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Abstract
Superconformal theories in two dimensional space-
time are considered. Noether's theorem and the Belinfante
improvement procedure are extended to superspace where they
are used to construct the supercurrent. With its aid, an
infinite number of classical conservation laws are derived.
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1. Introduction

Fvery conformally invariant classical field theory in two dimensional
space-time possesses an infinite number of current conservation laws [1].
These laws, if they survive quantization, are sufficient for proving the
absence of particle production and the factorization of the S-matrix,
which in turn allow the S-matrix to be explicitly calculated [2]. The
existence of these quantum conservation laws has been demonstrated in
various models [1],[3]. The difficulty encountered in such proofs is
that conformal invariance is broken at the quantum level and hence quantum
anomalies occur in the conservation laws. One procedure [1] used to show
that these anomalies do not spoil the required form of the conservation laws
is to simply list the various anomaly operators using the restrictions im-
posed by the good symmetries of the model and dimensional analysis applied
to the énomalous conservation law, It was found that for many models, the
anomaly terms could be written as total divergences which still allowed
the S-matrix to be determined [1],[3].

This same procedure can be applied to conformal models which are also
supersymmetric. However, the infinite set of currents will not be super-
symmetry multiplets. The purpose of this paper is to show how to construct
an infinite set of superfield currents. The easiest way to keep the super-
symmetry manifest is to work in superspace [4]. 1In addition, we will show
how to construct a set of currents which are of lower scaling dimension
than the usual infinite set of currents and from which, by spinor differ-

entiation, the usual set can be derived.



To be specific, in section 2 we consider classical field theories
in two space-time dimensions and generalize Noether's theorem to super-
space [5]. The classical fields, ¢(x,0), are functions of points in

Mo (xo,xl) are 2-dimensional space-

superspace z = (x", ea)) where x
time coordinates and Ga = (91, 62) are Majorana,Grassmann, spinor

coordinates {6]. If under the superspace transformations xﬂ = xu+ Gxu,

6; = ea + 663, the fields transform intrinsically as

86 = ¢ (x,8) - $(x,60), 1.1)

then Noether's theorem takes the form

I T 2
+<'sxa;£+€§'éa‘:Z - 87 . (1.2)
30

Here 8{=71"(x",8") -Z (x,0) is the total variation of the superfield
Lagrangian and Da’ Ba = YZbDb are the supersymmetry covariant deriva-
tives. The action I, which describes the dynamics of the model, is

given in terms of the Lagrangian as Jd xd GZKX 8). We further

apply Noether's theorem to the superconformal symmetries and show that,

as usual, the supercurrent Vz plays a pivotal role in describing the
currents associated with these symmetries [7]. The supercurrent contains
as component currents the supersymmetry current Qz and the energy-momentum
tensor, Tuv so that

v_  1l.v uv
Va = - 8[Qa 21(yue)aT 1. (1.3)



The Belinfante improvement procedure is also generalized so
" that the energy-momentum tensor in equation (1.3) is symmetric and

. : v
traceless. Moreover, given the improved Va’ we have

Y _ 5. 7 VY yH '
T = 2i(Dy )ava . (1.4)
The space~time translation symmetry of the theory then implies the

conservation equation

L
DaVa =0, (1.5)

Further, the superconformal symmetries imply the tracelessness of
VU
a

(v v, = 0 (1.6)

and of the improved energy-momentum tensor scalar superfield;
TA = 0. Together, equations (1.5) and (1,6) imply the space-time
divergence conservation equation GUVE = 0.

In section 3, we use the supercurrent to construct the infinite
number of classical conserved currents. It is easiest to do this

in light-cone coordinates defined via

-+
X-:

° + x1) @

A
V2
which implies

(1.8)



Equations (1.4),(1.5), and (1.6) then translate into

T, = -i2v2 DV,

T__ = -12/2D,V_;

T, =0=T_,

D)V, =0=DV,

V+1 =0 = v_2 . 1.9

The infinite number of spinor derivative conservation laws thus

acquire the form

n
D,[V_ (r_)" =0

or
D, [V, (T, )" =0
1V
(1.10)
for n = 0,1,2,... . By acting upon these with the DD derivative,
we derive
' n
3. (T )=0 (1.11)
T —
for n = 1,2,..., which contains the usual form of the conservation laws

for two dimensional conformal models [1]. The lower dimensional
equation (1.10) is more useful, however, when the theories are quantized.
This follows,since for each n, the lower dimension equation has fewer
possible anomalies which could possibly spoil the conservation laws.

Thus the search for anomalies is greatly simplified.



Finally, in section 4, we apply theéé techniques to the
"supersymmetric, non~linear, O(N) sigma model [8]. We consider the
quantization of the model via a-% perturbation expansion [8],[9] and
show that the anomaly terms cdrresponding to quantum corrections for
the first two (n = 0, 1) currents of equation (1.10) appear as Dl and

D2 derivatives. This is sufficient to explicitly compute the S-matrix
for this model [10].

Various definitions and notation as well as some useful formulae
are found in Appendix A. Appendix B contains the definitions for the

super conformal algebra in two dimensions and its representation by

linear superspace differential operators.



Section 2 - Noether's Theorem in Superspace

In this section ,conserved currents associated with symmetries of
the superfieid Lagrangian will be constructed via Noether's theorem
extended to superspace. The classical theories under consideration
are made from classical complex scalar superfields ¢i(x,6) where the
subscript i denotes that ¢i belongs to some representation of an internal

o 1 . . . .
o (x ,x) are 2-dimensional space-time coordinates

Lie group. Here X
and the ea = (el, 92) are two component Majorana,Grassmann spinor
coordinates. Together, z = (x“, Ga) describes a point in two dimension-

al superspace. The dynamics of the theory are given in terms of the

action
2 .2
1= Jd xd“8L(x,9), 2.1

where;((x,e) is the superfield Lagrangian. In general, we ask that the action
is an invariant under some group of transformations which include the

super and Poincaré symmetries. In classical theories, the fields carry
representations of these symmetries at every point in superspace. That

is, the classical field ¢° for the observer S” is related to the field ¢

for the observer S by a symmetry operation G. The intrinsic

variation of the field for an infinitesimal G transformation is defined by

8% = 47 (2)-0(2). (2.2)

These variations in turn carry the representation of the algebra
associated with operation G. The total variation of the classical field

is given by the value of the field in the transformed frame minus its



value in the original frame, both evaluated at the same point which

is called z” in S” and z in S. Thus

G — e

879 = 6" (H-¢(2) . (2.3)
Since these are infintesimal transformations, the variations are
related by

6G¢

1

3% + 6x"0 ¢ + 88 —— ¢ , (2.4)
H 38
a

where x "= x + 6x , 8~
H u a

" ea + aea relate the superspace points in

S” and S. (See appendix A for notation and conventions as well as
the definition of operations with Grassmann coordinates.)

To be specific, let us consider the symmetries associated with
the graded Poincaré group. The generators for such symmetries are
denoted by Pu, the generators for space-time translations, Muv’ the
genérator for Lorentz transformations (just boosts in two dimensions),
and Qa’ which is & two component Grassmann Majorana spinor genérating
supersymmetry translations. These generators obey the algebra (see

Appendix B)

g )

[MUV,PA] = 1(P]Jg\)>\ - PV

HA

Moo Mool = 108 M5 = BuoMyp ¥ Byt ~ BypMye)

(= 0 in 2 dimension)

_ — H
[Pust] - 0 - [P ’Qa]
uv = .1 w
[ ’Qa] ) 0ab Qb

{Q,, Q) = ~2("") 2,
(2.5)



The representation of this algebra on the superfieldsas given by

. the intrinsic variations of these fields isj

-
8.6 =90
M L, 2
Guv¢ = [xuav - xv’ap + 5 eauv ae]d)
S = 100 35

90

a (2.6)

A

where the linear superspace differential operators 6G obey the same
. u uv

algebra as the corresponding P°, M 7, Qa'

The Lagrangian can thus be written as a function of ¢ and the

supersymmetry covariant derivatives, Da¢ and 8u¢. The spinor covariant

derivatives are defined by

3
Da = - - i(ﬁe)a . (2.7)
90
a
Moreover, since {Da,ﬁb} = Ziﬁab, the Lagrangian need only depend on

the spinor derivatives, so that in general,

+ - +
£=X(¢’¢ ,Da¢,Da¢ ) . (2.8)

The total variation of the Lagrangian is thus given by

s= 8% + 8xMy £+ T, 2L (2.9)
36
a

where for convenience we define



M

PR U S ST 5 sQ
§ = a su + 5 A 6uv + gaaa . (2.10)
Here SG = GG or‘GG, with GEEU,MUV,Qa}, and a", APV o —Auv, ga are

the infinitesimal parameters associated with space~time translations,
Lorentz transformations, and supersymmetry translations respectively.

r3 I3 3 3 . \a »
The intrinsic variation ofol is

+ 86" §§Z-+ &D ¢ 3§f+

30" o _o" (2.11)

Since 6D ¢ D ¢ (z) -D ¢(z) DaS¢,we can write Eq.(2.11) as

= B(93 + 89E(T) + D Epp 801 + 5 186" S MNCRE

3D

where E denotes the Euler-Lagrange derivative

_3X o 3K

) =3~ Pa g
et = 2L -5 2L

3 2D o

(2.13)
Although for classical theories, the Euler-Lagrange derivatives vanish,
it is useful to keep track of these terms throughout the various calcu-

lations. Thus using the notation

W€ = —[E(e)6% + 85 E(D] (2.14)



and W =

Uy P
Wu 5

+-l Auvwﬁv + ang , Equation (2.9) can then be written as

]-+5”ai+ﬂe-§i - 8.

oD ¢ H )

W= Da[aD <S¢] + D [Gqs

(2.15)
This is the fundamental form of Noether's theorem in superspace. Let's
apply this result to the graded Poincaré symmetries.
We will demand that the Lagrangian is invariant under space-time
translations, Lorentz transformations and supersymmetry translations
so that 6Z = 0. 1In addition, since the fields in our model will be
taken as scalars under these transformations, we have, 6¢ = 0. This

yields &8¢ = —6xu8u¢ - EB; :%f ¢ which implies

96
a
sx" = -a¥ —iéy”e + Auv,xv
= - 1w
sea = ga + A A (ouve)a
(2.16)
Thus we find the three fundamental conservation equations
(i) Translation invariance:
W = Da[ag;f 2 61 + D, ¢ 2Ly - (X (2.17a)
U ¢ 3D¢
(ii) Supersymmetry:
wQ = p (2L 5Q¢] - B, 163" DL 1 - 5z(2.17)
a b 3D, ¢ + a
b 3D ¢
b
(iii) Lorentz invariance:
_ i Mt 3L, M
wﬁv - Dby au 6] + B8, ¢ i e 5uvdi

(2.17¢)

10
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We can recast these into the usual form of a conserved space-~time

“divergence equation by noting that

DDD
a

1]
o
pirg
™R

and (2.18)

Then the translation invariance equation (2.17a) can be written in

the form
W =DV
u a pa
with
M _ 0 3 .1 pn+ X i
Va = Yba 3D ¢ 079 + 079 = + + Z(YpD)aac :
b aD_¢

(2.19)
Taking DD of this equation we find the usual conservation equation for

the canonical energy momentum tensor
= v
SowH = 3,T"

™

)

Zi(ﬁyv)avz .
(2.20)

Notice that since translation 18 a supersymmetric operation, the trans-

lation invariance equations are supercovariant equations. Thus v" and

uv

T" "~ are scalar superfields (GSVE = 0 and 5§TUV = 0). In addition the

. \Y . .
f~independent component of ™ (x,08) is the ordinary Noether energy-
momentum tensor in terms of the component fields of the model. However,

since Tuv(x,ej is theNoether tensor, it is not necessarily symmetric.



12

Similarly, we find for supersymmetry translations,

= Q U
DDW, = 3. Q,
BoZ_oi (oM 3L 3Q
Q, =-21 (v D)b[an¢ 5§61

~21 (By™y, 1637 —§é§%]

8Db¢
= u
+ 21Db[(y e)abgﬁ] . (2.2

Although QS and Wg are superfunctions, they are not scalars under super-
symmetry transformations. Finally we derive the conservation equation

for the angular momentum tensor as

14

DD HY o apM”"p

WPz Ml 0T 4 150 P
2 uv
+ i 24 Py - 1(D +)0uv o _%7: :
ang ! AR SN T

(2.22)
Again M*YP and wMuv are superfunctions but are not scalars under super-
symmetry.
Next we would like to extend to superspace the Belinfante procedure
for symmetrizing the Noether energy-momentum tensor. We can always improve

our currents by adding anti-symmetric total divergences. Thus we define

uv v Auv
TB =T + BAG
and (2.23)
¢ = q+ o,
Ba ~ “ta Ata ’



VA HA

A
where G Woe g and Q;u = —Qa Exploiting the antisymmetry of

the improvements gives

oow = 3 MY = o THY (2.24a)
Y v'B
= Q= o u
DDWa auQa auQBa> . (2.24b)
Substituting these Belinfante tensors intoc Muvp’ we define
MV - P 4 o [x“(;“p verre 4 1 'éc“vqxp]
B A 2
= HpVP _ ke 1 g qup + (C"VP _ VP
B B 2
3L
L P UV WP s
+ i 555 Yy o D¢ 1D¢ o] 3D¢+
(2.25)
so that
N Vi v v
DD 5 MMVP = 5 MEVP (2.26)
p B
Moreover, if we take
AUV L, HAV 3L - + 3L
A R AL )[ o +D o —=1,
oD ¢ b a 5 +
D, ¢
b
(2.27)
it follows that
e _ Mo Ve voup 1oz uvop
My x Tp x Ty +% 80 Qp . (2.28)

Substituting equation (2.28) into equation (2.26) and using equations

(2.24a) and (2.17¢), we find
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3
1
3
|

= —2isy"outY + 215y D ! - (Bo““)awg

D_ [E() (0" D), + ("'D¢™) EGWD]
(2.29)
For classical field theory, the Euler-Lagrange derivative vanish so
that the right hand side of the above equation vanishes and Tgv is
symmetric.
Having improved the energy-momentum tensor, we would similarly like
to define the lower dimensional current, VBua , which improves Vz

by satisfying

Wﬁ = Davua - DaVBua
and ‘ (2.30)
W s em Y M
TB 21i(Dy )aVBa

Since bo"Vp = 0, the first of these equations is guaranteed by defining

poo_ o pv
VB a = Va + (o D)an . (2.31)
Next, fixing B by €"'B. = = ¢ c°*, we obtain
’ Y A 8 Tpv ?
T puv
Vp', = Vo - 5(vsD) e 6 (2.32)

which also satisfies the latter of equation (2.30). Using the explicit

form for G¢°M (cf. equation(2.27)), we secure

& i
v o= 4y0 8 My + st 2% 4 1Mp) &2
B a ba 8D, aﬁa¢+ 2 a
-i 32 u = U + 3L
4(YSD)a[*‘-"“‘an¢ (rgr'D)é + Dygr™) o = e
H®

(2.33)



Before applying Noether's theorem to some of the other super-
- conformal symmetries, we will‘apply it to the case of internal
symmetries. Let ¢i’ i =1,...,k transform according to some k

dimensional representation of a Lie group,(§? as

A _ L AA
84, = 8oy = AATij¢j : (2.34)
Here AD, D=1,..., dimf}, parametrizes the group transformations

D . oo s s .
and T 17 are the anti-hermitian k x k representation matrices.

Then assumingéz'is a group scalar, we find

AAwg = A {D [Bg:§ A ¢ 1~ Da[¢JTJl —;%ﬁg;]}. (2.35)
D ¢,
a 1

Again taking DD yields the usual form of the conserved current for

internal symmetry transformations

-G _
Dowg =3 J,

P A
o6, 11%5)

21" [otrd, =2
a3 31 oD ¢ (2.36)

Ty = =210 55

Finally, let us consider the conservation equations associated with

dilatation, special conformal, and conformal supersymmetry transformations.

generators for these symmetry operators are denoted by D,Ku and the

2 component Majorana Grassmann spinor, Sa,'respectivelys The algebra of
TRV U . . . . ,

P, M, D,K ’Qa’ and Sa is given in Appendix B along with the rep-

resentation of the generators as linear superspace differential operators.

The

15



The latter give the intrinsic variation of the classical superfields.

~As previously, we can associate infinitesimal parameters with these

transformations, so that
u.P

§ = a s + L "W

+e5D+c“6K+§5Q+EGS,
7 i aa aa

(2.37)

~ ~

where 6G = 6G or 6G for Gs{Pu,Muv,D,Ku,Qa,Sa}, and au,Auv,s, Cu, Ea’ r
are the respective infinitesimal parameters. Taking the scaling weight
ofclfto be one and assuming that the action, I, is superconformally

invariant so that 8= el + 216 + 2cuxﬁi, the fundamental conservation

equation becomes

W=a'wt o+ 2 e R
U v aa

2
+ eWD + CuwK + r W
=D[—§§3¢]+D[a¢ c‘~C]+es“a<;c,
a aD_¢ 5 ¢
+ 86 LES - eX —ZCuxl'li’.’» -2r8L. . (2.38)

86
From equations (B.4), we flnd

SxP = —aM f>Aquv - ext + {Cuxz—ZCAxxxu]" ityYe - thy'e
and
56 = + =+ MWio 6) - Les - cMxV(yv v 8) -t ’i(i;‘ff)
a 4 w’a 2 "Ca vuoa ra b

(2.39)

This yields after substitution in Eq.(2.38),

0L 591 + B [55+ 2L
3D ¢

W=D [ 1 - 82,  (2.40)

a 9Da¢

with dof =1 in 8%

16
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Once again, if so desired, we could take DD of this expression
in order to obtain a space~time divergence current conservation
equation. Instead, we shall use the above conservation equations

to prove that for superconformally invariant theories, the current

u

VBa

contains not only the energy-momentum tensor but also the super-

symmetry current an and their traces, TA

u H
BA and (YuQB)a' Hence VBa

is the supercurrent. That is, it will be proven that
_ u S Y vu
8VBa QBa 21(Yve)aTB

+ 2iy§

S - 21t W,

(2.41)

which implies the space-time divergence comnservation equation

-85 V¢ = pow? - 2i(yVe) DOW
a a Vv

¥ Bg
. Q _ 5.0 A
+ Zlﬁab[wb 2i(y e)bwi]
(2.42)
We shall also establish the trace condition
civ Ny = Q= 9 (M
240y V), = W2 - 240y e)awi , (2.43)

which immediately yields the energy-momentum tensor trace

iD H
T_ A 21DYuVB

= rQ ., A
B_[W} - 21y e)awi] ) (2.44)



Notice that the combination
Q _ oM P - 4+ +
W3 - 21(/M0) W = ~[E(9D,¢ + Do BT, (2.45)

is manifestly a scalar superfield although the individual gomponents
wg and —2i(y“e)awP are not.
In order to prove the above assertions, we make use of the
dilatation and conformal supersymmetry fundamental conservation equations:

(i) Dilatations:

W = Da[aggi 867 + ﬁa[%D¢+ 35£+] - 8P
a oaD_¢
S =a+xs +352 (2.46a)
(ii) Super conformgi g
S _ 3L 1S S+ 3L 4 38
N X Sa01 - Db[6a¢ el aa‘;:
D, ¢
b
85 = 208 - 1(#69) (2.46b)
a a a’
where d = d¢' for fields ¢ and d = 1 for the assumed scale invariant

Lagrangian. The dilatation conservation equation yields the simple
engineering dimensional analysis equation for the scale invariant

Lagrangian

i=-% LM +%_1-)¢+ 36

BDa¢ a a 36 ¢+
a
+ o+ L + a.,t
+ d,[EG@) ¢ + ¢ E(¢ ) +Da(ab¢ ¢)+D (¢ 3D¢
(2.47)

The consequences of the conformal supersymmetry equation requires
a bit of analysis. Some simple algebra allows us to rewrite Eq. (2.46b)

as



S . Q o , 3L
Wy TRy 2d Iy 3D, ¢ ¢)
3L + 3L = .+ 3L
-0 D= 9)-¢ - 6D, (¢ )]
ab anCb D ¢+ ab 2D ¢+
a b
o M 8%
= Yac(Yue)b(an¢I)c¢)

H . 0 + 3L »
+ Yo (v, 8 (Do = ¢+)-26a35 .
b

(2.48)
Using the dilatation equation (2.47) for X along with the following 2

useful identities

u = — —
D Yuabch - 26ad(rsbc Sabécd Y5abY5¢cd

(2.49a)
$2a%be ~Y52d"5ch

( X
b 8D, ¢

3
—)
3D, ¢

2) -Yzc(Yue) D¢ + YZC(YOYue)b(DC¢+

L _ a5
+0, D, ¢ D¢ - 8D ¢

= +
3D, ¢ .
: = + 35l
(gDl ¢ + (Ovg) ¢ —I

an¢

_ 3L

>
(2.49b)
the conformal supersymmetry equation (2.48) can be recast as
+ 3L
BDa¢

S . Q o] aan _
W+ 1ﬁabwb + 2d¢[Yab 55;5 )= ¢

+6_ () $ + ¢ E@H]

2L (1), 0 + By

[ + L
a BDb¢

oD, ¢+

= (v.0)
5
L0

(2.50)

Moreover, using the expressions for 63 and 62 from Appendix B, it

follows by definition that



R A -24,6_ B () ¢ + I

(2.51)
Hence, we finally obtain
3L Ed
(150, o 5 sy +(Brg) 6" —5]
B¢
= 24,[vo, 33“’; -4+ 25 (2.52)

BDa¢
Since we are interested in superconformally invariant theories, we
set d¢ = 0, so that the right hand side vanishes. Further, the terms
in the bracket on the left hand side of (2.52) are scalar superfields.
Since if eaF = 0 and F is a scalar superfield then F = 0, we finally
arrive at the simple form of the conformal supersymmetry conservation

equation

&
9D, ¢

(rDre + Bro)y 7 —2L <o

8Db¢
(2.53)

- We are now in a position to establish that Vga is indeed the
supercurrent. Using Eq.(2.30), the scalar superfield of Eq.(2.45)

can be recast as

ﬁp - 21(yu6) WP + 21D [(Y 8) Vg 1 + 21(7 Vu)
(2,54)
Substituting Eq.(2.17b) for Wg on the right hand side and Eq.(2.33)

for Vga in the second term on the right hand side, we find



Q . M _ 8L
We - 21¢"0) W = DZ+ 5D (o = D)
AL = + 3L
-—( YsD) 5575 0 {v5D) 91-D, (D ¢ - 7

pd

- 4+ 3L ov‘f/

-D (D¢ —7)+5D (D o
bb o5 = 2 b an¢+

1 - + 3L u
+ 50 D) [Do (vod)y  — 1 + 21y VB)a
aD ¢
(2.55)

We now apply the dilatation equation (2.47) for Déiito obtain

wg - Zi(y“e)awi = Zi(tuE)a

+ 2 25 5 sy + Brg)ys” 2 ]
3D, ¢
3L 0L
+ 4D, [0, Gy 9 D, (6" ==
b 3D, ¢ an¢+

+ E@) ¢+ ¢ EQGDT,
(2.56)

where use of the identity

(2.57)

has been made. Next we can use the conformal supersymmetry equation (2.53)

' fon - : Uy = @ oM
to secure equation (2.43), Zl(tuB)a Wa 24 (y e)awﬁ .

Finally we can use WPu = ﬁavga in conjunction with the above to

exhibit the space-time divergence conservation equation for Vga’ We

21



begin by noting that

Howl 2i(yu6)aﬁDwﬁ

Vo . o
a ” 9,00, 21(Yue)aTB ]

(2.58)
is a scalar superfield equation. Thus
S o | 1 = R . u
DD[Wa 2i(y e)aWi] DD[Zl(YuVB)a]
v . uv . = LU
= - - v .
9, [, 21(Yu9)aTB ] 41(YUD)an Bb
' (2.59)
, = _ 1 = . . ,
Using DcDb =-3 ébCDD + 13Cb and a little algebra we find
v v . Hv
av[SVBa + QBa 21(Ype)aTB ]
.V Q ., U P
=9 [-24y , (W - 2i(y"6) . W )]
v ab"'b bu (2.60)

Up to this point we have not completely specified Qv a5 however, we have specified
VI\S) a and Tg V. When Eq. (2.60) is integrated it is necessary to introduce a function
whose divergence is zero. This function is of the form of an improvement to Q\;
and hence can be absorbed into the definition of an. Thus we obtain our final

result (cf. Eq. (2.41)).

22
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A , uv
8VBa QBa + 21(Yue)aTB

~21yY, (i - Zi(yue)bW§) :

(2.61)

In summary, in this section we have shown how to construct the
fundamental current conservation equations using Noether's theorem in
superspace. We have shown that the space-time translation equation can

be written as

- p _ .
DaVBa = 0’ (2.62)

where the symmetric, traceless, and comnserved energy momentum tensor
is given by

TRV VI T

‘Further, for superconformal theories, V;a is the conserved super-—

u

Ba - 0. It contains the conserved supersymmetry current

current, BUV

Q;a as well as the conserved energy-momentum tensor and is given by

v _ 1w
vy, = - lo

Y Hv (2.64)
Ba Ba 21(Yue)aTB 1. :

v . . .
Moreover, VBa is traceless in the sense that the Belinfante tensors

are already the improved tensors. Thus,

il
o.

u
(YuVB)a

. . . MY
which implies (YuQB)a (2.65)

A,
and TBA = 0.



Section 3 -~ Infinite number of conserved classical currents

In two dimensions it is extremely useful to change from
Minkowski coordinates to light cone coordinates. This transformation

is defined for the coordinates by

xt=-—l~(x + x7) (3.1)
V2
with _.F
xi = x
Then for derivatives we find
‘ P 1
3 T —0=—(3_ 4+ 3,)
S N
.l.. .
and 9= = &; R (3.2)

u

-3
Under the Lorentz boost of velocity v','xp > X" = Atxv, with

£° =11 = coshn = —1—
o 1 — 5
Y1 - v
2% =l = —sinmp = —YX— |
1 0 —
V1 - v
(3.3)
every light cone vector, A+, transforms as
-~ A‘ _ i__A .
ALy = e (3.4)

In a similar manner, we can define tensor components in light cone
coordinates. For example, the energy-momentum tensor has light cone

coordinates



1
T++ = E(TOO + Tll + TOl + TlO)
=1
T__ =50 * T31 = Tor ~ Ty
- X - _
Ty =300 = T11 = Tor + T10)
T = l(T T + T T. )
-+ 2700 11 01 10
Then under Lorentz transformations
. +2A
T++ > e T++
T > e~y
T+_ -+ T+_
T, > T_+ .
[1]

As was shown by Goldschmidt and Witten,
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(3.5)

(3.6)

it is almost a

trivial matter to now construct an infinite number of conserved

currents for conformally invariant models.

We can also apply their

technique in our superspace model since using light cone coordinates

is a super-covariant operation.

In Section 2, we showed that the

scalar superfield Belinfante improved energy-momentum tensor has the

attriButes
1) Symmetry: TV =
2) Tracelessness: T; =
3) Conservation: auTuv

TvH

(3.7
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Notice that here and for the remainder of the paper, we use only
the Belinfante improved objects defined in Section 2. Thus, for
notational simplicity we drop the subscript B. In light-cone

coordinates, these equations imply

1) Symmetry: T+- = T_+
2) Tracelessness: T+_ =0 = T_+
3) Comservation: 8+I__ =0 = 3_T++ .
(3.8)
where now
T =T + T

Hence an infinite number of conservation laws are obtained by raising

these components to the power n = 1,2,3,... as

{
o

n
2, (T_)" =
or
3 (T, )" =0 . (3.9

At this point, we would like to digress somewhat in order to
recall what happens to these infinite number of conservation laws when
we quantize a model. In general, the superconformal symmetry becomes
broken due to the necessity of introducing a non—-invariant mass scale
in order to consistently renormalize the theory. Hence anomalous terms

arise in the equations of motion needed to derive equations (3.9). These



anomaly terms are not entirely arbitrary. They must obey the

. unbroken symmetries, discrete and continuous, of the model. 1In
particular, they must be Poincaré and supersymmetry covariant.

Finally the additional and most severe constraint they must obey

is that of power counting consistency. The anomaly terms must be

of the same power counting dimension as the conservation equation

to which they belong. Thus we must list all independent (modulo
equations of motion) operators of a fixed dimension (basis operators)
as possible anomaly terms; for example, 8+(T__)n is of dimension 2n + 1
and so we need basis operators of dimension 2n + 1. If we can derive
such a space-time divergence equation from a lower dimension spinor
derivative equation by simply taking additional derivatives we will be
able to restrict the possible anomaly structure further. To be specific,
derivatives (spinor or space-time) do not alter the structure of re~
normalized relations between composite operators. Hence, if we can
derive a lower dimensional relation without the presence of anomalies,
then, by taking derivatives, we will have a higher dimensional relation
of the same form; no new anomalous terms will be introduced. Since
equations (3.9) are sufficient in order to derive the S-matrix of the
quantum model, we will show that by using the supercurrent, Vz, we can
derive these equations from lower dimension equétions by merely taking
spinor derivatives. The simplest example of this procedure is the funda-

mental conservation equation (2.61) for space~time translations

DV, =0. | (3.10)

27



Applying DD to this equation we found
0 = pob_ V" = 2iDpvM = o TV . (3.11)
aa v
Thus from the dimension 2 comservation equation (3.10), the
conservation equation (3.11) of dimension 3 can be derived.
First, we would like to write the results of Section 2 in light

cone coordinates. Under Lorentz transformations (3.3), a spinor

wa(x), a =1,2, transforms as
SN
\Pi(x‘) =e by )
+ %—A
¢§(x') = e wz(x) .
(3.12)

Thus the one component of a spinor transforms like the square root

of the vector A and the two component like the square root of the

4
D1¢ > e Dl¢

+ =A
D2¢ > e D2¢ .

-—

vector A+. Similarly

N =

(3.13)

N

For spinors, we will exhibit the 1 and 2 component subscripts explicitly.

Finally,we define light cone Dirac matrices as

+ 1 1
=G Ey) =y . (3.14)
e |

/2

Some useful relations between the derivatives now become



o
o
1

= -1/2 3_

o
=
it

—1/5 3+
DD = 2]’.D]_D2 = -21D2D1

D, = -iD

Thus defining

Ao 1w
a

we can write equation (2.63) in light-cone coordinates as

T,, = -i2 V2 DV,
T = -i2 i D,V_4
T, = -2 V2 DV
T_, = -i2 V2 DV,

The space~time translation equation (2.62) now becomes

29

(3.15)

(3.16)

(3.17)

(3.18)

In addition, for the superconformally invariant theories we can write

equation (2.65) as

(3.19)
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Combined with equation (3.18), this yields

T, = -i2 V2 DV,
T__ = -i2 Y2 DV,
T, =0=T__

DV =0=DV,

(3.20)
where the non-vanishing light-cone components of the supercurrent

are (cf. Equations (2.33) and (3.16))

3L 3L
V., =i=""03¢+3 ¢
-1 3D, ¢ 25 ¢+
1
1 3L - + 37
- 5575 D1¢ ¥ D¢ — 1
/3 Dy 3D, ¢ 2 aD1¢+
and
. 9L 3L
V. =-1i 3.6 + 3 ¢
+2 8D;¢ T+ 352¢+
1 3L - + 3L
+ D, [ D, + D¢ ]
2/ 2 BDl(b 2 1 352¢+

(3.21)
From these equations, the lower dimension infinite number of spinor

derivative conserved currents can be defined for n = 0,1,2,... as

. n
D,Iv_ ()" =0

or

i
o

n
Dy [V, (T )]
(3.22)



" These infinite number of conservation laws imply the higher dimension

laws (3.9) by taking DD derivatives, For n = 0 we have DZV—l = 0.
Acting on this with DlDZ gives
0=D3,V  =3DV =3T , (3.23)

which gives the energy-momentum conservation law in light-cone
coordinates (Equation (3.8)). To obtain the first higher conservation
law, we start with Equation (3.22) for n = 1; DZ(V_1T~_) = 0. Taking
DlD2 of this equation and using the n = 0 conservation law, Equation (3.23)
yields 3+(T___)2 = 0 which is the first higher conservation law. The
remaining laws can be proven in a similar manner by induction.
In summary, we have constructed for any superconformal model
an infinite number of scalar superfield currents which obey a spinor

derivative conservation equation:
0 =D,V 1(T_)"1, n=0,1,2,... . (3.24)

From this equation, the infinite number of higher dimension conservation

equations follow by taking the DD derivative;

0 = a+(T“ Y, n=1,2,3,... . (3.25)

——
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Section 4: Classical and Quantum Mechanical Currents in the Non-Linear
Supersymmetric Sigma Model
The classical non-linear supersymmetric sigma model is described
by a real scalar superfield ¢i(x,6), i=1,...,N, which carries the
fundamental representation of the O(N) group. The scalar superfield

Lagrangian for the model is given by

X =2 4D (4.1)

a

with the constraint
¢+¢ = R, (4.2)

where R = constant, We have introduced a dot product which dictates

a sum over the  (suppressed) O(N) indices. The constraint can be
handled most easily by the method of Lagrange multipliers. Since
equation (4.2) is a super—covariant equation we introduce a scalar
superfield Lagrange multiplier, A(x,08), so that the effective Lagrangian

describing the super non-~linear sigma model is given by

L]

2

L = —%— D ¢°D_¢ - A% - R%) (4.3)

We can next use the Euler-Lagrange equations to eliminate the multiplier

field from the ¢ equations of motion thus obtaining
D,D,8; = = S5 ¢ ;(D,6+D,y0)
17271 R2 A R AN

¢ =R . (4.,4)



In order to construct the infinite number of currents,we simply
_apply equation (3.21) to our Lagrangian again using the Euler-
Lagrange equations to eliminate the multiplier field.

We also note that for this model there are no Belinfante improvement

terms. Thus we find

1 = Dyor0_¢

V —
V+2 = Dyéra,0

The light-cone coordinate energy-momentum tensor is then given via

equation (3.20) as
T, =-2/2 1 D,[D,¢+2, 4]
T__ = -2V2 i D [D;$-3_¢]

T, =0=T . (4.6)

It can be checked explicitly by using equation (4.4) that equation (3.20),

DZV—l =0 = D1V+2 , is satisfied, hence implying the validity of equation (3.8),
3+T_~ =0 = 3_T++. Finally,equation (3.22) yields the infinite number

of conservation laws

|
o

n .
D, [V_(T_)" = (4.7)

or

|
o
-
=]
]
o
-
V)

n
Dy [V, (T, 7] =



Thus we have explicitly constructed the infinite number of

) classical conservation laws for the super, non-linear sigma model.
We next examine the modifications to these conservation laws due to
quantization. To do this, we keep in mind that quantization is
accomplished via a-% perturbation expansion. In general, the

superconformal invariance of the model is broken and anomalous

terms will appear on the right-hand side of equation (4.7) so that

ny _ o (0), (@) -
D2[V_1(T__) 1= ? L Ai . (4.8)
i
Here, the constants rin) are a power series in'% and the Ain) are

composite field operators which are formally made from monomials
in the field operators ¢ and their derivatives. (The composite fields
are defined from the field monomials by means of Zimmermann's normal

product algorithm (111 applied to the %~Feynman rules). The sum over
(n)

composite operators is restricted so that the Ai have the same discrete

symmetries as the left-hand side of equation (4.8) as well as the same

Lorentz transformation properties. In addition, the Ain) must be O(N)
singlets and most importantly must have the same scaling weight (power
counting dimension) as the left-hand side.

If all anomalies for these conservation laws can be written as

derivatives, then the S-matrix for this model is

[1o]

total D1 or D2

exactly calculable. That is, if equation (4.8) has the form

n, _ (n) (n)
D,[V_j(r_ )"} = DB + DB, 4.9)
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where theBsn)are anomaly operators with appropriate symmetry and
“ dimension, then acting with DD on this equation, we find
n+1

9,[T

B . (n) n
N ] = -2/21 8, [D;B, 7 + V_{D,(T_)7]

+ 272 i B_D2B§n) : (4.10)

This form of the infinite number of conservation laws at the quantum

. . . . [10]

level is sufficient to determine the S-matrix.
With these various restrictions in mind, we now show that

equation (4.9) is true for the first two currents n = 0 and n = 1.

Use will be made of the field equations and constraints so that

only linearly independent terms are counted. Thus for n = 0, we

find only two dimension 2 anomaly terms so that

(o) .
DV y = 1y Dy(D9°8 ¢) + ¥

(o)
9 Dl(D2¢'3_¢), - (4.11)

which is already in the form of equation (4.9). We can trivially

rewrite this in the form

53 -0, (4.12)
with
Jif) =i( - rio))v_l
Jéf) = iréo)D2¢'3_¢ . (4.13)
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For the n = 1 case, we must list all dimension four operators
. which transform like (8_)3. There are eight possible anomaly terms

for the n = 1 version of equation (4,8),

LD,
i 1

Dy(V_ T ) =2 . (4.14)

1

Listing these operators gives the set

Afl) = D,¢+3_3_3 D¢

ast = (0,640,020 -2_3_D;9)
aih) - (Dl¢'D2¢)(3_¢’3_3_¢;
At = (0,92 ) (0,805_5_¢)
Al = (06+3_4) (08092 9)
At = (0y0+3_¢) (3D 8%3_9)
a$P = (0,6+5.D16) (,6+5_D;4)
adt = (2_6+2_6) (0,0-3_D;9)

(4.15)
After application of the field equations and constraints, it is possible
to write these 8 anomaly operators as linear combinations of spinor

(1)

derivatives of the following 8 independent operators Bi , 1=1,...,8 as



1) _
B," = Dy$+3.3 3 ¢

1) _ . .
By ' = (D1¢+Dy) (D1$+3_3_¢)

(1) _ . .
By = (Dy0+Dy0) (3 Dy¢+3_¢)

(1) _ . .

1 . .
By’ = (Dy9+3_9)(Dy¢+3 Di¢)

(l) = . *
Bg ' = (Dyt°0_¢)(3_¢+3_¢)

(1) _ oo,
B,77 = D433 3 ¢

(1) _ ;
Bg © = 3.9 D484

(4.16)
That is
6 8
= (1) (1
DIV ,T__1= I B;DB7" + T BDB7, (4.17)
i=1 i=7

where the Bi are linear combinations of the . Thus we have proven

the first higher quantum conservation law

= (1) _ '
DaJa = (0 (4.18)
with
1 _ 1)y ()
6
(1) _ 1)
Jpo0 = I BB . (4.19)
i=1
[10]

This quantum mechanical law was assumed and used to construct the

exact S-matrix for the non-linear, supersymmetric sigma model.
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Appendix A

Notation, conventions, and useful formulae

The metric tensor guv is defined so that its only non-vanishing

elements are goo =1-= —gll. The Levi-Civita tensor euv is defined by
eV = —e"¥ s, with 501 = ~£ = +1 Thus
ol
T P L ‘ (A.1)
uv (TRRY v

The two component Dirac matrices Y]J are defined in terms of the Pauli

R i
matrices o7 ;

0 1 0 ~-i 1 0
g = [ 1 0] y O +i 0 s o s (A'Z)

by 0 -1
R Tt Yo = Yyl =o°, (A.3)
s0 that'{Yu,Yv} = 2guv . In addition, their commutator is defined by
the matrix Ozz as
%{yu,yv] = "V = €UVY5 . | (A.4).

Charge conjugation is realized through the Yo matrix since
Yory© = -y
. H H (A.5)
an oT o
==Y 3

where the superscript T signifies transposition. Some useful Dirac

matrix identities are listed below:

HoVv R TAY uv
1) (v'y )ab g St 9.
vy oy = e (rey) (A.6)
ab 'ucd 5 ab 5'u"cd

=26 48¢ " %ap%ca T Y5 ab Y5 od

4) oY =yg -Y8
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The two component, complex (Dirac) Grassmann spinors wa’ a = 1,2 have an

inner product defined by

YoX FV, Yap Xp (A.7)
The adjoint spinor, Ea, is defined as

=@y) = Y Vba (A.8)

)= - (4.9)

A Majorana spinor is defined as self charge conjugate. Hence if

W& =y = gt (A.10)

then | is a Majorana spinor (note v = Yow in this case). The Grassmann

parameters ea of superspace are 2 component Majorana spinors. (Note

= 1.0 =
eaeb - 2 Yap 06 )
Differentiation with respect to the anti-commuting parameters Sa is
defined by
<= 9
98 + 80) = ¢(6) + 36 55 6(8) ,
so that 36
38y, ab
A.11
and (A.11)
36a -
ng ab
Integration is defined so that it is tramslationally invariant
S s £(6) =fdea £(o + -ga).
Thus / dea =0 (A.12)

and



A scalar integration is made by use of the inmer product
2 .- .9 3
d"e =fdg_d0_ = — —_— .
I dea a~ 3p Y 55 (A.13)

Spinor covariant derivatives with respect to supersymmetry transfor-

mations can be defined as

= ___8___' H
b_= [36 iy e)aau]

a a
(A.14)
-— - o
Da"YabDb
These anti-commute to give
o, Db} = 2if , o (A.15)
where y
ﬁab = Yabau
In addition they obey the following useful identities:
- 1 - .
1) Dan 2 GabDD + lgba
2) DDD_ = -2i(?D)
a a
3) DyD=0= pe"’ » (A.16)
4) Dy* p = 213"
= Wo o RRTVN
5) DYSY D 2i ¢ Bv
6) éyuD = —5Yu6
Thus supersymmetry invariant integration reduces to
2 -
Sa'x d29 = -f dszD . (A17)
Functional differentiation for superfields can be defined as
§(1,2) , (A.18)



where

§ (1 zyzl-é ) 62(x X.)

2407 Y12%12 1 27
with . ‘ '
612 = el - 02 (A.19)

and 8127 81 7 8
Then _

2 .2 ." _

Parity transformations on superfields are given by

-1 '
P~ ¢(x,0)P =n¢(x_, 6)
P° P (A.21)

-1 _ . O
P (ba(X’e)P = -n IYab ¢b(xp’ ep) N

where n is the intrinsic parity and the parity transformed coordinates are

o 1
X; = (X s X ) ’
8 =+1iv°, ® (A.22)
pa Yab b ’

and
. - o]
pa = 1 8 Tpa

@1
I
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Appendix B
. The Superconformal algebra

We consider the grading of the 0(4) two dimensional space~time
conformal algebra. The procedure differs from the four dimensional
case where we must append a chiral U(l) symmetry to the SU(2,2) con-
formal algebra so that the associated SU(2,2) Q U(1) group is a
symmetric subgroup of SU(2,3) and hence can be graded. No such
additional symmetry is needed in two dimensions since the 0(4) conformal
algebra is already embedded as a symmetric subalgebra in the super-
conformal 0(5) algebra.

The generators for the conformal algebra are the usual conformal
generators: Pu, Muv’ D, and Ku generating space-time translations,
Lorentz transformations, dilatation transformations, and special
conformal transformations, respectively. The grading representation
is carried by the two cﬁmponent Majorana, Grassmann spinor generators
Qa’ a=1,2, for translational supersymmetry and Sa’ a=1,2, for con-
formal supersymmetry. The graded Lie algebra these generators satisfy
is known as the superconformal algebra., The conformal Lie algebra

commutation relations are as usual

[

[MUV, P)\] l(Pug\))\ - P\)glﬂ\)
M, K1 = 1(Kug}\,x - Kg)

[MUV’ MPG] B -1(guvaG - gUGMvp+ gchup h gvauc)(;O)
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{D,Pu] = -1P

[D,Ku] = HK

[Pu, K1 = Zi(guvD - Muv)

[Pu, P, = [Ku, K,] = [D, Muv] = [D,D] =0 .

(8.1)

T

The commutation relations between the spinor generators and the

conformal generators yield the grading representation of the conformal

algebra
u = U _ JH
(", Q1 =0 2", 5,1 = v, Q
uv - _ i _wv uv - _ i wv
M Qa] 2 0abe [, Sa] 2 0absb
-1 4+ 1
[D)Qa] - 2 Qa [D,Sa] + 2 Sa
(1) _ JH P B _
[K s Qa] - Yabsb [K > Sa] = 0

(B.2)

The anti-commutation relations among the spinor genmerators are

= o MO
{Qa’Qb} - ZCY Y )abI?’u
{8,,5,} 2(y"y )abKu
) - 0% (o) _ oz o _juv
{Qa,Sb} 21y, D i(y o )abMuv .

(B,3)
These generators can be represented by linear superspace

differential operators acting on superfields ¢, Classically this
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representation gives the intrinsic variation of the classical
“superfields ¢ as discussed in Section 2. 1In quantum field theory
the generators are operators whose commutation relations with the
quantum fields ¢ give the above mentioned representation,i.e.

. <G . <G
[G, ¢] =-i8 ¢ where G is the quantum symmetry generator and § the
linear differential operator. The linear differential operators are

denoted by GG where Gt {PU, MUV, b, Ku, Qa’ Sa}' Listing these, we

have
G : GG
P s =5
u u u
M ot % x5 -x0 ++86 2
uv Hv v i 2 uv 55
D '6D=d+x>\3}\+—;—§§:
30

K 8K = 2% &0 + 2V6Y 4+ x%3 - 2x x'B
M U H Hv u U A

~Q 3 ,
Q 8§ = —— + i(36)
a a ae a

a A .

. 8S _ _ (4@

s, ¢ aa 2dea i(#s )a s

(B.4)

~

where d is the scale dimension of the superfield on which GG is

acting.
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