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Abstract 

Superconformal theories in two dimensional space- 

time are considered. Noether's theorem and the Belinfante 

improvement procedureareextended to superspace where they 

are used to construct the supercurrent. With its aid, an 

infinite number of classical conservation laws are derived. 

These laws are shown to survive quantization in the super- 

symmetric, non-linear, O(N) sigma model. 
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1. Introduction 

Every conform&lly invariant classical field theory in two dimensional 

space-time possesses an infinite number of current conservation laws [,I. 

These laws, if they survive quantization, are sufficient for proving the 

absence of particle production and the factorization of the S-matrix, 

which in turn allow the S-matrix to be explicitly calculated [2]. The 

existence of these quantum conservation laws has been demonstrated in 

various models [1],[3]. The difficulty encountered in such proofs is 

that conformal invariance is broken at the quantum level and hence quantum 

anomalies occur in the conservation laws. One procedure [l] used to show 

that these anomalies do not spoil the required form of the conservation laws 

is to simply list the various anomaly operators using the restrictions im- 

posed by the good symmetries of the model and dimensional analysis applied 

to the anomalous conservation law. It was found that for many models, the 

anomaly terms could be written as total divergences which still allowed 

the S-matrix to be determined [1],[3]. 

This same procedure can be applied to conformal models which are also 

supersymmetric. However, the infinite set of currents will not be super- 

symmetry multiplets. The purpose of this paper is to show how to construct 

an infinite set of superfield currents. The easiest way to keep the super- 

symmetry manifest is to work in superspace [4]. In addition, we will show 

how to construct a set of currents which are of lower scaling dimension 

than the usual infinite set of currents and from which, by spinor differ- 

entiation, the usual set can be derived. 
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To be specific, in section 2 we consider classical field theories 

in two space-time dimensions and generalize Noether's theorem to super- 

space [5]. The classical fields, $(x,0), are functions of points in 

superspace z = (xn, 6,)) where x !J = (xo l ,x ) are 2-dimensional space- 

time coordinates and 6 a = @,, 0,) are Majorana,Grassmann, spinor 

coordinates [6]. If under the superspace transformations xi = xn+ 6x , 
lJ 

0; = ea + 68,’ the fields transform intrinsically as 

&J = $“(x,8> - $(x,0>, (1.1) 

then Noether's theorem takes the form 

Here &!=d'(x", 0') -x(x,8) is the total variation of the superfield 

Lagrangian and D a, Ea = ~:bDb are the supersymmetry covariant deriva- 

tives. The action I, which describes the dynamics of the model, is 

given in terms of the Lagrangian as I = 
i 

d2xd20x(x,6). We further 

apply Noether's theorem to the superconformal symmetries and show that, 

as usual, the supercurrent Vi plays a pivotal role in describing the 

currents associated with these symmetries [7]. The supercurrent contains 

as component currents the supersymmetry current QI and the energy-momentum 

tensor, TPV so that 

v”, = - $19; - 2i(yn0)aTVv] . (1.3) 
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The Belinfante improvement procedure is also generalized so 

that the energy-momentum tensor in equation (1.3) is symmetric and 

traceless. Moreover, given the improved Vz, we have 

TPV = 2i(Dyv)aVI . (1.4) 

The space-time translation symmetry of the theory then implies the 

conservation equation 

Eavi = 0 , (1.5) 

Further, the superconformal symmetries imply the tracelessness of 

2 

(Yf)a = 0 (1.6) 

and of the improved energy-momentum tensor scalar superfield; 

T; = 0. Together, equations (1.5) and (1.6) imply the space-time 

divergence conservation equation anV1 = 0. 

In section 3, we use the supercurrent to construct the infinite 

number of classical conserved currents. It is easiest to do this 

in light-cone coordinates defined via 

+ 
X -= (1.7) 

which implies 

- a+ = I(ao + a,) . 
- Jz 

(1.8) 
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Equations (1.4),(1.5), and (1.6) then translate into 

T,+ = -i2fi D2V+2 

T -- = -i2& DIV 1 

T+- = 0 = T-+ 

D2V-l = 0 = DlV+2 

v+l = 0 =vw2 . (1.9) 

The infinite number of spinor derivative conservation laws thus 

acquire the form 

D2[V~1(T~~)nl = 0 

D1[V+2 (T+$? = 0 

(1.10) 

for n = 0,1,2,... . By acting upon these with the ED derivative, 

we derive 

a+ccy = 0 (1.11) 

for n = l,Z,..., which contains the usual form of the conservation laws 

for two dimensional conformal models [l]. The lower dimensional 

equation (1.10) is more useful, however, when the theories are quantized. 

This follows,since for each n, the lower dimension equation has fewer 

possible anomalies which could possibly spoil the conservation laws. 

Thus the search for anomalies is greatly simplified, 
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Finally, in section 4, we apply these techniques to the 

supersymmetric, non-linear, O(N) sigma model [8]. We consider the 

quantization of the model via a i perturbation expansion [8],[9] and 

show that the anomaly terms corresponding to quantum corrections for 

the first two (n = 0, 1) currents of equation (1.10) appear as D1 and 

D2 derivatives. This is sufficient to explicitly compute the S-matrix 

for this model [lo]. 

Various definitions and notation as well as some useful formulae 

are found in Appendix A. Appendix B contains the definitions for the 

super conformal algebra in two dimensions and its representation by 

linear superspace differential operators. 
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Section 2 - Noether's Theorem in Superspace 

: In this section,conserved currents associated with symmetries of 

the superfield Lagrangian will be constructed via Noether's theorem 

extended to superspace. The classical theories under consideration 

are made from classical complex scalar superfields $i(x,6) where the 

subscript i denotes that $i belongs to some representation of an internal 

Lie group. Here x' = (x0 ,x1) are 2-dimensional space-time coordinates 

and the 6 a = N,, 62) are two component Majorana,Grassmann spfnor 

coordinates. Together, z = (xu, ea) describes a point in two dimension- 

al superspace. The dynamics of the theory are given in terms of the 

action 

I d2xd2f3d(x,B), (2.1) 

where$(x,e) is the superfield Lagrangian. In general, we ask that the action 

is an invariant under some group of transformations which include the 

super and Poincarg symmetries. In classical theories, the fields carry 

representations of these symmetries at every point in superspace. That 

is, the classical field $I' for the observer S' is related to the field 0 

for the observer S by a symmetry operation G. The intrinsic 

variation of the field for an infinitesimal G  transformation is defined by 

gG+ : L+‘(z)-&)* (2.2) 

These variations in turn carry therepresentation of the algebra 

associated with operation G. The total variation of the classical field 

is given by the value of the field in the transformed frame minus its 
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. 

value in the original. frame, both evaluated at the same point which 

is called z' in S' and z in S. Thus : 

sGq5 = $-(ZL$(z) . (2.3) 

Since these are infintesimal transformations, the variations are 

related by 

a 9, 
a alia 

(2.4) 

where x *= x 
?J u 

+6x tY=ea+&3 
u' a a relate the superspace points in 

S" and S. (See appendix A for notation and conventions as well as 

the definition of operations with Grassmann coordinates.) 

To be specific, let us consider the symmetries associated with 

the graded Poincar6 group. The generators for such symmetries are 

denoted by Pn, the generators for space-time translations, M 
l.lV' 

the 

generator for Lorentz transformations (just boosts in two dimensions), 

and Q,, which is a. two component Grassmann;Majorana spinor generating 

supersymmetry translations. These generators obey the algebra (see 

Appendix B) 

I”pV ) PA] = i(P g 
1-I VA - pvgpx) 

[Muv,Mpol = -ik,,e& - g,,Mvp + gvoMup - gvpMpa) 

(= 0 in 2 dimension) 

[P,,,Pvl = 0 = [p',Q,l 

[Mnv,Qa] = - + 01; Q, 

{Q,,Q,) = -2(~uYo)abp,, * 

(2.5) 



The representation of this algebra on the superfieldsas given by 

,,the intrinsic variations of these f5elds Js; 

*G where the linear superspace differential operators 6 obey the same 

algebra as the corresponding Pn, MUV , Q,. 

The Lagrangian can thus be written as a function of 9 and the 

supersymmetry covariant derivatives, Da+ and an+. The spinor covariant 

derivatives are defined by 

a 
Da - - - i($e) (2.7) 

aTa a l 

Moreover, since {D,,Db) = 2iaab, the Lagrangian need only depend on 

the spinor derivatives, so that in general, 

The total variation of the Lagrangian is thus given by 

0.8) 

0.9) 

where for convenience we define 



(2.10) 

Here iG = gG or.iG, with Ge@u Mu' , ,Q,), and au, pv = -pv, E; are a 

the infinitesimal parameters associated with space-time translations, 

Lorentz transformations, and supersymmetry translations respectively. 

The intrinsic variation 0fX is 

n + aif + iir +a+ - 
a$+ a 

$+ -..&22 
ana++ 

. 
(2.11) 

Since 6D,$ = D,+'(z) - D,+(z) = Da6$,we can write Eq.(Z.ll) as 

+ -q, (2.12) 
a&+ 

where E denotes the Euler-Lagrange derivative 

E(4) =.$j+$+- Da +$ 
a 

(2.13) 

Although for classical theories, the Euler,-Lagrange derivatives vanish, 

it is useful to keep track of these terms,throughout the various calcu- 

lations. Thus using the notation 

WG I [E($)iG$ + ;G~+F($+)] - - , (2.14) 
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and W = a'WE + 2 1 YWM + f WQ pv aa 
, Equation (2.9) can then be written as 

(2.15) 

This is the fundamental form of Noether's theorem in superspace. Let's 

apply this result to the graded Poincar& symmetries. 

We will demand that the Lagrangian is invariant under space-time 

translations, Lorentz transformations and supersymmetry translations 

so that S,< ? 0. In addition, since the fields in our model will be 

taken as scalars under these transformations, we have, S+ = 0. This 

yields "s$ = -6x'laU$ - x A $ which implies 
a aBa 

6ea = -5, + + XUv(~pve)a * 

(2.16) 

Thus we find the three fundamental conservation equations 

(i) Translation invariance: 

WP = D~[-$$ au@] + Da[au$+ *I - ap.g (2.17a) ~ 
u a aDao 

(ii) Supersymmetry: 

WQ aif iQ$] - "D 
a = Db[G a 

[ii'+++] - iQx(2.17b) 
b 

b a 
anb+ 

a 

(iii) Lorentz invariance: 
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We can recast these into the usual form of a conserved space-time 

'divergence equation by noting that 

DDD, = @dbaijb 

and (2.18) 

a = 
lJ 

- 5 Ey,n . 

Then the translation invariance equation (2.17a) can be written in 

the form 

WP =icJ 
P a w 

with 

Taking ED of this equation we find the usualconservation 

the canonical energy momentum tensor 

equation for 

Tuv 5 Zi(fi~v)~V~ . 

(2.20) 

Notice that since translation iS a supersymmetric operation,the trans- 

lation invariance equations are supercovariant equations. Thus Vn and 

QIJ- TuV are scalar superfields (SbVa - 0 and AbT Q lJv = 0) . In addition the 

e-independent component of Tnv(x,8) is the ordinary Noether energy- 

momentum tensor in terms of the component fields of the model. However, 

since Tnv(x,8) istheNoether tensor, it is not necessarily symmetric. 
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Similarly, we find for supersymmetry translations, 

6DWi = 8 Q', 
S.ra 

+ 2i~b[(yU8)aDb~l . (2.21) 

Although C& and Wz are superfunctions, they are not scalars under super- 

symmetry transformations. Finally we derive the conservation equation 

for the angular momentum tensor as 

r;DW""" = apMPvp , 

MIW f x'lTvp, xvT'p + + 80 
lJV 

Qp 

+iaX PUV a;e 
~DQ, y o D$ - i(~$+,)onvyp . 

(2.22) 

Again Mu" and spv are superfunctions but are not scalars under super- 

symmetry. 

Next we would like to extend to superspace the Belinfante procedure 

for symmetrizing the Noether energy-momentum tensor. We can always improve 

our currents by adding anti-symmetric total divergences. Thus we define 

and 

" LTnV + 
TB aXG XllV 

Q;, - Q; + a AQ; , 

(2.23) 
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where Gm = -Gwa x!J = r-Ix and 9, -Q, - Exploiting the antisymmetry of 

the improvements gives 

i$,?‘= avTFrV = avTiV (2.24a) 

i?DWQ = 3 Q' = a,Q;, a i-~ a 

Substituting these Belinfante tensors into MPvp, 

MwP = M'-"' + Fi AVP ax[x G -x~($‘-‘~ 
B 

= x"TVP _ xVT'P + $ 
B 

. (2.24b) 

we define 

+ $ tk'VQhp ] 

+ (Guvp a Gvup) 

+ = aDf$ 
' -%i!? yp,'vD@ 

ax - + 1.1v P - 
- iD4J o y a+ 

, 

(2.25) 

so that 

1J.V 
DDrJM = apMUVP = ap$"P . (2.26) 

Moreover, if we take 

Gap’ = -i(g"y' 
a24 

- .8vYX)ab I,, 
ax Db$ + ija$+ ---$, 

a anb$ 

(2.27) 

it follows that 

!JVP s = xpTVP - B 'xvTr + + &"Q; . (2.28) 

Substituting equation (2.28) into equation (2.26) and using equations 

(2.24a) and (2.17c), we find 
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TpV - TV’ = -2iGynDW " + 2i8y v p1.1 DW B B 
- (5J~v)aW~ 

= Ba NW (o’-LvD@la + (~vv~@+~a~(~+)l l 

(2.29) 

For classical field theory, the Euler-Lagrange derivative vanish so 

lJV that the right hand side of the above equation vanishes and TB is 

symmetric. 

Having improved the energy-momentum tensor, we would similarly like 

to define the lower dimensional current, VBna , which improves Vi 

by satisfying 

wp = Eavua = GaVBua u 

and (2.30) 

TPV B = 2i(&v)aVia . 

Since &I’~D = 0, the first of these equations is guaranteed by defining 

'IY a = VI + (on'~)~~~ . 

Next, fixing Bv by E $ja = 1 E 
8 PV 

Gpvv, we obtain 

VBPa = v”, - +(ygD) acvpGp’v (2.32) 

(2.31) 

which also satisfies the latter of equation (2.30). Using the explicit 

form for Gpnv (cf. equation(2.27)), we secure 

(2.33) 
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Before applying Noether's theorem to some of the other super- 

d,conformal symmetries, we will apply it to the case of internal 

symmetries. Let Cpi, i = 1, . . ..k transform according to some k 

dimensional representation of a Lie group, 6 as 
d 

(2.34) 

Here AD, D = l,..., dim 5 , parametrizes the group transformations 

and T D 
ij 

are the anti-hermitian k x k representation matrices. 

Then assuming&is a group scalar, we find 

ci A%JA = AAIDa[$$- Tfjmj I - ij [c$+TA %] 1 . (2.35) 
ai a j ji aGa41 

Again taking ED yields the usual form of the conserved current for 

internal symmetry transformations 

ii? DDWA = 8 Jn , 
?JA 

a&+ Jl = -2i(ynD)a[c 
ai 

T;j$j 1 

-2i(Eyn) [oTTA. - a”l 
a JJlaD++ 

. 
ai (2.36) 

Finally, let us consider the conservation equations associated with 

dilatation, special conformal, and conformal supersymmetry transformations. The 

generators for these symmetry operators are denoted by D,Kn and the 

2 component Majorana Grassmann spinor! Sa? respectively, The algebra of 

6 MPV , D,K' ,Qa, and Sa is given in Appendix B along with the rep- 

resentation of the generators as linear superspace differential operators. 
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The latter give the intrinsic variation of the classical superfields. 

-"As previously, we can associate infinitesimal parameters with these 

transformations, so that 

(2.37) 

"G where 6 = 6G or iG for Ge{P',MnV,D,K',Qa,Sa~, and aFI,XVv,e, C', 5 r a' a 

are the respective infinitesimal parameters. Taking the scaling weight 

ofzto be one and assuming that the action, I, is superconformally 

invariant so that Sx= cx+ 2:6x+ 2cUxUd, the fundamental conservation 

equation becomes 

W= a"< + 2 1 AYP + t WQ uv aa 

+ETad 
From equations (B.41, we fi??d 

- EX -2cuxUx-2;e$f: . (2.38) 

6x' = -a' _ -i PVx V - .5x' + [Cux2-2CAxXxP]- ify"e - $y'6 

and 

60 ,+A lJv 
a 4 A (aJ)a - 3 Ee a - cuxu(yvy~e)a -<a-it$r)b l 

(2.39) 

This yields after substitution in Eq.(2.38), 

W = Da[$$ &$i] + ii &+ +] - 6"8, a 
aEa4 

(2.40) 

with d -a? = 1 in i.Z, 



17 

Once again, if so desired, we could take ED of this expression 

in order to obtain a space-time divergence current conservation 
.' 

equation. Instead, we shall use the above conservation equations 

to prove that for superconformally invariant theories, the current 

'ia contains not only the energy-momentum tensor but also the super- 

1-I symmetry current QB, and their traces, x T A and B (y Qu) 1-1 B a' Hence 'ia 

is the supercurrent. That is, it will be proven that 

43Vv = Qp 
Ba Ba - 2i(yyQ)aTB\)n 

+ 2iyIb[Wz - 2i(yAF3),Wt], 

(2.41) 

which implies the space-time divergence conservation equation 

-8aPVia = 6DWz - 2i(yvOjaDD< 

+ 2iaab[Wz - 2i(yhe)bq1 ' 

(2.42) 

We shall also establish the trace condition 

2i(u,Vi)a = Wz - 2i(yu9)a$ , 

which immediately yields the energy-momentum tensor trace 

Tih = 2iEy VP 
lJB 

= ii,rwi - 2i(yXO)a$] . 

(2.43) 

(2.44) 
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Notice that the combination 

WQ a - 2i(~P6)aW~ = -IE(+) + D,$+E($+)l, (2.45) 

is manifestly a scalar superfield although the individualoomponents 

Wz and -2i(uue)aWP are not. 

In order to prove the above assertions, we make use of the 

dilatation and conformal supersymmetry fundamental conservation equations: 

(i) Dilatations: 

iD =d+xXa + 
(ii) Super conforma : 2 

*s WE = n,[+$ ^6:$] - Ijb[6a0 + 
b 

2 a = 2d8, - i($i') a' 

(2.46a) 

(2.46b) 

where d = d (p for fields 9 and d = 1 for the assumed scale invariant 

Lagrangian. The dilatation conservation equation yields the simple 

engineering dimensional analysis equation for the scale invariant 

Lagrangian 

i aif -&--- D 4 
I-+ aX 

2 aDa+ a + 2 Da9 
aiTa++ 

a25 
+ d+[E(@) 9 + ++ EC++) + D (- 

+ a25 

a afia+ 
0) + G,(+ ---$ * 

ana+ 

(2.47) 

The consequences of the conformal supersymmetry equation requires 

a bit of analysis. Some simple algebra allows us to rewrite Eq.(2.46b) 

as 



(2.48) 

Using the dilatation equation (2.47) for8 along with the following 2 

useful identities 

1>Y p pabYcd = 26ad6bc - 'ab6cd -Y5abY5cd 
(2.49a) 

L 'ad'bc -Y5adY5cb 

= (y5e,,k$‘+$ (i5Djb$ + @Y~Q~+ -&$I , 
b aDb+ 

(2.49b) 

the conformal supersymmetry equation (2.48) can be recast as 

Wz + tiabW; + 2d a25 [y" (- +I- 4 + act? ~ 4 ab a?b$ aDa 

+ ea(E($) 9 + $+ E($+)l 

= cy,e),[* 
b 

(y510b0 + (%,j),$+ --$I l 

afjb+ 
(2.50) 

Moreover, ^Q "S using the expressions for 6a and 6a from Appendix B, it 

follows by definition that 

19 



20 

Wz + i gabWE = -2d4Ba(EC$) (p + $+ w+N * 

(2.51) 

Hence, we finally obtain 

(v5e),r+$$ 
b 

(Y5D)b$ +(&5)$$+ -+I 
a:,$ 

= 2d0[y;b(.$$ $1-8 
b 

(2.52) 

Since we are interested in superconformally invariant theories, we 

set d + = 0, so that the right hand side vanishes. Further, the terms 

in the bracket on the left hand side of (2.52) are scalar superfields. 

Since if SaF = 0 and F is a scalar superfield then F = 0, we finally 

arrive at the simple form of the conformal supersymmetry conservation 

equation 

E (Y~D)~$ + (Ij~g)~ 9+ + = 0 
b aEb+ 

(2.53) 

We are now in a position to establish that Vga is indeed the 

supercurrent. Using Eq.(2.30), the scalar superfield of Eq.(2.45) 

can be recast as 

WQ - a 2i(y"B)a$ = Wz + 2iijb[(yne),Vi 
b 

1 + 2i(yvViIa. 

(2.54) 

Substituting Eq.(2.17b) for Wz on the right hand side and Eq.(2.33) 

for VL, in the second term on the right hand side, we find 
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WQ - a25 
a 2i(y'e)a$ = Dad-t- + Da\% D,4) 

b 

+ +(Y~D)~ I& 
b 

iY5D)b$b~b(Da$' - 

- - Db(Dbt’ + + 3 Da(Eb$+ ih?$ 
aEb+ 

+ +(~~D)~[fj,$+ hg)bc 

(2.55) 

We now apply the dilatation equation (2.47) for Dagto obtain 

WQ - a 2i(yPe)a$ = 2i(y,Vi), 

+ +(~~D)~k$-$y 
b 

(Y5D)b'$ + (D'$) b+ 

+ d4Da [Db 

+ E(4) (9 + ~+E~~+)l, 
(2,561 

where use of the identity 

- + 
Da <D,t’ ati 

--T) - E,, (Da+ +-!izc 
anb+ 

_ 
aDb+ 

+) - Db(Eb$++) = 0 
aDa+ 

(2.57) 

has been made. Next we can use the conformal supersymmetry equation (2.53) 

to secure equation -(2.43), 2i(yFIVi)a = WQ - 2i(y"f3)a< , a 

Finally we can use W PL' = EaVia in conjunction with the above to I,. 

exhibit the space-time divergence conservation equation for Vu Da' !$e 
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begin by noting that 

EDWz - 2i(y'e)afiD< = av[Qia - 2i(yvB)aTiv] 

(2.58) 

is a scalar superfield equation. Thus 

6D[Wz - 2i(y%)af;] = 6D[2i(yPVi)a] 

= av[Qia - 2i(yvB)aTr] - 4i(yPD)acbVib . . 

(2.59) 

Using DcGb = - ?j 6bc6D + igcb and a little algebra we find 

av[8Vza + Qia - 2i(yPe)aTgv] 

= av[-2iyV,b(Wz - 2i(yve)bW:)l . 
(2.60) 

Up to this point we have not completely specified Qg,; however, we have specified 

Vga and Tg’. When Eq. (2.60) is integrated it is necessary to introduce a function 

whose divergence is zero. This function is of the form of an improvement to Qz 

and hence can be absorbed into the definition of Qga. Thus we obtain our final 

result (cf. Eq. (2.41)). 
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8Via = -Qla + 2i(yPe',Ti 

-2ivzb(Wz - 2i(y%)bW:) . 

(2.61) 

In summary, in this section we have shown how to construct the 

fundamental current conservation equations using Noether's theorem in 

superspace. We have shown that the space-time translation equation can 

be written as 

D,vi, = 0, (2.62) 

where the symmetric, traceless, and conserved energy momentum tensor 

is given by 

TPV B = 2i(Dyv)aVia . (2.63) 

Further, for superconformal theories, Via is the conserved super- 

current, a V' = 0. 
F\ Ba 

It contains the conserved supersymmetry current 

'La as well as the conserved energy-momentum tensor and is given by 

v;, = - +[Qia - 2i(Yp~)aT~vl. (2.641 

Moreover, Via is traceless in the sense that the Belinfante tensors 

are already the improved tensors. Thus, 

which implies (2.651. 

and T;X = 0. 
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Section 3 - Infinite number of conserved classical currents 

In two dimensions it is extremely useful to change from 

Minkowski coordinates to light cone coordinates. This transformation 

is defined for the coordinates by 

+ XI= 2 (x0 f xl) 

with 
"2 

T =X 

Then for derivatives we find 

a 
a+ E - = -L (a0 5 a,) 
- ag 45 

and 

(3.1) 

(3.2) 

Under the Lorentz boost of velocity $, xu + x'u = Atx', with 

coshA = 1 

41 - v2 

0 =,l = 4 5 -sinhA = V 

0 , 
41 - v2 

(3.3) 

every light cone vector, A +' transforms as 
- 

A;(x-) = e'*At, . . 
- 

(3.4) 

In a similar manner, we can define tensor components in light cone 

coordinates. For example, the energy-momentum tensor has light cone 

coordinates 
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Tft = +(Too + Tll f To1 + TIo) 

T -- = $(Too f Tll - To1 - Tlo) 

T+- = +(Too - Tll - To1 + Tlo) 

T --I- = +(Too - Tll + To1 - Tlo) l 

Then under Lorentz transformations 

T -+ ec2'T I- -- 

(3.5) 

(3.6) 

As was shown by Goldschmidt and Witten, [al it is almost a 

trivial matter to now construct an infinite number of conserved 

currents for conformally invariant models. We can also apply their 

technique in our superspace model since using light cone coordinates 

is a super-covariant operation. In Section 2, we showed that the 

scalar superfield Belinfante improved energy-momentum tensor has the 

attributes 

1) Symmetry: TV' = Tvu 

h 2) Tracelessness: Th = 0 

3) Conservation: anT uv = 0 . 

(3.7) 
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Notice that here and for the remainder of the paper, we use only 

the Belinfante improved objects defined in Section 2. Thus, for 

notational simplicity we drop the subscript B. In light-cone 

coordinates, these equations imply 

1) Symmetry: T+- = T-+ 

2) Tracelessness: T+_ = 0 = T-+ 

3) Conservation: a+T-- = 0 = a-T, , 

where now 

Ti-t = T00 + T01 

T -- = T00 - T01 - 

(3.8) 

Hence an infinite number of conservation laws are obtained by raising 

these components to the power n = 1,2,3,... as 

a+(T f = 0 -- 

or 

a-(TJ-l = 0 . (3.41 

At this point, we would like to digress somewhat in order to 

recall what happens to these infinite number of conservation laws when 

we quantize a model. In general, the superconformal symmetry becomes 

broken due to the necessity of introducing a non-invariant mass scale 

in order to consistently renormalize the theory. Hence anomalous terms 

arise in the equations of motion needed to derive equations (3.9). These 
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anomaly terms are not entirely arbitrary. They must obey the 

,. unbroken symmetries, discrete and continuous, of the model. In 

particular, they must be Poincare and supersymmetry covariant. 

Finally the additional and most severe constraint they must obey 

is that of power counting consistency. The anomaly terms must be 

of the same power counting dimension as the conservation equation 

to which they belong. Thus we must list all independent (module 

equations of motion) operators of a fixed dimension (basis operators) 

as possible anomaly terms; for example, a+(T--)n is of dimension 2n + 1 

and so we need basis operators of dimension 2n + 1. If we can derive 

such a space-time divergence equation from a lower dimension spinor 

derivative equation by simply taking additional derivatives we will be 

able to restrict the possible anomaly structure further. To be specific, 

derivatives (spinor or space-time) do not alter the structure of re- 

normalized relations between composite operators. Hence, if we can 

derive a lower dimensional relation without the presence of anomalies, 

then, by taking derivatives, we will have a higher dimensional relation 

of the same form; no new anomalous terms will be introduced. Since 

equations (3.9) are sufficient in order to derive the S-matrix of the 

quantum model, we will show that by using the supercurrent, V$ we can 

derive these equations from lower dimension equations by merely taking 

spinor derivatives. The simplest example of this procedure is the funda- 

mental conservation equation (2.61) for space-time translations 

ii,v”, = 0 . (3.10) 
I 
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Applying ED to this equation we found 

,’ 

0 = iiDijaVI = 2iEgV'-' = avTpv . (3.11) 

Thus from the dimension 2 conservation equation (3.10), the 

conservation equation (3.11) of dimension 3 can be derived, 

First, we would like to write the results of Section 2 in light 

cone coordinates. Under Lorentz transformations (3.3), a spinor 

$, Cd , a = 1,2, transforms as 

-- 
Jt;(xc) = e iA 

+ +A 
JI, ix) 

#;(x-) = e JJ2(x) l 

(3.12) 

Thus the one component of a spinor transforms like the square root 

of the vector A and the two component like the square root of the .- 

vector A +' Similarly 
-- 

D$+e : A 
1 1 Dl@ 

D #I + e+? D2$ . 2 (3.13) 

For spinors, we will exhibit the 1 and 2 component subscripts explicitly. 

Finally,we define light cone Dirac matrices as 

+ = -A- (yO _f. yl> = y 
'f- Jz T l 

(3.14) 

Some useful relations between the derivatives now become 



DIDl 
= -ifi a 
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D2D2 = --1 2 a+ *I- 

ED = 2iDlD2 = -2iD2Dl 

El = -iD2, ij2 = iD 1' 
(3.15) 

Thus defining 

v-1 _ 1 <.vz + vg, = VT a , 
a fi 

we can write equation (2.63) in light-cone coordinates as 

TSS-= -i2 fi D2V+2 

T = -- -i2 fi DlV 1 

T+ = -i2 fi DIV+l 

T -+ = -i2 fi D2V 2 . 

The space-time translation equation (2.62) now becomes 

D2V+ 1 _ =DlV+2 . 
- 

(3.16) 

(3.17) 

(3.18) 

In addition, for the superconformally invariant theories we can write 

equation (2.65) as 

VW2 = 0 

v+l = 0 . (3.19) 
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Combined with equation (3.18), this yields 
: 

T*= -i2 fi D2V+2 

T = -- -i2 fi DIV 1 

T+- = 0 = T-+ 

D2V-l = 0 = DlV+2 , 
(3 * 20) 

where the non-vanishing light-cone components of the supercurrent 

are (cf. Equations (2.33) and (3.16)) 

V-1 = 
a2 i - a-4 + a-4 + aZ - aD,+ 

-1D [ a D 
2Jz 1 aD24 lL 

4 + ij2$ 

and 

V s-i .-S& a 
aDf+ + 

Q, ad 
+2 

+ a+++ ~ 
aE2++ 

+--1-D[- a25 aa 
2fi 2 aDl+ 

D2@ + E14+ ---$ . 
ag2+ 

(3.21) 

From these equations, the lower dimension infinite number of spinor 

derivative conserved currents can be defined for n = 0,1,2,... as 

D2[V-l(T-B)nl = 0 

or 

D1 [V+2(T,+)nl = 0 . 
(3.22) 
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'- These infinite number of conservation laws imply the higher dimension 

laws (3.9) by taking ED derivatives, For n = 0 we have D2V 1 = 0. 

Acting on this with DlD2 gives 

0 = Dla+v-, = a+D,v-, = a+T-_ , (3.23) 

which gives the energy-momentum conservation law in light-cone 

coordinates (Equation (3.8)). To obtain the first higher conservation 

law, we start with Equation (3.22) for n = 1; D2(V-1T--) = 0. Taking 

DlD2 of this equation and using the n = 0 conservation law, Equation (3.23) 

yields a+(T-m)2 = 0 which is the first higher conservation law. The 

remaining laws can be proven in a similar manner by induction, 

In summary, we have constructed for any superconformal model 

an infinite number of scalar superfield currents which obey a spinor 

derivative conservation equation: 

0 = D2[V,l(T,->nl , n = 0,1,2,... . (3.24) 

From this equation, the infinite number of higher dimension conservation 

equations follow by taking the ED derivative; 

o = a+('? ), n = 1,2,3,... . 
-- 

(3.25) 
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Section 4: Classical and Quantum Mechanical Currents in the Non-Linear 
Supersymmetric Sigma Model 

The classical non-linear supersymmetric sigma model is described 

by a real scalar superfield +i(x,8), i = l,...,N, which carries the 

fundamental representation of the O(N) group. The scalar superfield 

Lagrangian for the model is given by 

(4.1) 

with the constraint 

0.4 = R2 , (4.2) 

where R = constant, We have introduced a dot product which dictates 

a sum over the (suppressed) O(N) indices. The constraint can be 

handled most easily by the method of Lagrange multipliers. Since 

equation (4.2) is a super-covariant equation we introduce a scalar 

superfield Lagrange multiplier, 1(x,8), so that the effective Lagrangian 

describing the super non-linear sigma model is given by . 

ez= + Ea$*Da$ - W2 - R2) (4.3) 

We can next use the Euler-Lagrange equations to eliminate the multiplier 

field from the $ equations of motion thus obtaining 

DlD24. i = n L 4 .(D R2 1 1 +-D2$d 

$2=R2 . (4*4) 
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In order to construct the infinite number of currents,we simply 

, apply equation (3.21) to our Lagrangian again using the Euler- 

Lagrange equations to eliminate the multiplier field. 

We also note that for this model there are no Belinfante improvement 

terms. Thus we find 

v-1 = D14* a-4 

v+2 = D20* a+4 

V-2 = 0 = v+l . (4.5) 

The light-cone coordinate energy-momentum tensor is then given via 

equation (3.20) as 

T+t = -2&f i D,[D,$*a+$] 

T = -- -2& i Dl[Dl$*a-$1 

T+- = 0 = T-+ . (4.6) 

It can be checked explicitly by using equation (4.4) that equation (3.20), 

D2V-1 = 0 = DlV+2 , is satisfied, hence implying the validity of equation (3.8), 

a+T = 0 = a-T*. Finally,equation (3.22) yields the infinite number -- 

of conservation laws 

or 

D2[V-l(T--)n1 = 0 (4*7) 

Dl[V+2(T,+)n] = 0 , n = 0,1,2,... . 
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Thus we have explicitly constructed the infinite number of 

classical conservation laws for the super, non-linear sigma model. ,. 
We next examine the modifications to these conservation laws due to 

quantization. To do this, we keep in mind that quantization is 

accomplished via a N _l; perturbation expansion. In general, the 

superconformal invariance of the model is broken and anomalous 

terms.will appear on the right-hand side of equation (4.7) so that 
+ 

D,[V-l(T__)*] = C r(n)Ap) . 
ii 

(4.8) 

Cd Here, the constants ri are a power series in $ and the A Cd 
i are 

composite field operators which are formally made from monomials 

in the field operators I$ and their derivatives. (The composite fields 

are defined from the field monomials by means of Zimmermann's normal 

product algorithm [IfI applied to the N L Feynman rules). The sum over 

6-d composite operators is restricted so that the Ai have the same discrete 

symmetries as the left-hand side of equation (4.8) as well as the same 

Lorentz transformation properties. In addition, the Ai (n) must be O(N) 

singlets and most importantly must have the same scaling weight (power 

counting dimension) as the left-hand side. 

If all anomalies for these conservation laws can.be written as 

total Dl or D2 derivatives, then the S-matrix for this model is 

exactly calculable. [!I01 That is, if equation (4.8) has the form 

W D2 [V-l(T--)nl = D2B1 Cd + D1B2 , (4.9) 
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where theB(n) a 
are anomaly operators with appropriate symmetry and 

I' dimension, then acting with CD on this equation, we find 

a+[T”+ll = -2&i a+[DlBp) + VBID,(T--)“l 

+ Zfi i a-D,Bp) . (4.10) 

This form of the infinite number of conservation laws at the quantum 

level is sufficient to determine the S-matrix. WI 

With these various restrictions in mind, we now show that 

equation (4.9) is true for the first two currents n = 0 and n = 1. 

Use will be made of the field equations and constraints so that 

only linearly independent terms are counted. Thus for n = 0, we 

find only two dimension 2 anomaly terms so that 

(0) 
yL1 = rl D2(DlWgd + r2 (")Dl(D2$*a-$), (4.11) 

which is already in the form of equation (4.9). We can trivially 

rewrite this in the form 

fj J(O) = 0 , 
a a- 

with 

(0) 
J1- = i(1 - rl (o)Nl 

(0) 
J2- 

= ir-O) D29*a-4 * 

(4,121 

(4.13) 
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For the n = 1 case, we must 

,-which transform like (a )3. 

list all dimension four operators 

There are eight possible anomaly terms 

for the n = 1 version of equation (4.8), 

D2(V-1T -c > = C ril)A(l) . 
i i (4.14) 

Listing these operators gives the set 

(1) 
A1 = ~,w-ypft~ 

(1) A:! .= CD14 l Dy#d @yP a-a-D,@) 
(1) 

A3 = (olw24) (a-wjgd 

A4 (l) = (~lo= a-4) (D2p a-a-44 

(1) 
A5 = (~~+'-a-+) (Dl~~a_a-4d 

(11 
A6 = (n2pa-+) (a-D,ka-H 

0) 
A7 = (Dl$+Dl$)(D,$*a-Dl$) 

A8 (l) = (a-w-44 (D2P a-D14d * 

(4.15) 

After application of the field equations and constraints, it is possible 

to write these 8 anomaly operators as linear combinations of spinor 

(1) derivatives of the following 8 independent operators B. 1 , i = 1,...,8 as 
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(1) 
B1 = D24 p y-a-+ 

(1) 
B2 = (,D19*D29) (D,O* a-a-td 

(1) 
B3 = $4 l D2$) (a+$* a-$) 
(1) 

B4 = ~DlPa-~)(D2$*a-Dl#d 

(1) 
B5 = CD24 l a-$) (D,O l a-D14 > 

(1) 

B6 = CD,+ l a-4) (a_$- a-44 

(1) 

B7 = D1+ e a-a-a-4 

(1) 
Bf3 _- = a a DIpa-@ 

That is 

6 (1) D2[Vm1T--l = C BiDIBi + ! BiD2B;l) , 
i-l i=7 

(4.16) 

(4.17) 

where the Bi are linear combinations of the ri. Thus we have proven 

the first higher quantum conservation law 

ij J(l) = 0 
aa (4.18) 

with 

(1) 
J1 = VqT-- 

(1) (1) - B7B7- B8B8 

J(l) = ; 6 p 
2 . . . (4.19) 

i=l IL l 

This quantum mechanical law was assumed and used [24 to construct the 

exact S-matrix for the non-linear, supersymmetric sigma model. 
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Appendix A 

: 
Notation, conventions, and useful formulae 

The metric tensor guv is defined so that its only non-vanishing 

elements are g = 1 = -gll. The Levi-Civita tensor E uv 
00 

is defined by 

E uv = -cvv , with co1 = -E 
01 

= +l Thus 

E E XP = gp$ - &p (A.11 lJV I.lv I.rv’ 

The two component Dirac matrices y' are defined in terms of the Pauli 

i matrices (5 ; 

y"q2; y1 1 =io;y 5 
= y"yl = 03 , (A-3) 

so that {yU,yv} = 2gFIv . In addition, their commutator is defined by 

the matrix ab as P 

(A.4). 
c 

Charge conjugation is realized through the y" matrix since 
oTo 

Y Y,Y = - Yv 
(A-5) 

and 
qJT = -YOi 

where the superscript T signifies transposition. Some useful Dirac 

matrix identities are listed below: 

1) (YvYv)a,, = 8’ 6ab + ‘“,; 

2, y:b Yucd = (y5Y’)ab (Y5Y,)cd (A.61 

= 26ad6bc - 'ab6cd - '5 ab '5 cd 

3) y y" 5 = cvvy V 

4) PyX 1-I VA 
=Yg 

v PA -Yg 

. 
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The two component, complex (Dirac) Grassmann spinors JI,, a = 1,2 have an 

,’ inner product defined by 

qaxa ' *; yzb x,, (A-7) 

The adjoint spinor, $,, is defined as 

$a, = ($+Y"), = $;Y;, 

and the charge conjugate spinor IJJ' is given by 

(A.81 

(A. 9) 

A Majorana spinor is defined as self charge conjugate. Hence if 

$C = q) = -$p (A.lO) 

then $ is a Majorana spinor (note $ = y"$ in this case). The Grassmann 

parameters 0 of superspace are 2 component Majorana spinors. (Note a 

eaeb = + yzb se ) . 

Differentiation with respect to the anti-commuting parameters Ba is 

defined by 

O(f3 + se> = O(6) + 'E F& o(e) , 

so that 

and 

ab l 

Integration is defined so that it is translationally invariant' 

r dea f(e) =Jde, f(e + ta). 

Thus 

and 

I dea = 0 

/ deaeb = $- Bb = -yzb . 
a 

(A.ll) 

(A.12) 
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A scalar int,egration is made by use of the inner product 

/ d2e =I&,de = a yzb -& . 
a - ai a aeb 

(A.13) 

Spinor covariant derivatives with respect to supersymmetry transfor- 

mations can be defined as 

a Da-[- 
sea 

-i(y’e)aaul 

fia-y;bDb . 

(A.14) 

These anti-commute to give 

ID,, Ebl = 2iaab 3 
where 

d = 
ab ':bap ' 

In addition they obey the following useful identities: 

(A.15) 

1) DaDb = $ 6,BD + igba 

2) DDD = -2i($D) a a 

3) Dy5D = 0 = %uV D (A.16) 

4) Dyp D = 2ial-l 

5) Ey5y'D = 2i Pvav 

6) Ey'lD = -fiyue . 

Thus supersymmetry invariant integration reduces to 

id2x d20 = -/ d2xijD . (A17) 

Functional differentiation for superfields can be defined as 

WXl’ 91) 

~~~~~~ e2) 
= s-(1,2) ) (A.18) 



where 

6 (1,2)+ Fil,el, 
. -x2> , 

,- 
with 

%2 = \e 1 - 82 
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(A.19) 

and 5,, = e, - z2 - 

Then 

Z d2x 2 d2e2 60~) 4(x2,e2) = 4(x,+) . (A.20) 

Parity transformations on superfields are given by 

p-l +(x,e)p = Mxp, ep) 
(A. 21) 

where n is the intrinsic parity and the parity transformed coordinates are 

xu = 
P 

(x0, -x1> , 

and 

e 
pa 

= + iyib eb , 

ii = -i Bb yza l 

pa 

(A.22) 

l 
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Appendix B 

II The Superconformal algebra 

We consider the grading of the O(4) two dimensional space-time 

conformal algebra. The procedure differs from the four dimensional 

case where we must append a chiral U(1) symmetry to the SU(2,2) con- 

formal algebra so that the associated SU(2,2) 9 U(1) group is a 

symmetric subgroup of SU(2,3) and hence can be graded. No such 

additional symmetry is needed in two dimensions since the O(4) conformal 

algebra is already embedded as a symmetric subalgebra in the super- 

conformal O(5) algebra. 

The generators for the conformal algebra are the usual conformal 

generators: P , M 
v lJV' 

D, and Ku generating space-time translations, 

Lorentz transformations, dilatation transformations, and special 

conformal transformations, respectively. The grading representation 

is carried by the two component Majorana, Grassmann spinor generators 

Qa' a = 1,2, for translational supersymmetry and Sa, a = 1,2, for con- 

formal supersymmetry. The graded Lie algebra these generators satisfy 

is known as the superconformal algebra, The conformal Lie algebra 

commutation relations are as usual 

[M,,vs PAI = iCPllgvA - Pvg,J 

[M,,v, J$l = i(Kugvh - J$&,> 

[“pV ) Mp,] = -i(g M - gu5Mvp+ g M VP VG VcJ VP - gvpM1-lcr) C=O> 
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The commutation relations between the spinor generators and the 

yield the grading representation of the conformal conformal generators 

algebra 

P’, Q,] = 0 PV, Sal = -&,Qb 

[Mu? Q, ] = - + o;;Qb [MU', Sa] = - + o;;Sb 

i&Q,] = - $ Q, [D,Sa] = + $ Sa 

I& Q,] =Y :bSb tK', Sal = 0 . 

(B-2) 

[D,Pu] = -iPn 

[D,KJ = +iKU 

P p, Kvl = 2ik,,,D - MIIv> 

[P,, Pv] = [Kp, KY] = [D, yuv] = [D,D] = 0 l 

(B.1) 

The anti-commutation relations among the spinor generators are 

{Q,,Q,) = -2~+-k")ab'v 

@&,} = -2(yuy")abKn 

{Q,,S,} = -2iyzbD - i(y"aPv)abMnv e 

(B9.3) 

These generators can be represented by linear superspace 

differential operators acting on superfields $. Classically this 
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representation gives the intrinsic variation of the classical 

; superfields Cp as discussed in Section 2. In quantum field theory 

the generators are operators whose commutation relations with the 

quantum fields I$ give the above mentioned representation,i.e. 

[G, $1 =-iiG$,where G is the quantum symmetry generator and iG the 

linear differential operator. The linear differential operators are 

denoted by iG where GE {Pu, Mu', D, KU, Q S }. a' a Listing these, we 

have 

G : iG 

M : iM =~a a PV uv ?Jv uv as 
D : ;D=d+xX; +1-a 

x ye- 
a; 

K : iK = 2x ZD + 2xViM + x*a v lJ u UV 1-I - 2xuxhaA 

Q, : iz = -L- + i(de> 
aSa a 

sa 
: iis = 2d0 "Q 

a a - i(f6 Ia , 

03.4) 
^G where d is the scale dimension of the superfield on which 6 is 

acting. 
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