of SU(n) by an adjoint and a
fundamental scalar multiplet. We shall not present the details of our
analysis, which is lengthy. We only remark that the desired asymmetric

vacuum 1is characterized by the following scalar vacuum expectation

values
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1 0
vS
= a3 1|
0
-3 (5.20)
and
0 0
0 0
<¢.> = ’
1 0 0
vi//z_ 0 (5.21)

and that it is essential for the avoidance of massless physical Higgs
particles that the cross couplings between ¢ and ¢i are present in the

Higgs potential. In particular the colored, charged Higgs particles ¢u

and ?d receive masses of order vS through these cross couplings.

The physical Higgs content of the model is as follows:

i) Color triplet: 8 with charges *2/3, 8 with charges *1/3, mass of
the order O(vs),

ii) Color octet: 1 neutral color octet with mass of the order
O(vs),

iii) Color singlet: 1 neutral singlet with mass wO(vS) and four
neutral singlets with mass fO(vi), one of which is the Weinberg-Salam
Higgs.

Finally, we should also remark that we may need additional Higgs
multiplets such as (1,2,2,1,1), (1,1,1,2,2), ete. to provide the
fermion masses. One might also expect that (15,2,2,1,1), etc. Higgs

et
Ll
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fields may have to be introduced. However if new SU(4) t§§>SU(2))4 singlet
fermions (e.g., "generation" fermions) with a large inirinsic mass are
added to our scheme, there are several potential mechanisms of
radiatively generated fermion masses available. In such a case it
appears that no (15,2,2,1,1), ete. Higgs multiplets are required. We

leave the study of fermion mass generation for the future.
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VI. RENORMALIZATION GROUP ANALYSIS

In this section we shall present the results for sinzﬁw(Mé) for

G=SU(4)§8[SU(2)]” and G:SU(4)§8[SU(4)]2. In these cases the group 5 of

S
Section II is just GS=U(1)S. The basic formula for sin29W is given in
Eq.(2.20). The various parameters which enter there are for the cases

in question as follows

(6.1)
and if only gauge boson and light fermions contributions to the relevant

B functions are taken into account

n [2n,.-22]
by = l% f2 » By = . 2
487 4871
b3 =T 2 » b= 2
487 L8+

(6.2)
where nf is the number of 1light Fflavors (the effect of the mirror
fermions is discussed at the end of this section).22 From the analysis

of Section IV we also have

2 2 8
CS =3 and 3
(6.3)
for representations (4.7) and (4.8) respectively.
Combining Eqs.(2.23), (6.1)=(6.3) we obtain
64 n.=6
K = —‘2- [88-1n_] = -—15 x £ (6.4)
48 487 56 nf=8
2

for CS = 2/3, and
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1 1 106 nf.=6
K = 2[1511-8nf] = 5 x{ (6.5)
487 481 90 nf,=8
for Cg = 8/3. Furthermore
R' = Cg 332 (6.6)
48

independently of the number of flavors.

In order to complete the analysis we still need the values for

«(M2) and aS(Mﬁ). For a(Ma) we take

2 1
G(Mw) = 128

(6.7)
as obtained in ref.23. The fact that a(M§)£1/137 is due to QED
renormalization effects. For aS(Mﬁ) we have used the standard QCD

expression

2 12n
M2 =
s (33-20,)1n(v2/A%)

(6.8)
with a typical value for the scale parameter A equal to 0.3 GeV. We
have checked that varying A in the range from 0.1 GeV to 0.5 GeV changes

2
S-2/3 and

our results for sin26w by at most one and five percent for C
C§=8/3, respectively.
Choosing finally Mw=80 GeV we have calculated sinzew(Mé) as

function of M for n_.=6 and nf=8, the values of 02 given in (6.3), and

f S
ﬁ=300 GeV. The results are presented 1in Fig.1, where also the
experimental range for sinzew(Ma) (Eq. 2.28) is shown. We note the

following features
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i) the case C§:8/3 is ruled out. The corresponding sinzew is by
at least three standard deviations below the experimental data.
Slightly higher values of sin29w could be obtained by decreasing M below
10 TeV but such 1low values of M are excluded on the basis of our
analysis of rare decays (see Section VII).

ii) the case C§=2/3 is in agreement with the experimentally
measured value for sinzew for both nf=6 and nf=8 and for the whole range
10 TeVKM< 1000 TeV considered.

Increasing ﬁ from 300 GeV to 1 TeV would decrease the predicted
values of sin26w as shown in Fig. 1 by at most 0.005 and hence would not
change our conclusions. We also find that the maximal value of ﬂ
consistent with the experimental data for sin26w is roughly 10 TeV.

These results are essentially unchanged when the contributions of
the mirror fermions to the relevant B functions are taken into account.
As discussed in Section V we expect the masses of these fermions to
populate the energy range from Mw to ﬁ. Therefore the contributions of
the mirror fermions to the b, coefficients of Eq.(6.2) are in the energy
range from Mw to ﬁ suppressed by mass effects as compared to the
-corresponding light fermion contributions. In the approximation of
neglecting these mass effects we find

2n

(AK) R

- (6.9)
mirror 48"2

= 8/3 respectively. Here n

where + and - correspond to Cg = 2/3 and 02 F

S
is the number of mirror flavors which is equal to n.. Furthermore K' of
Eq.(6.6) remains unchanged. Combining Eq.(6.9) with (6.4)~(6.6) we find
that the inclusion of the mirror fermions in our renormalization group

analysis lowers (increases) the value of sinzew(Mﬁ) in the case of Cg z

2/3 (c§=8/3) by at most 0.002.
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VII. PHENOMENOLOGY

7.1 Rare decays of K-Mesons

Rare decays of K-mesons serve as a strong constraint on our ideas
of "Petite Unification". Specifically, we concentrate on the K->pe, mle

modes whose experimentél upper bounds on branching ratios are given byzu

B(K, ~+ pe) < 2x10"2 y

+ 3 -
B(kY » e*p¥1h) < x1077 .

(7.1)

Such decays have been considered in ref. 25 in the context of
generation-changing horizontal gauge groups. Inv our case, the
elementary processes q+2*Gt+2'+q' becone, after a  Fierz-Michel
rearrangement, q+q'+*L+L'. Here 6* are the massive SU(M)/[SU(3)é8U(1)S]
lepto-quark gauge bosons of eq.(5.9).

According to Section V, we have the following SU(4) 1light fermion

representation for each generation

Fu1 d,
u d T
p=| 2 2] suwy (7.2)
uz 4§
v e
*SU(Z)E+

where Q(u)=2/3, Q(d)=-1/3, Qe )=-1 and Q(v)=0. To simplify the
discussion, we make some sort of "kinship"™ hypothesis whereby we have
(di,e'), (si,u'),... In principle we could have generation mixing but

this could only complicate our estimates of K-+ue, mue. Specifically, the
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Lagrangian describing the interaction of 1light fermions with the

SU(H)/[SU(3)68U(1)S] gauge bosons is given by

-a_a =a_ a,. .l
g u,y vv +d.vye )G , + h.c.
az1 i=1 i M % b

~12Z

L= (gs//i){
(7.3)

where GE j are defined by Eq.(5.9), while a and i are "generation" and
’

color indices respectively.

For q2<<mé, we have the following effective Lagrangian

N 3
-a a -a .a,,-a'sma' -a'u.a’
Q%ff = V2 GS 2 -2 (uiyuv + diYue Y(Vvy u; + ey di ) ,
aéf} i=1
(7.4)
where GS is defined by
(7.5)

We are particularly interested in that part of Eq.(7.4) which describes

d+ure+s, namely

3
xdu*es - /EGS .z

3 v enM
o fF . 1(diyheuy s; + h.c.) .

(7.6)

A Fierz-Michel rearrangement of Eq.(7.6) gives
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- - - - 1__ - U
{d.s.fie - d;v58;0v5e - 5 4,y s,iiv'e

_ds*ue
¢ )
o 11

eff S

13 - M
-3 diyuyssiuy YSe + h.c.} . 7.7

EQ.(7.7) is the basic formula which we now use to describe K-+ue, mue.
i) KL+ue

For simpliecity, we ignore the effect of CP-violation here and use

0 . -0
K = (K £tX)WN2 .
L,S (7.8)

With our "kinship" hypothesis, we have the following transitions K0+u+e-

-

and ﬁ0+u-e+. In reality we are looking at K. *u'e” + u e’ with a 50%

L,S
probability in each mode.

From Eq.(7.7), we learn that there are two contributions to thel
amplitudes T(KL’S+u+e-,u-e+), one coming from the axial-vector current
part and the other from the pseudoscalar density part. To see the
relative importance of these two contributions, we need to evaluate

(s)0 )0

<O|(ayuyss + h.c.)| ‘B> and <0I(ayss + h.c.)?ﬁ >. Using PCAC, we

obtain

<0lsy, v alx%> = <0ldy. y sIR% = if pK .
u's u's K "u
(7.9)
With the use of the equation of motion and PCAC, we also obtain
m2
<O|§Y5dIKO> = <o|ay5slﬁo> = - ifK(m fm ),
s  d (7.10)

where M is the Kaon mass and ms and md are the current-algebra masses

of the s and d-quarks, respectively. Since
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K,~- -
pu(uvuvee) -(mu+me)u75e ,

[

- m jy.e ’

w5 (7.11)
using Eq.(7.7) in conjunction with Egs.(7.9), (7.10) and (7.11), we see
that the contribution of the pseudoscalar density of the decay amplitude
is larger by a factor [2m§/mu(ms+md)] than the contribution coming from

the axial-vector current. With ms=200 MeV, =10 MeV,

B4
[mﬁ/mu(ms+md)] = 23, The axial-vector current contribution will be
neglected from here on.
From Eqs.(7.7), (7.9) and (7.10), it is straightforward to obtain
the following amplitudes
_ HYge
A(KL s ute+) =i Gsmé[fK/(msﬂnd)] _ ’

where the + and - signs in the curly brackets correspond to KL and KS

R TM TR TR T

+
respectively. We have +to compare K > u'e+ with K

L,S L,S

generally accepted that the dominant contribution to KL S > u+u- comes
b
from the two-photon intermediate states, i.e., KL s+7y+u+u°, giving the
?

following estimated amplitudes

N Y M
A(K > up) = i 2si 0. 2 (m /mK)
pM) = i G, m_sinf_ kB — _ .
LS FokoC m iy (7.13)

This estimation correctly predicts B(KL*uﬁ)=1O-8.

Since K, is so short-lived, we will concentrate on the comparison

s
of K +ute* with K 26

L +pyl. Experimentally, it is known that

L
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B(K > uH) = (9.1 £ 1.8) x 1077
(7.14)
giving
F(KL+u+e'+u-e+)
= < 0.2 ’
P(KL+uu) (7.15)

where PK sute"sue™) = F(KL+u+e') + F(KL+u'e+) and where B(KL+ue) is
L
given by Eq.(7.1). Using Eqs. (7.12), (7.14) and (7.15) we obtain

g 2 2
GS 2n2 f‘K i

5 > — < 0.2 .
Gpa”/ sin0, [ {Ps™a (7.16)

With f‘K=1.3fTr (the factor 1.3 is due to flavor SU(3) breaking) and

GS=E§/2/2 mg, the bound (7.16) is translated into
2
oqlm,)
S uG < 10-2u Gev-u ,
ms (7.17)
where a_ (m,)=g 2(m ) /4m
SG'T°S TG '
Now, according to our "minimal" petite unification scheme,
0.(m,) = a,(m
5% 3( @ (7.18)

where a3(mG) is the SU(3)C coupling evaluated at the mass scale mj,.

a3(mG) can be estimated by using the formula

1 1 M ~ Mg
= - 87b. ln— - 8mb_1ln — (7.19)
2 3 3 iy
05 (mg) a3(M§) My M

where
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[an-33]
b3 = , (7.20)
487w
- [2(n.+n_)-33]
b, = £ F2 , (7.21)
487

and ng is the number of mirror flavors which is equal to Npy the number
of light flavors. As discussed in Sections V and VI the masses of
mirror fermions are expected to populate the energy range from Mw to M.
Therefore the contributions of the mirror fermions to the coefficient b

are in the energy range from MW to ﬁ suppressed by mass effects as
compared to the corresponding light fermion contributions. In order to
simplify our analysis in writing Eq.(7.19) we have neglected the
contributions of mirror fermions in the evolution of a3 from Mw to ﬁ. On
the other hand we have included the mirror fermion contributions to the
from ﬁ to m,. Using

3 G
M = 1 TeVand Eq.(6.8) for aS(Mﬁ) with A=0.3 GeV and n_=6 we find from

parameter b3 which characterizes the evolution of a
(7.17) and (7.19)

m, > 300 TeV . (7.22)

G
For ng = 8 the bound (7.22) is changed to 350 TeV. These estimates are

consistent with those of ref. 27.

Whereas the rare decays of K mesons give the lower bound (7.22) on
mG=M, the renormalization group analysis of sin29w of Section VI gives
an upper bound on m;. This upper bound is shown in Fig.2 as a function
of M. It has been obtained from the requirement sin29(M§)>O.206 (see
2.28). Combining this upper bound with the 1lower bound on m,
(horizontal 1line in Fig.2) as given in (7.22) and with the lower bound
on ﬁ (vertical 1line in Fig.2) as obtained from neutral current

phenomenology we observe that only a certain range of mG=M values is

allowed. We can also see that as M increases the allowed range of m,
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values decreases. In any case it is important to notice that our model

can be made simultaneously consistent with the value of sinzew, the

rates for the rare K meson decays and with the low energy neutral
current phenomenology.
Is there any interest on a narrow range for mG? The answer is yes.

The reason is the following: F(KL+ue) behaves like mau and any increase

in m, by a factor of ten will bring down the rate by four orders of

magnitude. For example, if 300 TeV<m <3000 TeV, the 2.0x1o'13<B(KL+ue)

< 2.0x10~?

. Experimentally it would be hard to reach the sensitivity of
B(KL+ue)f10_13 or less. Looking at Fig. 2, we can see that the most
experimentally interesting allowed range for mG is 300 TeV<mG<1OOO TeV.
This is the range for which M1 TeV-10 TeV, for nf(light)$6 and 8

=11

respectively. In this range of mn 2.0x10 <B(KL*ue)<2.0x10'9. It

G’
would be interesting if future experiments on K-meson rare decays can

reach the above sensitivity.

ii) K -+ 7pe
Due to theoretical and experimental uncertainties in the
calculation and observations of the "normal" rare decay K+mwuu, it is

hard to use the mode K»*nye to set a useful bound of mG. We will

+
+u‘e+, which has less

therefore rely only on the previous decay mode, KL

theoretical uncertainties.,

7.2 Corrections to normal charged and neutral-current processes

Let us recall that in the ™minimal" petite unification model
considered here the 1light fermions have SU(2)L and SU(2)R weak
interactions. There have been numerous studies on the effect of

right-handed currents to neutral-current inter'actions.28 We will not
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repeat the analysis here but only summarize the results. It has been
shown that in a typiecal SU(2)L®SU(2)R®U(1) model, the mass of the
heavier of the Z-bosons must be larger than 300 GeV. Similar lower
limits are found for WR. In conclusion, we have to have me,mZR>300 GeV.
This bound sets a lower limit for Q discussed earlier.

We conclude this section by mentioning that the contribution to

neutral-current interactions coming from the effective Lagrangian (7.4)

which is parity-conserving, is negligible in view of the large

lepto-quark gauge boson mass. Furthermore, since it is

parity-conserving, its effects would be completely overwhelmed by the

electromagnetic interactions in atomic physies and SLAC polarized e RD
?

experiments.

7.3 Remarks on Mirror Fermions
The value of sin26W forces us to introduce mirror fermions whose
weak interactions are described by SU(Z)L&DSU(Z)R,. These fermions do
not interact directly with the electroweak WE bosons. As we have
explained earlier, their masses could range anywhere between 20 GeV to a
few TeV's. We have seen earlier that these mirror fermions are the
exact duplicates of the ordinary ones as far as SU(Y4) interactions and
electric charges are concerned. How then can one dist inguish
experimentally these genuine '"new" fermions from the ordinary heavy
sequential fermions?
Let us consider the lightest among the charge mirror fermions which
we assume to be the mirror electron (positron) Ei. If they exist and are
light enough, they could be produced in a reaction such as e+e'+E+E-.

- +
Since E' and E do not couple directly to WE, they presumably live

longer than one would expect on the basis of an ordinary weak decay.
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The only question is whether or not there is any substantial mixing
between WE and WE',R' could be induced by a Higgs representation which
transforms as (2,2) under SU(Z)ﬁgsU(Z)L,’R,. Such mixing is expected to
be small in order to keep M + Small compared to M . More serious is
W Wt R
the question of how small of how big is the possiglé Yukawa coupling of
the (2,2) Higgs to ordinary and mirror fermions. On one hand, such a
Yukawa coupling may naturally be expected to be small if the (2,2) Higgs
is dynamical, i.e., it arises through higher order corrections of the
simplest Higgs system. On the other hand the masses of all these mirror
fermions are large, suggesting a relatively 1large Yukawa coupling.
Irrespective of these considerations, it is clearly of interest to see

if the next heavy leptons (if any) have any unexpected long lifetime.

Similar considerations apply to mirror quarks.
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VIII. SUMMARY

In this paper we have studied a possibility of a quark-lepton

unification characterized by the gauge group GSSGW with two coupling

51

constants 8g and 8y and by the unification mass scale M=10 GeV. We

call such a possibility petite unification. In this scheme the

Su(3) and the standard SU(2)L group are embedded into the strong

color
group GS and the weak group Gw respectively. The generator of the
standard U(1)Y group is a linear combination of the generators of GS and
Gw. The latter property allows us to put quarks and leptons into
identical representations of the weak group GW and consequently make the
quarks and leptons to be indistinguishable when the strong interactions
are turned off. The simplest candidate for GS turns out to be the
SU(lI)PS of Pati and Salam, in which the fundamental representation
consists of a standard quérk SU(3)C triplet and a lepton (lepton number
being the fourth color). The choice of Gw, the type of the fermion
representations under GW and the charges of weak gauge bosons are quite
restricted by the measured value of sin26w.

This restriction becomes even stronger if we want at the same time
to satisfy the experimental bounds on reactions induced by leptoquark
exchanges and right-handed gauge boson exchanges.

In particular we have found that

i) weak gauge bosons with electric charges [Qi>2 are not allowed
in our scheme (unlocked standard model) since they would lead to a too

small value of sin26w

and
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ii) irf Gw is a pseudo-simple group f{(i.e., a direct product of

simple groups G, with identical coupling strength) then certain fermion

W

representations are favored. These are the respresentations in which

quarks and leptons transform nontrivially under one of the groups GW and

are singlets under the rest.

We have analyzed the general case of GW:SU(N)k and have found that

the most economical and at the same time realistic models are Gw=SU(2)u

and Gw=SU(4)2-
We have presented in some detail the minimal petite wunification

model SU(H)PS®SU(2)L® SU(2)R® SU(2)L,®SU(2) where the first three

R’
factors constitute the well-known Pati-Salam gr'oup.1 The presence of
SU(2)L'8>SU(2)R, is required by the measured value of sinzew. For

M=10°%

GeV, as assumed in our paper, the Pati-Salam group by itself
would give sinzew(Ms) ~ 0,45 which is inconsistent with experiment.

Our minimal petite unification group G:SU(1’:)}.,5(83[80(2)]Ll is broken
down to SU(3)C$8>U(1)EM in three steps as follows

M M
6 > SU(3),®U(1) ® [sU(2)]" > SU(3), ® SU(2), ® V(1)

My

SU(3)C® U“)EM

where the mass scales M, ﬂ and MW characterize the masses of leptoquarks
(M), the weak gauge bosons of SU(Z)ﬁgsU(Z)Lﬁ98U(2)R,(ﬁ) and the standard
weak gauge bosons (Mw).

The following properties of the minimal petite unification model

should be emphasized



-53- FERMILAB-Pub-81/22-THY

i) it accommodates all known quark and lepton generations, which
are assumed to transform non-trivially under SU(M)P§83U(2)ﬁ88U(2)R and
are singlets under the rest,

ii) it implies the existence of mirror fermions whose masses may
range from 20-30 GeV to a few TeV's. The mirror fermions carry the
standard electric charges (+2/3,-1/3 for quarks and 0,-1 for leptons)
and transforming nontrivially under SU(H)P§880(2)Lﬁ©SU(2)R, are singlets
under SU(2)ﬁgsU(2)R. As discussed in Seetion 7.3 the lightest mirror
fermions might be relatively "long" lived, as opposed to an ordinary
sequential heavy fermion with the same mass.

iii) it gives the correct value of sinzew(MW)zO.ZZ and at the same
time can be made consistent with the experimental bounds on rare decays
induced by leptoquark exchanges such as K+ye and K»>mue.

iv) In our model as it stands the proton is stable. However by
complicating the Higgs system it is in principle possible to generate
induced Yukawa couplings between quarks and leptons which in higher
orders could lead to proton decay.29

The study of fermion mass generation in our scheme is left for the
future. Similar comments apply to a possible embedding of our petite
unification model into a grand unification gauge group or to exploration
of synthesis at a higher mass scale based on composite structures for
quarks, leptons and/or gauge quanta. Much work has to be done to
explore the ideas presented in this paper. The class of models
presented here imply a lot of new physics in the 103-106 GeV regime

without assuming what happens in the 106-1015

GeV range. For this reason
it may well be that experimental hints for the relevance of the petite
unification models will be sooner visible than in the case of their

grand sisters and brothers such as SU(5), SO(10) and E6 among others.
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TABLE I. The weak groups G,=SU(N)" with N<8 which give sin®6])
consistent with Eq.{(2.31). ry is defined in Egs.(3.10) and (4.9). The
third and the fourth column give the values of the weak charges 6% in

the case of representations (4.7) and (4.8) respectively.

20 (£,1)+(1,%) (£,7)
G r sin“6 ~i ~i
W 0 W o Q
[suc2)13 1 0.333 r% 0,41
[su(2)1* 1 0.250 £ 0,1
[Su(3)1? 1 0.375 %,-% 0,1
[su(3)13 1 0.250 %,-13 0,41
[su(y)12 2 0.250 r% 0,+1
15 3
SU(4)1®SU()4)2 1,2 0.286 - g
[Su(5)1° 1 0.313 g,~l 0,1
4 9
SU(5) ®SU(5), 1,2 0.250 - 302
[Su(6)12 ‘ 1 0.300 2, 0,41
4 3
SU(7) 3 0.292 7= -
2 6 1
[SU(T)] 1 0.292 L 0,41
5 3
SU(8) 3 0.267 3,3 3
Su(8) y 0.250 r% -
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TABLE II. The values of lepton (Qi) and quark (Q;) electric charges

corresponding to the weak charges Q; discussed in the text. The values

for Cé have been obtained from Eq.(4.19).
0 i o 2
2 0 5
1 y 1 2
2 3 3
S I R
1 0 %
0 -1 -;—
1 2 %
0 1 3
-1 0 -3
N B
; : 3 1
3 -1 2
4 3
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Figure Captions

Fig. 1

Fig. 2

300

sin26w(M3) as given by Eq.(2.20) as a function of M for ﬁ

- 2 _2 8 2 _2
GeV, n, = 6 and 8, and CS 3 and 3° For the case Cq = 3 also

the curve corresponding to M = 10 TeV is shown. In all cases A =

0.3 GeV has been used. As discussed in the text the inclusion of
mirror fermions in the evolution of sin26 changes the above
curves by at most 1%.

The allowed region (shaded triangle) in the M-ﬁ plane as
obtained from the measured sinzew, KL+ue and electroweak

phenomenology.
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