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1. INTRODUCTION 

It is now widely believed that hadrons are composites built of 

quarks and gluons whose interactions are governed by quantum chromo­

dynamics (QCD). The nature of this internal structure is the key to an 

understanding of hadronic properties, both at short and long distances. 

However the connection between the hadrons and their constituents often 

seems vague in applications of perturbative QCD. If we are to push 

beyond perturbation theory, we require a conceptual framework within 

which these notions can be made precise. A particularly convenient and 

intuitive framework is based upon the Fock state decomposition of 

hadronic states which arises naturally in the 'light-cone quantization' 

of QCD. In this approach, a hadron is characterized by a set of Fock 

state wave functions, the probability amplitudes for finding different 

combinations of bare quarks and gluons in the hadron at a given 'light­

cone time' T=t+z. These wave functions provide the essential link 

between hadronic phenomena at short distances (perturbative) and at long 

distances (non-perturbative). 

The use of light-cone quantization and equal T wave functions, 

,rather than the more familiar equal t wave functions, is necessary for 

a sensible Fock state expansion. In light-cone quantization, the Fock 

state vacuum is an eigenstate of the full light-cone Hamiltonian 

(HLC = p- = P0 -P3. conjugate to T). Consequently all of the bare quanta 

in an hadronic Fock state are associated with the hadron; none are 

disconnected elements of the vacuum (Fig. 1). It is also convenient to 

use T-ordered light-cone perturbation theory (LCPTh), in place of 
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covariant perturbation theory, for much of the analysis of light-cone 

dominated processes such as deep inelastic scattering, or large-p.1. 

exclusive reactions. Light-cone quantization and perturbation theory 

are briefly reviewed in Appendix A. 

In these lectures, we explore the properties of the Fock state wave 

functions, and their relation to measurable quantities~•2 In Section 2, 

we describe the Fock state basis and wave functions in greater detail. 

We examine general properties of the wave functions, and the implications 

of the renormalization group in this context. We also discuss briefly a 
+ ' 0 number of processes - n +JN, n +yy, deep inelastic scattering, ••• -

using this language. 

In Section 3 we review the analysis of exclusive processes involving 
3 transfer of large momenta. This includes a derivation of the basic 

formulae and a discussion of the complications due to end-point and pinch 

singularities. Large p~ exclusive processes provide one of the best 

tools for probing the valence wavefunctions of hadrons, as well as an 

important testing ground for perturbative QCD. 

Finally in Section 4 we discuss bound states of heavy quarks 

(~,T, ... ). These mesons are unique in that we have considerable under­

standing of their internal structure, largely due to the apparent 

predominance of the QQ Fock state. We examine the reasons for this, and 

discuss the ways in which we can exploit this understanding to study both 

non-perturbative and perturbative features of QCD. As a footnote to this 

section, we also discuss in Appendix B the significance of perturbative 

expansions in QCD focusing on the choice of definition for as. We propose a new 

I, 
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procedure which provides a natural criterion for the convergence of such 

expansions. 

2. The Fock State Description of Hadrons 

A. Definitions 

At any given light-cone time 1 = t + z, we can define a set of basis 

states {Appendix A) 

IO> 

jqq: (2. l) 

where b+,d+, ••. are the Fourier transforms of the unrenormalized field 

operators at time 1, and where ti = ( k + = (ko - k3), kJ) i is the three­

momentum of the ; th parton and A; its helicity. Herek+ is always 

positive, and the Fock states are normalized such that 

<!s.l_:f = 2k+(21r) 3o3(t_-.9.). Of course the elements, other than the vacuum, 

of this Fock state basis are not eigenstates of the full Hamiltonian 

HLC( = P-). However they form a useful basis for studying the physical 

states of the theory. A pion, for example, is described by a state 

(2.2a) 

or to be more precise, for a pion with momentum!'._= (P+,~)(=>P-=(~+M;)/P+), 

2 dx.d k . 
l J.. l 

5;" l61r3 {2.2b) 
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where the sum is over all Fock states and helicities, and where 

~ 
IT dxi = IT dxi 6(1-Ex.) 
i i i 1 

(2.3) 
~ 

d2k . d2k . 16rr3c/(~k.Lj) II = II 
i J.1 i .i-1 

J 

enforce three-momentum conservation. Notice that wave function 

¢n/ (x.,k.L.,A.), the amplitude for finding bare partons with momenta 
TT 1 1 1 

(x.P+, x.P +k .), is independent of the pion's momentum. This special 
1 1.L :.Ll 

feature of equal T wave functions is not surprising since xi, the 

longitudinal momentum fraction carried by the parton (0 < x. < 1), and 
- 1 -

k i' its momentum 'transverse' to the pion's direction of motion, are 

frame independent quantities. 

Throughout this analysis, we employ the physical light-cone gauge, 

n-A =A+= 0, for the gluon field. Use of such gauges results in well known 

simplifications in the perturbative analysis of light-cone dominated 

processes. Furthermore, they are indispensible if one desires a simple, 

intuitive Fock space,for there are neither negative norm gauge boson 

states nor ghost states in A+= 0 gauge. Thus each term in the 

normalization condition 

I~ 
I: II 

n A. i 
1 

(which follows from <rr:f,.lrr:£_'> = 2P+(2rr) 3o3(£_- £_' )) is positive. 

(2.4) 

Any hadron state, such as Irr>, must be an eigenstate of the 

Hamiltonian. Consequently, when working in a frame in which P = (1,0) 
-TT 

I 

I 
ll 
f 
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and P- = M2 the state ITI> satisfies an equation 
iT ' 1r' 

Projecting this onto the various Fock states <qqj. <qqgl. results in 

an infinite number of coupled integral (eigenvalue) equations 

• 

<qqj VI qq><qqj VI qqg>... 1/Jqq 

<qqgjVjqq> 1j!qqg 

• 
• 

(2.5) 

where Vis the interaction part of HLC" Diagrammatically. V involves 

completely inducible interactions - i.e. diagrams having no internal 

propagators - coupling the Fock states (Fig. 2). In principle these 

equations determine the hadronic spectrum and wave functions. 

The bulk of the probability in a non-relativistic system. such as 

positronium or the T, is in a single Fock state - here in Jee> and lbb> 

respectively. In such systems one obtains a single equation for the 

dominant wave function by tracing over the remaining Fock states. 

for positronium, we have (Fig. 3) 4 
Thus, 

(2. 6) 

The effects of all higher Fock states are included in Veff• the sum of all 

two-particle irreducible interaction kernels - i.e. diagrams having no 

internal two-particle propagators (Fig.3b). The effective potential', 

Veff"'Vcoulomb' is little modified by higher Fock states. so this 
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procedure and others closely related to it (e.g. Bethe-Salpeter equation) 

are well warranted. However, higher Fock states are most likely quite 

important for a light-quark hadron, and consequently Veff cannot help 

but be very complex in this case. In particular, retardation effects 

must then become significant, as is evident from the normalization 

condition for the valence Fock state wave function: 

(2. 7) 

< l 

- the expectation of aveff/'M2 equals the possibility of higher (i.e. non­

valence) Fock states. So one is forced to consider the full coupled 

channel problem (Eq.(2.5)) when analyzing hadrons. Traditional two-body 

(or three-body) bound state formalisms seem inappropriate in highly 

relativistic, strong coupling theories. 

B. General Properties of Fock State Wave Functions 

One major advantage of the Fock state description of a hadron is 

that much intuition exists about the behavior of bound state wave functions. 

So, while the task of solving Eq.(2.5) for QCD remains fonnidable, there 

is nevertheless much we can say about the hadronic wave functions. An 

important feature that is immediately evident from Eq.(2.5) is that all 

wave functions have the general form 

1/Jn (xi ,k.Li ,"i) = 1 (V'¥) 
k2 +m2 

142-r .L 
X i i 

(2.8) 

I 
I 
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Consequently Wn tends to vanish when 

.... -oo (2.9) 

This is intuitively plausible. In The Fock state expansion, we think of 

the bare quanta as being on mass shell 

2 2 

i.e. ki = 
k.Li + mi 

=> k? = m? 
Xi l 1 

-but off (light-cone) energy shell. Parameter e: measures how far off 

energy shell a Fock state is, and thus we see that a physical particle 

has little probability of being in a Fock state far off shell. In general 

e: is large when k~i or mf is large, or xi small - i.e. the wave function 
2 2 should vanish as k,. m. -+ 00 or x. -+O . 
.... 1, 1 1 

Formally these constraints appear as boundary conditions on the 

wave functions, and are related to self-adjointness of the Hamiltonian. 

Notice for example that the expectation value of the free Hamiltonian, 

r[ki+m
2
) , is finite only if i X Ji 

2 -as k ..... "" 
1 

as x. -+ O 
1 

(2. 10) 

As we shall see in the next section, neither of these constraints is 

satisfied in perturbative QCD unless we introduce ultraviolet 

(kJ. -,.oo) and infrared (x-+O) regulators. 
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A further source of intuition about wave functions is provided by 

the physics of non-relativistic bound states (<v> << c). In the rest 

frame (P+ = P- = M, ~ = 0), equal time (t) and equal light-cone time 

(T=t+z/c) are almost identical for a non-relativistic system since the 

speed of light is effectively infinite. Consequently the usual (equal 

time) Schrodinger wave function should be almost the same as the light­

cone wave function. To make this connection, notice that the ; th con­

stituent has longitudinal momentum 

k+. = M ko k3 x. = • + . 
1 1 1 1 

2 3 "m. +O(m.v ) + k. 
1 1 1 

where the energy k~ is just the mass plus small corrections, due to 

kinetic and potential energy, of O(miv2) << kf "'o(miv). Thus if we write 

xiM is essentially equal to kf for the parton, and a Schrodinger wave 

function is then converted to a light-cone wave function simply by 

replacing kf +xiM. This is also evident when it is noted that all energy 

denominators have the form 

f [k~ + (xM)
2
] J 

~ 2M N.R. - ~ 2m . 
1 1 

when xi<< xi. Consequently one expects non-relativistic wave functions to 

be strongly peaked at 
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with k.J.i, xiM <<mi, in the same way Schrodinger wave functions are peaked 

at low ki (<<mi). This is well illustrated by the wave function for ground 

state positronium or hydrogen (valid for k1,(xeM-me) 2<<m!): 

(2. 11) 

where y = amR, and mR is the reduced mass. Such reasoning has immediate 

implications for hadron physics. For example, the charmed quark in a 

D meson tends to carry most of the meson's longitudinal momentum 

(xc "'mc/M0 "' 1), and therefore fragementati on functions should be broader 

(in z) for D mesons than for TI mesons. 

C. Renormalization; Truncated Fock Space 5 

The basic ansatz of perturbative QCD is that the short distance 

behavior of the theory is perturbative; only perturbative interactions 

are sufficiently singular to contribute at short distances. Consequently 

wave functions behave in much the same way as perturbative amplitudes 

in LCPTh when kii + 00 (see Section 3). Such a comparison (Fig. 4) indicates, 

for example, that 1/iqq"' 1/ki and 1/iqqg"' l/k.1. for k.1. large. This 

behavior violates boundary conditions (2. 10), and leads to infinities 

in the unitarity sum (2.4), energy expectation values, and in the wave 

functions themselves. Of course this is not unexpected, given that the 

wave functions and the theory are as yet unrenormalized. 

To make the theory finite, we truncate the Fock space-by in effect 

discarding all Fock states with light-cone energy (Eq.(2.9)) jEj >A2• • 
~ , 
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This ultraviolet cut-off can be introduced by using Pauli-Villars and 

related regulators. so as to preserve Poincare invariance and gauge 

invariance~ The end result is that all internal loop integrations are 

2 2 finite. and the wave functions become well behaved for l<_i. ~ A - e.g •• 

1/lqq'vl/k1 and 1/lqqg'vl/k_l for k~>>A2. 

Usually one takes A-+ 00 when computing. However the key physical 

characteristic of renormalizable theories is that this cut-off has no 

effect on the results for any process provided only that A is much larger 

than all mass scales, energies, and so on relevant to the process of 

interest. Fock states with le:! ~A2 need never be explicitly included; 

all low-energy effects due to them can be absorbed into the coupling 

constants, masses, etc. appearing in an effective Lagrangian (or 

Hamiltonian) for the truncated theory - e.g. 

These bare parameters vary with A in the usual way, as more or less of 

the high energy Fock states are absorbed: 

A2 d 2 as (A) = S(as (A), m(~)) 
dA • . 

In general, non-renormalizable interactions appear as well, but these are 

suppressed by powers of 1/A, as is evident from simple dimensional 

arguments. Notice also that the effective Lagrangian can change radically 

as A passes thresholds for new heavy quarks, or say for quark substructure. 

The bare parameters - g(A), m{A), ... - are the effective couplings 

I 
' i 

I 
I 
I 

I 
I 

' ' 
1 
j 
; 

I 

I 
I 
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and masses of the theory at energies of order A (i.e. distances 'I, 1/A). 

Indeed, as we shall see. a process or quantity in which only a single 

scale Q is relevant is most naturally expressed in terms of the couplings. 

masses, wave functions. etc. of the theory with cut-off A 'v Q. Of course 

one must compute with A>> Q. but the dominant effect of vertex and self-

energy corrections is to replace g(A). m(A).~(Al .•• by g(Q). m(Q). ~(Q) __ _ 

Thus as Q is increased, ever finer structure is unveiled in the wave 

functions and in the theory. Also we are always dealing with a finite 

cut-off, so that couplings. masses, and in particular wave functions are 

both well defined and well behaved. 

The 

fixed xi 

on A for 

(2.12) 

where z3A) is the usual wave function renormalization constant for the 

j th parton. This formula is easily understood by recalling that z}A) is the 

probability of finding a 'bare' parton in a 'dressed' parton. Also it follows 

that O:::z3A):::l. Furthermore, ztl generally decreases with increasing A 

since the effective phase space, and therefore the probability,for the 

multi-parton Fock states in a dressed parton increases with A. Although 

the probability shifts from Fock state to Fock state with varying A, the 

total probability is always conserved: 

"'.,,,,,,..,.111'111,l l~'tJ"PI 'l,'0111'11'1 lllll ll11"1'Pl'II' I t~IIIMl'IIIIJ1"'11 'i"!f'i"'"lli'lt"l"~''ttlllllll!lllll"'l'llll•l'!PI "''"'"'"I'll" ,,,,.,,1 ,11· ''"'" m• '"''' ""'",, ''"" '""'''"'"II' 11 ,,,, .. ,_, .. ,om,rm,i,,_.1,~ .. .,,..,.,, ,,, 1 MIIIPl.,!'°1""'"' '''"'Ill.,.,, J "''" '''l'"'""llllr~ ""''"'"'l'l'I ,.,, "'"'' 
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One final modification of the theory is required. The polarization 

sum for gluons in A+=O gauge is singular as k+=x+O: 

* nk+nk 
i:: E (k,A)E (k,:>..) = -g + µ v v µ (2.13) 
:>,_ µ- v- µv X 

where k = (x,ki) and k- = k_i/x. As a result, wave functions for states 

with gluons diverge as -xgluon + 0, again contrary to the boundary conditions 

(2.10). However the singularity in (2.13) is to some extent an artifact 

of light-cone gauge. It is properly regulated by replacing 7 

_l _,_lf 1 + 1 ) 
xn 2 ~x+i8)n (x-io)n) 

(2. 14) 

Physical amplitudes or cross sections are independent of o provided it is 

sufficiently small, which implies that gluons decouple when xgluon~ o 

for some small 6. Thus in effect the wave function does vanish as 

xgluon+O; we can use regulator (2.14), with a small but non-zero 6, to 

remove gluons with x.;:; 6 from the wave function. Typically the cut-off 

point must be 6~ <k.l. >/Q where <ki> is some average of the gluon's k.L.' 

and Q is the momentum scale of the probe. So as Q increases, so does 

the number of 'wee' gluons. Notice finally that <k.l.> can never vanish, 

since very long wavelength gluons cannot couple to a color singlet wave 

function. Thus, with finite 6 and A cut-offs, all Fock state wave functions 

are well behaved both as xi+ 0 and as k.Li + 00 • 

I 
I 
I 
I 
I 
' ; 

I 
' 
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D. Calculating 

In principle, the hadronic wave functions detennine all of the 

properties of a hadron. Here we illustrate the relation between the 

wave functions and measurable quantities by briefly examining a number 

of processes, particularly for pions. These examples also demonstrate 

the calculational rules for using wave functions - i.e. an amplitude 

involving Fock state ijln, describing a hadron with f_= {P+,~), has the 

fonn 

+ T (x. P ,x. I' + k • "·) n 1 lJ. i1,1 (2. 15) 

where Tn is the irreducible scattering amplitude with the hadron replaced 

by Fock state n. If only the valence wave function is to be used, Tn is 

irreducible with respect to the valance Fock state only (e.g. no reducible 

qq propagators for 1r); while otherwise contributions from all Fock states 

must be summed, and Tn is completely irreducible. 

7[+].J\) 

+ The leptonic width of the TI- is one of the simplest of all processes 

because it involves only the qq Fock state. The sole contribution is 

from 

where nc = 3 is the number of colors, and fTI :e 93 MeV. Thus we 
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have 

(2. 16) 

This result must be independent of cut-off A up to corrections of order 

A2/A2, where A is some typical hadronic scale (~ 1 GeV). Eq.(2. 16) is an 

important constraint on the normalization of the qqwave function, indica­

ting among other things that there is a finite probability for finding 

a pure qq state in the pion. 

1r Form Factor 

An exact expression for the pion's electromagnetic form factor is 

(Fig. 5) 8 

where eq is the charge of the struck quark and where 

= [k .Li - xi q.L + q..1.. 

k.1i - xiq..1.. 

for the struck quark 

for all other partons 

(2.17a) 

(2.17b) 

~ * As in Eq. (2.2b), the transverse momenta k.Li appearing as arguments in 1/J 

correspond not to the full transverse momenta of the partons, but rather 

to the full k.1 minus xiqJ.., to account for the motion of the pion. In 

the limit qJ. +O (i.e. k.L +k.L), the right hand side of (2.17a) becomes 

identical to the unitarity sum (Eq. (2.4), and therefore F n(O) = 1. The 

form factor at large q.L is discussed at length in Section 3. 
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To leading order in as(Q), the pion's structure functions are 

determined by the T-ordered diagrams in Fig.Ga. Furthermore, only the 

region m2 << kr << Q2(1-x) contributes to this order (Q2 = q~). This has 

two important consequences: first, we can neglect k..L relative to q.J. 

to l~ading order; and second, we can set the ultraviolet cut-off 

A"'Q since only Fock states with k! << Q2 are important (again to leading 

order only). The structure functions are then 

Fz(x,Q) 2 
2MF1 (x,Q)"' "',: e G / (x,Q) x a a a11 

where, from Fig. 6a, 
2 dx.d k . 

l .1. l 

16113 

(2.18a) 

(2.18b) 

is the number (density) of partons of type a with longitudinal momentum 

fraction x (the,: is over all partons of type a in Fock state n). Eq.(2.18b) 
b 

leads immediately to a very simple interpretation of the structure function 

moments: 

<111ii7a(o)y+(i'if)n+lta(o)l11>(Q) 

(2P+)n+2 
1T 

(2. 19) 

where the matrix element is evaluated with ultraviolet cut-off A= Q, and 

where D+ = a+ in light-cone gauge. Thus the Q dependence of the moments is 

determined by the cut-off dependence of (twist-two) local operators. 

Relation (2.18a) is corrected in o(as(Q)) and beyond by diagrams_ 

such as that in Fig. 6b, which contributes only when t-'-"'Q (in A+= 0 gauge). 

Diagrams like that in Fig. 6c are suppressed by powers of l/Q2 due to the 
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additional hard propagators absent in the leading terms. 

Although all Fock states contribute to the structure functions, it is 

likely that the valence state dominates near x = l. This region involves 

Fock states far off-shell: <e:>'v- <kt+m
2
> +- 00 as x+l (cf Eq.2.9). If -x 

perturbative interactions dominate here, the X"' l behavior of the wave 

function is approximated by that of the simplest connected interaction 

kernel (Fig.7), just as for the large k.L behavior. This implies (for an 

arbitrary hadron H) 8 

(2.20) 

where ns is the number of spectator partons (= 1,2 for mesons, baryons) 

and n is the difference between the struck quark's helicity and that of 

the hadron (and where QCD evolution has not been included). Clearly 

the valence state, for which ns is smallest, is most important as x+ L 

The (l-x) 3 behavior suggested by Eq.(2.20) for protons is consistent with 

experiment, and there is some evidence for the helicity dependence 

predicted. Unfortunately, however, the situation is complicated by non­

perturbative contributions, which could we11 be important down to very 

small 1-x. Any non-perturbative wave function which is a strongly peaked 

function of e: = M2 - ,: (ki + m
2
J gives ( Eq. ( 2. 18b)) 9 

i X i 

G~/~-pert"' (l-xJ2ns-1 F(e:min) as x+ 1 (2.21) 

2 m2 
with e:min"'-r-x• Since F vanishes quickly as e:min"'- l-x+-00

, the 
' perturbative effects (Eq.2.20) ultimately dominate. However, to the extent 

i 

. I 
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that quark masses are neg1igible (i.e. for l-x>>m2/<ki>), this ansatz, at 

least.gives important non-perturbative corrections. 

TTo -+yy 

The ·./ TTo -+Y vertex (Fig.8) can be parameterized in terms of the 
o 2 2 TT -y transition form factor F ,ry(Q = -q ): 

The techniques of Section 3, when applied to F,ry, show that only the qq 

Fock state is relevant as Q
2 -+ 00 •

11 Surprisingly, this is also the case for 

very low Q2 "'o(m;), given that mTT is much smaller than the typical 

momentum scale, A, governing pionic wave functions. This allows us to 

relate the TTo -+YY decay rate, 
2 

r o = a TT m3 F2 ( o) 
7f .... yy 4 7f ,ry 

directly to the qq wave function of the pion. 

There are two basic types of contribution to F,ry(O), as illustrated 

in Fig. 9. The first (Fig.9a) involves the direct annihilation of the 

qq into two photons: 12 

(2.22) 

,,,,i,,,,.,,,,, 
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where the z~A) is due to vertex and propagator renonnalizations.and 

A>> A. 

The second contribution has one photon coupling 'inside' the pion's 

wave function - i.e. strong interactions occur between the photon 

interactions (Fig.9b). We can treat this photon as an external field 

which is approximately constant throughout the pion's volume, since the 

photon's wavelength (~1/mn) is assumed to be much larger than the pion 

radius ( ~1/;l.). Now a fermion propagator in a constant external field is 

modified only by a phase: 

Consequently the qq wave function for a pion in this field is modified by 

a phase e-iey•A where y is the qq separation. To avoid double counting 

Fig. 9a, this phase is applied to the truncated wave function (i.e. 

without an external qq propagator), 

and furthennore only the first order tennis required for Fig. 8b - i.e. 
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where iey•A-+e a: in momentum space, 
)J 

second contribution becomes {Fig. 10) 

i i+ 
=-s-1.r(b) 

and q -+ O is assumed. 
j. 

Thus the 

i e2{ eJ.. xqJ..) 

Iii: 2 2, 
nc(eu-ed· f d2k a (A) l x(l-x) 

,,_ 2i(exq) dx7{e.1.•a"k"1/Jqq(x,k..&_)l:;ur 2 
:i..: .1. 16n :.L 22 -k J.. 

(

v+ +u+ 1\(x,½q.1.+k..1.) v+(l-x,½\-k-'-) j 
• --=::y - ---~-_,ly 5 ---::._--::_~~ + ( t +-+ +) 

11-x Ix Ix 11-x 

£(e2 - e2) d2
k k x q 

" c u d fdx --#{s __ a_ 1/J(~)(x,k )l .J.. -'- 1 
an3 k2 -'- ak.1. qq J. e..1.. x q.J. i"{AT 

J.. 2 

as Cl.I.. +O. The angular integral is easily done, giving 

Thus the complete ny form factor at Q = 0 is 

The data for n° + yy is we 11 fit by the PCAC prediction 13 

'i' F(a) (0) 
7TY 

and so we have yet another constraint on the qqwave function for a pion: 

1 (A) 

I 1)igg (x,O .J ✓nc _ /3 
dx (A) "f - f 

0 22 11 '1T 

(2.23) 
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Constraints such as Eqs.(2.16) and (2.23) are important in the 

phenomenological construction of hadronic wave functions. For example, 

a simple ansatz for the pion's non-perturbative valence wave function is 

where A~ a GeV. Eqs.(2.16) and (2.23) then imply 

A - ff -r 
1T 

l z(A) 
(41Tf )2 2 

1T 

From Eq. (2.4), we can compute the probability of finding a pion in its 

valence state for this ansatz; 

z(A) 
P 2 < l 

qq/1T = -4- - 4 

while from Eq.(2.17) we can calculate the 'radius' of the valence state:14 

(R - )2 = 18b2 = z(A) 13 GeV-2 
qq/1T 2 

If the valence state is comparable in size to the pion, the probability 

z~A) of finding a bare quark in a dressed quark must be near one, from 

this equation, and in that case P qq/TT ~ 1/4. One could (and should) go 

on to study the x ~ l behavior of the 1T structure function. the form 

factor at large Q
2, etc. with this ansatz. and with others. In this way 

one hopes to develop a deeper understanding of the detailed structure of 

hadrons. 
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3. EXCLUSIVE PROCESSES IN QCD 

A. Introduction 

In this section we review the analysis of exclusive processes with 

large momentum transfer. Generally one finds that such an amplitude 

factors into a convolution of quark distribution amplitudes $(X;,Q), 

one for each hadron, with a hard scattering amplitude TH. The pion's 

electromagnetic fonn factor, for example, can be written as1•3 

1 l 

F11 (Q
2

) = Jdx Jdy $;(x,Q) TH(x,y,Q) (j)
11

(y,Q)(l +O(~)) (3.l) 
0 0 Q 

Here TH is the scattering amplitude but with the pions replaced by 

collinear qq pairs (i.e., by their valence partons), while the process 

independent distribution amplitude (j)
11

(x,Q) is just the probability 

amplitude for finding the qq Fock state in the pion (with xq = x and 

x-= 1-x)· 15 
q . 

2 

J
d k.i. (Q) 

(/)11 (x,Q) = --3 Viq-q/
11

(x,k.L). 
1611 

(3.2a) 

0 (3.2b) 

The k.L integration in (3.2) is cut off by the ultraviolet cut-off A=Q 

implicit in w;Q); only Fock states with energies icl,1,Q2 are important. 

The distribution amplitude is only weakly dependent on Q, as is 

evident from the evolution equation 

2 a Jl Q 2 (j)
11

(x,Q) = dy V(x,y,as(Q)) (/)
11

(yi,Q). 
aQ o (3.3a) 
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which we shall derive. The bulk of the Q dependence is in TH. This 

hard scattering amplitude is defined to be collinear irreducible - i.e. 

all mass singularities are systematically subtracted out (and absorbed 

into the ~•s). Therefore we can neglect all masses in TH, leaving Q as 

the only scale. The amplitude must then have the general form 

(3.3b) 

where, from simple dimensional arguments, n is the total number of 

initial and final partons less 4. The pion form factor (i.e. e1r+e1r 

where n = 6 - 4) falls as l/Q2, up to logarithmic factors, according to this 

rule. A second consequence of neglecting masses is that total quark 

helicity is conserved in TH when the gluons are vector bosons, as in QCD. 

Since~ carries no helicity, by its definition (3.2), the helicity of 

the hadron equals the sum of the helicities of its valence partons in TH. 

Thus hadronic helicity is conserved in exclusive processes for large Q2• 

In the following sections we illustrate the derivation of these 

results by examining the pion form factor to leading order. We also· 

examine some of the problems which arise in hadron-hadron scattering, 

certain baryon form factors, etc. due to various singularities in TH. 

The phenomenological implications of this formalism are discussed by 

Stan Brodsky in his talks to this meeting. 

B. An Example: The Meson Form Factor 

The meson form factor (Eq.(2.17))can be rewritten in terms of the 
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qqwave function alone (cf Eq.(2.15)): 

(3.4) 

* Here T is the sum of a 11 qq irreducible LCPTh amplitudes for y + qq + qq 

(Fig. 11), and the ultraviolet cut-off is A2 >> Q2• 

Consider first the disconnected part of T (Fig. lla), ignoring 

renormalization diagrams for the moment. It gives a contribution 

l 2 

I Id k (A)'j (A) 
dx ::31jJ (x,k.L + (1-x)qJ.) 1jJ (x,k.J. 

0 
161T 

(3.5) 

to F1T. As Q2
=~+ 00 , two regions of phase space dominate in (3.5) -

a) k.1, << Q where 1/J(A)(x,k.J is large 

b) kJ. + (1-x)q.L << Q where 1/J(A)*(x,k.t. + (1-x)qJ.) is large 

- since the wave functions are strongly peaked at low transverse momentum. 

In region a), k.1. can be neglected in l/J(A)*(x,k_i_ + (l-x)q.1.) until 

k~ '\, (1-x)Q at which point l/J(A)* begins to cut of the k.L integration. Thus 

in region a), we can approximate (3.5) by 

(3.6a) 

- the bulk of the integral coming from kf << Q2
+ 00 • Similarly we obtain 
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for region b) 

1 (1-x)Q 

fdx{f (3.6b) 
0 0 

These approximations are valid up to corrections of O (1/R-n Q2 ) when 

1/1"' l/k1, the crude expectation in QCD. 

Eqs.(3.6) can be further simplified by using the bound state equation 

(2.6) for the valence wave function 1/1(1\)(x,(1 -x)qJ.): 

1 2 
(1\) f fd i veff(x,(1-x)q ;y,i ) (1\) 

1/1 (x,(1-x)q.J = dy ~ 2 l-x ..L. ..1.. 1/1 (y,i..L.) 
16TI -q -

0 ..L. X 

As above, the dominant contribution here is from R-..L.<<Q(l-Y), so we can 

approximate this equation by 

1 ( { ) . ) (1-Y)Q 2 
(1\) • i Veff x, 1-x <l__i_,Y,0 r d iJ. (1\) 

1/1 (x, { 1-x)q.1.) "'J dy 2 l-x --3 1/1 {y ,i~) 
-q - J 16n 

0 J. X 

(3.7) 

to leading log order. It is readily demonstrated that the qq irreducible 

potential Veff is free of mass singularities in light-cone gauge. 

Consequently all loop momenta are of order q or larger, and 

Veff(x,(1-x)q_Jy,O) can be computed perturbatively. Combining Eqs.(3.6) and 

{3.7) we arrive at a simple expression for (3.5): 

1 1 

fdx fdy ¢:(y,(1-y)Q) 
-
TH(y,x,Q ) ¢

0 
{x,(1-x)Q) 

0 0 

where the unrenormalized quark distribution amplitude ¢
0 

is 
Q2 2 

(3.8) 

_ r dkJ- (1\) 
¢

0
{x,Q) - --2 ,j; (x,k_J , (3.9) 

) 1611 
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* and TH is the LCPTh amplitude for -y + qq-+ qq depicted in Fig. 13 ( divided 

by /y(l-y)x(l-x) ). 

In addition to (3.5), the connected parts Tc of T contribute to (3.4) 

as Q-+ "'· By the same reasoning used above, we can neglect R, _._ and k.J.. 

relative to~ in Tc(y,R-.1.;x,k.Jq.J to obtain a fonnula identical to 

(3.8) but with TH replaced by (Fig. 13) 

Again Tc is free of mass singularities (in A+= 0 gauge) and can be computed 

perturbatively. Still ignoring renormalization tenns, the otherwise 

complete result is therefore 

l l 

F~(Q2) "'J dx f dy { <J,:(y,(1-y)Q) eqT~(y,x,Q) <J,
0 

(x,(1-x)Q) 
o o (3.10) 

where the hard scattering amplitude is to lowest order 

1 
(1-y)(l-x) ' (3.11) 

the Born amplitude for a collinear qq pair to scatter with the photon, and 

where the two terms in Eq.(3.10) arise from the photon hitting either the 

quark or the antiquark. 

Finally we must consider the effects of vertex and propagator corrections 

in TH(Fig.14). Each of these involves propagators off-shell by "-Q2 and so 

all loop momenta are of order Q or larger (in A+= 0 gauge). It is a 

trivial but important consequence of renormalizability that the bare 
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vertices and propagators are then modified only by factors16 

(A) 2i for propagators 
z1CiT 

1 
(3.12) 

for vertices 

up to corrections of O(as(Q)), where z~A) and Z~Q) are the usual renormal­

ization constants with ultraviolet cut-offs A and Q respectively. 

Thus in leading order T~ is replaced by (Fig.14) 

··[Z(Q)]2 z(A) lz(Q)]2a (Q) lF 3 To_ 2 s To zITT (Q) H - z[KY as{AT H 
lF z3 2 

where Z~~) renormalizes quark-glu_on vertices, and z1A) and z~A) renormalize 

the quark and gluon propagators. Here the photon-quark vertex correction 

cancels the quark propagator correction, by the Ward identity. We have 

also used the fact that c\(A) ziA)(z~A)1zi~))2 is /\ independent. So 

Eq.(3.10) is corrected to give 
l l 

FTT(Q2) = Jdx J dy {¢*(y,(l-y)Q) eqTH(y,x,Q) ¢ (x,(1-x)Q) 
0 0 (3.13) 

+ (q++q)} 

in leading order, where now 

(3.14) 

' f ' 

' I . 
: ! 
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2 
z{Q) Q dk2 

{ ) 2 I J. (1\.) 4> x,Q "'-:;{AT - 2 1/J {x,k..1.). 
z2 16TI 

{3.15) 

Since the bulk of the integral in {3.15) comes from kl<< Q2, we can use 

Eq.(2.12) to redefine 
2 

- fd ki (Q) q,{x,Q) - - 3 1/J {x,k.i_). 
167f 

{ 3. 16) 

where now the k.1. cut-off (at'\,Q) is implicit rather than explicit. Eqs. 

(3.13)-(3.16) now have the general form proposed in the introduction 

(Eqs.(3.1)-(3.3)). 

Comparing Eqs.(3.9) and (3.11) to Eqs.(3.16) and (3.14), we see that 

the major effect of the renormalization corrections is to replace 

as(l\.) by as(Q) and 1/1(1\.)by 1/J(Q)_ This is exactly what was expected from 

our general discussion of renormalization (Section 2.C). The only physical 

momentum scale in TH is Q and so as(Q) is the natural expansion parameter. 

Furthermore TH only probes structure in the wave functions down to 

distances of 0(1/Q). Thus the wave function 1/J(Q), defined in the theory 

with cut-off Q, incorporates hadronic structure over all distance scales 

relevant to the physical process. Structure at distances much smaller than 

1/Q is irrelevant except insofar as it determines as(Q), m{Q) ..• etc. 

The leading order result (3.14) for TH is consistent with the 

dimensional counting predictions for the pion form factor. These rules 

also show why it is that only the valence Fock state is relevant for large 
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Q2• For example the hard scattering amplitude for scattering a qqqq 

(collinear) state has four additional partons and so must fall as 1/Q6; this 

amplitude has many more far off-shell ('vQ2) internal propagators than 

does the qq amplitude. States with extra gluons must be treated with 

special care. For example the hard scattering amplitude in Fig. 15 has 

only one additional denominator ('v Q2), while the numerator is modified 

by a factor u i u '\, e::•q coupled to the gluon pol ari zati on e::. So this 

amplitude is suppressed by'\, e::•q/Q2which in light-cone gauge (i.e e:: + = 0) 

is e:: •q /Q2 'v~, in accordance with dimensional counting. However, other 

gauges can have e::•q/Q2 've::+q-/Q2 've::+Q2tQ2 in which case the amplitude is 

not suppressed. In these gauges any number of A+ gluons must be included 

in the pion Fock states, even in leading order. The absence of such 

spurious longitudinal gluons in light-cone gauge is another important 

advantage of this gauge. 

C. The Quark Distribution Amplitude 

All of the pion's low energy properties relevant for FTT(Q2) as 

Q2-,. 00 are lumped into the quark distribution amplitude q,(x,Q). Obviously 

q, is intrinsically non-perturbative. However its variation with Q can be 

studied perturbatively. To show this, we differentiate Eq.(3. 15) with 

respect to Q2: 

(3.17) 
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where yF is the anomalous dimension associated with z!Q), 

Q2 ~ z(Q) = -y (a (Q)) z(Q) 
dQ2 2 F s 2 

Ca (Q) fl 2 
= -{ F s dy l + (1-y) + O(a2(Q))} z(Q) 

2n y s 2 

(3. 18) 

0 

and CF = (n~ - l )/2nc = 4/3. The first term in (3.17) represents the 

change in the probability amplitude¢ due to the addition of more qq 

states as Q increases, while the second reflects the loss of probability 

from those already present, as z!Q) decreases. By using the bound state 

equation as in Eq.(3.7). we can express ¢(A)(x,q.L) in terms of ¢(x,Q). 

To leading order we need only consider one-gluon exchange between the quark 

and anti-quark, which gives (Fig. 16) 

(3.19) 

where again a
5

(A) is converted into as(Q) by propagator and vertex 

corrections. Substituting into Eq.(3.17), we finally obtain the evolution 

equation for ¢ 
1 

2 a as(Q) f _jL__ 
Q 2 ¢(x,Q) = 4-rr { y(l-y) V(x,y) ¢ (y,Q) - ¢(x,Q)} 

aQ o 

where 

+ y 
6 l (x+-+1-x) -x J+ y++l-y }=V(y,x) 

(3.20) 
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t, g,_{y_,_Q_l = ,p(y,Q) - f~.QJ 
y(T=yT - y(T=yT xn::xT 

and h, n the quark, antiquark helicities. 

The evolution equation (3.20) completely determines the Q dependence 

of ,P(x,Q); given ,P(x,Q
0
), ,P(x,Q) is determined for any other Q by 

integrating this equation, numerically or otheruise. However it is 

instructive to exhibit explicitly the most general Q dependence. 

Using the symmetry V(x,y) =V(y,x) to diagonalize V, the general 

solution of (3.20) is easily shown to be 

where 
n+l l 

Yn = CF{l+4 k!2 k-

8 = 11-In o 3 f 

(3.21) 

(3.22) 

and nf is the number of quark flavors. (1\ here is the scale appearing 

in the running coupling constant - i.e. c's(Q2) = 4TT/8
0 

£n(Q2/A~) - and 

has nothing to do with the ultraviolet cut-off 1\.). By combining the 

orthogonality condition for the Gegenbauer po lynorni a ls c~12 with the 

definition {3.2) of ,p, we arrive at an interpretation for the expansion 

constants in {3.21): 
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[ 
21-y /S l n~ n °_ 4(2n+3) f 3/2 

an i'i2 - (2+n)(l+n) dx en (2x - l) ,p(x,Q). 
0 

1 t2k 
= 4 2n+ 3 Jdx ~c312(2x-l) 1/J(Q)(x k) 2+n l+n 16113 n ' .L 

0 
(3.23) 

= h(2n + 3) _1_ <OI ''·(O)y+y c3/2(ia+),'•(O) l11>(Q) (2+n)(l+n) r--- ~ 5 n ~ 
,nc 

where the matrix element of the local operator is evaluated with ultraviolet 

cut-off Q. Thus to leading order the pion's distribution amplitude has 

the simple form (P+=l) 17 
7T 

,p(x,Q) = x(l-x) 2: 12 2n + 3 
2+n l+n n=O 

(3.24) 

Expansion (3.24) can also be derived directly from the operator product 

expansion of Eq.(3.2b) since the quark fields are on the light-cone 

(z2 =z+z--z2 =o). 18This analysis has an important consequence which follows 

from (3.22). For very large Q2 only the n=O term remains in (3.24), so 

that 
+ 

,P(x,Q)-+-__]_ x(l-x) <Ol~ Y Y5 \lll11>(Q) 
~ 12 

= __]_ f x(l-x) 
~ 7T 

{3.25) 

- i.e. ¢{x,Q) is completely determined for very large Q. Actually this is 

just another way of writing Eq.(2.16), which gives a sum rule for ,p(x,Q): 

l f f dx ,p (x,Q) = _rr_ 

0 2~ 

Given the shape of ,p{x,Q), this equation normalizes if for any Q. 

(3.26) 
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Notice finally from, Eq.(3.19) that ¢(A)(x.q.L) does in.fact fall as 

1/qf. up to loga.rithms,. as qi grows. The short distance behavior of the 

Fock. state wave functions is perturbative in nature. and as a genera.1 

rule is crudely that of simple Born diagrams in perturbation theory. In 

particular wave functions are not exponentially damped at large q.!. 

(> a GeV). as is frequently assumed in phenomenological analyses. 

D. Complications 

Exclusive processes at large Q2 involve interactions of the hadronic 

constituents within a small volume near the light-cone. as is evident 

from Eqs.(3.24) and (3.2). This is due to the dynamical behavior of TH• 

all of whose internal propagators are far off shell ('vQ2), and not simply 

due to kinematics as in deep inelastic'scattering. Unfortunately the x 

integrations for certain processes can include points where internal lines 

in TH go on-shell. In that case the long distance behavior of the theory 

obviously becomes relevant, and factorization as in Eq.(3.1) is jeopardized. 

These singularities in TH can be of two types: 

a) endpoint singularities which arise as X-+0 or 1; 

b} pinch singularities which occur in the middle of the integration 

region - i.e. xfO,l. 

We examine each in turn. 

Endpoint singularities 

The analysis of the qq contribution to FTI(Q2)(Eq.(3.5)), 

1 d2k 
Jctx J--3 ¢(A)*(x,k.l. + (l-x)qJ.)¢(A)(x,k.1.) , 
O 16TI 
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depended upon the fact that either ~ or k..1.. + (1-x)q.J.. was of O(q.l.) - i.e. 

large momentum flowed through one or the other wave functions. This is 

obviously the case unless 

" 1-x < - (3.27) 
~ q.L 

where >-2 ~ <k.i_> is the mean k~ in the wave functions. Within this infini­

tesimal region, called the endpoint region, both wave functions have small 

(~>-2) transverse momenta. The fonn factor receives a contribution from 

this region of order 

when 1/!(A\x,>-) vanishes as (l-x) 0 for x+ 1. This mechanism, in which 

spectator quarks are stopped rather than turned, was actually the first 

parton model suggested for hadroni c form factors .8 However, we expect the 

wave function's behavior to be perturbative when xis infinitesimally 

close to l (Fig.7), as discussed in Section 2.D (leading to Eq.(2.20)). 

Perturbation theory implies o= l and thus the endpoint contributions fall 

as (>-/Q) 3, down by a full power of A/Q relative to the hard scattering 

contributions (Eq.(3.1)). 
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Perturbation theory again gives a= 1, but here the endpoint contribution 

seems to be suppressed by only two powers of as(AQ) relative to the hard 

scattering prediction: 

1 ine 

In fact the suppression is probably much stronger. The struck quark 
<k2> 2 . . . 

is off shell by only isl 'v -
1

-L 'v AQ<<Q in the endpoint region. -x 
Thus radiative connections to the quark-photon vertex include double 

logarithms of Q2 (i.e. as(tnQ2)2) which exponentiate when summed to all 

orders, giving a quark fonn factor. This form factor falls as a power of 

A/Q, further suppressing the endpoint contribution to the form factor. 19 

It must be emphasized that such 'Sudakov form factors' involve very 

low loop momenta ('v A2) and may not be reliably analyzed in perturbation 

theory. On the other hand, the physics of a quark form factor which falls 

with increasing Q2 transcends perturbation theory. A near on-shell 

(relative to Q2) quark when struck by a highly virtual photon wants to 

radiate gluons, the amount of radiation increasing the more drastic is 

the change in the quark's state of motion. Thus the quark scattering 

amplitude is suppressed when such bremsstrahlung is prohibited, as it is 

in exclusive processes; i.e. we see the 'shadow' of the inelastic channels. 

Note that double logs and Sudakov fonn factors do not appear in hard 

scattering amplitudes. This is because the collinear bunches of partons 

representing each hadron in TH are color singlets, and the soft gluons 

which build up the Sudakov form factor decouple. In short, color singlets 
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need not radiate copiously when struck. In the endpoint region, however, 

the struck quark behaves as though isolated from the others (over time 

scales~ 1/AQ), and a Sudakov fom factor does appear. 

Finally notice that the presence of strong sensitivity to the 

endpoint region is usually evident from an inspection of the hard 

scattering amplitude, even in leading order. For example, TH(y,x,Q) for 

a pion (Eq.3.14) has linear singularities as either of x or y tends to l. 

However the wave function's 

vanish like a power as x+ l, 

boundary conditions require that ¢TT(x,Q) 

so that Eq. (3.1) for F (Q2 J never diverges. TT 
By contrast, the proton's magnetic form factor has a hard scattering fem 

where TH has a cubic singularity as x1 + 1. This expression could be 

singular even if ¢p vanishes as x1 + 1, resulting in the situation 

outlined above. 

Pinch Singularities 

The pinch singularity, first described by Landshoff, is most serious 

in hadron-hadron scattering. As an illustration consider the diagram in 

Fig. 17a, which contributes to TT-TT scattering. Three-momentum conservation 
2 2 2 2 requires (s=r.1.. +q.1.., t=-q.1.., u=- s_, 1;._•q.i...= 0) 

(3.28) 

where ka, .. ,kd are the transverse momenta appearing in the wave functions 



1/1( A) (x,k). Clearly at least one of k; , •• ,k~ must be of order s = rf + q~ 

for most values of xa•··•xd. Then, as in Section 3.B, the wave function 

with large k.l is replaced by a gluon exchange to give a hard scattering ampli­

tude, as depicte!l in Fig.17b (where k! is large). Dimensional <;ounting implies 

3 
a.s 

TH"' 2 f(eCM; xa•···' (3.29) 
s 

for this contribution. Also the energy denominator Din Fig.17a, 

is of orders indicating that the two quark-quark scatterings occur within a 

very short time of each other (liT"' 1/s). 

Notice however that in the 'pinch region' 

A \x-x\<­c a ~ rJ. \xd-x \ < .l a ~ q.L 
(3. 31 ) 

all wave function momenta k!, ... can be small ( "'"2). Furthermore the 

denominator Dis of order A/s or less, and can even vanish here. Thus the 

two quark-quark scatterings can occur more or less independently, at widely 

separated points. The scattering process is no longer localized, and 

factorization of the sort exhibited in Eq.(3.1) does not occur. The s 

dependence of the contribution from this region is readily estimated: 

a) the quark-quark scattering amplitudes give (l/s) 0
, by dimensional 

counting; b) phase space as restricted by Eqs.(3.31) gives a factor 

(Vls)2; c) the energy denominator D gives a factor 1/D"- 1/Als. Thus 

the pinch region gives 
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which apparently dominates the hard scattering contributions (Eq.(3.29)) by 

a factor rs. 
Two things work to suppress this pinch contribution. First the number 

of hard scattering amplitudes is much larger than the number of pinch 

singularity diagrams. More importantly, perhaps, radiative corrections 

to the individual quark-quark amplitudes build up Sudakov fonn factors 

which increase the effective power of 1/ s to ,,_, ~ + 4 CF/13 Jl,n Jl,n/i tJ/:>,_(-+oo 

as JtJ 'vS-+- 00}; these corrections do not cancel here because the quarks 

and antiquarks scatter separately, and not together as color singlets. 

So the pinch region (3.31} is completely suppressed by Sudakov effects. 

Mueller has recently pointed out that a contribution still remains for 

hadron-hadron amplitudes from a region intermediate between the pinch 

region and the hard scattering region (e.g. for k~,,_,:>,_2(s/:>,_2)0 O<o<l). 

This results in a small correction to the power law predicted by 

dimensional counting; for example, pp elastic scattering at wide angles 

should fall off as s-9•7, rather than s-lO as predicted by Eq.(3.3). 

The conservation of hadronic helicity is unaffected by these corrections. 

When computing hard scattering contributions, pinch singularities 

appear as singularities in TH(xa,xb, .. ,Q)at points xa,xb, ... away from the 

endpoints O and l. The x integrals, with the distribution amplitudes, 

are then singular. If this singularity is only logarithmic, the integral 

is properly defined by a principal value prescription, thereby discarding 

the imaginary part of the amplitude (which is Sudakov suppressed). The 

pinch singularity causes no problem in this case. However, if the x 

integrals have power-law divergences, as in the mr amplitude discussed 
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above, these must be cut-off by explicitly including Sudakov fonn factors 

in the pinch region (as always, Sudakov effects go away in the hard 

scattering region). Only the power law divergences lead to a modification 

of dimensional counting. 

We end this section by tabulating the singularities that can occur 

for a variety of exclusive processes (M = meson; B =baryon): 

Process 

eM+eM 

* y y+M 

n+MM 

eB+ eB 

YY+ BB 

yB+yB 

yB+MB 

MB+ MB 

BB+BB 

Endpoint 
Singularity 

X 

X 

X 

X 

X 

X 

Pinch Singularity 
Power 

X 

X 

Log a ri thmi c 

X 

X 

X 

X 

Again we emphasize that the results of the previous sections are modified 

only for amplitudes with power-law pinch singularities, and even then only 

slightly modified. 

4. HEAVY QUARK ATOMS 

A. The Spectrum 

Striking progress has been made in elucidating the structure and 

i 
! ' 
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properties of mesons containing heavy QQ pairs, such as the w,w' •... with 

cc pairs, and the T,T', ••• with bb's. The most prominent features of the 

spectra for such states are 

a) only states having QQ quantum numbers have been found - for example 

the levels of the cc system are in one to one correspondence with the 

low lying levels of positronium (curiously, many more states of 

charmonium have been produced experimentally than of positronium); 

b) the heavy quarks move with non-relativistic velocities 

where Lls'v500 MeV is the mass difference between radial excitations; 

c) non-relativistic potential models for QQ pairs bound by an 

instantaneous interaction describe the spectra extremely well (better 

than 10%), and furthermore different parameterizations of the effective 

potential agree over distance scales relevant for the observed states 

(Fig. 18). 20 

This evidence strongly suggest that the QQ Fock state is the dominant 

component of heavy quark mesons. It is this feature more than any other 

which has allowed us to make such progress in understanding these mesons. 

QQ predominance is obviously mandatory for the success of potential models, 

relativistic or non-relativistic. Furthermore, as we shall see, it is of 

critical importance for the study of the various inclusive and exclusive 

decays of the heavy mesons. 

Why are heavy quark mesons so different from ~•s,p's, .•• ? Why. are 
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there not strong admixtures of purely light-quark Fock states like qq, or 

of states with gluons like QQg? The coupling between QQ states and purely 

light-quark states can almost certainly be computed perturbatively since 

the Q and Qmust annihilate, and this can only occur over a very short dis­

tance ('v 1/M0). For example the qqwave function for a iJ, or Tis given 

to leading order by the amplitude in Fig. 19a; the probability for finding 

such a state is'" a:(MQ) << 1. Of course, this is just an example of the 

021 suppression of quark flavor mixing. Similarly the amplitude for 

QQg, with a hard gluon, is perturbative (Fig. 19b) and small. Perturbation 

theory fails us only for states in which the QQ pair is accompanied by 

soft gluonic excitations (and the qq pairs they might produce). 

The amplitude for such soft gluonic excitations has the usual form 

(Fig. 19c) 

ij,QQg '\, 
,: 

QQg 
(soft) 

I QQg><QQg I av I QQ> 
EQQ - EQQg 

( 4. 1) 

where oV is the potential coupling quarks to the gluonic field (g repre­

sents a general gluonic excitation here). Gauge invariance requires that 
--> j. 

oV'" gs P0•A/Mq for any gluonic field configuration (perturbative or other-

wise), and thus matrix element <QQgloVIQO> is of order gs<v0/c>, as is 

typical of El multipole transitions.21 Squaring ij,QQg and su!lllling over all 

QQg states with soft 'gluons', we find that the phase space cancels the 

energy denominators, leaving a probability 

P(QQg) = ,: 
QQg 

(soft) 

2 
liJ,qogl 

'" '\ <V~/C
2
> (4.2) 
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for finding a QQ together with any soft excitation in the color fields. 

So such non-perturbative higher Fock states are suppressed by <v6/c2> in 

non-relativistic QQ bound states - slowly moving quarks don't radiate 

much. 

(An analogous situation arises in the hydrogen atom, which has a 

small admixture of epy Fock states with P(epy) ~ a(ve/c) 2 ~ a3 for soft 

photons. These Fock states, with photon energies of order the binding 

energy (k ~a2m ), are directly responsible for the Lamb shift, which is 
Y e 

then readily estimated: LIELS~P(epy)<epylHlepy>~a3<a2m). Clearly the 

hydrogen atom is well represented by just the ep Fock state to a very 

high degree of accuracy.) 

Armed with this intuitive understanding of QQ systems, we now examine 

a variety of detailed aspects of these mesons and their interactions, with 

the dual purposes of a) developing further intuition about the 

non-perturbative interactions at work in QQ mesons, and. b) using QQ systems 

as a testing ground for perturbative QCD. 

B. The Potential 

Given that higher Fock states are not very important, we expect a 

QQ interaction potential which is instantaneous - retardation effects 

should be unimportant (cf Eq.(2.7)). We have some guidance in constructing 

this potential from strong coupling (r-+ 00 ) and weak coupling (r-+O) expansions 

in QCD, 
r-+ oo 

r-+- 0 (4.3) 

though it is clear that neither form adequately describes current data. 
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However surprisingly simple interpolations for V(r) work very well. One 

of the best is due to Richardson who takes (in momentum space): 

.... {41rl l V(q) = 
Bo ci'2in(l+q2 / 112) s 

-,. (4TT) 2A2 
->2 (4.4) 

-'4 q ->-0 
Soq 

4mxs (q) ->2 
q'2 

q ... 00 

A refined version of this potential gives a good fit to all wand T energy 

levels with a QCD scale parameter (in MS scheme) As -+AMS <v 200-500 MeV 

which is in reasonable agreement with other determinations of AMS" 20 

However there is very little theoretical justification for such potentials, 

so a measure of skepticism is well warranted. One thing is clear though: 

the QQ interaction is still definitely non-perturbative even at 

Q2 <v<P2>T<v 2 GeV2• Thus any detailed perturbative calculations is 

probably unreliable at these Q2's. 

There has also been recent work on the spin dependent interactions in 

heavy quark mesons. Buchmuller et al have investigated the hyperfine 

splitting of s-states in perturbation theory (Fig. 20a). They find a 

potential (in momentum space,22 

(4.5) 
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for s-states (S
0 

= 11 - ~ nf with nf = number of massless quark flavors and 

c:t;;;s" designates the MS definitions of as). This result is interesting in 

several ways. The first is that it works. Using measured ratios of the 

ljl-nc mass difference to the widths f(ljl->-ee, µµ) and r(nc7hadrons), these 

authors obtain a QCD scale parameter AMS= 160±20 MeV (with unknown 

theoretical errors). This is again in good agreement with other 

determinations. The next point of interest is that the hyperfine inter­

action is not really a short distance effect. From Eq.(4.5), the leading 

order shift is proportional to 

and so the typical momentum in a MS is of order the mean QQ momentum ( and 

not MQQ). Giveri that the spin independent interactions are non-perturbative 

for ¢'sand T's, there seems a little a priori reason to use perturbation 

theory for the hyperfine interaction in these mesons. 

Finally the in(q2/M6) in Eq.(4.5) indicates sensitivity to low 

momenta. Such logarithms are generally accompanied by an additive constant 

of 0(1) due to an infinity of diagrams - in this case diagrams in which the 

Q Q interact arbitrarily often while a soft gluon (kg"' be:, the level spacing) 

propagates near mass-shell (Fig.20b), in close analogy to the QED Lamb 

Shiftf3 The calculation is not complete until these have been computed. 

That such behavior should appear in the QQ hyperfine interactions is 

not surprising given that the interaction of a quark with a uniform external 
· 23 

chromomagnetic field is similarly non-perturbative. Like the Lamb shift, 

these terms are due to the coupling with higher Fock states - here to 

QQg states where the gluon is soft. It will be very interesting to see 



-44-

how well Eq.(4.5) describes the T-nb splittings, since relativistic 

corrections and non-perturbative effects here are much less important 

tha, at the¢. In the meantime, a better theoretical understanding even 

within perturbation theory is needed. 

C. Inclusive Decays - s-states 

The total decay rate of the Tinto hadrons is particularly simple 

to analyze because the annihilation of the heavy quarks occurs over 

distances much smaller than either the average bb separation in the T, 

or the typical distances over which the final state quarks and gluons are 

converted into hadrons (i.e. the color confinement radius). As a result, 

the leading order amplitude factors, 24 

r 
O 

(T-+ hadrons)"' J¢NR (0) I 2 r(bb-+ ggg) P(ggg-+ hadrons) 

"' lw (0) I 2 160{-rr2 - 9) as3(Mb) ' (4.6) 
NR 81 Mi 

where the factors have the following interpretations: 

J¢NR(0)l 2 - the non-relativistic wave function at the origin, 

which is the probability that the quark and anti-quark 

are sufficiently close to annihilate (i.e. r"'l/Mb"'0 

relative to <r>T); 

r(bb-+ ggg) - the decay rate for a stationary (since <P61' <<M6) 

QQ pair into gluons, which can be computed 

perturbatively (Fig.2la) since the decay occurs at 

short distances; 

I 
I 
I 

I 
I 
I 
" I 
J 

l 
i 
l 
i 
i ,', 
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P(ggg+hadrons) - the probability that the gluons convert into 

color singlet hadrons {=l), which can only 

factor in this way when there are no strong 

resonances between the initial gluons {i.e. when 

the final state configurations are predominantly 

jet-like with three gluon-jets). 

Here the long distance structure of the meson figures only in the 

overall factor l¢NR{0)l 2. 

The corrections to this simple result come from several sources. 

There are O{v~/c2) corrections due to relativistic kinematics, as well 

as from spin-orbit, spin-spin and similar interactions. These might 

contribute at the 10-20% level for the T. Potentially more serious are 

contributions due to higher Fock states - e.g. decay through the channels 

bbg+ggg where the gluon in the initial Fock state is very soft {"-lie) 

and non-perturbative {Fig.2lb). Such a contribution is of order the 

probability of finding a bbg in the T {Eq.(4.2)) times the decay rate 

r{bbg+ggg). The final annihilation of the heavy quarks is suppressed 

by <v~/c2> here, because the quarks are in a p-state after having emitted 

a soft gluon to form the bbg state {via an El transition), and p-state 

wave functions vanish at the origin (Section 4.D). Thus the contribution 

to T decay from these Fock states is most likely negligible, being only 

of order 25 

P { bbg) r (bbg-+ 999) "' (4.7) 

where r
0 

is the leading order result (4.6). 
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One final source of corrections to (4.6) are the radiative corrections 

to the rate r(bb-+ggg) (these allow bb-+gggg,ggqq as well). The leading 

radiative corrections involve relativistic loop momenta (l,Mb) and so the 

dominant interactions are perturbative. These contributions have recently 

been computed26 

(4.8) 

where again B
0 

= 11 -jt1f and nf is the number of light-quark flavors 

(=4 for T). In this equation, we assume that the wave function ~NR 

contains the effects of all relevant long-distance non-perturbative QQ 

interactions, and of the non-relativistic Coulomb interaction (corrected 

for the running coupling constant). This needn't concern us however if 

we compare the decay rate into hadrons with the rate intoµ+µ- pairs, 

which from a similar analysis is given by 

where eb is the quark charge (in units of e). By fonning a ratio, all 

dependence on ~NR cancels, leaving an unambiguous prediction of perturbative 

QCD: 
r (T .-,. hadrons) 
r(T-+µ+µ-) 

3 
= 10(TI2-9) °Ms(M) 

2 2 
81 TI eb o:QED 

[ 

°Ms(M) 
l + M TI {-14.0(5) 

+ ¥3
0

[1.154( 5) + tn( 2M/MT)]} ..• ] ( 4. 9·) 
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Equations (4.8) and (4.9) are independent of the choice of M('vMb). 

up to corrections of O(~s/n
2). A particularly convenient choice for 

comparison with data is M= 0.48(2)MT as then the 0(c;;,s) corrections in 

Eq. (4.9) vanish (although this may be somewhat misleading, as discussed 

in Appendix B). Excellent data exists for this ratio oroviding one 

of the best determinations of the QCO coupling constant and scale 

parameter: 

c;;;s(0.48 ~) ~ 0.158~ ~:~~6 
(4.10) 

+ 34 AMS ~ 100 _ 25 MeV 

where the errors are experimental. Similar results are obtained for~ and 

~• decays, although v2;c2 corrections could be quite substantial for these 

(~ factor of 2?). Indeed the consistency of the~ and T analyses implies 

empirical limits on the uncertainties due to v2;c2 corrections, higher 

Fock states, and higher orders in as; these limits are crudely ±20%, for 

the decay rate, i.e. on the order of the experimental uncertainties. 

A number of others-state decays have been analyzed, of which 

perhaps the most interesting for QCD is the ratio27 

r( n -+: hadrons 
r n ..,n 

C 

Several of these rates are tabulated in Table I. 14ave functions from 

Ref.20 are used to predict absolute rates. 

( 4. 11) 



Process 

r (T-+- hadrons) 

r(T+µ+µ-) 

f(T+y+ hadrons) 

r ( nb -+- hadrons) 

r(T+hadrons) 

f(i/1-+-µ +µ-) 

f(i/1-+-Y + hadrons) 

r(nc-+- hadrons) 

TABLE I 

Theory (keV) 

28±6 

1.2±0.2 

0.9±0.2 

6±1 

80±40 

5±3 

7.5±4 

17±8 MeV 

Experiment (keV) 

27±7 

1.16±0.15 

44±6 

4.8±0.6 

< 20 MeV 

Estimates for the decays of heavy quark mesons. The 

theoretical errors represent crude estimates of the 

uncertainties due to v2;c2 , ••• corrections. 

,1 I 

I 
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D. Inclusive Decays - P-states 

As mentioned earlier, hadronic decay rates for heavy quarks in a 

p-state are suppressed relative to s-state rates by <v2/c2>; the decay 

rates are proportional told~ wNR(O)l 2 rather than JwNR(O)l 2 which 

vanishes for p-states. Because of this, decay via higher Fock states 

like QQg is not suppressed at a11?8 For example, the P(l+-) state decays 

into three gluons in lowest order with a rate of order <v~/c2> r(s ... ggg) 

where r(s ... ggg) is the rate for ans-state. As for s-states (Section 4.C), 

we estimate the rate due to Fock state QQg by P(QQg) r(QQg+ ggg), but 

~ere the quarks in the QQg state are in ans-state (Fig. 21c) and the 

annihilation is not suppressed. Thus P(QQg) r(QQg ... ggg) is of order 

<vijic2
> r(s ... ggg) as well, in marked contrast with Eq. (4. 7); and soft 

non-perturbative gluonic excitations (Fig. 21c) contribute even in leading 

order for this p-state. 

This sensitivity to soft gluons is readily apparent in perturbation 

theory. The leading order decay rate for the P(l+-) state, for example, 

is proportional to a; tn(MQ/£) where£ is the binding energy~9 Just as 

for the hyperfine interaction (Section 4.B), the presence of a logarithm 

indicates infrared sensitivity. Furthermore even in perturbation theory 

there will be an infinity of diagrams which contribute to the same 

order (Fig. 21d), as was the case for the hyperfine structure. These 

logarithms, and the difficulties associated with them plague all 

p-state decays, rendering the theory of these decays much less reliable 

than that for s-states. On the other hand an understanding of the gl.uonic 

excitations in heavy quark systems is desirable and the properties of 
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these decays could provide useful insight. 

E. QED Radiative Decays 

Perhaps the most serious outstanding problem for the standard 

analysis of heavy-quark mesons is the failure (by factors of 2-3) of the 

predictions for El transitions like w' ➔ y/,. The leading order effect 

comes from the diagram in Fig. 22a. The loop integration is completely 

non-relativistic so the wave functions enter in precisely the region 

where they are best known. 

There are basically two sorts of corrections which might arise. 

•irst there are kinematical corrections of O(v6/c2) due to relativity. 

These might well be very significant for cc states, but probably not for 

bb mesons. Secondly there are gluonic corrections to the basic diagram 

(Fig. 22b); but these are really just corrections due to higher Fock 

states - QQg, QQgg, ... - as illustrated in Fig. 22b. Remembering that 

it is the non-relativistic region that is probed by these decays, these 

Fock states can hardly be important here and unimportant in determining 

the spectrum. In other words corrections of this second type can only 

be important if there are significant retardation effects in the basic 

QQ potential. El transition rates for the T system which disagree with 

theory by factors of 2-3 would seriously challenge the validity of the 

simple QQ model currently accepted. 

F. QCD Radiative Decays 

The coupling of soft gluonic excitations to the QQ system was an 

important element in much of the previous discussion. Our intuition 

i' 
I 
' i 
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concerning this coupling can be directly tested by examining QCD radiative 

transitions like (Fig. 23) 

T '+T + gluons 

I..,. 7T1T,TI 

Some time ago Gottfried pointed out that the gluons in such a process 

have wavelengths much longer than.the mean radius of the meson. Thus 

the gluon-meson coupling might be.dominated by the leading terms in a 

mµltipole expansion of the gluonic field~O For example, 1/J' -+1/J1TTT would 

involve a double El transition, while 1/J' +1/Jn would proceed via an MlMl or 

ElM2 transition. 

rocesses - e.g. 

This idea implies scaling relations between different 

since an El coupling is proportional to r; also r(T' +Tn) << r(T' +1/J1TTT) 

because an MlMl or ElM2 transitions is higher order in the multipole 

expansion than an ElEl transitions. These relations work surprisingly 

well. 

Recently Kuang and Yan made a detailed model which incorporates 

,ffects due to the multipole couplings, phase space, PCAC, the QQg inter­

mediate states, and a variety of QQ potentials.31 Using data for 

1/J' -+1/JTTTT,1/Jn as inputs they predicted rates, TTTT mass distributions, and 

angular correlations for a number of T transitions. Some of these 

predictions are shown in Table II, together with recent experimental results. 

The agreement is impressive given our primitive understanding of these 



TABLE II 

Theoretical and experimental results for QCD 

radiative transitions in the T system. 

Transition r(keV) Branching Ratio 
(Theory} 

T' +T'rr +'lr- 4-5 17-20% 

T' +Tn .01 .04 

T" +T'rr +'lr- .2-.6 1-4 

+ -T"+T''!T '1T .3-.5 1-2 

T" +Tn .003-.005 .02-.03 

T" + (l 1P1 )'1T'1T .1-.2 

(2 3PY)+(l's
0
)= .6-3 

Branching Ratio 32 

(Experimental) 

19±3% 

5±2 

<17.5 

i 

i 
'i 

1
1 

I 

j l 

i ,, 
1: 
I, 

I 
I, 
1, 

I' 
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non-perturbative interactions; and it lends further credence to our 

previous discussions of QQg Fock states in heavy-quark mesons. 

G. Suliunary 

As we have seen there is abundant evidence suggesting that the~ 

and T systems are predominantly QQ bound states with little admixtures 

of higher Fock states. The quantum numbers, the success of the non­

relativistic potential models, and the successes of the multipole 

expansion for hadronic transitions all argue in favor of this picture. 

Given this, we can use QQ states as a laboratory for studying and testing 

QCD. The spectrum of states in effect measures the QQ potential as a 

function of r. The s-state decays determine the QCD coupling constant 

and provide information about the gluon and gluon jets. In some ways 

these systems are the best for testing QCD because we know so much about 

their internal structure. The uncertainties due to bound state effects 

in T decay are probably much better under control than those due to 

higher twist corrections in deep inelastic scattering. Finally these 

systems may provide useful sources for exotic physics - e.g. tt -+ Higgs +y. 

Note added in Proof: A detailed analysis suggests that higher order 

diagrams such as in Fig. 20b. do not, in fact, contribute to the O{as) 

corrections in the hyperfine splitting for QQ mesons. While individual 

diagrams seem important in Feynman gauge, these cancel when all diagrams 

are considered; such spurious terms never appear in Coulomb gauge. The 

discussion of the hadronic decays of p-states (section 4d) remains 

unchanged. 



Appendix A - Light Cone Quantization and Perturbation Theory 

In this Appendix, we outline the canonical quantization of QCD in 

A+= D gauge. This proceeds in several steps. First we identify the 

independent dynamical degrees of freedom in the Lagrangian. The theory 

is quantized by defining commutation relations for these dynamical 

fields at a given light-cone time ,=t+z (we choose ,=O). These 

commutation relations lead immediately to the definition of the Fock 

state basis. Expressing dependent fields in terms of the independent 

fields, we then derive a light-cone Hamiltonian, which determines the 

evolution of the state space with changing,. Finally we derive the 

rules for ,-ordered perturbation theory. 

The major purpose of this exercise is to illustrate the origins and 

ture of the Fock state expansion, and of light-cone perturbation theory. 

we will ignore subtleties due to the large scale structure of non-abelian 

gauge fields (e.g. 'instantons'), chiral symmetry breaking, and the like. 

Although these have a profound effect on the structure of the vacuum, 

the theory can still be described with a Fock state basis and some sort 

of effective Hamiltonian. Furthermore the short distance interactions of 

the theory are unaffected by this structure, or so at least is the central 

ansatz of perturbative QCD. 

Quantization 

The Lagrangian ~ensity) for QCD can be written 

(A. l) . 
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where Fµv = aµAv - avAµ + ig[Aµ.Av] and iDµ = iaµ - gAµ. Here the gauge 

field Aµ is a traceless 3x3 color matrix (Aµ= rlfµTa. Tr(TaTb) = ½cab, 
a 

[Ta.Tb]= icabcTc, ••• ). and the quark field ,i, is a color triplet spinor 

(for simplicity, we include only one flavor). At a given light-cone time, 

say T=O. the independent dynamical fields are ,i,+ = A+lj, and A~ with 

conjugate fields i,i,1 and a+Al, where A± = yoy±/2 are projection operators 

:.+A- = O, A; = A±, A+ + A_ = l) and l = a0 ± a3• Using the equations of 

Jtion. the remaining fields in i. can be expressed in tenns of ,i,+, Ai· :.L. 

l ~ _,. 
= i)i _ - - g A •a ,i, 

i ,/ .I. .I. + 

A+= 0 (A.2) 

A-= _L fa •A + 29 [[ia+Ai ,Ai] +2,i,tTa,i, Ta} 
ia+ ... -'- (ia+) 2 .L -'- + + 

= A- + 29 {[ia+Ai ,Ai]+ 2 ,i,t Ta ,i, Ta} 
(ia+)2 .L ~ + + 

with 13 = y0 and a:_ = r°t. 
To quantize. we expand the fields at r-0 in tenns of creation and 

l:{a(t,>.)£1(>.) e-ik·x + C•C•} 

" + T = X =O • 

. (A.3) 
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+ ..... 
with co11111utation relations 05 .. = (k ,k.i,_)): 

{b(.!5_,>-), bt(R,>.'}} = {d(t,>-), dtui.,>-'}} 

= [a(k,>-), /(.p.,>.' )] 

= l 6ir3k + o3 ( k - -ll) OAA' 

{b,b} = {d,d} = ••• = 0 

(A.4) 

where >- is the quark or gluon helicity. These definitions imply canonical 

commutation relations for the fields with their conjugates 

(,=x+=y+=o, x=(x-,x.1.)' ••. ): 

{1/J+ (25.) ,1/!: (,r)} = A/i\x-y) 

[Ai(x),a+A1(,y)] = ioijo3(x-y) 
(A.5) 

As described in Section 2.A, the creation and annihilation operators 

iefine the Fock state basis for the theory at ,=O, with a vacuum !O> defined 

such that blO> = djO> = a!O> = 0. The evolution of these states with, is 

governed by the light-cone Hamiltonian, HLC = P-, conjugate to,. 

Combining Eqs.(A.l) and (A.2), the Hamiltonian is readily expressed in 

terms of 1/J+ and A1: 

where 

= ,: 
"­

colors 
(A.6a) 
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is the free Hamiltonian and V the interaction: 

+ g ;~; + g2Tr([ia+Aµ,Aµ] 

- + -
+ 92;~ ....:r_+ ~; 92;y+( 

2i a 

(A.6b) 

with 1/J = 1/J_+l/J+ (-+-ij,as g+O) and Aµ= (o,A:A1) {+Aµ as g+O). The Fock 

states are obviously eigenstates of H
0 

with 

",I" ,;,,,;> • 1[{::'J; 1,,,;,',;' (A. 7) 

It is equally obvious that they are not eigenstates of V, though any matrix 

·ement of V between Fock states is trivially evaluated. The first three 

nns in V correspond to the familiar three and four gluon vertices, and 

t,,e gluon-quark vertex (Fig. 24a). The remaining terms result from 

substitutions (A.2), and represent new four-quanta interactions containing 

instantaneous fermion and gluon propagators (Fig. 24b). All terms conserve 

total three-momentum~= (k+,k~), because of the integral over~ in V. 

Furthermore, all Fock states other than the vacuum have total k+ > 0, since 
+ each individual bare quantum has k >O (Eq.(A.3)). Consequently the Fock 

state vacuum must be an eigenstate of V and therefore an eigenstate of the 

full light-cone Hamiltonian. 

Light-Cone Perturbation Theory 

We define light-cone Green's functions to be the probability 

amplitude that a state starting in Fock state Ii> ends up in Fock state 
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if> a (light-cone) time T later 

<fli> G(f,i;T) = <fl e-iHLcT/2li> 

= if~~ e-io:T/2 G(f,i ;o:)<fli> 

where Fourier transform G(f,i;E) can be written 

(A.8) 

(A.9) 

e rules for T-ordered perturbation theory follow immediately from the 

oansion in (A.9) when (o:-H
0

)-l is replaced by its spectral decomposition 

terms of Fock states: 

+ 2 

f
~ dk-d k . 
TI l Ll 

16,r3k: , 
In: k.,>-.><n: k.,>-.\ -, , -, , 
o:- ~(k2 +m2)i/k; + iO+ 

l 

(A.10) 

:re in (A.9) the sum becomes a sum over all states n intermediate between 

, interactions. To calculate G(f,i;o:) perturbatively then, all 

,-ordered diagrams (i.e. all orderings of the vertices, as in Fig. 25) must 

be considered, the contribution from each graph computed according to the 

following rules: 

1) Assign a momentum kµ to each line such that the total 

conserved at each vertex, and such that k2 = m2 - i.e. 

+ k ,k.L are 

k-= (k2 +m2)/k+. 

With fermions associate an on-shell spinor (from Eq.(A.2)) 

I 
I. 

: i 



or 
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= t 
= + 

v(i,>-) = -j+<k+ - Bm+ ~~) i ~[!~ ~: ! 

where x(t) = -1 (1,0,l,O)T and x(+) = -1 (O,l,0,-l)T. For gluon 
/2 /2 

lines, assign a polarization vector£µ= (0, 

s_(t) = -J.::.{1,i) ands_(+)= ~1,-i). 
✓2 ✓2 

.... ~ 
2c ·k 

.J.. .J.. _. ) 
+ , £ 

k .L. 
where 

2) Include a factor 6(k+)/k+ for each internal line. 

3) For each vertex include factors as illustrated in Fig. 26. To 

convert incoming into outgoing lines or vice versa replace 

U++ - V 

in any of these vertices. 

4) For each intermediate state (e.g., as indicated by dashed lines in 

Fig. 25) there is a factor 

5) 

1 

£ - • 1: k- + iO+ 
1 nterm 

where c is the incident P~ and the sum is over all particles in 

the intermediate state. 
d k+d2k 

Integrate f -Lover each independent l, and sum over internal 
16·rr3 

helicities and colors. 

6) Include a factor -1 for each.closed fennion loop, for each fermion line 

that both begins and ends in the initial state (i.e. v .... u), and for 

each diagram in which fermion lines are interchanged in either of the 

initial or final states. 
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As an illustration, the second diagram in Fig. 25 contributes 

E - E 
i=b'1 

l 
k+-k+ 
a b 

£ - E 
i=b,c 

(k.1.a - ~b) 

i k+ - k+ 
a b 

(times a color factory to the qq +qq Green's function. [The vertices for 

quarks and gluons of definite helicity have very simple expressions in 

l 

terms of the momenta of the particles - see for example Refs. 1,33 ]. These 

same rules apply for scattering amplitudes, but with propagators omitted 

for external lines, and with £ = p- of the initial (and final) states.· 

Finally, notice that this quantization procedure and perturbation 

theory (graph by graph) are manifestly invariant under a large class of 

· orentz transformations: 

) + + - -1 -boosts along the 3-direction - i.e. p -+ Kp , p -+ K p , ~-+~for 

each momentum; 

b) + + - - +2 + transverse boosts - i.e. p + p , p -+ p + 2pJ. •~ + p Q.L, Ji-+~+ p ~for each 

momentum (Q.L like K is dimensionless); 

c) rotations about the 3-direction 

It is these invariances which lead to the frame independence of the Fock 

state wave functions, as discussed in Section 2.A. 



Appendix B - Which as? 34 

A major ambiguity in the interpretation of perturbative expansions 

in QCD is in the choice of an expansion parameter. In general QCD 

predictions for some measurable quantity p have the fonn 

a (M) as(M) 
p = C

0
as(M) {1+ c1(M) s

11 
+ C2(M) --=--~2-+ •.• } 

1T 

(B.1) 

The coefficients Ci(M) depend upon both the exact definition of the running 

coupling constant as(M) (i.e. the 'scheme'), and upon the choice of scale 

M. When working to all orders in as(M) the choice of scheme and scale is 

irrelevant; the coefficients Ci(M) are defined so that pis the same for 

,, 11 choices. However this freedom can be a serious source of confusion in 

nite order analyses. Indeed when working to first order, one can set 

~1(M) to any value simply by redefining as or by changing M. This 

coefficient seems meaningless here. In particular it seems to give no 

indication of the convergence of the expansion. 

This is in marked contrast with the situation in low energy QED, where 

for example the electron anomaly has a very convergent expansion, 

while the expansion for orthopositronium decay is much less convergent: 

(B.3) 

The difference in convergence rate here is not an artifact due to a bad 

choice of scheme or scale; the coefficients in these expansions should not 

be absorbed into a redefinition of a(M) since the running coupling co~stant 
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for QED doesn't run below e+e- threshold. 

In QED the running coupling constant has an obvious definition 

(Q2 = -q2): 

(B.4) 

where a
0 

is the bare coupling, and dµv the unrenonnalized photon propagator 

(in Landau gauge). The entire vacuum polarization correction is absorbed 

into a(Q). Since the only true ultraviolet divergences in the theory are 

'•,sociated with vacuum polarization, it is only these corrections which 

,.ke the coupling constant run. 

Given the definition, we need only detennine the appropriate scale 

(or scales) Q for a given process. The most naive procedure is simply to 

use the full propagator (Eq.(B.4)) for each photon in any given diagram. 35 

For example, we can replace a by a(Q) (with Q2 
= -q2) before integrating 

over q in the leading diagram for the muon anomaly (Fig. 27 a). All vacuum 

larization insertions are automatically included. Unfortunately the 

:ip integration is then quite cumbersome. However, by the mean va·lue 

* theorem there must be some scale Q 'vmµ for which the exact result is 

* aVP = a(Q) (B.5a) 
µ 21T I ,, 

' 

i 
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where from Eq.(B.2) 

a(Q) = -- -----____,,....a=------------

1 - ~g inn?;-~) -[~] [~ inn?;+ ,(3) - ~l)- (B.5b) 

(For simplicity we are neglecting muon loops and factors of order m /m 
e \J 

* or less in a(Q)). Scale Q can then be determined order by order in 

perturbation theory by expanding (8.5) in powers of a and adjusting the 

coefficients to agree with results obtained from vacuum polarization 

insertions in the basic diagram. For example the lowest order electron 

loop (Fig. 27b) contributes 

Ayp ~ a~ = [tin:~ -4¾] ~ a~ 
which from Eq. (B.5) must equal 

Thus we have q* = m e5112 in leading order. With this procedure, the muon 
\J 

-,nomaly has the same expansion to first order as the electron anomaly 

Eq.(B.2)) - i.e. to this order we are replacing 

aµ=% (1 +~(Avp-0.656] + ..• ] 

by 

(B.7a) 

where * a(Q ) = Cl 

1 -~A 
n VP 

(B.7b) 



-4-

Intuitively this is reasonable since if a single insertion gives ~Ayp. a 

doub 1 e insertion wi 11 give roughly (~ Ayp J 2• and so on. Thus the e 1 ectrons 

modify only the charge and not the physical expansion of a in this order. µ 

Of course this is no longer the case in higher orders, when 'light-by-light' 

diagrams (Fig. 27c) and others like them appear. 

* The optimal scale Q is refined by higher order corrections -

o*=mµe 5fl 2(1+1.14 ~+ ••. )-but its expansion is obviously far more 

convergent than the original expansion for aµ. Also this expansion is 

unique. For example, including the -.656 ~ from (B.7a) with the 

* Ayp ~ in a(Q ) (Eq.(B.7b)) would wreak havoc with the next-to-leading 

logarithms of mµ/me in higher orders; there is no reason to expect that 

the -.656 .9:. is part of an approximately geometric series of contributions. 
1[ 

unlike the vacuum polarization corrections which must be (for renormal-

izability). Finally when there are several photons in a diagram. each 

will usually nave its own scale (detennined as above). There is no reason 

for all running couplings to have the same scale. 

We would like now to carry these ideas over to QCD. However we 

immediately encounter a difficulty. In QCD, the charge is renormalized 

not only by vacuum polarization but by parts of the vertex and fermion 

self energy corrections as well. It seems generally impossible to 

separate these latter corrections into a more or less process independent 

piece which renormalizes the charge, and a process dependent, ultraviolet­

finite remainder; but for processes having no tri-gluon couplings in 
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lowest order there is a way, and these include almost all phenomenologically 

relevant processes in QCD. 

For such processes the only ultraviolet divergent fermion loops 

in first order are insertions in the gluon propagators. As for the muon 

anomaly, the only function of these light-fermion insertions is to 

renormalize the coupling; all such terms should be completely absorbed 

into a redefinition of as (or of its scale). · Unfortunately it is less 

clear which of the gluonic corrections should also be included. However 
2 only terms proportional to 8

0 
= 11 - 3 nf can be absorbed in this order. So 

we can use the light-quark loops as a probe, absorbing not just the quark 

olarization contributions but the implied gluonic corrections required 

:,o give the 11 - j nf dependence - e.g. if the Avpnf term is due to nf quark 

insertions, we take 

~ p = 9iis{Q) {l + TT (Avpnf + B) + ... } 

aMS ( 3 33 
= 9-1s(Q) {l + TT -¥oAvp +2 Avp + B) + · · ·} 

-+ ii(Q) { 1 + ~ ( 
3
} Avp + B) + ... } (B.8a) 

where as in (B.7b) 
=s(O) ii(Q) ___ ..:= 1•1;, __ ~ 

a.=(Q) 
l + 8 }_A l'I;) 

o2 VP TT (B.8b) 

= 9-15(Q exp(3Avpl) 

(The last line in (B.8b) is a consequence of the fact that all definitions 

of as have the same functional form in two loops, one definition differing 

from the other only by a scale factor)~6 The term ~3 Avp in (B.8a) in 



-6-

effect removes that part of the constant B which renormalizes the charge. 

This procedure determines the natural expansion parameter 5.(Q) for 

the majority of interesting processes iri QCD. Coupling a is gauge 

invariant, and independent of the scheme or scale chosen for the original 

calculation (here we assume) MS). Viewed another way, given a scheme 

(MS, MS, MOM, ... ) this procedure automatically determines the optimal 

* * scale, Q = Q exp(3 Avpl (where Avp and therefore Q obviously depend upon the 

scheme chosen). 

Processes with tri-gluon couplings in lowest order are more difficult 

to analyze because in first order quark loops appear not only as 

propagator insertions, but also in the radiative corrections to the tri­

gluon vertex. Again it is hard to separate the divergent part of the 

vertex (which renormalizes a) from the finite part in any unique and general 

fashion. Such processes are discussed elsewhere.34 

To illustrate this procedure and to explore its implications, we 

examine briefly a number of well know predictions of QCD: 

e+e- -,.hadrons - The ratio of the total cross section into hadrons to 

h . f + - + - . ( E2) 37 t e cross sect1on or e e ->-µ µ 1s s = 

R(E) = 
=(E) a..-

3 E e2 {l +-"''-'--I:,_+ _1•_1S (1.98 -
q q TI TI2 

-,. 3 E e~ {1 
q 

a2(E} + 
2 

o. 08 + ••• } 
TI 

where ii(E) = c;;;s(0.71E) for four flavors. 

Deep Inelastic Scattering - The momenta of the non-singlet structure 
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functio~ F
2

(x.Q2) have an evolution equation
38 

2 d 2 y ~o) ( ) °M 2B B + y(l) 
Q --.,- tnMn(Q ) = - -811 a,.,.- Q {l + _S o n n } 
~ ~ % ~o) 

'Where for example 

(o) 
Yn 

..,._ - ii (Q) 
1T n 

a
2

(Q) = °MS"(0.48Q) c2 = .27 for n = 2 

. a
10

(Q)= °Ms(0.21Q) c10=1. l for n = 10 

* For n very large. the effective scale here becomes Q <vQ/lnwhich is exactly 

• what was found in Ref. 39 by a detailed study of the kinematics of deep 

!inelastic scattering. 

-!t Decay - The ratio of the T'f.: width into hadron to that into yy is 

(Eq. 4.11) 

r(nc..,. hadrons) 

r(nc +yy) 

where here ci(M) = Ctj;js(0.26 M) for three flavors . 

. T Decay--: The ratio of the hadronic to the leptonic widths of the T (Eq.(4.!l)) 

can be rewritten 

r{T+hadrons) 
r(T+µ+µ-) 

3 ci(Hr) 
= C

0
ci (Hr) {l - 11 14.0 + ••• } 
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where &{MT) = c;;rs(0.157 MT). Thus the rate into gluons has a large 

negative correction with this physical definition of a
5

, just as do the 

rates for T-+ yyy and for o-Ps..,. yyy, both of which are scheme-sea le 

independent. Such a correction implies large, positive terms in higher 

orders, and in fact these are necessary if we are to fit the data -

otherwise the ratio becomes negative for large&. We can still do a fit 

if we replace the term in brackets by {l - ~ 7 }2 in which case we obtain 

"Ms ~140-230 MeV, which is surprisingly close to our original estimate 

(Eq.(4.10)) from this process. This last procedure might be justified 

because more than half the negative coefficient comes from a single 

diagram (Fig. 28) and this may in effect simply modify w(O). Further 

study is clearly necessary, though AMS~ 100-200 MeV seems very like1y. 
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Figure Captions 

1. Perturbative contributions to the pion's qqqqg wave function. 

Contributions of type b) correspond to creation of qqg from the 

vacuum, and therefore do not appear in equal-T wave functions. 

2. Coupled eigenvalue equations for the Fock state wave functions of 

a pi on. 

3a) Bound state equation for the ee Fock state wave function of 

pos i troni um 

b) The two-particle irreducible potential. 

4. Diagrams having similar behavior to wave functions for large kJ.: 

5. Diagrams contributing to the pion form factor. 

6. Diagrams contributing to the structure functions for deep inelastic 

scattering. 

7. Amplitudes whose behavior is similar to that of wave functions 

for x+ 1 

8. The n-y transition form factor. 

9. Diagrams contributing to F ny as q.1. + 0. 

10. The contribution to F'Tl'Yfrom the diagram in Fig. 9b. 

* 11. The two-particle irreducible amplitude for y + qq +qq, in the pion 

form factor. 

12. The qq component of the pion form factor. 

13. The unrenormalized hard scattering amplitudes for Fn. 

14. 

15. 

16. 

Vertex and propagator corrections for Fn. 

* - -Hard scattering amplitudes for y +qqg+qq. 

The qq wave function of the pion for q2 = Q2 large. 
..L 
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17 a) Diagram contributing to TT1T elastic scattering. 

b) Hard scattering amplitude coming from a) when k2<vr2, q2• a J. .L 

18. Various models (see Ref. 20) for the QQ potential, with the 

mean radii of the T,T' ,¢,¢', •.. as indicated. The curves 

correspond to 1) a power law potential, 2) a refined Richardson 

potential, 3) a logarithmic potential, and 4) a linear plus 

Coulomb potential. 

19. Wave functions for higher Fock states in QQmesons. 

20 a) Lowest order diagrams contributing to the hyperfine splitting 

in QQ mesons. 

21 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

b) Diagrams which are typical of the infinity of diagrams 

a) 

b) 

c) 

d) 

contributing to the 0(as) corrections to the hyperfine splitting. 

Leading order diagram for T+gluons (-+hadrons). 

Contribution to T-+gluons from QQg Fock states. 

Contribution from QQg states to the decay of p-states. 

Typical diagram contributing top-state decays in leading order. 

QED radiative decays of the¢'. 

QCD radiative decays of the T'. 

Interaction vertices for QCD. 

Diagrams contributing to the qq-+qq Green's function in LCPTh. 

Graph rules for QCD vertices in LCPTh. 

Diagrams for the muon anomaly. 

Diagram contributing to T-+ ggg. 



a) 

b) 

FIG. I 

t 
0 • • • I ~ • • • 

$ 0 ,vvv -;:;:,- ••• 
• • • • 

• • • • • • • • • • • 

FIG.2 

0771211 



a) 

b) 

a) 

b) 

V 
eff 

X ,kl. 

FIG.3 

( ) 

X ,kl. 

( ) 

FIG.4 

Offflll 

.. ____ , ., .. , ,,,, .• ,, .. , .. , ... ,,.,.1,~ .. , 



+ + 9: • • 

FIG.5 

a) + 

b) 

c) 

I 
I I 

FtG.6 

.,,,: I 



a) =et - ~ I- X 

b) - ~ I - X 

FIG. 7 

µ. 

" p+q 

FIG. 8 

{a) (b) 

FIG. 9 

0771281 



x,l/2ql. +kl. 

FIG.10 

_J_ _L 
+ + + ••• ..,.,..,, 

b) 

c) 

FIG. II 

0771281 



l,0.1 

Fl G. 12 

0, t1.i. 
x, 0.1 y, YQ_i_ I 

a) TH I + efl = I ef I 

1-y, (1-y}Cl_i_ l-x,0.1 

= + + ••• 

+ ••• 

0771281 

FIG. 13. 



'""''""'1"'11·11i1m•1111•1"11111,•111nr"'"""'"'""'' 

FIG. 15 

FIG. 16 

IIIHllf'tl'llll'I! , ~!lllll!l!liplll"l"l•Ol"l''''"'"""",i•~·lli.fHl'IUl'l.,11" ''""'''"'"",' ,,,..,,,,,,""'"''''''"'"'''"'"''' 

OTTIZII 



x0 ,x0 ( Q.1 + r .1) + k0 

I 

a) 

b) 

\ 

FIG.17 

I, r .i 

I ,q.1 

0771281 

, 

I 

I 
I 
I 

I 
! 



0 

-I 
.---, 

-3 
> 

-4 

------1 
--2 
------3 
••••••• 4 

. 
• 

'I.· 
'/: 
I• ,: 

1: 
I • 

I : 
I • I: 

I : 

/: 
t: 
I: 

• 

T 

0.01 0.05 0.1 

r[tm] 

Fl G.18 

II Ill 

T TT 

I 111 
'I' X 'I' 

0.1 1.0 

OTTl211 



0 
q 

a) 'I'qq ~ ii 

I Q q ' r 
hard 

b) 'l'oog ~ 

soft 

c) 'l'oog ~ 

FIG. 19 

I + ]I + X + Y+::!+I 
a) I 

1 

+I+ 
.! 

••• ( 

t 
1'1 

b) ·ffiffi: o™ 
FIG. 20 °"'"' 



b) 

c) 

d) ={) TI1IT C 

FIG. 21 



a) 

b} ={) ~(}= = =<r-~}= 

+ =() g O= + ={~}= ! 
I 
I 

! 
I 

+ • • • + • • • 1 

I 

FIG. 22 

Ml Ml 

(a} (b) 

FIG. 23 
OTTIZ81 



a) 

b) 

FIG. 24 

a b 
0 .0 

+ + + ••• 
0 0 

FIG. 25 

µ. 

(a) (b} (c) 

FIG. 27 



b~a 

c~d 

b~a 

c~d 

b~a 

c~d 

b~a 

c~d 

X= 

Vertex Factor 

* g{ (p -pb) • E a C 
E "E a b 

+ cyclic permutations} 

2 -g u(a) 

2 - + g u(a)y u(b) 

* ¢ u 
C 

+ + 
(pc-pd) 

+ + 2 
(pc+pd) 

FIG. 26 

* E •E d c 

Color !'actor 



FIG. 28 


	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92

